

Dec 18, 2022 - 07:54 am GMT

PDB ID	:	7A5K
EMDB ID	:	EMD-11646
Title	:	Structure of the human mitoribosome in the post translocation state bound to
		mtEF-G1
Authors	:	Desai, N.; Yang, H.; Chandrasekaran, V.; Kazi, R.; Minczuk, M.; Ramakrish-
		nan, V.
Deposited on	:	2020-08-21
Resolution	:	3.70 Å(reported)
This is	. 1	All wwwPDR FM Validation Report for a publicly released PDR entry

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev43
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.3

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain				
1	r1	751	38%	5% • 7%			
2	Y2	29	86% 93%	7%			
3	8	1559	99%				
3	A3	1559	• • 65%	26% 5% ·			
4	B3	73	16% 52% 23%	• 23%			
5	D3	305	9%	• 23%			
6	E3	348	5%	• 14%			
7	F3	311	• 79%	• 20%			

Mol	Chain	Length	Quality of chain			
8	D	267	24% 28% • 70%			
8	H3	267	<u>35%</u> .649	%		
9	I3	261	60%	39%		
10	J3	192	47%	• 27%		
11	K3	178	95%	•••		
12	L3	145	79%	21%		
13	M3	296	93%	•••		
14	N3	251	80%	• 18%		
15	O3	175	85%	•• 13%		
16	P3	179	72%	• 26%		
17	Q3	292	75%	25%		
18	R3	149	<u>6%</u> 93%	• 6%		
19	S3	205	74%	• 24%		
20	Τ3	212	6% 77%	• 22%		
21	U3	153	• 72%	• 27%		
22	V3	216	19%	• 12%		
23	W3	148	• 74%	• 25%		
24	X3	256	93%	• 5%		
25	Y3	250	8% 70%	• 30%		
26	Z3	161	73%	• 25%		
27	03	188	7% 56% ·	43%		
28	13	65	8% 74%	6% 20%		
29	23	92	50%	50%		
30	33	188	• 50% •	49%		
31	43	103	35% 65%			

Mol	Chain	Length	Quality of chain		
32	53	423	87%	• 11%	
33	63	380	84%	• 14%	
34	73	338	78%	• 21%	
35	93	137	9%	• 20%	
36	a3	142	58%	42%	
37	b3	155	94%	•• 5%	
38	c3	332	7%	• 17%	
39	d3	306	13% 51% •	47%	
40	e3	279	67%	• 22%	
41	f3	194	65%	32%	
42	g3	166	77%	• 22%	
43	h3	158	60% •	37%	
44	i3	128	5%	• 24%	
45	j3	123	67%	31%	
46	k3	112	28%	25%	
47	13	138	▶ 17% 83%		
48	m3	128	22% 34% • 65%		
49	03	102	91%	• 8%	
50	p3	206	61%	38%	
51	q3	222	14% 56% •	42%	
52	r3	196	<mark>6%</mark> 74%	26%	
53	s3	439	8%	• 16%	
54	u3	2	100%		
55	A5	435	6% 6% 94%		
56	B6	296	45% 72%	27%	

Mol	Chain	Length	Quality of chain	
	C 2		78%	
57	C6	167	79%	21%
58	D6	430	43%	250/
	D0	400	73%	• 25%
59	E6	125	97%	
			83%	
60	F6	242	81%	•• 17%
61	Ce	206	70%	
01	G0	- 290	76% 59%	• 23%
62	H6	201	60%	39%
			50%	
63	I6	194	69%	• 30%
			14%	
64	J6	138	77%	• 22%
65	Ve	100	77%	
60	K0	128	78%	• 21%
66	L6	257	63%	36%
	10		53%	5070
67	M6	137	82%	• 15%
			38%	
68	N6	130	79%	• 18%
60	06	250	51%	
09	00	200	68%	• 28%
70	P6	142	65%	32%
			56%	
71	Q6	87	99%	
	Da	200	56%	
72	R6	360		33%
73	S6	190	52 /0 6E0/	240/
10	50	150	• • • • • • • • • • • • • • • • • • •	3470
74	T6	173	92%	• 6%
			66%	
75	U6	205	83%	• 16%
70	VC	41.4	70%	
10	VO	414	78%	• 21%
77	W6	187	51%	48%
	***	101	79%	4070
78	X6	398	78%	• 21%
			27%	
79	Y6	395	27% 73%	
00		100	81%	
80	<u>ک</u> 0	100	82%	18%
81	аб	218	88%	- 8%
	au	210	88%	• 8%

Mol	Chain	Length	Quality of chain				
82	b6	323	78%	.	21%		
83	c6	118	73% 95%				
84	d6	199	9%	65%			
85	e6	689	60% 59%	40	1%		
86	A6	954	28%	29'	% • •		
87	24	73	95%	53%	5%		
87	FE	73	73%	53%	5%		
88	А	206	62%	•	21%		
89	n	286	73%		24%		
90	В	28	71%				

2 Entry composition (i)

There are 95 unique types of molecules in this entry. The entry contains 171122 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Elongation factor G, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	r1	696	Total 5452	C 3435	N 940	O 1044	S 33	0	0

• Molecule 2 is a protein called nascent chain.

Mol	Chain	Residues	Atoms				AltConf	Trace
2	Y2	29	Total 145	C 87	N 29	O 29	0	0

• Molecule 3 is a RNA chain called 16S rRNA.

Mol	Chain	Residues	Atoms	AltConf	Trace
3	A3	1503	Total C N O P 31913 14319 5761 10330 1503	0	0
3	8	8	Total C N O P 175 79 37 51 8	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A3	3107	U	UNK	conflict	GB 1025814679
8	663	U	UNK	conflict	GB 1025814679

• Molecule 4 is a RNA chain called mt-tRNAVal.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	AltConf	Trace			
4	B3	56	Total 1191	С 534	N 214	0 387	Р 56	0	0

• Molecule 5 is a protein called 39S ribosomal protein L2, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
5	D3	236	Total 1842	C 1145	N 373	O 315	S 9	0	0

• Molecule 6 is a protein called 39S ribosomal protein L3, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
6	E3	300	Total 2365	C 1523	N 410	0 422	S 10	0	0

• Molecule 7 is a protein called 39S ribosomal protein L4, mitochondrial.

Mol	Chain	Residues		Ate	AltConf	Trace			
7	F3	250	Total 2013	C 1294	N 365	0 348	S 6	0	0

• Molecule 8 is a protein called 39S ribosomal protein L9, mitochondrial.

Mol	Chain	Residues	Atoms	AltConf	Trace
8	H3	95	Total C N O 784 498 152 134	0	0
8	D	80	Total C N O S 648 421 111 112 4	0	0

• Molecule 9 is a protein called 39S ribosomal protein L10, mitochondrial.

Mol	Chain	Residues		\mathbf{A}	AltConf	Trace			
9	I3	158	Total 1283	C 828	N 235	0 210	S 10	0	0

• Molecule 10 is a protein called 39S ribosomal protein L11, mitochondrial.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
10	J3	140	Total 1061	C 680	N 192	0 187	${ m S} { m 2}$	0	0

• Molecule 11 is a protein called 39S ribosomal protein L13, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
11	K3	177	Total 1451	C 934	N 259	0 251	${ m S} 7$	0	0

• Molecule 12 is a protein called 39S ribosomal protein L14, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
12	L3	115	Total 889	$\begin{array}{c} \mathrm{C} \\ 559 \end{array}$	N 171	O 154	${f S}{5}$	0	0

• Molecule 13 is a protein called 39S ribosomal protein L15, mitochondrial.

Mol	Chain	Residues		Ate	AltConf	Trace			
13	M3	287	Total 2305	C 1472	N 425	O 402	S 6	0	0

• Molecule 14 is a protein called 39S ribosomal protein L16, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
14	N3	205	Total 1654	C 1056	N 308	0 280	S 10	0	0

• Molecule 15 is a protein called 39S ribosomal protein L17, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
15	O3	152	Total 1245	C 784	N 239	0 215	${f S}7$	0	0

• Molecule 16 is a protein called Mitochondrial ribosomal protein L18, isoform CRA_b.

Mol	Chain	Residues		At	AltConf	Trace			
16	P3	133	Total 1080	C 677	N 209	O 189	${ m S}{ m 5}$	0	0

• Molecule 17 is a protein called 39S ribosomal protein L19, mitochondrial.

Mol	Chain	Residues		Ate		AltConf	Trace		
17	Q3	219	Total 1822	C 1168	N 322	O 323	S 9	0	0

• Molecule 18 is a protein called 39S ribosomal protein L20, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
18	R3	140	Total 1153	C 732	N 231	0 186	${S \atop 4}$	0	0

• Molecule 19 is a protein called 39S ribosomal protein L21, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
19	S3	156	Total 1251	C 806	N 222	O 219	$\frac{S}{4}$	0	0

• Molecule 20 is a protein called 39S ribosomal protein L22, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
20	Τ3	166	Total 1368	C 875	N 254	0 232	${ m S} 7$	0	0

• Molecule 21 is a protein called 39S ribosomal protein L23, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	U3	111	Total 922	C 591	N 176	0 153	$\frac{S}{2}$	0	0

• Molecule 22 is a protein called 39S ribosomal protein L24, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	V3	189	Total 1551	C 987	N 278	O 278	S 8	0	0

• Molecule 23 is a protein called 39S ribosomal protein L27, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
23	W3	111	Total 871	C 558	N 164	0 146	${ m S} { m 3}$	0	0

• Molecule 24 is a protein called 39S ribosomal protein L28, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
24	X3	243	Total 2027	C 1310	N 350	O 362	${ m S}{ m 5}$	0	0

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
X3	148	ALA	THR	conflict	UNP Q13084
X3	149	SER	PRO	conflict	UNP Q13084
X3	150	GLY	LYS	conflict	UNP Q13084

• Molecule 25 is a protein called 39S ribosomal protein L47, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
25	Y3	176	Total 1517	C 970	N 291	O 252	$\frac{S}{4}$	0	0

• Molecule 26 is a protein called 39S ribosomal protein L30, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
26	Z3	120	Total 978	C 626	N 183	O 166	${ m S} { m 3}$	0	0

• Molecule 27 is a protein called 39S ribosomal protein L32, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
27	03	108	Total 880	C 545	N 172	0 157	S 6	0	0

• Molecule 28 is a protein called 39S ribosomal protein L33, mitochondrial.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
28	13	52	Total	C	N	0	S	0	0
			433	278	83	70	Z		

• Molecule 29 is a protein called 39S ribosomal protein L34, mitochondrial.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
29	23	46	Total	С	Ν	0	\mathbf{S}	0	0
20	20	10	376	233	83	59	1		

• Molecule 30 is a protein called 39S ribosomal protein L35, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
30	33	95	Total 831	C 539	N 162	0 127	${ m S} { m 3}$	0	0

• Molecule 31 is a protein called 39S ribosomal protein L36, mitochondrial.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
31	43	36	Total 322	C 203	N 70	O 46	${ m S} { m 3}$	0	0

• Molecule 32 is a protein called 39S ribosomal protein L37, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
32	53	376	Total 3064	C 1987	N 529	O 538	S 10	0	0

• Molecule 33 is a protein called 39S ribosomal protein L38, mitochondrial.

Mol	Chain	Residues		Ate	AltConf	Trace			
33	63	325	Total 2636	C 1692	N 465	0 470	S 9	0	0

• Molecule 34 is a protein called 39S ribosomal protein L39, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
34	73	266	Total 2158	C 1383	N 371	O 388	S 16	0	0

• Molecule 35 is a protein called 39S ribosomal protein L41, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	93	109	Total 873	C 565	N 152	0 154	${ m S} { m 2}$	0	0

• Molecule 36 is a protein called 39S ribosomal protein L42, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
36	a3	82	Total 686	C 434	N 124	0 123	${ m S}{ m 5}$	0	0

• Molecule 37 is a protein called 39S ribosomal protein L43, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
37	b3	148	Total 1178	C 733	N 229	0 213	${ m S} { m 3}$	0	0

• Molecule 38 is a protein called 39S ribosomal protein L44, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
38	c3	275	Total 2217	C 1415	N 383	0 410	S 9	0	0

• Molecule 39 is a protein called 39S ribosomal protein L45, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
39	d3	162	Total 1347	C 870	N 234	O 235	S 8	0	0

• Molecule 40 is a protein called 39S ribosomal protein L46, mitochondrial.

Mol	Chain	Residues		Ate	AltConf	Trace			
40	e3	217	Total 1762	C 1124	N 310	O 323	${f S}{5}$	0	0

• Molecule 41 is a protein called 39S ribosomal protein L48, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
41	f3	131	Total 1039	C 663	N 169	O 203	$\begin{array}{c} \mathrm{S} \\ \mathrm{4} \end{array}$	0	0

• Molecule 42 is a protein called 39S ribosomal protein L49, mitochondrial.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
42	g3	129	Total 1067	C 690	N 185	O 190	${ m S} { m 2}$	0	0

• Molecule 43 is a protein called 39S ribosomal protein L50, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
43	h3	100	Total 827	С 524	N 146	0 155	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 44 is a protein called 39S ribosomal protein L51, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
44	i3	97	Total 827	C 532	N 165	0 126	${f S}$ 4	0	0

• Molecule 45 is a protein called cDNA FLJ76418, highly similar to Homo sapiens mitochondrial ribosomal protein L52 (MRPL52), transcript variant 1, mRNA.

Mol	Chain	Residues		At	AltConf	Trace			
45	j3	85	Total 684	C 423	N 133	O 126	${S \over 2}$	0	0

• Molecule 46 is a protein called 39S ribosomal protein L53, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
46	k3	84	Total 655	C 407	N 122	0 121	${f S}{5}$	0	0

• Molecule 47 is a protein called 39S ribosomal protein L54, mitochondrial.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
47	13	23	Total 221	C 137	N 52	O 32	0	0

• Molecule 48 is a protein called 39S ribosomal protein L55, mitochondrial.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
48	m3	45	Total 372	C 232	N 76	O 62	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 49 is a protein called Ribosomal protein 63, mitochondrial.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
49	03	94	Total 797	C 501	N 165	0 128	${ m S} { m 3}$	0	0

• Molecule 50 is a protein called Peptidyl-tRNA hydrolase ICT1, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
50	p3	127	Total 1058	C 661	N 201	0 192	S 4	0	0

• Molecule 51 is a protein called Growth arrest and DNA damage-inducible proteins-interacting protein 1.

Mol	Chain	Residues		At	oms	AltConf	Trace		
51	q3	128	Total 1076	C 671	N 208	0 192	${f S}{5}$	0	0

• Molecule 52 is a protein called 39S ribosomal protein S18a, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
52	r3	146	Total 1203	С 764	N 232	O 199	S 8	0	0

• Molecule 53 is a protein called 39S ribosomal protein S30, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
53	s3	370	Total 3036	C 1946	N 542	O 534	S 14	0	0

• Molecule 54 is a RNA chain called RNA.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
54	u3	2	Total 42	C 19	N 8	O 13	Р 2	0	0

• Molecule 55 is a protein called Mitochondrial inner membrane protein OXA1L.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
55	A5	28	Total 136	C 80	N 28	O 28	0	0

• Molecule 56 is a protein called 28S ribosomal protein S2, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
56	B6	217	Total 1768	C 1131	N 321	O 306	S 10	0	0

• Molecule 57 is a protein called 28S ribosomal protein S24, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
57	C6	132	Total 1082	C 699	N 195	0 184	${S \atop 4}$	0	0

• Molecule 58 is a protein called 28S ribosomal protein S5, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
58	D6	322	Total 2557	C 1611	N 476	0 457	S 13	0	0

• Molecule 59 is a protein called 28S ribosomal protein S6, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
59	E6	122	Total 972	C 614	N 177	0 177	${S \atop 4}$	0	0

• Molecule 60 is a protein called 28S ribosomal protein S7, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
60	F6	201	Total 1668	C 1069	N 305	O 283	S 11	0	0

• Molecule 61 is a protein called 28S ribosomal protein S9, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
61	G6	305	Total 2516	C 1599	N 448	0 455	S 14	0	0

• Molecule 62 is a protein called 28S ribosomal protein S10, mitochondrial.

Mol	Chain	Residues		At	oms	AltConf	Trace		
62	H6	122	Total 999	C 643	N 168	0 185	${ m S} { m 3}$	0	0

• Molecule 63 is a protein called 28S ribosomal protein S11, mitochondrial.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
63	I6	136	Total 1011	C 637	N 192	0 178	$\frac{S}{4}$	0	0

• Molecule 64 is a protein called 28S ribosomal protein S12, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
64	J6	108	Total 838	C 521	N 169	0 142	S 6	0	0

• Molecule 65 is a protein called 28S ribosomal protein S14, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
65	K6	101	Total 861	C 537	N 179	0 140	${ m S}{ m 5}$	0	0

• Molecule 66 is a protein called 28S ribosomal protein S15, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
66	L6	164	Total 1382	C 883	N 257	O 235	S 7	0	0

• Molecule 67 is a protein called 28S ribosomal protein S16, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
67	M6	116	Total 920	C 582	N 182	O 150	S 6	0	0

• Molecule 68 is a protein called 28S ribosomal protein S17, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
68	N6	107	Total 846	C 549	N 153	0 141	${ m S} { m 3}$	0	0

• Molecule 69 is a protein called 28S ribosomal protein S18b, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
69	O6	185	Total 1528	C 970	N 285	O 267	S 6	0	0

• Molecule 70 is a protein called 28S ribosomal protein S18c, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
70	P6	96	Total 774	C 498	N 133	0 135	S 8	0	0

• Molecule 71 is a protein called 28S ribosomal protein S21, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
71	Q6	86	Total 740	C 458	N 150	0 124	S 8	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Q6	50	ARG	CYS	conflict	UNP P82921

• Molecule 72 is a protein called 28S ribosomal protein S22, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
72	R6	242	Total 2008	C 1285	N 343	0 372	S 8	0	0

• Molecule 73 is a protein called 28S ribosomal protein S23, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
73	$\mathbf{S6}$	126	Total 1042	C 673	N 183	O 185	S 1	0	0

• Molecule 74 is a protein called 28S ribosomal protein S25, mitochondrial.

Mol	Chain	Residues		A	toms	AltConf	Trace		
74	Т6	162	Total 1330	C 850	N 231	O 238	S 11	0	0

• Molecule 75 is a protein called 28S ribosomal protein S26, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
75	U6	173	Total 1461	C 900	N 294	O 263	S 4	0	0

• Molecule 76 is a protein called 28S ribosomal protein S27, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
76	V6	328	Total 2702	C 1737	N 452	O 502	S 11	0	0

• Molecule 77 is a protein called 28S ribosomal protein S28, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
77	W6	97	Total 766	C 486	N 137	0 139	S 4	0	0

• Molecule 78 is a protein called 28S ribosomal protein S29, mitochondrial.

Mol	Chain	Residues		At	AltConf	Trace			
78	X6	316	Total 2531	C 1625	N 440	0 455	S 11	0	0

• Molecule 79 is a protein called 28S ribosomal protein S31, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
79	Y6	108	Total 914	C 593	N 150	O 169	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 80 is a protein called 28S ribosomal protein S33, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
80	Z6	87	Total 740	C 473	N 133	O 130	$\frac{S}{4}$	0	0

• Molecule 81 is a protein called 28S ribosomal protein S34, mitochondrial.

Mol	Chain	Residues	Atoms					AltConf	Trace
81	a6	201	Total 1684	C 1065	N 322	O 292	${ m S}{ m 5}$	0	0

• Molecule 82 is a protein called 28S ribosomal protein S35, mitochondrial.

Mol	Chain	Residues		At		AltConf	Trace		
82	b6	256	Total 2076	C 1321	N 350	O 395	S 10	0	0

• Molecule 83 is a protein called Coiled-coil-helix-coiled-coil-helix domain-containing protein 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
83	c6	116	Total 925	C 574	N 181	0 162	S 8	0	0

• Molecule 84 is a protein called Aurora kinase A-interacting protein.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
84	d6	69	Total 610	C 393	N 130	O 86	S 1	0	0

• Molecule 85 is a protein called Pentatricopeptide repeat domain-containing protein 3, mitochondrial.

Mol	Chain	Residues		At	oms			AltConf	Trace
85	e6	414	Total 2838	C 1805	N 490	O 529	S 14	0	0

• Molecule 86 is a RNA chain called 12S rRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
96	16	0.28	Total	С	Ν	Ο	Р	0	0
80	A0	920	19716	8840	3560	6388	928	0	0

• Molecule 87 is a RNA chain called mt-tRNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
87	24	73	Total	С	Ν	0	Р	0	0
01 24	24	15	1547	696	280	499	72	0	0
97	БĿ	72	Total	С	Ν	0	Р	0	0
01	ГЦ	ГĽ (Э	1547	696	280	499	72	0	0

• Molecule 88 is a protein called 39S ribosomal protein L40, mitochondrial.

Mol	Chain	Residues	Atoms				AltConf	Trace	
88	А	162	Total 1375	C 876	N 247	0 249	${ m S} { m 3}$	0	0

• Molecule 89 is a protein called 39S ribosomal protein L1, mitochondrial.

Mol	Chain	Residues	Atoms				AltConf	Trace	
89	n	218	Total 1744	C 1121	N 294	0 324	${S \atop 5}$	0	0

• Molecule 90 is a protein called Unknown protein.

Mol	Chain	Residues	Atoms			AltConf	Trace	
00	В	20	Total	С	Ν	0	0	0
90	D	20	140	84	28	28	0	0

• Molecule 91 is PHOSPHOMETHYLPHOSPHONIC ACID GUANYLATE ESTER (three-letter code: GCP) (formula: $C_{11}H_{18}N_5O_{13}P_3$).

Mol	Chain	Residues	Atoms					AltConf
91	r1	1	Total 32	C 11	N 5	0 13	Р 3	0

• Molecule 92 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
92	r1	1	Total Mg 1 1	0
92	A3	95	Total Mg 95 95	0
92	D3	1	Total Mg 1 1	0
92	E3	1	Total Mg 1 1	0
92	M3	1	Total Mg 1 1	0
92	g3	1	Total Mg 1 1	0
92	A6	28	TotalMg2828	0

Mol	Chain	Residues	Atoms	AltConf
93	A3	1	Total C N 10 7 3	0

• Molecule 94 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
94	03	1	Total Zn 1 1	0
94	43	1	Total Zn 1 1	0
94	r3	1	Total Zn 1 1	0
94	B6	1	Total Zn 1 1	0
94	O6	1	Total Zn 1 1	0
94	P6	1	Total Zn 1 1	0
94	Т6	1	Total Zn 1 1	0

• Molecule 95 is GUANOSINE-5'-DIPHOSPHATE (three-letter code: GDP) (formula: $C_{10}H_{15}N_5O_{11}P_2$).

Mol	Chain	Residues	Atoms				AltConf	
05	X6	1	Total	С	Ν	Ο	Р	Ο
30	10	L	28	10	5	11	2	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Elongation factor G, mitochondrial

93%

7%

Chain Y2:

• Molecule 3: 16S rRNA

A2892 A2892 A2892 A2895 A2895 A2896 A2896 A2896 A2897 U2898 A2905 A2905 A2905 A2905 A2905 A2905 A2905 A2905 A2905 A2916 A2916 A2913 A2918 A2913 A2918 A2916 A2918 A2918 A2918 A2918 A2918 A2918 A2918 A2918 A2918 A2968 A2968 A2968 A2968 </th
u3012 a3016 a3016 a3016 a3016 a3016 a3016 a3055 a3055 a3055 a3055 c3056 a3055 c3056 a3055 c3056 a3055 c3056 a3055 c3056 a3055 c3056 a3055 c3056 a3055 c3056 a3055 c3056 a3055 c3056 a3055 c3056 a3055 c3056 a3055 c3056 a3055 c3056 a3055 c3056 a3055 c3056 a3055 c3056 c3056 a3055 c3056 c3122 c
A3135 A3141 A3141 A3141 A3156 A3156 A3156 A3158 A3158 A3158 A3158 A3158 A3158 A3158 A3158 A3158 A3156 A3156 A3156 A3156 A3156 A3156 A3156 A3156 A3156 A3156 A3156 A3156 A3156 A3156 A3156 A3156 A3203
• Molecule 3: 16S rRNA
Chain 8: 99%
00D44400D4000044000040D00400D40040040040
< \ \ \ \ \ < < < < < < < < < < < < < <
000444040000044400440040440040400400400
0 U 4 D 4 4 D 0 4 4 U D 4 0 4 4 A 7 4 4 U D D D 0 U 4 4 0 0 4 0 U U U 4 4 0 U D 4 4 0 U D 0 U U U U U U U U U 4 4 U
Ů = Ů = Ů Ů Ď Ă = Ů U Ď Ă = Ů = Ů U Ď Ž = Č = Ů = Ů U Ů Ů Ď Ů Ď = Ď D = Ů Ď = Č = Č = Ů Ď Ů Ď Ů Ď = Č = Č = Ď U Ď Ů Ď U Ď = Ď U Ď = Č = Č = Ď U Ď Ů Ď U Ď = Ď U Ď = Č = Č = Ď U Ď Ů Ď = Č = Č = Ď U Ď U Ď = Č = Č = Ď U Ď U Ď = Č = Č = Ď U Ď U Ď = Č = Č = Ď U Ď U Ď = Č = Č = Ď U Ď U Ď = Č = Č = Ď U Ď U Ď = Č = Č = Ď U Ď U Ď = Č = Č = Ď U Ď U Ď = Č = Č = Ď U Ď U Ď = Č = Č = Ď U Ď U Ď = Č = Č = Č = Ď U Ď U Ď = Č = Č = Ď U Ď U Ď = Č = Č = Č = Č = Č = Č = Č = Č = Č =
< < 0 < D D D < D < 0 0 D < 0 0 0 0 0 0

<pre></pre>
< < < < < < > > > > > > > > > > > > > >
D U 4 4 U U U U U U D 4 U D 4 4 4 4 4 D U U U 4 4 U 4 D 4 D
00440004000040404404400440044004400440044040
000047460000000000000464604000044076404000004454000004454040000
< > 0 < < 0 0 < < 0 < < 0 < < > 0 < < > < < < <
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 < 0 0 D D D A O U A D U A O D A D D A O A O O O U O D O O U U A O D O A U A D A D D D D A A O O O U U
, , , , , , , , , , , , , , , , , , ,
0 < < > 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



> ♡ < < ♡ < ♡ ♡ ♡ ♡ ♡ ♡ ♡ 2 < > < < ○ < ○ < ○ < ○ < ○ < ○ < ○ < ○ <	い	0004000400		D A A D U
0 0 4 4 4 0 4 0 5 4 0 0 5 4 4 0 4 4 0 0 0	<b>40400</b> 0000 <b>0</b> 440D	<b>40044400D</b> 0	0 4 D D 4 4 4 4 5	00044
0 D D 0 0 0 0 0 0 4 0 0 D 0 0 0 4 0 0 4 0 4	< ប ប ប < < ប ប 🗅 ប ប ប < ថ	U K G D K C K D G C		<ul><li>この</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li><li>の</li></ul>
D U 4 4 8 0 0 8 4 8 D 4 0 D 4 D 4 0 D 0 4	A D D G A D C C A A D G A C D		00440440DD4	000D
< º º º e a a a e e e e e e e e e e a a a a		U A A D A D C D A D C D		D U C C
D 0 D D 0 0 4 D 0 4 0 0 4 0 4 D 0 0 0 0	000000000000000000000000000000000000000			U U P C C
< < < 0 D 0 D < 0 0 D 0 < D 0 D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D 0 < 0 D D 0 < 0 D D 0 < 0 D D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 < 0 D 0 <	じょじょじじじじょじりょくつ	00400000		0000
< < < > > > > > > > > > > > > > > > > >	< ∪ < < 0 < 0 < < < ⊃ < < 0	000040000	C < < < C C C C C C C C	0000
000044400404004000440	DD40D4DD4D4000	< ប < ប ប ប < ប ប t	) < < 0 < < 0 < 0 0 0	
• Molecule 4: mt-tRNAVal				
Chain B3: 52%		23% •	23%	
C A1603 A1603 A1609 A1619 A1614 A1615 C C A1615 C A1625 A1625 A1625	C1651 U1653 V1653 A1654 G1641 G1644 A1645 U U U U U 0 C1648 C1648 C1648	A1661 A 1661 A A C C U 1658	A1661 C C C1663 G1664 G1665 U1666 C1667 U1668	A 1870 C C C C C
• Molecule 5: 39S ribosomal p	rotein L2, mitocho	ndrial		
Chain D3:	76%		23%	
MET LEU CYS CYS CYS CYS CYS ALA ALA ALA ALA ALA PRO PRO PRO ALA ALA ALA	PRO ALA PRO SER PHE PHE PRO ALA GLN MET ASN ASN	GLY LEU LEU GLN GLN PRO SER ALA LEU MFT	LEU LEU PRO CYS ARG PRO VAL LEU THR SFR	VAL ALA LEU ASN
A61 N62 E116 E116 X113 X113 A117 A170 A173 A173 A175 A175 A175	A10 A177 A177 G179 A181 A181 A181 A181 C190 C190 C190 C190 C190 C190 C190 C190 C190 C190 C190 C190 C190 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178 C178	G214 R218 N221 G222 C222	1249 ♦ 12289 ♦ 12289	M2922 ♦ V2966 LV296 LV29 LL29 SER ALA ALA ALA ALA ALA SER SER
• Molecule 6: 39S ribosomal p	rotein L3, mitocho	ndrial		
Chain E3:	84%		• 14%	
MET PRO GLY TRP TRP LEU LEU LEU CLN VAL ALA ALA ALA ALA ALA CLU CLU CLU CLU CLU	ALA ALA ALA ALA CLY CLY PRO CLY CLY ASN ASN ASN ASN HIS THR TRP LLEU	PHE VAL ARG GLY LEU HIS CLY LYS S45	D67 E68 D69 K70 L77 E83	P84 W85 G114 D126 ↔
K135 GLU ASN ASN ASN ASN ASN AS14 C141 ★141 ★141 ★141 ★144 C245 C245 C245 C245 C245 C245 C245 C2	D309       L310       D324       E325       E335       A348			
• Molecule 7: 39S ribosomal p	rotein L4, mitocho	ndrial		
Chain F3:	79%		• 20%	
	PROTEIN D			







MET TRP TRP ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
F87         R1114         P115         P115         R200         R200         R200         V251         V251	
$\bullet$ Molecule 15: 39S ribosomal protein L17, mitochondrial	
Chain O3: 85% ··· 13%	
MET ARG LIEU SER ALA ALA ALA ALA ALA ALA ALA ALA BIS CO CI CI CI CI CI CI CI CI CI CI CI CI CI	
$\bullet$ Molecule 16: Mitochondrial ribosomal protein L18, isoform CRA_b	
Chain P3: 72% · 26%	
MET ALA ALA ALA ALA CYS SER ARG CYS CYS CYS CYS CYS CYS CYS CYS CYS CYS	
• Molecule 17: 39S ribosomal protein L19, mitochondrial	
Chain Q3: 75% 25%	
MET ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
VAL VAL VAL VAL ASP VAL ASP VAL ARG CLU CLU CLU ARG ARG ARG ARG ARG ARG ARG ARG	E256
E287 + E2	
$\bullet$ Molecule 18: 39S ribosomal protein L20, mitochondrial	
Chain R3: 93% • 6%	
MET VAL PHE LLEU ALA ALA GLM GLM A131 L132 C133 C133 C133 C133 C133 C133 C133 C	

• Molecule 19: 39S ribosomal protein L21, mitochondrial



Chain S3:	74% .	24%
LT LA ER HHR HHR EU EU	LEA RRC CELEA CELEA CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC CELEA RRC RRC RRC RRC RRC RRC RRC RRC RRC RR	ER R 20 66 66 66 11 11 14 14 14 14 16 16 16 16 16 16 16 16 16 16
A A S S A A A	O A J A O A D A D A A A A A A A A A A A A A A	ard a ard a ard a
D152 M172 K182 K182 L204 LEU		
• Molecule 20	): 39S ribosomal protein L22, mitochondrial	
Chain T3:	77%	• 22%
MET ALA ALA ALA LEU GLY GLY GLY GLY GLY	ALA TLEU TLEU ASNN ASNN ASNN ASNN ASNC ASNC ASNC ASNC	ASP 147 147 147 147 665 666 666 666 666 €110 €123 €123
• • ••	•	
6160 R161 F181 P188 P188 R190	1213	
• Molecule 21	1: 39S ribosomal protein L23, mitochondrial	
Chain U3:	72%	27%
MET A2 E37 D38 P112 P112	LUC LVS ASP PRO ASP PRO CLU PRO CLU ALA ALA ALA ALA ALA ALA ALA ALA ALA A	PRO SER PHR OLY CLU
• Molecule 22	2: 39S ribosomal protein L24, mitochondrial	
Chain V3:	19% 84%	• 12%
MET ARG LEU SER ALA LEU LEU ALA ALA	SER LATS LATS LATS LIS PIG PIG PR0 CLU CLU CLU D60 D60 D60 D60 D60 D60 D60 D60 D60 D60	T101 M102 D103 T109 T117 P125 M126 T131 C132 E133 C133 A140
• • • •		
G141 E142 R143 V144 R145 T148 R149	S150 C151 R1553 T1564 T1564 T1564 PHE PHC ARC ARC ARC ARC ARC ARC ARC ARC ARC AR	R208
• Molecule 23	3: 39S ribosomal protein L27, mitochondrial	
Chain W3:	74%	• 25%
MET ALA SER VAL VAL LEU ALA ALA ARG ARG	ARG AIRA ALA ALA THR THR THR THR THR PRO PRO PRO PRO ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	D115
• Molecule 24	4: 39S ribosomal protein L28, mitochondrial	
Chain X3:	93%	• 5%
	W O R L D W I D E PROTEIN DATA BANK	

MET P2 E18 E18 G19 T20 S31 L32 S31 L32 L32 S31	E33 E34 E35 E35 E35 E53 F54 F54 F54 F54 F55 F53 F54 F53	R77 D95 K96 L97 D120 E137 E137	Q175 L176 H177 P178 E179	D189 A195 E198 E199	E209 E220 B222	1235 Q236 Q237 L238
q239 q240 q241 A242 L243 S244 FL0 ALA ALA ALA ALA ALA ALA GLN	LYS ARG SER SER GLY GLN					
• Molecule 25: 39	S ribosomal protein L ⁴	47, mitochondrial				
Chain Y3:	70%		30	%		
MET ALA ALA ALA ALA CLEU CLEU LEU LEU CVS ARG ARG VAL	SER SER ALA LEU LEU LEU SER SER SER THR THR THR THR THR THR THR THR SER	ALA THR GLY GLY GLY CHE CLY CHE LEU LEU LYS SER SER	THK PRO ASN VAL THR SER PHE	TYR GLN ARG LEU LEU HIS THR	LEU SER	
LYS LYS C663 E66 E69 E77 K80	A83 Q88 B97 H123 E130 E130	D137 D151 A152 A153 A153 P162 P203	E227	K237 PR0 HIS LEU ALA GLU ALA	GLN LYS SER SER LEU VAL	
• Molecule 26: 39	S ribosomal protein L3	30, mitochondrial				
Chain Z3:	73%		• 25	%		
MET ALA GLY LLU LEU LEU VAL VAL TRP PRO PRO	GLY GLY LED THR THR THR THR THR THR CYS CUU SER CTLE CTLE CTLE CTLE CTLE	ASP TRP TILE ARG K355 E51 D59 A76 R76	D84 E131	V 154 GLU GLN GLN LYS ALA ALA HIS GLU SER		
• Molecule 27: 39	S ribosomal protein L3	32, mitochondrial				
Chain 03:	56%		43%			
MET ALA ALA LEU ALA MET LEU VAL VAL VAL VAL SER FRO FRO	SER ALA ALA ALA ARG GLY CAL CLEU ARG GLU CLEU LEU LEU	LEU LEU PRO GLN SER ARG PRO GLY PHE PRO PRO PRO	TKP GLY ALA ALA ALA ALA VAL	GLY GLY ALA MET PHE GLU GLU	ALA ASN	
TASP THR SER SER SER LV GLU SER SER SER SER LEU LEU LEU LASP	ILE PHE PHE MET A79 A79 A151 A151 E155 E155 P165	S166 E167 Q168 Q169 D169 Q170 G171 E176 B177 D178 D178	T186 GLN ASN			
• Molecule 28: 39	S ribosomal protein L3	33, mitochondrial				
Chain 13:	74%		6%	20%		
MET PHE LEU SER ALA VAL PHE PHE LYS SER LYS SER SER	K14 N20 A24 A24 K69 K60 K60 K60 K63 K63 K63 K63 K63 K63 K63 K63 K63 K63	Les				
• Molecule 29: 39	S ribosomal protein L	34, mitochondrial				
Chain 23:	50%		50%			
MET ALA ALA ALA ALA ALA CLEU CLEU CLEU CLEU CLEU CLEU SER SER	ARG ALA ALA ALA ALA CLEU GLY GLY GLY ALG ALA ALA ALA ALA	LEU PHE ASP ALA ALA CLEU FRP PRO CLN	GLN ALA ARG GLY K47 H92			
• Molecule 30: 39	S ribosomal protein L3	35, mitochondrial				



Chain	33	3:	50%		•	49%			
MET ALA ALA SER ALA	PHE	ALA GLY VAL ARG ALA ALA SFR	GLY TLE TLE LEU ARG PRO LEU ASN TLE LEU	ALA SER SER THR TYR ARG ASN CYS	VAL LYS ASN ALA SER LEU TLE SER ALA LEU	SER THR GLY ARG PHE SER HIS ILE GLN	THR PRO VAL VAL SER SER THR	PRO ARG LEU	
THR THR SER GLU ARG	ASN	LEU THR CYS GLY HIS THR SER VAI	TLE LEU ASN ARG ARG PRO PRO VAL	PRO SER VAL LEU LYS LEU PRO VAL	ARG SER L94 V173 D175 D175 K187	<b>↓</b>			
• Mole	ecı	ule 31: 398	5 ribosomal p	orotein L36,	mitochondria	al			
Chain	4	3:	35%		65%	6			
MET ALA ASN LEU PHE	TLE	ARG LYS NET VAL ASN PRO LEU	TYR LEU SER ARG HIS THR VAL LYS PRO	ARG ALA LEU SER PHE LEU PHE	GLY SER ILE ARG GLY ALA PRO ALA ALA	VAL GLU PRO GLY ALA ALA VAL ARG SER	LEU LEU SER PRO GLY LEU	PRO LEU	
LEU PRO ALA LEU GLY	PHE	K67 K77 K93 Q102	MET						
• Mole	eci	ule 32: 398	5 ribosomal p	orotein L37,	mitochondria	al			
Chain	53	3:		87%		•	11%		
MET ALA LEU ALA SER	GLY	PRO ALA ARG ALA ALA LEU CIV	SER SER GLY GLN GLN GLY GLY PHE	GLY ALA PRO ARG ARG GLY ALA Y31	R39 K40 S41 E42 P43 P43	E56 K83 4102 E130	V140 D141 ASP ARG ARG ASN	HIS ILE GLU ASN D151	
E152	K172	S190 ♦ L193 ♦ R200 ♦	N206	A228	N250	K274 N275 E281 C282 D295	K296 4 A317 4 L327 4 L328 4	1331 1332 1332 1337 1347 1347 1348	G349
D363 L364 D365 CYS	GLU	6369 D377 S378 Q389 Q389	L381 LYS LYS LYS ARG VAL VAL VAL	A422 ALA					
• Mole	eci	ule 33: 398	5 ribosomal p	orotein L38,	mitochondria	al			
Chain	6	3:		84%		·	14%		
MET ALA ALA PRO TRP	TRP	ARG ALA ALA LEU CYS GLU CYS CYS	ARG TRP ARG GLY PHE SER THR SER ALA	VAL LEU GLY S38	L42 843 843 144 148 148 148 148	C79 GLU LYS LYS THR ASP PRO LYS CLU	LYS ILE ASP ILE GLY LEU	PRO PRO LYS VAL SER	
E118 GLU	E120	R124 LEU ARG T127 A128	D160	E207 A208 E209 GLU GLY SER	L213 L221 D222 G223 E223 P228	A230 E231 1240 N243 R244 V245	A246	D280 5281 5282 5282 61U ASP ALA ALA ARG P287	C290
Y291 (1292 R299	anev	H307 H307 E309 T310 D324	H332 H335 C H355	D371 S372 H373 Y380					
• Mole	eci	ule 34: 398	5 ribosomal p	orotein L39,	mitochondria	al			









LYS CLY LYS VAL VT7 KT7 KT8 KT8 K18 L82 C83 C83 C83 C83 C83 C83	Y86 E87 F87 Y88 Y89 Y90 Y98 Y98 H101 L102 H101 L102	C1113 C114 N115 S116 S116 E123 E123 E123 E123 S124	A126 M127 P128 T129 T129 T131 T131 T131 E133 V134	q135 1137 1137 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 01 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 0138 00
D147 S148 V149 V149 L150 T151 T152 H153 H153 H153 Q158 C163 S160 S160	L162 S163 S163 A164 F166 A167 E166 A167 E168 E168 E168 E172 E172 E172 E172 E172 E172	L178 P179 E180 R183 H187 H189 T190	E191 E192 E192 PHE	
• Molecule 42: 39S rib	osomal protein L49, mit	tochondrial		
Chain g3:	77%		22%	
MET ALA ALA ALA THR MET PHE ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	GLN ARG GLY GLY GLY CYS CYS CYS LEU LEU LEU LEU LEU LEU CIN SER GLN ASP	TYR PRO ARO F38 E64 D77 T110	F166	
• Molecule 43: 39S ribe	osomal protein L50, mit	ochondrial		
Chain h3:	60%	• 3	37%	
MET ALA ALA ARG SER SER SER CLY VLL THR ARG ARG ARG ARG ARG THR THR THR	VAL VAL GLY GLY THR PRO PRO PRO PRO PRO PRO PRO CYS CVS CVS CVS CVS CVS CVS CVS CVS CVS CV	CLU PRO VAL VAL VAL CLU CLU CLU CLU CLU CLU CLU CVS	PLL PLL PLL PLL PLL PLL PLL PLL PLL PLL	<b>469</b>
P63 E64 D65 D65 Q67 Q67 S68 S68 S68 F78 C17 F78 G12 Y SER SER SER	PB3 S84 S84 B92 D93 H103 A105 A105 D106 R122 R122	q135 D136 S136 S138 F140 F140 D141 E141 E142 L143	N147	
• Molecule 44: 39S ribe	osomal protein L51, mit	ochondrial		
Chain i3:	74%	·	24%	
MET ALA ALA GLY ASN ASN SER SER GLY GLY ARG CLY ARG CLZU TRP TRP TRP	PR0 LEEU ALA ARG CYS ARG SER SER PHC GLZ ARG CLEU ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	P41 P41 V43 V43 V44 P45 P45 K75	D105	
• Molecule 45: cDNA l L52 (MRPL52), transc	FLJ76418, highly simila ript variant 1, mRNA	r to Homo sapier	ns mitochondrial i	ribosomal protein
Chain j3:	67%	•	31%	
MET ALA ALA ALA ALA LEU VAL LEU THR THR THR THR GLY ARG ARG ARG ARG CYS CYS	SER ALA ALA ALA ALA ALA ALA ALA ALA ALA C25 C25 C25 C25 C25 C25 C25 C25 C25 C25	E100 E101 Q102 R103 K104 Q105 E106 N107 A108	LYES LYES CLY GLY ALA ALA ALA ALA LEU LEU LEU PRO PRO	SER
• Molecule 46: 39S ribe	osomal protein L53, mit	ochondrial		
Chain k3:	75%		25%	
MET ALA ALA ALA ALA ALA ARG CLY CLEU CLEU V13 K14 K14	F20 C21 F22 F23 F23 F23 F24 K25 F28 G35 G35 C4 V37	145 844 145 147 147 147 148 148 150 151	A53 D54 V55 H57 D58 G59 S60 S60	D65 D70 I75 A86 A86 A86



Chain 13:

83%

### ALA ALA GLY SER GLY GLY PRO GLY ALA ASP ALA ASP ASP ASP ASP

17%

• Molecule 47: 39S ribosomal protein L54, mitochondrial



### VAL TTRE ASSP COYSS COYSS COYSS COYSS COYSS CONTENT CO

• Molecule 48: 39S ribosomal protein L55, mitochondrial



### 

- LYS
- Molecule 49: Ribosomal protein 63, mitochondrial

Chain o3:	91%	•	8%
MET PHE LLEU LEU TRP R9 R9 8102 8102			

• Molecule 50: Peptidyl-tRNA hydrolase ICT1, mitochondrial

Chain p3:	61%	38%	
MET ALA ALA ALA ARG CYS CYS LEU CYS GLY GLY LEU LEU	ARG GLY VAL TRP LEU LEU LEU PRO PRO PRO PRO PRO PRO ARG ARG ARG CYS PRO PRO LIYS LIYS LIYS LIYS LIYS	ALYS ALYS GLY GLY GLY GS E338 G54 G55 G55 G55 G56 ASN ASN ASN ASN ASN ALX	ALA SER DTO B270 H82
SER SER GLY PRO CLY CLY CLY VAL ASN VAL LYS LYS	N96 897 1107 1107 1107 1121 1121 1121 1121 112	q163 PR0 LY8 CU7 CU7 PR0 PR0 PR0 PR0 ASP VAL K174 ASP H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176 H176	R192 1193 H15 SER SER ALA VAL LVS THR SER

### ARG ARG VAL ASP MET ASP

• Molecule 51: Growth arrest and DNA damage-inducible proteins-interacting protein 1

 14%

 Chain q3:

 56%

 •

 42%


ALA SER ALA SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
MI 31 MI 31 MI 40 MI 43 MI 44 MI 45 MI 44 MI 44 MI 45 MI 45 MI 48 MI 48
ARG LYS GLU ALA ALA ALA ALA ALA ALA ALA ALA ALA A
Molecule 52: 39S ribosomal protein S18a, mitochondrial
Chain r3: 74% 26%
ALA ALA LEUU LYS VAL LEUU CYS CYS CYS CYS CYS CYS CYS ARG CYS CYS CYS CYS CYS CYS CYS CYS CHA CAS CAS CAS CAS CAS CAS CAS CAS CAS CA
VAL VAL VAL LYS SER LYS PRO PRO P103 H196 H196
Molecule 53: 39S ribosomal protein S30, mitochondrial
^{8%} Chain s3: 83% · 16%
ALA ALA ALA ALA ALA ALA ALA ALA ALA ALA
GLU       ALA       ALA       ALA       ALAU       AL40       AL41       AL41       AL91       AL91       AL91       AL92       AL93       AL93       AL94       AL94       AL94       AL95       AL95       AL95       AL94       AL95       AL95       AL95       AL96
V417 14 18 14 26 14 26 14 18 14 26 14
Molecule 54: RNA
Chain u3: 100%
There are no outlier residues recorded for this chain.
Molecule 55: Mitochondrial inner membrane protein OXA1L
Chain A5: 6% 94%
A2 A2 A3 M3 M4 M4 M4 M4 M4 M4 M4 M4 M4 M4
ARG ILEU SER SER SER SER SER SER SER SER SER SER















• Molecule 61: 28S ribosomal protein S9, mitochondrial





















• Molecule 76: 28S ribosomal protein S27, mitochondrial



• Molecule 78: 28S ribosomal protein S29, mitochondrial









## L319 531 131 • Molecule 83: Coiled-coil-helix-coiled-coil-helix domain-containing protein 1 73% Chain c6: 95% Q58 N59 F61 F61 R62 D63 D64 A65 C66 C66 C66 K68 Ř 3 G72 F73 L74 D75 A77 A77 A77 A78 A78 R79 R79 R79 R79 R79 R79 R79 • Molecule 84: Aurora kinase A-interacting protein Chain d6: 35% 65% METTELEU LEU AUGOSTANA AUG ARG GLY LYS ASF ALA PRC PRC GLN GLN GLN GLN • Molecule 85: Pentatricopeptide repeat domain-containing protein 3, mitochondrial 60% Chain e6: 59% 40% 168 Y87 V88 F89 F89 J90 D91 D92 P93 479 480 981 182 183 3146 Y124 P125 Y127 F128 Q129 K130 D131 113 A13 GLU GLU HIS 113 113 P13 C13 C13 TYR LEU LYS GLU ARG ASP GLN LEU LEU GLN GLN GLY H23 GLN PHE GLY VAL





PROTEIN DATA BANK











## 4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	19767	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	60	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	FEI FALCON III (4k x 4k)	Depositor
Maximum map value	0.294	Depositor
Minimum map value	-0.153	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.008	Depositor
Recommended contour level	0.05	Depositor
Map size (Å)	532.48, 532.48, 532.48	wwPDB
Map dimensions	512, 512, 512	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.04, 1.04, 1.04	Depositor



## 5 Model quality (i)

## 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, GCP, GDP, MG, SPD

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		B	ond lengths	Bond angles		
MIOI	Unam	RMSZ	# Z  > 5	RMSZ	# Z  > 5	
1	r1	0.47	0/5552	0.93	15/7490~(0.2%)	
3	8	0.52	0/197	1.06	0/305	
3	A3	1.06	7/35697~(0.0%)	1.18	306/55544~(0.6%)	
4	B3	0.57	0/1328	1.02	6/2056~(0.3%)	
5	D3	0.46	0/1879	0.69	2/2527~(0.1%)	
6	E3	0.54	0/2433	0.68	3/3299~(0.1%)	
7	F3	0.55	0/2071	0.75	1/2817~(0.0%)	
8	D	4.69	3/665~(0.5%)	1.19	7/905~(0.8%)	
8	H3	0.44	0/798	0.73	1/1073~(0.1%)	
9	I3	0.41	0/1308	0.71	0/1761	
10	J3	0.39	0/1077	0.74	1/1452~(0.1%)	
11	K3	0.55	0/1495	0.70	2/2029~(0.1%)	
12	L3	0.47	0/904	0.71	0/1218	
13	M3	0.55	1/2359~(0.0%)	0.73	4/3185~(0.1%)	
14	N3	0.55	0/1697	0.73	2/2281~(0.1%)	
15	O3	0.56	1/1269~(0.1%)	0.77	1/1708~(0.1%)	
16	P3	0.54	0/1103	0.77	2/1491~(0.1%)	
17	Q3	0.49	0/1863	0.70	0/2509	
18	R3	0.60	0/1174	0.66	0/1572	
19	S3	0.55	0/1276	0.72	3/1729~(0.2%)	
20	Τ3	0.56	0/1402	0.64	1/1886~(0.1%)	
21	U3	0.60	0/946	0.71	0/1283	
22	V3	0.47	0/1590	0.75	2/2151~(0.1%)	
23	W3	0.64	0/893	0.71	1/1204~(0.1%)	
24	X3	0.46	0/2081	0.78	3/2812~(0.1%)	
25	Y3	0.53	1/1552~(0.1%)	0.64	0/2079	
26	Z3	0.51	0/1003	0.69	1/1354~(0.1%)	
27	03	0.47	0/895	0.65	0/1201	
28	13	0.47	0/438	0.87	1/583~(0.2%)	
29	23	0.53	0/382	0.64	0/507	
30	33	0.60	0/852	0.69	1/1136~(0.1%)	
31	43	0.58	0/329	0.61	0/435	



Mal	Chain	Bond lengths		Bond angles		
	Chain	RMSZ	# Z  > 5	RMSZ	# Z  > 5	
32	53	0.46	0/3154	0.67	1/4295~(0.0%)	
33	63	0.49	0/2722	0.72	3/3709~(0.1%)	
34	73	0.45	0/2207	0.74	4/2978~(0.1%)	
35	93	0.48	0/896	0.74	3/1205~(0.2%)	
36	a3	0.51	0/709	0.65	0/963	
37	b3	0.51	0/1202	0.67	1/1626~(0.1%)	
38	c3	0.48	0/2264	0.68	1/3059~(0.0%)	
39	d3	0.45	0/1385	0.81	2/1877~(0.1%)	
40	e3	0.35	0/1797	0.76	3/2422~(0.1%)	
41	f3	0.43	0/1055	0.83	1/1427~(0.1%)	
42	g3	0.58	0/1102	0.69	0/1503	
43	h3	0.41	0/847	0.71	2/1150~(0.2%)	
44	i3	0.58	0/849	0.76	1/1135~(0.1%)	
45	j3	0.48	0/698	0.62	1/940~(0.1%)	
46	k3	0.35	0/665	0.74	0/897	
47	13	0.45	0/226	0.63	0/299	
48	m3	0.36	0/379	0.73	0/510	
49	03	0.58	0/818	0.62	0/1097	
50	p3	0.37	0/1071	0.59	0/1433	
51	q3	0.42	0/1107	0.62	0/1498	
52	r3	0.56	0/1238	0.70	0/1676	
53	s3	0.51	1/3114~(0.0%)	0.74	3/4225~(0.1%)	
54	u3	1.03	0/46	0.98	0/69	
55	A5	0.28	0/135	0.72	1/185~(0.5%)	
56	B6	0.39	0/1811	0.76	2/2451~(0.1%)	
57	C6	0.36	0/1112	0.63	0/1505	
58	D6	0.40	0/2607	0.74	2/3498~(0.1%)	
59	E6	0.39	0/989	0.74	0/1335	
60	F6	0.41	1/1708~(0.1%)	0.68	2/2291~(0.1%)	
61	G6	0.38	0/2570	0.72	4/3443~(0.1%)	
62	H6	0.34	0/1019	0.71	1/1379~(0.1%)	
63	I6	0.35	0/1031	0.65	1/1390~(0.1%)	
64	J6	0.56	1/854~(0.1%)	0.77	0/1148	
65	K6	0.36	0/879	0.66	1/1182~(0.1%)	
66	L6	0.35	0/1406	0.69	1/1878~(0.1%)	
67	M6	0.41	0/941	1.00	5/1265~(0.4%)	
68	N6	0.54	1/864 (0.1%)	0.85	5/1169~(0.4%)	
69	O6	0.43	$1/15\overline{80}\ (0.1\%)$	0.76	$4/21\overline{50}\ (0.2\%)$	
70	P6	0.39	0/791	0.76	0/1062	
71	Q6	0.43	0/752	0.74	0/1001	
72	R6	0.36	$0/205\overline{0}$	$0.7\overline{5}$	2/2770~(0.1%)	
73	S6	0.62	1/1069~(0.1%)	0.98	5/1441~(0.3%)	
74	T6	0.42	$0/1\overline{361}$	0.74	$0/1\overline{829}$	



Mal	Chain	B	ond lengths	Bond angles		
	Chain	RMSZ	# Z  > 5	RMSZ	# Z  > 5	
75	U6	0.36	0/1482	0.62	0/1987	
76	V6	0.36	0/2758	0.71	4/3724~(0.1%)	
77	W6	0.35	0/778	0.78	1/1048~(0.1%)	
78	X6	0.34	0/2596	0.70	2/3519~(0.1%)	
79	Y6	0.34	0/943	0.65	1/1274~(0.1%)	
80	Z6	0.31	0/757	0.63	0/1011	
81	a6	0.40	0/1727	0.82	7/2338~(0.3%)	
82	b6	0.33	0/2121	0.74	4/2873~(0.1%)	
83	c6	0.34	0/939	0.69	1/1256~(0.1%)	
84	d6	0.42	0/621	0.72	0/820	
85	e6	0.29	0/2859	0.58	3/3864~(0.1%)	
86	A6	0.67	0/22053	1.10	125/34324~(0.4%)	
87	24	1.16	6/1731~(0.3%)	1.31	21/2693~(0.8%)	
87	FE	1.16	6/1731~(0.3%)	1.31	20/2693~(0.7%)	
88	A	0.35	0/1403	0.73	3/1880~(0.2%)	
89	n	4.89	7/1776~(0.4%)	0.75	3/2397~(0.1%)	
All	All	0.87	38/179863~(0.0%)	0.92	623/255648~(0.2%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	r1	0	23
2	Y2	0	2
5	D3	0	1
6	E3	0	5
7	F3	0	2
8	D	0	2
8	H3	0	1
9	I3	0	1
10	J3	0	2
11	K3	0	2
13	M3	0	4
14	N3	0	2
15	O3	0	1
17	Q3	0	1
18	R3	0	1
20	T3	0	1
22	V3	0	2
24	X3	0	1



Mol	Chain	#Chirality outliers	#Planarity outliers
26	Z3	0	1
27	03	0	2
28	13	0	2
32	53	0	4
33	63	0	2
35	93	0	1
38	c3	0	1
39	d3	0	5
41	f3	0	4
42	g3	0	1
43	h3	0	2
44	i3	0	1
45	j3	0	1
49	03	0	1
51	q3	0	1
53	s3	0	2
56	B6	0	1
58	D6	0	4
60	F6	0	4
61	G6	0	1
63	I6	0	2
64	J6	0	1
68	N6	0	1
69	O6	0	3
70	P6	0	3
72	R6	0	3
73	S6	0	1
75	U6	0	2
76	V6	0	2
81	a6	0	1
82	b6	0	1
83	c6	0	1
85	e6	0	2
88	А	0	6
89	n	0	1
All	All	0	125

All (38) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
89	n	220	LYS	CE-NZ	125.36	4.62	1.49
8	D	194	PHE	CB-CG	119.68	3.54	1.51



Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
89	n	92	TYR	CD1-CE1	88.52	2.72	1.39
89	n	92	TYR	CD2-CE2	84.32	2.65	1.39
89	n	92	TYR	CE2-CZ	59.95	2.16	1.38
89	n	92	TYR	CE1-CZ	59.69	2.16	1.38
89	n	92	TYR	CG-CD2	47.04	2.00	1.39
89	n	92	TYR	CG-CD1	46.67	1.99	1.39
87	FE	17	U	C2-N3	24.50	1.54	1.37
87	24	17	U	C2-N3	24.48	1.54	1.37
87	FE	17	U	N3-C4	18.45	1.55	1.38
87	24	17	U	N3-C4	18.40	1.55	1.38
87	FE	17	U	N1-C2	17.73	1.54	1.38
87	24	17	U	N1-C2	17.65	1.54	1.38
87	24	17	U	N1-C6	16.81	1.53	1.38
87	FE	17	U	N1-C6	16.75	1.53	1.38
73	S6	90	PRO	CG-CD	-14.78	1.01	1.50
87	24	17	U	C4-C5	14.01	1.56	1.43
87	FE	17	U	C4-C5	14.00	1.56	1.43
87	24	17	U	C5-C6	12.54	1.45	1.34
87	FE	17	U	C5-C6	12.46	1.45	1.34
8	D	194	PHE	CG-CD2	11.07	1.55	1.38
8	D	194	PHE	CG-CD1	10.64	1.54	1.38
68	N6	70	PRO	CG-CD	-9.57	1.19	1.50
60	F6	159	VAL	C-N	9.02	1.51	1.34
3	A3	1828	А	N9-C4	-8.57	1.32	1.37
25	Y3	123	ARG	C-N	-6.42	1.19	1.34
13	M3	61	THR	C-N	-6.34	1.19	1.34
3	A3	1867	A	N9-C4	-6.33	1.34	1.37
53	s3	66	TRP	CB-CG	-5.96	1.39	1.50
3	A3	2755	А	N9-C4	-5.80	1.34	1.37
3	A3	2503	A	N9-C4	-5.51	1.34	1.37
64	J6	104	GLU	CA-C	5.32	1.66	1.52
3	A3	2052	A	N9-C4	-5.31	1.34	1.37
69	O6	94	CYS	CB-SG	-5.13	1.73	1.81
15	O3	104	TYR	CD1-CE1	-5.06	1.31	1.39
3	A3	2723	A	N9-C4	-5.05	1.34	1.37
3	A3	2198	A	N7-C5	-5.00	1.36	1.39

All (623) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	A3	2790	A	OP1-P-OP2	-28.97	76.15	119.60
3	A3	2790	А	O5'-P-OP2	-28.55	76.44	110.70



Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
73	S6	90	PRO	N-CD-CG	-18.72	75.12	103.20
3	A3	2790	А	O5'-P-OP1	15.95	129.84	110.70
87	24	30	G	C8-N9-C4	-15.63	100.15	106.40
87	FE	30	G	C8-N9-C4	-15.60	100.16	106.40
53	s3	427	ASN	C-N-CA	15.18	159.64	121.70
8	D	194	PHE	CD1-CG-CD2	-14.92	98.91	118.30
8	D	194	PHE	CB-CG-CD2	14.40	130.88	120.80
3	A3	2789	С	OP2-P-O3'	14.28	136.62	105.20
24	X3	97	LEU	CA-CB-CG	13.61	146.61	115.30
8	D	194	PHE	CB-CG-CD1	13.38	130.17	120.80
3	A3	1732	С	N1-C2-O2	12.90	126.64	118.90
87	24	30	G	N7-C8-N9	12.78	119.49	113.10
87	FE	30	G	N7-C8-N9	12.78	119.49	113.10
3	A3	2789	С	OP1-P-O3'	-12.53	77.63	105.20
1	r1	645	ILE	CG1-CB-CG2	-11.86	85.31	111.40
3	A3	1699	С	N1-C2-O2	11.83	126.00	118.90
86	A6	1373	U	N1-C2-O2	11.82	131.08	122.80
24	X3	97	LEU	CB-CG-CD2	11.57	130.67	111.00
3	A3	1732	С	C2-N1-C1'	11.44	131.38	118.80
86	A6	1373	U	C2-N1-C1'	11.29	131.24	117.70
86	A6	1373	U	N3-C2-O2	-11.24	114.33	122.20
73	S6	90	PRO	CA-CB-CG	-11.01	83.08	104.00
3	A3	1732	С	N3-C2-O2	-10.92	114.25	121.90
87	FE	31	С	O4'-C1'-N1	10.81	116.85	108.20
87	24	31	С	O4'-C1'-N1	10.77	116.82	108.20
3	A3	2780	С	N1-C2-O2	10.62	125.27	118.90
68	N6	70	PRO	N-CD-CG	-10.43	87.56	103.20
3	A3	3204	C	N1-C2-O2	10.26	125.06	118.90
3	A3	1699	C	N3-C2-O2	-10.01	114.89	121.90
67	M6	21	LEU	CB-CG-CD2	9.99	127.99	111.00
3	A3	2653	C	C6-N1-C2	-9.93	116.33	120.30
3	A3	1714	C	N1-C2-O2	9.54	124.62	118.90
3	A3	1902	C	C2-N1-C1'	9.54	129.29	118.80
3	A3	2079	C	N1-C2-O2	9.53	124.62	118.90
3	A3	1902	C	N1-C2-O2	9.44	124.56	118.90
3	A3	2079	С	N3-C2-O2	-9.39	115.33	121.90
3	A3	2066	C	N1-C2-O2	9.32	124.49	118.90
3	A3	3204	C	C2-N1-C1'	9.32	129.05	118.80
3	A3	2493	C	N1-C2-O2	9.26	124.46	118.90
3	A3	1699	C	C2-N1-C1'	9.26	128.98	118.80
3	A3	1837	C	C2-N1-C1'	9.25	128.97	118.80
3	A3	2522	U	C2-N1-C1'	9.22	128.77	117.70



a	•	
Continued fr	rom previoi	is page

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
3	A3	3212	С	C2-N1-C1'	9.21	128.93	118.80
68	N6	70	PRO	CA-N-CD	-9.17	98.66	111.50
3	A3	3134	С	N1-C2-O2	9.12	124.37	118.90
67	M6	21	LEU	CA-CB-CG	9.08	136.18	115.30
3	A3	1837	С	N1-C2-O2	9.03	124.31	118.90
3	A3	1901	С	N1-C2-O2	8.98	124.29	118.90
3	A3	1732	С	C6-N1-C2	-8.93	116.73	120.30
3	A3	2080	U	N3-C2-O2	-8.91	115.96	122.20
3	A3	2779	С	P-O3'-C3'	8.90	130.39	119.70
3	A3	3212	С	N1-C2-O2	8.90	124.24	118.90
3	A3	2493	С	C2-N1-C1'	8.90	128.59	118.80
3	A3	2066	С	N3-C2-O2	-8.87	115.69	121.90
3	A3	2080	U	N1-C2-O2	8.82	128.97	122.80
3	A3	2066	С	C2-N1-C1'	8.81	128.50	118.80
3	A3	3134	С	N3-C2-O2	-8.74	115.78	121.90
3	A3	3204	С	N3-C2-O2	-8.67	115.83	121.90
3	A3	3157	С	N1-C2-O2	8.64	124.09	118.90
86	A6	809	С	C2-N1-C1'	8.59	128.25	118.80
3	A3	2780	С	C2-N1-C1'	8.58	128.24	118.80
86	A6	809	С	N1-C2-O2	8.47	123.98	118.90
3	A3	2079	С	C2-N1-C1'	8.40	128.04	118.80
87	FE	17	U	C6-N1-C2	8.37	126.02	121.00
34	73	314	ASP	CB-CG-OD1	8.35	125.81	118.30
87	24	17	U	C6-N1-C2	8.33	126.00	121.00
72	R6	293	LEU	CA-CB-CG	8.27	134.33	115.30
86	A6	769	С	C2-N1-C1'	8.26	127.89	118.80
3	A3	2235	С	C2-N1-C1'	8.23	127.86	118.80
86	A6	936	С	N3-C2-O2	-8.21	116.15	121.90
3	A3	1901	С	C2-N1-C1'	8.20	127.82	118.80
34	73	259	ASP	CB-CG-OD1	8.19	125.67	118.30
3	A3	1993	А	C2-N3-C4	8.16	114.68	110.60
3	A3	3157	С	C2-N1-C1'	8.14	127.76	118.80
3	A3	2493	С	N3-C2-O2	-8.14	116.20	121.90
3	A3	1902	С	N3-C2-O2	-8.07	116.25	121.90
34	73	47	LEU	CA-CB-CG	8.06	133.83	115.30
3	A3	2171	U	C2-N1-C1'	8.04	127.35	117.70
86	A6	715	U	C2-N1-C1'	7.99	127.28	117.70
86	A6	710	С	C2-N1-C1'	7.91	127.50	118.80
3	A3	2096	U	C2-N1-C1'	7.90	127.18	117.70
3	A3	2780	C	N3-C2-O2	-7.89	116.37	121.90
86	A6	$11\overline{93}$	U	C2-N1-C1'	7.87	127.14	117.70
3	A3	2171	U	N3-C2-O2	-7.87	116.69	122.20



Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
87	FE	17	U	N1-C2-N3	-7.86	110.19	114.90
87	24	17	U	N1-C2-N3	-7.83	110.20	114.90
86	A6	1070	С	C6-N1-C2	-7.81	117.18	120.30
81	a6	141	LEU	CA-CB-CG	7.79	133.22	115.30
3	A3	2080	U	C2-N1-C1'	7.78	127.03	117.70
61	G6	373	ASP	CB-CG-OD2	7.78	125.30	118.30
3	A3	2372	U	N3-C2-O2	-7.74	116.78	122.20
3	A3	2372	U	N1-C2-O2	7.72	128.20	122.80
86	A6	936	С	N1-C2-O2	7.72	123.53	118.90
3	A3	2898	U	C2-N1-C1'	7.71	126.95	117.70
3	A3	1714	С	N3-C2-O2	-7.71	116.50	121.90
3	A3	1699	С	C6-N1-C2	-7.69	117.22	120.30
86	A6	809	С	N3-C2-O2	-7.68	116.53	121.90
3	A3	2235	С	N1-C2-O2	7.67	123.50	118.90
53	s3	228	ASP	CB-CG-OD1	7.65	125.18	118.30
8	D	194	PHE	CG-CD2-CE2	7.62	129.18	120.80
3	A3	2061	С	N1-C2-O2	7.59	123.46	118.90
3	A3	1837	С	N3-C2-O2	-7.58	116.59	121.90
86	A6	769	С	N1-C2-O2	7.54	123.42	118.90
3	A3	1732	С	C6-N1-C1'	-7.52	111.78	120.80
3	A3	2157	U	C5-C6-N1	7.48	126.44	122.70
3	A3	2757	А	P-O3'-C3'	7.48	128.67	119.70
3	A3	2372	U	C2-N1-C1'	7.47	126.66	117.70
3	A3	3157	С	N3-C2-O2	-7.47	116.67	121.90
66	L6	143	LEU	CA-CB-CG	7.47	132.47	115.30
3	A3	3157	С	O4'-C1'-N1	7.46	114.17	108.20
11	K3	22	ASP	CB-CG-OD1	7.46	125.01	118.30
3	A3	2230	А	O5'-P-OP1	7.44	119.63	110.70
86	A6	1373	U	C6-N1-C1'	-7.44	110.78	121.20
3	A3	1813	С	N1-C2-O2	7.43	123.36	118.90
3	A3	1813	С	N3-C2-O2	-7.42	116.70	121.90
86	A6	1193	U	N1-C2-O2	7.40	127.98	122.80
3	A3	1813	С	C2-N1-C1'	7.39	126.92	118.80
86	A6	1541	С	N1-C2-O2	7.38	123.33	118.90
56	B6	251	ARG	NE-CZ-NH1	7.35	123.98	120.30
3	A3	2443	С	N1-C2-O2	7.29	123.28	118.90
89	n	92	TYR	CB-CG-CD2	-7.29	116.62	121.00
86	A6	1541	C	C6-N1-C2	-7.28	117.39	120.30
8	D	194	PHE	CG-CD1-CE1	7.28	128.81	120.80
3	A3	2484	С	N1-C2-O2	7.28	123.27	118.90
3	A3	3169	С	N1-C2-O2	7.27	123.26	118.90
86	A6	714	U	C2-N1-C1'	7.27	126.42	117.70



Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
11	K3	52	ASP	CB-CG-OD1	7.27	124.84	118.30
3	A3	2171	U	N1-C2-O2	7.26	127.88	122.80
73	S6	90	PRO	CB-CG-CD	7.25	134.80	106.50
3	A3	2522	U	N1-C2-O2	7.25	127.88	122.80
3	A3	2557	С	N1-C2-O2	7.17	123.20	118.90
3	A3	2235	С	N3-C2-O2	-7.17	116.88	121.90
3	A3	3134	С	C6-N1-C2	-7.17	117.43	120.30
73	S6	88	PHE	C-N-CA	7.14	139.56	121.70
3	A3	3009	С	C2-N1-C1'	7.11	126.62	118.80
87	24	30	G	N3-C4-C5	-7.10	125.05	128.60
86	A6	715	U	N1-C2-O2	7.09	127.76	122.80
86	A6	710	С	N1-C2-O2	7.09	123.15	118.90
87	$\mathbf{FE}$	30	G	N3-C4-C5	-7.08	125.06	128.60
82	b6	182	LEU	CA-CB-CG	7.06	131.53	115.30
83	c6	6	LEU	CA-CB-CG	7.02	131.45	115.30
3	A3	2522	U	C6-N1-C1'	-7.02	111.38	121.20
3	A3	1707	С	N1-C2-O2	6.98	123.09	118.90
3	A3	3228	U	C2-N1-C1'	6.97	126.07	117.70
3	A3	2182	G	P-O3'-C3'	6.97	128.06	119.70
3	A3	1716	U	N3-C2-O2	-6.96	117.33	122.20
3	A3	3201	А	P-O3'-C3'	6.95	128.04	119.70
76	V6	77	ASP	CB-CG-OD1	6.94	124.54	118.30
86	A6	769	С	N3-C2-O2	-6.94	117.04	121.90
61	G6	150	LEU	CA-CB-CG	6.92	131.21	115.30
3	A3	3170	С	C2-N1-C1'	6.91	126.41	118.80
3	A3	3170	С	N1-C2-O2	6.91	123.05	118.90
3	A3	1701	U	C2-N1-C1'	6.90	125.97	117.70
3	A3	1806	U	P-O3'-C3'	6.89	127.97	119.70
3	A3	2061	С	C2-N1-C1'	6.88	126.36	118.80
22	V3	102	MET	CA-CB-CG	6.86	124.97	113.30
3	A3	2484	С	C2-N1-C1'	6.85	126.34	118.80
86	A6	710	С	C6-N1-C1'	-6.85	112.58	120.80
3	A3	3134	С	C2-N1-C1'	6.83	126.31	118.80
3	A3	1901	С	N3-C2-O2	-6.80	117.14	121.90
3	A3	1809	U	N1-C2-O2	6.77	127.54	122.80
81	a6	65	LEU	CA-CB-CG	6.75	130.82	115.30
69	O6	108	CYS	CA-CB-SG	6.74	126.13	114.00
3	A3	3009	С	N3-C2-O2	-6.73	117.19	121.90
3	A3	3204	C	C6-N1-C1'	-6.73	112.73	120.80
3	A3	1902	C	C6-N1-C1'	-6.71	112.75	120.80
33	63	229	ASP	CB-CG-OD1	6.70	124.33	118.30
3	A3	2771	С	N1-C2-O2	6.70	122.92	118.90



Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	A3	1837	С	C6-N1-C1'	-6.69	112.77	120.80
4	B3	1649	С	N1-C2-O2	6.68	122.91	118.90
3	A3	2324	U	N1-C2-O2	6.68	127.47	122.80
86	A6	1155	С	N1-C2-O2	6.67	122.90	118.90
3	A3	3212	С	N3-C2-O2	-6.66	117.24	121.90
3	A3	2061	С	N3-C2-O2	-6.64	117.25	121.90
86	A6	1499	С	C6-N1-C2	-6.64	117.64	120.30
86	A6	936	С	C2-N1-C1'	6.63	126.09	118.80
3	A3	2096	U	N1-C2-O2	6.62	127.43	122.80
3	A3	2493	С	C6-N1-C1'	-6.61	112.87	120.80
1	r1	382	ASP	CB-CG-OD1	6.60	124.24	118.30
3	A3	1828	А	C2-N3-C4	-6.60	107.30	110.60
89	n	92	TYR	CD1-CG-CD2	6.60	125.16	117.90
67	M6	99	LEU	CA-CB-CG	6.59	130.47	115.30
3	A3	2898	U	N3-C2-O2	-6.59	117.59	122.20
3	A3	1701	U	N1-C2-O2	6.59	127.41	122.80
86	A6	1193	U	OP1-P-O3'	6.58	119.67	105.20
86	A6	936	С	C6-N1-C2	-6.58	117.67	120.30
40	e3	279	LEU	CA-CB-CG	6.57	130.42	115.30
3	A3	1807	U	P-O3'-C3'	6.55	127.56	119.70
3	A3	2079	С	C6-N1-C2	-6.55	117.68	120.30
86	A6	857	С	C6-N1-C2	-6.55	117.68	120.30
3	A3	2780	С	C6-N1-C2	-6.54	117.68	120.30
86	A6	1025	U	P-O3'-C3'	6.54	127.55	119.70
3	A3	1693	С	C2-N1-C1'	6.51	125.97	118.80
38	c3	210	ARG	NE-CZ-NH1	6.51	123.55	120.30
87	24	33	С	N1-C2-O2	6.50	122.80	118.90
1	r1	650	MET	CA-CB-CG	6.49	124.34	113.30
3	A3	2871	U	C5-C6-N1	6.49	125.95	122.70
3	A3	3212	С	C6-N1-C1'	-6.49	113.02	120.80
86	A6	1335	А	P-O3'-C3'	6.47	127.47	119.70
87	FE	33	С	N1-C2-O2	6.46	122.78	118.90
3	A3	2295	С	N3-C2-O2	-6.45	117.39	121.90
86	A6	1541	С	N3-C2-O2	-6.44	117.39	121.90
3	A3	1693	С	N1-C2-O2	6.40	122.74	118.90
81	a6	173	MET	CB-CG-SD	6.39	131.57	112.40
86	A6	712	С	C6-N1-C2	-6.39	117.75	120.30
3	A3	3009	С	N1-C2-O2	6.38	122.73	118.90
3	A3	2530	А	P-O3'-C3'	6.38	127.35	119.70
7	F3	277	ASP	CB-CG-OD1	6.38	124.04	118.30
86	A6	1127	С	N1-C2-O2	6.37	122.72	118.90
86	A6	1250	U	OP2-P-O3'	6.37	119.22	105.20



$\alpha$ $\cdot$ $\cdot$ $\cdot$	r	•	
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	A3	1689	С	N1-C2-O2	6.36	122.71	118.90
3	A3	2759	U	N1-C2-O2	6.34	127.24	122.80
5	D3	172	MET	CG-SD-CE	6.33	110.33	100.20
3	A3	1875	С	O5'-P-OP1	-6.32	100.01	105.70
13	M3	225	ASP	CB-CG-OD2	6.32	123.99	118.30
3	A3	1835	А	O4'-C1'-N9	6.32	113.26	108.20
86	A6	857	С	C5-C6-N1	6.30	124.15	121.00
6	E3	310	LEU	CA-CB-CG	6.29	129.78	115.30
87	24	11	C	N1-C2-O2	6.29	122.67	118.90
3	A3	2064	A	N1-C6-N6	-6.29	114.83	118.60
32	53	381	LEU	CA-CB-CG	6.29	129.76	115.30
3	A3	1901	С	C6-N1-C1'	-6.28	113.27	120.80
67	M6	72	ARG	NE-CZ-NH1	6.26	123.43	120.30
8	D	199	VAL	CG1-CB-CG2	-6.26	100.88	110.90
3	A3	2206	C	C6-N1-C2	-6.25	117.80	120.30
88	А	129	ARG	NE-CZ-NH2	6.25	123.42	120.30
3	A3	1714	C	C2-N1-C1'	6.25	125.67	118.80
3	A3	2523	С	C2-N1-C1'	6.24	125.66	118.80
55	A5	28	PRO	N-CA-CB	6.24	110.78	103.30
3	A3	3228	U	N1-C2-O2	6.23	127.16	122.80
86	A6	715	U	N3-C2-O2	-6.23	117.84	122.20
3	A3	2417	С	N1-C2-O2	6.22	122.63	118.90
86	A6	1288	U	N3-C2-O2	-6.22	117.85	122.20
87	FE	11	С	N1-C2-O2	6.21	122.63	118.90
3	A3	3173	G	C2-N3-C4	-6.18	108.81	111.90
26	Z3	76	ARG	NE-CZ-NH1	6.16	123.38	120.30
1	r1	420	LEU	CB-CG-CD1	-6.16	100.54	111.00
3	A3	3169	С	C2-N1-C1'	6.15	125.56	118.80
86	A6	1193	U	P-O3'-C3'	6.14	127.06	119.70
3	A3	2175	С	C6-N1-C2	-6.13	117.85	120.30
3	A3	3157	С	C6-N1-C1'	-6.13	113.44	120.80
3	A3	3128	A	C8-N9-C4	6.13	108.25	105.80
3	A3	2784	A	P-O3'-C3'	6.12	127.05	119.70
85	e6	496	LEU	CA-CB-CG	6.12	129.37	115.30
3	A3	3077	С	C6-N1-C2	-6.11	117.86	120.30
86	A6	1297	C	N1-C2-O2	6.11	$1\overline{22.56}$	118.90
15	O3	74	ARG	NE-CZ-NH1	6.10	123.35	120.30
3	A3	2324	U	N3-C2-O2	-6.10	117.93	122.20
3	A3	2066	C	C6-N1-C2	-6.10	117.86	120.30
3	A3	2758	G	O5'-P-OP1	-6.10	100.21	105.70
3	A3	$27\overline{80}$	C	C5-C6-N1	6.09	124.04	121.00
3	A3	1984	A	C4-C5-N7	6.08	113.74	110.70



Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	A3	1701	U	N3-C2-O2	-6.08	117.94	122.20
3	A3	2759	U	N3-C2-O2	-6.08	117.95	122.20
86	A6	1353	U	C5-C6-N1	6.07	125.74	122.70
3	A3	2852	С	N1-C2-O2	6.06	122.54	118.90
86	A6	1070	С	C5-C6-N1	6.06	124.03	121.00
86	A6	1433	С	P-O3'-C3'	6.05	126.96	119.70
3	A3	2559	U	P-O3'-C3'	6.04	126.95	119.70
87	FE	42	С	C6-N1-C2	-6.04	117.89	120.30
19	S3	144	LEU	CA-CB-CG	6.04	129.19	115.30
39	d3	230	ARG	C-N-CA	6.04	136.79	121.70
87	FE	33	С	C2-N1-C1'	6.04	125.44	118.80
1	r1	216	ASP	CB-CG-OD1	6.03	123.73	118.30
87	24	33	С	C2-N1-C1'	6.03	125.43	118.80
3	A3	2569	С	N1-C2-O2	6.03	122.52	118.90
3	A3	1715	С	N1-C2-O2	6.02	122.51	118.90
3	A3	1732	С	C5-C6-N1	6.01	124.00	121.00
53	s3	161	ARG	NE-CZ-NH1	6.01	123.31	120.30
60	F6	209	LEU	CA-CB-CG	6.01	129.12	115.30
86	A6	721	G	P-O3'-C3'	6.01	126.91	119.70
3	A3	2386	С	N1-C2-O2	6.01	122.50	118.90
3	A3	1689	С	C2-N1-C1'	6.00	125.41	118.80
3	A3	2067	С	C6-N1-C2	-6.00	117.90	120.30
3	A3	2523	С	N1-C2-O2	6.00	122.50	118.90
3	A3	2999	С	C6-N1-C2	-6.00	117.90	120.30
86	A6	1181	С	C6-N1-C2	-5.99	117.90	120.30
87	24	42	С	C6-N1-C2	-5.99	117.90	120.30
86	A6	797	С	C2-N1-C1'	5.99	125.39	118.80
86	A6	1156	А	C4-N9-C1'	5.98	137.06	126.30
1	r1	310	LEU	CB-CG-CD2	-5.98	100.84	111.00
3	A3	2066	C	C6-N1-C1'	-5.96	113.64	120.80
86	A6	1170	A	P-O3'-C3'	5.96	126.86	119.70
58	D6	410	ASP	CB-CG-OD1	5.96	123.67	118.30
3	A3	1716	U	N1-C2-O2	5.95	126.96	122.80
23	W3	105	VAL	CG1-CB-CG2	-5.95	101.38	110.90
81	a6	43	ARG	NE-CZ-NH1	-5.93	117.33	120.30
86	A6	1541	С	P-O3'-C3'	5.93	126.82	119.70
3	A3	2243	A	P-O3'-C3'	5.93	126.81	119.70
3	A3	1993	A	C8-N9-C4	-5.93	103.43	105.80
3	A3	2898	U	N1-C2-O2	5.92	126.95	122.80
3	A3	1809	U	N3-C2-O2	-5.92	118.06	122.20
86	A6	1419	G	P-O3'-C3'	5.92	126.81	119.70
14	N3	237	HIS	C-N-CA	5.92	136.50	121.70



Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	A3	1806	U	OP2-P-O3'	5.92	118.22	105.20
1	r1	690	ASP	CB-CG-OD1	5.91	123.62	118.30
86	A6	809	С	C6-N1-C1'	-5.91	113.71	120.80
3	A3	2441	С	C6-N1-C2	-5.91	117.94	120.30
3	A3	1902	С	C6-N1-C2	-5.90	117.94	120.30
3	A3	2557	С	C2-N1-C1'	5.89	125.28	118.80
86	A6	1155	С	N3-C2-O2	-5.89	117.78	121.90
3	A3	2209	G	OP1-P-O3'	5.89	118.16	105.20
82	b6	319	LEU	CA-CB-CG	5.88	128.82	115.30
3	A3	1699	С	C6-N1-C1'	-5.87	113.75	120.80
86	A6	678	U	N3-C2-O2	-5.87	118.09	122.20
8	H3	64	LEU	CA-CB-CG	5.86	128.79	115.30
86	A6	1093	U	N3-C2-O2	-5.86	118.10	122.20
3	A3	2245	А	P-O3'-C3'	5.85	126.72	119.70
3	A3	2499	U	C2-N1-C1'	5.84	124.71	117.70
86	A6	951	U	N1-C2-O2	5.84	126.89	122.80
86	A6	769	С	C6-N1-C1'	-5.83	113.80	120.80
3	A3	3169	С	N3-C2-O2	-5.83	117.82	121.90
3	A3	2174	G	N3-C4-N9	5.83	129.50	126.00
4	B3	1649	С	N3-C2-O2	-5.83	117.82	121.90
68	N6	65	LEU	CA-CB-CG	5.82	128.69	115.30
13	M3	46	GLY	C-N-CA	5.82	136.25	121.70
3	A3	1809	U	P-O3'-C3'	5.82	126.68	119.70
3	A3	1725	С	N1-C2-O2	5.81	122.39	118.90
3	A3	2096	U	N3-C2-O2	-5.81	118.13	122.20
86	A6	711	С	N1-C2-O2	5.81	122.39	118.90
3	A3	1951	С	C6-N1-C2	-5.81	117.98	120.30
34	73	46	ASP	CB-CG-OD2	5.79	123.52	118.30
3	A3	1993	А	N3-C4-C5	-5.79	122.75	126.80
3	A3	3206	С	C2-N1-C1'	5.79	125.17	118.80
86	A6	926	С	C5-C6-N1	5.79	123.89	121.00
60	F6	160	PRO	N-CA-C	5.78	127.13	112.10
78	X6	383	LEU	CA-CB-CG	5.78	128.58	115.30
86	A6	1193	U	N3-C2-O2	-5.77	118.16	122.20
3	A3	2274	А	O4'-C1'-N9	5.77	112.81	108.20
3	A3	3056	С	C6-N1-C2	-5.77	117.99	120.30
3	A3	1823	A	P-O3'-C3'	5.76	126.61	119.70
3	A3	1993	А	C4-N9-C1'	5.76	136.66	126.30
33	63	335	LEU	CA-CB-CG	5.75	128.53	115.30
86	A6	702	С	C6-N1-C2	-5.75	118.00	120.30
3	A3	1707	С	N3-C2-O2	-5.75	117.87	121.90
87	FE	30	G	N9-C4-C5	5.75	107.70	105.40



Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	A3	2832	А	C4-N9-C1'	5.75	136.64	126.30
87	24	30	G	N9-C4-C5	5.75	107.70	105.40
86	A6	1499	С	C5-C6-N1	5.74	123.87	121.00
3	A3	3093	С	C6-N1-C2	-5.74	118.00	120.30
86	A6	714	U	N1-C2-O2	5.74	126.82	122.80
3	A3	1808	А	OP1-P-O3'	5.73	117.81	105.20
3	A3	1828	A	N3-C4-C5	5.73	130.81	126.80
3	A3	2280	С	N1-C2-O2	5.73	122.34	118.90
8	D	194	PHE	CA-CB-CG	5.73	127.64	113.90
3	A3	2445	U	N1-C2-O2	5.72	126.81	122.80
82	b6	320	LEU	CA-CB-CG	5.72	128.46	115.30
3	A3	2173	G	O5'-P-OP1	-5.72	100.56	105.70
3	A3	2379	С	N1-C2-O2	5.71	122.33	118.90
3	A3	3108	U	C5-C6-N1	5.71	125.56	122.70
3	A3	2599	U	C2-N1-C1'	5.70	124.54	117.70
3	A3	3212	С	C6-N1-C2	-5.70	118.02	120.30
30	33	173	VAL	CG1-CB-CG2	-5.69	101.79	110.90
87	FE	40	U	C2-N1-C1'	5.69	124.53	117.70
61	G6	373	ASP	CB-CG-OD1	-5.69	113.18	118.30
87	24	31	С	C6-N1-C1'	5.69	127.62	120.80
3	A3	3228	U	N3-C2-O2	-5.68	118.22	122.20
87	24	40	U	C2-N1-C1'	5.68	124.52	117.70
3	A3	3093	С	C5-C6-N1	5.68	123.84	121.00
86	A6	797	С	N1-C2-O2	5.68	122.31	118.90
86	A6	809	С	C6-N1-C2	-5.68	118.03	120.30
86	A6	1250	U	P-O3'-C3'	5.68	126.51	119.70
3	A3	2280	С	C6-N1-C2	-5.67	118.03	120.30
77	W6	130	ASP	CB-CG-OD1	5.67	123.40	118.30
3	A3	2347	С	C6-N1-C2	-5.67	118.03	120.30
86	A6	1193	U	C6-N1-C1'	-5.66	113.28	121.20
87	FE	31	С	C6-N1-C1'	5.66	127.59	120.80
3	A3	2235	C	C6-N1-C2	-5.65	118.04	120.30
86	A6	791	С	N1-C2-O2	5.65	122.29	118.90
86	A6	1282	C	N1-C2-O2	5.65	122.29	118.90
85	e6	147	PRO	N-CA-CB	5.65	110.08	103.30
3	A3	2557	С	N3-C2-O2	-5.65	117.95	121.90
86	A6	1536	C	N1-C2-O2	5.64	122.29	118.90
3	A3	1904	C	C6-N1-C2	-5.64	118.05	120.30
3	A3	2171	U	C6-N1-C1'	-5.64	113.31	121.20
86	A6	1266	C	N3-C2-O2	-5.64	117.95	121.90
86	A6	1541	C	C5-C6-N1	5.63	123.81	$12\overline{1.00}$
3	A3	2024	С	N1-C2-O2	5.62	122.27	118.90



$\alpha$ $\cdot$ $\cdot$ $\cdot$	C		
Continued	trom	previous	page
	J	1	1 5

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	A3	2832	А	N7-C8-N9	5.61	116.60	113.80
3	A3	2780	С	C6-N1-C1'	-5.60	114.08	120.80
87	24	30	G	P-O3'-C3'	5.60	126.42	119.70
87	FE	30	G	P-O3'-C3'	5.59	126.41	119.70
3	A3	3077	С	C5-C6-N1	5.59	123.80	121.00
3	A3	2235	С	C6-N1-C1'	-5.59	114.09	120.80
68	N6	70	PRO	CA-CB-CG	-5.58	93.39	104.00
3	A3	2569	C	N3-C2-O2	-5.58	117.99	121.90
58	D6	345	LEU	CA-CB-CG	5.58	128.13	115.30
86	A6	1436	U	N1-C2-O2	5.58	126.70	122.80
3	A3	2096	U	C6-N1-C1'	-5.58	113.39	121.20
3	A3	2489	С	C6-N1-C2	-5.58	118.07	120.30
3	A3	3123	G	OP2-P-O3'	5.58	117.47	105.20
3	A3	2282	С	N1-C2-O2	5.57	122.24	118.90
3	A3	1707	С	C2-N1-C1'	5.57	124.92	118.80
3	A3	2757	А	OP1-P-O3'	5.57	117.45	105.20
86	A6	801	C	N1-C2-O2	5.56	122.24	118.90
86	A6	951	U	N3-C2-O2	-5.56	118.31	122.20
16	P3	74	ARG	NE-CZ-NH2	5.55	123.08	120.30
63	I6	186	CYS	C-N-CA	-5.55	107.83	121.70
3	A3	1984	A	C4-N9-C1'	5.55	136.28	126.30
3	A3	2653	С	C5-C6-N1	5.55	123.77	121.00
3	A3	2005	C	C6-N1-C2	-5.54	118.08	120.30
3	A3	3102	U	N3-C2-O2	-5.53	118.33	122.20
3	A3	2067	C	C5-C6-N1	5.53	123.76	121.00
3	A3	2374	A	P-O3'-C3'	5.52	126.33	119.70
13	M3	154	ILE	CG1-CB-CG2	-5.52	99.26	111.40
86	A6	836	U	N1-C2-O2	5.52	126.66	122.80
86	A6	1213	С	C6-N1-C2	-5.52	118.09	120.30
86	A6	1051	А	C2-N3-C4	5.51	113.36	110.60
86	A6	1288	U	N1-C2-O2	5.51	126.66	122.80
3	A3	2096	U	O4'-C1'-N1	5.51	112.61	108.20
3	A3	2530	A	OP2-P-O3'	5.51	117.32	105.20
3	A3	2484	С	N3-C2-O2	-5.50	118.05	121.90
3	A3	3170	С	N3-C2-O2	-5.50	118.05	121.90
86	A6	1451	G	N3-C4-N9	5.50	129.30	126.00
3	A3	2443	C	N3-C2-O2	-5.49	118.06	121.90
3	A3	2522	U	C5-C6-N1	5.49	125.44	122.70
56	B6	251	ARG	NE-CZ-NH2	-5.48	117.56	120.30
86	A6	1472	U	N3-C2-O2	-5.48	118.36	122.20
40	e3	173	LEU	CA-CB-CG	5.48	127.90	115.30
86	A6	1127	C	N3-C2-O2	-5.48	118.06	121.90



$\alpha$ $\cdot$ $\cdot$ $\cdot$	r		
Continued	from	previous	page
		1	1 0

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	A3	2379	С	C2-N1-C1'	5.47	124.82	118.80
4	B3	1648	U	N1-C2-O2	5.47	126.63	122.80
86	A6	801	С	N3-C2-O2	-5.47	118.07	121.90
3	A3	2445	U	N3-C2-O2	-5.47	118.37	122.20
1	r1	317	LEU	CA-CB-CG	5.46	127.87	115.30
3	A3	1823	А	N7-C8-N9	5.46	116.53	113.80
86	A6	801	С	C6-N1-C2	-5.46	118.11	120.30
85	e6	500	LEU	CA-CB-CG	5.45	127.83	115.30
3	A3	2079	С	C6-N1-C1'	-5.45	114.26	120.80
3	A3	2135	А	C2-N3-C4	5.45	113.32	110.60
44	i3	80	LEU	CB-CG-CD1	5.45	120.26	111.00
86	A6	1433	С	OP2-P-O3'	5.44	117.18	105.20
86	A6	921	С	C6-N1-C2	-5.44	118.12	120.30
86	A6	1196	С	N1-C2-O2	5.44	122.16	118.90
3	A3	2080	U	C6-N1-C1'	-5.43	113.59	121.20
76	V6	181	LEU	CA-CB-CG	-5.43	102.81	115.30
86	A6	1156	А	N3-C4-N9	5.43	131.74	127.40
86	A6	715	U	C5-C6-N1	5.43	125.42	122.70
3	A3	2684	С	C2-N1-C1'	5.42	124.77	118.80
3	A3	1780	U	C5-C4-O4	-5.42	122.65	125.90
87	24	31	С	C2-N1-C1'	-5.42	112.84	118.80
3	A3	2771	С	C5-C6-N1	5.42	123.71	121.00
3	A3	2771	С	C6-N1-C2	-5.42	118.13	120.30
3	A3	2523	С	C6-N1-C2	-5.41	118.14	120.30
3	A3	2434	А	O4'-C1'-N9	5.41	112.53	108.20
86	A6	1266	С	N1-C2-O2	5.40	122.14	118.90
3	A3	2569	С	C2-N1-C1'	5.40	124.74	118.80
3	A3	2112	A	C5-C6-N6	-5.40	119.38	123.70
86	A6	714	U	C6-N1-C1'	-5.39	113.65	121.20
87	FE	31	С	C2-N1-C1'	-5.39	112.87	118.80
86	A6	1156	A	C8-N9-C1'	-5.39	118.00	127.70
3	A3	2284	С	N1-C2-O2	5.39	122.13	118.90
45	j3	79	LEU	CA-CB-CG	5.38	127.69	115.30
86	A6	1447	U	N3-C2-O2	-5.38	118.43	122.20
3	A3	2789	С	N1-C2-O2	5.38	122.13	118.90
86	A6	1472	U	N1-C2-O2	5.38	126.56	122.80
43	h3	64	GLU	C-N-CA	5.38	135.14	121.70
86	A6	1472	U	C5-C6-N1	5.38	125.39	122.70
3	A3	2655	G	O4'-C1'-N9	-5.37	103.90	108.20
86	A6	1345	C	C6-N1-C2	-5.37	118.15	120.30
86	A6	926	C	C6-N1-C2	-5.37	118.15	120.30
3	A3	2784	A	OP1-P-O3'	5.37	117.01	105.20



89

3

3

3

37

86

14

3

78

3

n

A3

A3

A3

b3

A6

N3

A3

X6

A3

92

2295

3201

1699

117

1373

87

3204

344

2445

TYR

С

А

С

LYS

U

PHE

 $\mathbf{C}$ 

LEU

U

CB-CG-CD1

N1-C2-O2

C4-N9-C1'

C5-C6-N1

CA-CB-CG

C5-C6-N1

CB-CG-CD2

C6-N1-C2

CA-CB-CG

C2-N1-C1'

 $Ideal(^{o})$ 121.70 119.70 121.90 118.90 120.30 119.70118.80 118.80 117.70 119.70 115.30 104.30 115.30 115.30 121.70 119.70 111.50 115.30 104.30 106.40 118.30 122.80 120.30 118.30 118.90 121.00 121.00 121.90 113.10 118.30 105.20 115.30

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$
41	f3	50	THR	C-N-CA	5.37	135.12
4	B3	1607	U	P-O3'-C3'	5.37	126.14
86	A6	1297	С	N3-C2-O2	-5.36	118.15
3	A3	2441	С	N1-C2-O2	5.36	122.12
3	A3	1813	С	C6-N1-C2	-5.36	118.16
3	A3	2186	С	P-O3'-C3'	5.36	126.13
3	A3	2282	С	C2-N1-C1'	5.35	124.68
3	A3	2865	С	C2-N1-C1'	5.35	124.68
3	A3	2112	А	C5-C6-N1	5.35	120.37
3	A3	2507	А	P-O3'-C3'	5.35	126.12
81	a6	118	LEU	CA-CB-CG	5.35	127.60
87	24	30	G	C5-N7-C8	-5.33	101.63
40	e3	83	LEU	CA-CB-CG	5.33	127.55
79	Y6	358	LEU	CA-CB-CG	5.33	127.55
43	h3	63	PRO	C-N-CA	5.33	135.02
3	A3	2628	U	P-O3'-C3'	5.33	126.09
73	S6	90	PRO	CA-N-CD	-5.32	104.05
10	J3	71	LEU	CA-CB-CG	5.32	127.54
87	$\mathbf{FE}$	30	G	C5-N7-C8	-5.32	101.64
3	A3	3127	G	C8-N9-C4	-5.32	104.27
68	N6	53	ASP	CB-CG-OD1	5.32	123.08
3	A3	3102	U	N1-C2-O2	5.31	126.52
16	P3	84	ARG	NE-CZ-NH1	5.31	122.96
33	63	336	ASP	CB-CG-OD1	5.31	123.08
86	A6	1265	С	N1-C2-O2	5.31	122.09
3	A3	2900	С	C5-C6-N1	5.30	123.65
3	A3	2906	С	C5-C6-N1	5.30	123.65
3	A3	2523	С	N3-C2-O2	-5.29	118.19
6	E3	246	GLY	N-CA-C	5.29	126.33
65	K6	81	ASP	CB-CG-OD2	5.29	123.06
3	A3	3041	U	OP1-P-O3'	5.29	116.83
35	93	86	LEU	CA-CB-CG	5.29	127.46

Continued from previous page...

Continued on next page...

117.83

122.07

135.81

123.64

125.00

125.34

117.11

118.19

127.42

124.02

121.00

118.90

126.30

121.00

113.40

122.70

120.80

120.30

115.30

117.70



-5.29

5.28

5.28

5.28

5.28

5.27

-5.27

-5.27

5.27

5.26

$\alpha \cdot \cdot \cdot \cdot$	C	•	
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
24	X3	222	ASP	CB-CG-OD1	5.26	123.04	118.30
88	А	183	PRO	C-N-CA	5.26	134.86	121.70
19	S3	172	MET	CG-SD-CE	-5.26	91.78	100.20
3	A3	1984	А	C6-C5-N7	-5.26	128.62	132.30
87	24	33	С	N3-C2-O2	-5.26	118.22	121.90
3	A3	1890	С	C6-N1-C2	-5.26	118.20	120.30
35	93	127	LEU	CA-CB-CG	5.26	127.39	115.30
86	A6	1318	С	C6-N1-C2	-5.25	118.20	120.30
3	A3	2280	С	N3-C2-O2	-5.25	118.23	121.90
86	A6	1207	С	N1-C2-O2	5.25	122.05	118.90
86	A6	1093	U	N1-C2-O2	5.25	126.47	122.80
86	A6	1025	U	OP2-P-O3'	5.25	116.74	105.20
69	O6	213	LEU	CA-CB-CG	5.24	127.36	115.30
86	A6	1127	С	C2-N1-C1'	5.24	124.56	118.80
19	S3	182	LYS	CD-CE-NZ	-5.24	99.66	111.70
4	B3	1648	U	C5-C6-N1	5.23	125.32	122.70
3	A3	1828	А	N3-C4-N9	-5.23	123.22	127.40
3	A3	2326	С	C6-N1-C2	-5.23	118.21	120.30
87	FE	33	С	N3-C2-O2	-5.22	118.25	121.90
69	O6	96	ARG	NE-CZ-NH2	-5.21	117.69	120.30
3	A3	2157	U	N1-C2-O2	5.21	126.45	122.80
3	A3	2171	U	O4'-C1'-N1	5.21	112.37	108.20
3	A3	2187	С	N1-C2-O2	5.21	122.03	118.90
87	FE	42	С	N1-C2-O2	5.21	122.03	118.90
3	A3	3228	U	C6-N1-C1'	-5.21	113.91	121.20
86	A6	901	С	C5-C6-N1	5.20	123.60	121.00
86	A6	809	С	O4'-C1'-N1	5.20	112.36	108.20
3	A3	1984	А	C5-N7-C8	-5.19	101.30	103.90
3	A3	2898	U	O4'-C1'-N1	5.19	112.35	108.20
1	r1	62	LEU	CA-CB-CG	5.19	127.23	115.30
86	A6	1318	С	C5-C6-N1	5.19	123.59	121.00
86	A6	1156	А	C2-N3-C4	5.18	113.19	110.60
3	A3	1946	С	C6-N1-C2	-5.18	118.23	120.30
3	A3	3172	С	N1-C2-O2	5.18	122.01	118.90
3	A3	2511	С	C2-N1-C1'	5.18	124.50	118.80
82	b6	138	ASP	C-N-CA	5.17	134.62	121.70
1	r1	207	LEU	CB-CA-C	5.17	120.01	110.20
87	24	42	С	N1-C2-O2	5.16	122.00	118.90
86	A6	1526	U	N1-C2-O2	5.16	126.41	122.80
5	D3	235	GLN	CA-CB-CG	5.15	124.72	113.40
86	A6	957	U	C2-N1-C1'	5.14	123.87	117.70
76	V6	154	LYS	C-N-CA	5.14	134.55	121.70



$\alpha$ $\cdot$ $\cdot$ $\cdot$	C	•	
Continued	trom	previous	<i>paae</i>
• • • • • • • • • • • •	J	<b>P</b> · · · · · · · · · · · · · · · · · · ·	r - g - · · ·

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	A3	3201	A	C2-N3-C4	5.14	113.17	110.60
86	A6	969	С	N1-C2-O2	5.14	121.98	118.90
3	A3	1837	C	C6-N1-C2	-5.13	118.25	120.30
4	B3	1663	С	N1-C2-O2	5.13	121.98	118.90
87	FE	40	U	N1-C2-O2	5.13	126.39	122.80
3	A3	1880	С	C6-N1-C2	-5.13	118.25	120.30
3	A3	2186	С	N1-C2-O2	5.13	121.98	118.90
86	A6	709	С	N1-C2-O2	5.12	121.97	118.90
3	A3	2583	C	C5-C6-N1	5.12	123.56	121.00
3	A3	3041	U	P-O3'-C3'	5.12	125.84	119.70
86	A6	1373	U	C6-N1-C2	-5.11	117.93	121.00
3	A3	2282	С	N3-C2-O2	-5.11	118.32	121.90
62	H6	180	LEU	CA-CB-CG	5.11	127.06	115.30
3	A3	2708	С	N1-C2-O2	5.11	121.96	118.90
3	A3	2771	С	N3-C2-O2	-5.11	118.32	121.90
3	A3	1786	С	C6-N1-C2	-5.11	118.26	120.30
87	24	45	А	C2-N3-C4	5.11	113.15	110.60
3	A3	1725	С	N3-C2-O2	-5.10	118.33	121.90
72	R6	208	ILE	CG1-CB-CG2	-5.10	100.17	111.40
3	A3	2898	U	C6-N1-C1'	-5.10	114.06	121.20
69	O6	162	LEU	CA-CB-CG	5.10	127.03	115.30
3	A3	1689	С	N3-C2-O2	-5.10	118.33	121.90
3	A3	1823	A	C8-N9-C4	-5.10	103.76	105.80
86	A6	1541	С	C2-N1-C1'	5.09	124.40	118.80
1	r1	470	ILE	CG1-CB-CG2	-5.09	100.19	111.40
3	A3	2684	С	N1-C2-O2	5.09	121.95	118.90
86	A6	1472	U	C2-N1-C1'	5.09	123.81	117.70
3	A3	3122	U	N3-C2-O2	-5.09	118.64	122.20
86	A6	675	U	N1-C2-O2	5.08	126.36	122.80
20	Т3	161	ARG	N-CA-C	-5.08	97.28	111.00
22	V3	91	LEU	CA-CB-CG	5.08	126.99	115.30
3	A3	2852	С	N3-C2-O2	-5.08	118.35	121.90
86	A6	678	U	N1-C2-O2	5.08	126.35	122.80
3	A3	2386	С	C2-N1-C1'	5.07	124.38	118.80
3	A3	3123	G	P-O3'-C3'	5.07	125.79	119.70
1	r1	365	PHE	CA-C-N	5.07	126.34	116.20
87	24	40	U	N1-C2-O2	5.07	126.35	122.80
3	A3	2583	C	C6-N1-C2	-5.07	118.27	120.30
39	d3	231	LEU	CA-CB-CG	5.07	126.96	115.30
86	A6	1447	U	C2-N1-C1'	5.07	123.78	117.70
3	A3	3170	С	C6-N1-C2	-5.07	118.27	120.30
3	A3	1984	A	N9-C4-C5	-5.06	103.78	105.80



Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
86	A6	1451	G	C4-N9-C1'	5.06	133.08	126.50
86	A6	1127	С	C6-N1-C2	-5.06	118.28	120.30
1	r1	567	LEU	CA-CB-CG	5.05	126.93	115.30
87	FE	45	А	C2-N3-C4	5.05	113.12	110.60
86	A6	887	U	O5'-P-OP1	5.05	116.76	110.70
81	a6	135	MET	CB-CG-SD	-5.05	97.25	112.40
81	a6	78	ARG	NE-CZ-NH1	-5.04	117.78	120.30
86	A6	1324	G	O4'-C1'-N9	5.04	112.23	108.20
88	А	180	PRO	C-N-CD	-5.04	109.52	120.60
1	r1	79	VAL	CG1-CB-CG2	-5.03	102.85	110.90
3	A3	2489	С	C5-C6-N1	5.03	123.52	121.00
3	A3	2824	С	C6-N1-C2	-5.03	118.29	120.30
13	M3	244	LEU	CA-CB-CG	5.03	126.87	115.30
3	A3	2372	U	C6-N1-C1'	-5.03	114.16	121.20
3	A3	3187	С	C6-N1-C2	-5.03	118.29	120.30
3	A3	1693	С	C5-C6-N1	5.03	123.51	121.00
3	A3	2357	С	N3-C2-O2	-5.03	118.38	121.90
87	24	33	С	C6-N1-C2	-5.02	118.29	120.30
61	G6	302	LEU	CA-CB-CG	5.02	126.85	115.30
28	13	20	MET	CB-CG-SD	5.02	127.45	112.40
76	V6	180	LEU	CA-CB-CG	5.02	126.84	115.30
86	A6	1502	С	N1-C2-O2	5.01	121.91	118.90
86	A6	806	С	C6-N1-C2	-5.01	118.30	120.30
3	A3	1984	А	C8-N9-C1'	-5.01	118.68	127.70
3	A3	3206	С	N1-C2-O2	5.01	121.91	118.90
1	r1	725	PRO	C-N-CA	5.01	134.22	121.70
6	E3	247	ASP	CB-CG-OD1	5.01	122.81	118.30
3	A3	3206	С	P-O3'-C3'	5.00	125.71	119.70
35	93	91	LEU	CA-CB-CG	5.00	126.81	115.30
3	A3	1993	А	N3-C4-N9	5.00	131.40	127.40
3	A3	2135	A	C4-N9-C1'	5.00	135.30	126.30
67	M6	65	LEU	CA-CB-CG	5.00	126.80	115.30
86	A6	715	U	C6-N1-C1'	-5.00	114.20	121.20

There are no chirality outliers.

All (125) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
27	03	151	ALA	Peptide
27	03	177	ARG	Peptide
28	13	25	GLY	Peptide
28	13	62	ILE	Peptide


Mol	Chain	Res	Type	Group
32	53	223	ARG	Peptide
32	53	268	CYS	Peptide
32	53	269	ASN	Peptide
32	53	347	THR	Peptide
33	63	221	LEU	Peptide
33	63	49	GLU	Peptide
35	93	45	THR	Peptide
88	А	181	PRO	Peptide
88	А	182	ILE	Peptide
88	А	184	ASN	Peptide
88	А	185	TYR	Peptide
88	А	201	GLN	Peptide
88	А	57	ASP	Peptide
56	B6	164	GLU	Peptide
8	D	193	PHE	Peptide
8	D	205	THR	Peptide
5	D3	206	TYR	Peptide
58	D6	284	ARG	Peptide
58	D6	286	GLU	Peptide
58	D6	422	TRP	Peptide
58	D6	425	LEU	Peptide
6	E3	126	ASP	Peptide
6	E3	169	GLY	Peptide
6	E3	244	ALA	Peptide
6	E3	250	ARG	Peptide
6	E3	85	TRP	Peptide
7	F3	129	PRO	Peptide
7	F3	140	SER	Peptide
60	F6	147	GLN	Peptide
60	F6	159	VAL	Peptide
60	F6	160	PRO	Mainchain
60	F6	161	ILE	Peptide
61	G6	103	ASP	Peptide
8	H3	63	PRO	Peptide
9	I3	102	VAL	Peptide
63	I6	144	VAL	Peptide
63	I6	94	ASN	Peptide
10	J3	44	VAL	Peptide
10	J3	45	SER	Peptide
64	J6	130	TYR	Peptide
11	K3	3	SER	Peptide
11	K3	5	SER	Peptide



Mol	Chain	Res	Type	Group
13	M3	109	ARG	Peptide
13	M3	18	GLY	Peptide
13	M3	264	GLN	Peptide
13	M3	286	THR	Peptide
14	N3	237	HIS	Peptide
14	N3	78	GLU	Peptide
68	N6	109	PRO	Peptide
15	O3	104	TYR	Peptide
69	O6	53	ASP	Peptide
69	O6	55	PRO	Peptide
69	O6	98	ASN	Peptide
70	P6	139	ARG	Peptide
70	P6	64	LYS	Peptide
70	P6	65	CYS	Peptide
17	Q3	182	ARG	Peptide
18	R3	137	GLU	Peptide
72	R6	132	LEU	Peptide
72	R6	154	THR	Peptide
72	R6	291	ARG	Peptide
73	S6	107	GLN	Peptide
20	Т3	160	GLY	Peptide
75	U6	128	GLU	Peptide
75	U6	62	HIS	Peptide
22	V3	100	LYS	Peptide
22	V3	170	TRP	Peptide
76	V6	155	GLU	Peptide
76	V6	44	GLU	Peptide
24	X3	51	LYS	Peptide
2	Y2	21	UNK	Peptide
2	Y2	22	UNK	Peptide
26	Z3	141	SER	Peptide
81	a6	21	LEU	Peptide
82	b6	228	VAL	Peptide
38	c3	63	LYS	Peptide
83	c6	38	ARG	Peptide
39	d3	191	PRO	Peptide
39	d3	230	ARG	Peptide
39	d3	231	LEU	Peptide
39	d3	268	PRO	Peptide
39	d3	271	PRO	Peptide
85	e6	64	THR	Peptide
85	e6	67	LYS	Peptide



Mol	Chain	Res	Type	Group
41	f3	50	THR	Peptide
41	f3	84	THR	Peptide
41	f3	85	ASP	Peptide
41	f3	86	TYR	Peptide
42	g3	110	ILE	Peptide
43	h3	138	SER	Peptide
43	h3	65	ASP	Peptide
44	i3	57	TYR	Peptide
45	j3	25	GLY	Peptide
89	n	222	SER	Peptide
49	03	42	GLU	Peptide
51	q3	78	SER	Peptide
1	r1	162	MET	Peptide
1	r1	169	PHE	Peptide
1	r1	207	LEU	Peptide
1	r1	247	THR	Peptide
1	r1	249	HIS	Peptide
1	r1	256	CYS	Peptide
1	r1	296	PHE	Peptide
1	r1	341	ILE	Peptide
1	r1	364	ARG	Peptide
1	r1	401	MET	Peptide
1	r1	402	HIS	Peptide
1	r1	441	MET	Peptide
1	r1	53	ALA	Peptide
1	r1	57	SER	Peptide
1	r1	597	GLY	Peptide
1	r1	678	GLN	Peptide
1	r1	681	VAL	Peptide
1	r1	723	CYS	Peptide
1	r1	724	LEU	Peptide
1	r1	726	SER	Peptide
1	r1	735	TYR	Peptide
1	r1	78	GLU	Peptide
1	r1	98	ARG	Peptide
53	s3	270	LYS	Peptide
53	s3	283	PHE	Peptide

Continued from previous page...

### 5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.



## 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	r1	694/751~(92%)	523~(75%)	159 (23%)	12 (2%)	9	42
5	D3	234/305~(77%)	216~(92%)	17 (7%)	1 (0%)	34	69
6	E3	296/348~(85%)	258 (87%)	38 (13%)	0	100	100
7	F3	248/311~(80%)	224 (90%)	24 (10%)	0	100	100
8	D	78/267~(29%)	60 (77%)	18 (23%)	0	100	100
8	H3	93/267~(35%)	84 (90%)	9 (10%)	0	100	100
9	I3	154/261~(59%)	145 (94%)	9~(6%)	0	100	100
10	J3	138/192~(72%)	124 (90%)	14 (10%)	0	100	100
11	K3	175/178~(98%)	153 (87%)	19 (11%)	3 (2%)	9	42
12	L3	113/145~(78%)	104 (92%)	9 (8%)	0	100	100
13	M3	285/296~(96%)	254 (89%)	30 (10%)	1 (0%)	34	69
14	N3	203/251~(81%)	189 (93%)	12 (6%)	2 (1%)	15	51
15	O3	150/175~(86%)	130 (87%)	19 (13%)	1 (1%)	22	59
16	P3	129/179~(72%)	118 (92%)	11 (8%)	0	100	100
17	Q3	217/292~(74%)	192 (88%)	25~(12%)	0	100	100
18	R3	138/149~(93%)	128 (93%)	10 (7%)	0	100	100
19	S3	154/205~(75%)	139 (90%)	15 (10%)	0	100	100
20	T3	164/212~(77%)	152 (93%)	12 (7%)	0	100	100
21	U3	109/153~(71%)	96 (88%)	13 (12%)	0	100	100
22	V3	183/216~(85%)	155 (85%)	26 (14%)	2 (1%)	14	50
23	W3	109/148~(74%)	103 (94%)	6 (6%)	0	100	100
24	X3	241/256~(94%)	220 (91%)	20 (8%)	1 (0%)	34	69
25	Y3	$\overline{174/250}~(70\%)$	161 (92%)	12 (7%)	1 (1%)	25	62
26	Z3	$\overline{118/161}\ (73\%)$	108 (92%)	10 (8%)	0	100	100
27	03	$\overline{106/188}~(56\%)$	94 (89%)	11 (10%)	1 (1%)	17	54



Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
28	13	50/65~(77%)	46 (92%)	3~(6%)	1 (2%)	7	39
29	23	44/92~(48%)	42 (96%)	2~(4%)	0	100	100
30	33	93/188~(50%)	89 (96%)	4 (4%)	0	100	100
31	43	34/103~(33%)	34 (100%)	0	0	100	100
32	53	368/423~(87%)	326 (89%)	40 (11%)	2 (0%)	29	66
33	63	313/380~(82%)	283 (90%)	30 (10%)	0	100	100
34	73	258/338~(76%)	233 (90%)	25 (10%)	0	100	100
35	93	105/137~(77%)	88 (84%)	17 (16%)	0	100	100
36	a3	78/142~(55%)	74 (95%)	4 (5%)	0	100	100
37	b3	146/155~(94%)	132 (90%)	13 (9%)	1 (1%)	22	59
38	c3	271/332~(82%)	251 (93%)	20 (7%)	0	100	100
39	d3	156/306~(51%)	139 (89%)	15 (10%)	2 (1%)	12	47
40	e3	211/279~(76%)	193 (92%)	18 (8%)	0	100	100
41	f3	125/194~(64%)	103 (82%)	19 (15%)	3 (2%)	6	35
42	g3	127/166~(76%)	119 (94%)	8 (6%)	0	100	100
43	h3	96/158~(61%)	84 (88%)	11 (12%)	1 (1%)	15	51
44	i3	95/128~(74%)	87 (92%)	8 (8%)	0	100	100
45	j3	83/123~(68%)	78 (94%)	4 (5%)	1 (1%)	13	48
46	k3	82/112 (73%)	66 (80%)	16 (20%)	0	100	100
47	13	21/138 (15%)	21 (100%)	0	0	100	100
48	m3	43/128 (34%)	36 (84%)	7 (16%)	0	100	100
49	03	92/102~(90%)	86 (94%)	6 (6%)	0	100	100
50	p3	119/206~(58%)	113 (95%)	6 (5%)	0	100	100
51	q3	126/222~(57%)	119 (94%)	5 (4%)	2 (2%)	9	43
52	r3	140/196~(71%)	125 (89%)	15 (11%)	0	100	100
53	s3	366/439~(83%)	340 (93%)	26 (7%)	0	100	100
55	A5	26/435~(6%)	17 (65%)	9~(35%)	0	100	100
56	B6	215/296~(73%)	200 (93%)	15 (7%)	0	100	100
57	C6	130/167~(78%)	122 (94%)	8 (6%)	0	100	100
58	D6	316/430~(74%)	272 (86%)	44 (14%)	0	100	100
59	E6	120/125~(96%)	113 (94%)	6 (5%)	1 (1%)	19	56



Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
60	F6	197/242~(81%)	182 (92%)	14 (7%)	1 (0%)	29	66
61	G6	301/396~(76%)	276~(92%)	25~(8%)	0	100	100
62	H6	120/201~(60%)	103~(86%)	17~(14%)	0	100	100
63	I6	134/194~(69%)	122~(91%)	12 (9%)	0	100	100
64	J6	106/138~(77%)	93~(88%)	13 (12%)	0	100	100
65	${ m K6}$	99/128~(77%)	88~(89%)	11 (11%)	0	100	100
66	L6	162/257~(63%)	151~(93%)	11 (7%)	0	100	100
67	M6	114/137~(83%)	100 (88%)	14 (12%)	0	100	100
68	N6	105/130~(81%)	93~(89%)	12 (11%)	0	100	100
69	O6	183/258~(71%)	159 (87%)	24 (13%)	0	100	100
70	P6	94/142~(66%)	82 (87%)	12 (13%)	0	100	100
71	Q6	84/87~(97%)	75~(89%)	9 (11%)	0	100	100
72	R6	240/360~(67%)	210 (88%)	30 (12%)	0	100	100
73	S6	124/190~(65%)	110 (89%)	14 (11%)	0	100	100
74	T6	160/173~(92%)	140 (88%)	19 (12%)	1 (1%)	25	62
75	U6	171/205~(83%)	159~(93%)	12 (7%)	0	100	100
76	V6	320/414~(77%)	287~(90%)	33~(10%)	0	100	100
77	W6	95/187~(51%)	81~(85%)	14 (15%)	0	100	100
78	X6	310/398~(78%)	264~(85%)	45~(14%)	1 (0%)	41	74
79	Y6	106/395~(27%)	96~(91%)	10 (9%)	0	100	100
80	Z6	85/106~(80%)	79~(93%)	6 (7%)	0	100	100
81	a6	197/218~(90%)	174 (88%)	23~(12%)	0	100	100
82	b6	252/323~(78%)	223~(88%)	29 (12%)	0	100	100
83	c6	114/118~(97%)	98~(86%)	15~(13%)	1 (1%)	17	54
84	d6	67/199~(34%)	62~(92%)	5 (8%)	0	100	100
85	e6	362/689~(52%)	328~(91%)	29~(8%)	5(1%)	11	45
88	А	158/206~(77%)	139 (88%)	19 (12%)	0	100	100
89	n	216/286 (76%)	$166 \ (77\%)$	50(23%)	0	100	100
All	All	13828/19638 (70%)	12301 (89%)	1479 (11%)	48 (0%)	44	74

All (48) Ramachandran outliers are listed below:



Mol	Chain	Res	Type
1	r1	365	PHE
1	r1	598	PRO
1	r1	623	GLU
1	r1	724	LEU
1	r1	725	PRO
22	V3	101	THR
39	d3	231	LEU
41	f3	51	LYS
85	e6	68	VAL
85	e6	147	PRO
1	r1	599	LEU
1	r1	682	GLU
11	K3	160	GLN
13	M3	265	ILE
22	V3	194	LEU
24	X3	52	ILE
32	53	270	ILE
51	q3	43	GLU
60	F6	161	ILE
1	r1	404	ASP
14	N3	238	LYS
27	03	178	ASP
28	13	63	ARG
41	f3	50	THR
41	f3	85	ASP
51	q3	42	PRO
78	X6	342	PRO
1	r1	679	ASP
5	D3	207	ILE
83	c6	60	GLU
1	r1	403	ALA
11	K3	4	PHE
45	j3	35	ALA
85	e6	146	GLU
85	e6	274	GLN
11	K3	159	THR
14	N3	237	HIS
43	h3	66	LEU
1	r1	79	VAL
32	53	349	GLY
85	e6	149	ILE
39	d3	164	VAL
74	T6	148	PRO



Continued from previous page...

Mol	Chain	Res	Type
1	r1	341	ILE
25	Y3	203	PRO
59	E6	15	ARG
15	O3	111	PRO
37	b3	117	LYS

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	r1	592/630~(94%)	591~(100%)	1 (0%)	93	97
5	D3	190/245~(78%)	190 (100%)	0	100	100
6	E3	255/290~(88%)	255~(100%)	0	100	100
7	F3	217/262 (83%)	216 (100%)	1 (0%)	88	94
8	D	73/228~(32%)	73 (100%)	0	100	100
8	H3	86/228~(38%)	86 (100%)	0	100	100
9	I3	145/232~(62%)	145 (100%)	0	100	100
10	J3	113/150~(75%)	113 (100%)	0	100	100
11	K3	155/156~(99%)	154 (99%)	1 (1%)	86	93
12	L3	98/124~(79%)	98 (100%)	0	100	100
13	M3	245/249~(98%)	243~(99%)	2(1%)	81	89
14	N3	172/211~(82%)	172 (100%)	0	100	100
15	O3	133/150~(89%)	133~(100%)	0	100	100
16	P3	115/154~(75%)	113~(98%)	2 (2%)	60	79
17	Q3	201/256~(78%)	201 (100%)	0	100	100
18	R3	118/126~(94%)	118 (100%)	0	100	100
19	S3	141/180~(78%)	140 (99%)	1 (1%)	84	91
20	Т3	146/182~(80%)	146 (100%)	0	100	100
21	U3	99/135~(73%)	98~(99%)	1 (1%)	76	86
22	V3	169/191~(88%)	$1\overline{68}\ (99\%)$	1 (1%)	86	93



$\alpha \cdot \cdot \cdot \cdot$	C		
Continued	from	previous	page

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
23	W3	91/119~(76%)	91~(100%)	0	100	100
24	X3	217/227~(96%)	216 (100%)	1 (0%)	88	94
25	Y3	159/223~(71%)	159~(100%)	0	100	100
26	Z3	111/147~(76%)	111 (100%)	0	100	100
27	03	97/164~(59%)	97 (100%)	0	100	100
28	13	49/60~(82%)	49 (100%)	0	100	100
29	23	40/72~(56%)	40 (100%)	0	100	100
30	33	88/166~(53%)	88 (100%)	0	100	100
31	43	35/89~(39%)	35 (100%)	0	100	100
32	53	337/368~(92%)	335~(99%)	2 (1%)	86	93
33	63	266/332~(80%)	265 (100%)	1 (0%)	91	95
34	73	242/303~(80%)	242 (100%)	0	100	100
35	93	91/112 (81%)	91 (100%)	0	100	100
36	a3	78/133~(59%)	78 (100%)	0	100	100
37	b3	130/135~(96%)	129 (99%)	1 (1%)	81	89
38	c3	241/288 (84%)	241 (100%)	0	100	100
39	d3	151/274~(55%)	151 (100%)	0	100	100
40	e3	188/236~(80%)	187~(100%)	1 (0%)	88	94
41	f3	117/173~(68%)	117~(100%)	0	100	100
42	g3	119/148~(80%)	119 (100%)	0	100	100
43	h3	95/148~(64%)	95 (100%)	0	100	100
44	i3	86/110 (78%)	86 (100%)	0	100	100
45	j3	68/97~(70%)	68 (100%)	0	100	100
46	k3	74/90~(82%)	74 (100%)	0	100	100
47	13	23/116~(20%)	23 (100%)	0	100	100
48	m3	40/113~(35%)	39~(98%)	1 (2%)	47	70
49	03	80/87~(92%)	80 (100%)	0	100	100
50	p3	117/181~(65%)	116 (99%)	1 (1%)	78	88
51	q3	110/178~(62%)	110 (100%)	0	100	100
52	r3	$\overline{133/169}\ (79\%)$	133 (100%)	0	100	100
53	s3	326/381~(86%)	326 (100%)	0	100	100



Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
56	B6	191/249~(77%)	190 (100%)	1 (0%)	88	94
57	C6	115/143~(80%)	115~(100%)	0	100	100
58	D6	269/357~(75%)	269~(100%)	0	100	100
59	E6	104/107~(97%)	104 (100%)	0	100	100
60	F6	178/209~(85%)	178 (100%)	0	100	100
61	G6	265/342~(78%)	264 (100%)	1 (0%)	91	95
62	H6	112/180~(62%)	112 (100%)	0	100	100
63	I6	104/147~(71%)	104 (100%)	0	100	100
64	J6	93/118~(79%)	93 (100%)	0	100	100
65	K6	91/113 (80%)	91 (100%)	0	100	100
66	L6	152/226~(67%)	152 (100%)	0	100	100
67	M6	95/113 (84%)	95 (100%)	0	100	100
68	N6	93/115 (81%)	93 (100%)	0	100	100
69	O6	166/230~(72%)	165~(99%)	1 (1%)	86	93
70	P6	87/123 (71%)	87 (100%)	0	100	100
71	Q6	78/79~(99%)	78 (100%)	0	100	100
72	R6	224/318~(70%)	222 (99%)	2 (1%)	78	88
73	S6	109/164~(66%)	109 (100%)	0	100	100
74	T6	150/157~(96%)	149~(99%)	1 (1%)	84	91
75	U6	149/174~(86%)	149 (100%)	0	100	100
76	V6	295/364~(81%)	295 (100%)	0	100	100
77	W6	84/158~(53%)	84 (100%)	0	100	100
78	X6	275/351 (78%)	274 (100%)	1 (0%)	91	95
79	Y6	99/357~(28%)	99 (100%)	0	100	100
80	Z6	80/95~(84%)	80 (100%)	0	100	100
81	a6	176/190~(93%)	175 (99%)	1 (1%)	86	93
82	b6	237/291~(81%)	236 (100%)	1 (0%)	91	95
83	c6	99/101~(98%)	97~(98%)	2 (2%)	55	74
84	d6	63/166~(38%)	63 (100%)	0	100	100
85	e6	226/609~(37%)	226 (100%)	0	100	100
88	А	151/190 (80%)	151 (100%)	0	100	100



Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percer	ntiles
89	n	194/254~(76%)	194 (100%)	0	100	100
All	All	12266/16608~(74%)	12237 (100%)	29 (0%)	93	97

All (29) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	r1	628	ARG
7	F3	125	ARG
11	K3	70	ASN
13	M3	44	ARG
13	M3	182	ARG
16	P3	54	ASN
16	P3	176	ARG
19	S3	118	ASN
21	U3	69	ARG
22	V3	208	ARG
24	X3	96	LYS
32	53	83	LYS
32	53	275	ASN
33	63	292	GLN
37	b3	123	ASN
40	e3	185	ARG
48	m3	72	ARG
50	p3	82	ARG
56	B6	113	HIS
61	G6	276	ARG
69	O6	145	LYS
72	R6	106	MET
72	R6	127	LYS
74	T6	70	MET
78	X6	312	GLN
81	a6	27	ARG
82	b6	211	ARG
83	c6	37	ARG
83	c6	38	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (23) such sidechains are listed below:

Mol	Chain	Res	Type
1	r1	77	HIS
1	r1	152	GLN



Mol	Chain	$\mathbf{Res}$	Type
1	r1	196	HIS
1	r1	542	GLN
1	r1	548	GLN
6	E3	72	GLN
10	J3	103	GLN
16	P3	54	ASN
17	Q3	158	GLN
19	S3	179	ASN
22	V3	73	GLN
32	53	275	ASN
35	93	134	ASN
46	k3	35	GLN
63	I6	98	GLN
66	L6	172	ASN
70	P6	71	HIS
70	P6	115	GLN
74	T6	59	ASN
74	T6	128	ASN
76	V6	245	HIS
78	X6	190	ASN
79	Y6	295	GLN

#### 5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
3	8	7/1559~(0%)	4 (57%)	0
3	A3	1490/1559~(95%)	415 (27%)	38~(2%)
4	B3	51/73~(69%)	15 (29%)	1 (1%)
54	u3	1/2~(50%)	0	0
86	A6	921/954~(96%)	267~(28%)	14 (1%)
87	24	73/73~(100%)	38~(52%)	1 (1%)
87	FE	73/73~(100%)	38~(52%)	1 (1%)
All	All	2616/4293~(60%)	777 (29%)	55 (2%)

All (777) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
3	A3	1674	А
3	A3	1676	А
3	A3	1678	С
3	A3	1679	U



Mol	Chain	Res	Type
3	A3	1680	А
3	A3	1681	G
3	A3	1685	С
3	A3	1689	С
3	A3	1692	А
3	A3	1693	С
3	A3	1694	U
3	A3	1699	С
3	A3	1700	U
3	A3	1701	U
3	A3	1704	U
3	A3	1707	С
3	A3	1708	A
3	A3	1709	G
3	A3	1713	A
3	A3	1714	С
3	A3	1715	С
3	A3	1716	U
3	A3	1717	U
3	A3	1724	A
3	A3	1727	А
3	A3	1728	U
3	A3	1741	A
3	A3	1748	G
3	A3	1750	G
3	A3	1751	А
3	A3	1767	G
3	A3	1770	G
3	A3	1774	U
3	A3	1777	A
3	A3	1780	U
3	A3	1781	A
3	A3	1782	G
3	A3	1791	G
3	A3	1794	A
3	A3	1804	A
3	A3	1805	A
3	A3	1806	U
3	A3	1807	U
3	A3	1808	A
3	A3	1809	U
3	A3	1810	A



Mol	Chain	Res	Type
3	A3	1811	А
3	A3	1812	С
3	A3	1813	С
3	A3	1817	С
3	A3	1821	А
3	A3	1824	U
3	A3	1827	С
3	A3	1828	А
3	A3	1829	А
3	A3	1832	А
3	A3	1836	А
3	A3	1844	A
3	A3	1849	С
3	A3	1854	U
3	A3	1856	A
3	A3	1867	А
3	A3	1869	А
3	A3	1870	А
3	A3	1872	U
3	A3	1873	А
3	A3	1874	A
3	A3	1878	U
3	A3	1882	А
3	A3	1883	G
3	A3	1887	A
3	A3	1888	G
3	A3	1890	С
3	A3	1893	A
3	A3	1902	С
3	A3	1903	C
3	A3	1909	A
3	A3	1918	G
3	A3	1922	С
3	A3	1935	A
3	A3	1939	G
3	A3	1940	A
3	A3	1944	С
3	A3	1966	G
3	A3	1968	G
3	A3	1974	A
3	A3	1975	U
3	A3	1985	G



Mol	Chain	Res	Type
3	A3	1987	G
3	A3	1992	С
3	A3	1993	А
3	A3	1994	А
3	A3	1995	А
3	A3	2000	С
3	A3	2001	С
3	A3	2002	G
3	A3	2015	G
3	A3	2020	U
3	A3	2021	U
3	A3	2022	G
3	A3	2029	А
3	A3	2031	А
3	A3	2032	G
3	A3	2036	С
3	A3	2037	U
3	A3	2053	U
3	A3	2055	U
3	A3	2057	С
3	A3	2059	C
3	A3	2060	А
3	A3	2065	А
3	A3	2074	А
3	A3	2079	С
3	A3	2083	U
3	A3	2085	А
3	A3	2093	U
3	A3	2097	А
3	A3	2098	G
3	A3	2099	U
3	A3	2110	A
3	A3	2113	G
3	A3	2124	А
3	A3	2125	С
3	A3	2132	A
3	A3	2135	A
3	A3	2141	U
3	A3	2142	А
3	A3	2147	G
3	A3	2154	А
3	A3	2157	U



Mol	Chain	Res	Type
3	A3	2159	U
3	A3	2163	А
3	A3	2165	С
3	A3	2166	С
3	A3	2168	U
3	A3	2171	U
3	A3	2172	А
3	A3	2173	G
3	A3	2177	U
3	A3	2180	А
3	A3	2182	G
3	A3	2183	С
3	A3	$2\overline{184}$	A
3	A3	2187	С
3	A3	2190	С
3	A3	2193	U
3	A3	2194	U
3	A3	2195	А
3	A3	2197	G
3	A3	2198	А
3	A3	2200	А
3	A3	2202	С
3	A3	2210	С
3	A3	2216	А
3	A3	2229	А
3	A3	2230	А
3	A3	2231	А
3	A3	2233	U
3	A3	2237	А
3	A3	2239	А
3	A3	2241	A
3	A3	2243	А
3	A3	2244	U
3	A3	2245	А
3	A3	$2\overline{246}$	A
3	A3	2262	С
3	A3	2263	С
3	A3	$2\overline{283}$	С
3	A3	2284	С
3	A3	$2\overline{285}$	U
3	A3	2290	A
3	A3	2294	А



Mol	Chain	Res	Type
3	A3	2297	А
3	A3	2299	U
3	A3	2300	G
3	A3	2309	А
3	A3	2322	С
3	A3	2323	А
3	A3	2324	U
3	A3	2329	С
3	A3	2331	С
3	A3	2332	С
3	A3	2345	G
3	A3	2364	С
3	A3	2369	А
3	A3	2370	А
3	A3	2371	U
3	A3	2372	U
3	A3	2374	A
3	A3	2375	C
3	A3	2379	C
3	A3	2380	C
3	A3	2381	A
3	A3	2387	U
3	A3	2389	С
3	A3	2390	A
3	A3	2393	С
3	A3	2394	A
3	A3	2400	C
3	A3	2401	A
3	A3	2404	U
3	A3	2405	С
3	A3	2407	U
3	A3	2414	С
3	A3	2415	С
3	A3	2416	U
3	A3	2426	C
3	A3	2427	Ċ
3	A3	2429	A
3	A3	2435	G
3	A3	2443	C
3	A3	2444	A
3	A3	2445	Ů
3	A3	2446	A



Mol	Chain	Res	Type
3	A3	2447	А
3	A3	2452	А
3	A3	2478	G
3	A3	2493	С
3	A3	2500	А
3	A3	2506	А
3	A3	2508	С
3	A3	2511	С
3	A3	2520	С
3	A3	2521	А
3	A3	2522	U
3	A3	2523	С
3	A3	2524	А
3	A3	2527	А
3	A3	2530	А
3	A3	2531	U
3	A3	2532	U
3	A3	2536	G
3	A3	2539	А
3	A3	2540	С
3	A3	2557	С
3	A3	2558	А
3	A3	2559	U
3	A3	2560	G
3	A3	2563	U
3	A3	2567	G
3	A3	2570	С
3	A3	2581	А
3	A3	2582	А
3	A3	2592	G
3	A3	2593	G
3	A3	2594	U
3	A3	2596	G
3	A3	2601	A
3	A3	2603	С
3	A3	2618	U
3	A3	2626	U
3	A3	2627	G
3	A3	2629	А
3	A3	2630	U
3	A3	2632	А
3	A3	2633	A
	<i>a</i>	,	



Mol	Chain	Res	Type
3	A3	2634	U
3	A3	2635	G
3	A3	2643	G
3	A3	2645	G
3	A3	2654	U
3	A3	2655	G
3	A3	2656	U
3	A3	2660	U
3	A3	2683	С
3	A3	2686	G
3	A3	2694	А
3	A3	2696	А
3	A3	2706	А
3	A3	2708	С
3	A3	2709	А
3	A3	2718	С
3	A3	2719	G
3	A3	2723	А
3	A3	2724	G
3	A3	2725	А
3	A3	2732	G
3	A3	2733	G
3	A3	2740	А
3	A3	2745	А
3	A3	2749	А
3	A3	2750	U
3	A3	2757	А
3	A3	2758	G
3	A3	2761	С
3	A3	2762	С
3	A3	2763	U
3	A3	2764	А
3	A3	2765	A
3	A3	2766	С
3	A3	2767	А
3	A3	2768	А
3	A3	2769	А
3	A3	2771	С
3	A3	$277\overline{3}$	A
3	A3	2774	С
3	A3	$277\overline{5}$	A
3	A3	2776	G



Mol	Chain	Res	Type
3	A3	2777	G
3	A3	2778	U
3	A3	2779	С
3	A3	2780	С
3	A3	2781	U
3	A3	2782	А
3	A3	2783	А
3	A3	2784	А
3	A3	2785	С
3	A3	2786	U
3	A3	2787	A
3	A3	2788	С
3	A3	2789	С
3	A3	2790	A
3	A3	2791	A
3	A3	2792	A
3	A3	2804	А
3	A3	2810	G
3	A3	2814	G
3	A3	2823	U
3	A3	2831	G
3	A3	2832	А
3	A3	2833	А
3	A3	2842	С
3	A3	2844	G
3	A3	2847	С
3	A3	2851	А
3	A3	2854	U
3	A3	2861	А
3	A3	2864	U
3	A3	2865	С
3	A3	2870	G
3	A3	2871	U
3	A3	2879	А
3	A3	2893	A
3	A3	2896	G
3	A3	2901	A
3	A3	2906	С
3	A3	2910	A
3	A3	2913	A
3	A3	2916	G
3	A3	2917	G



Mol	Chain	Res	Type
3	A3	2918	А
3	A3	2919	А
3	A3	2922	А
3	A3	2926	А
3	A3	2928	С
3	A3	2932	G
3	A3	2934	G
3	A3	2935	А
3	A3	2936	U
3	A3	2955	U
3	A3	2956	А
3	A3	2963	А
3	A3	2968	А
3	A3	2971	A
3	A3	2981	A
3	A3	2989	G
3	A3	2990	А
3	A3	2991	U
3	A3	2992	G
3	A3	2994	U
3	A3	3000	А
3	A3	3005	А
3	A3	3012	U
3	A3	3016	G
3	A3	3022	G
3	A3	3029	А
3	A3	3041	U
3	A3	3042	U
3	A3	3053	А
3	A3	3054	G
3	A3	3056	C
3	A3	3060	С
3	A3	3063	G
3	A3	3065	U
3	A3	3070	G
3	A3	$307\overline{2}$	U
3	A3	3077	С
3	A3	3086	U
3	A3	3089	A
3	A3	3093	C
3	A3	3096	U
3	A3	3100	U



Mol	Chain	Res	Type
3	A3	3102	U
3	A3	3108	U
3	A3	3109	U
3	A3	3114	U
3	A3	3123	G
3	A3	3124	U
3	A3	3128	А
3	A3	3129	А
3	A3	3131	G
3	A3	3135	А
3	A3	3141	А
3	A3	3150	U
3	A3	3155	C
3	A3	3157	С
3	A3	3158	A
3	A3	3160	A
3	A3	3161	G
3	A3	3162	С
3	A3	3168	С
3	A3	3169	С
3	A3	3172	С
3	A3	3176	А
3	A3	3180	А
3	A3	3184	С
3	A3	3189	C
3	A3	3190	А
3	A3	3202	U
3	A3	3204	С
3	A3	3207	А
3	A3	3217	А
3	A3	3218	A
3	A3	3220	A
3	A3	3228	U
4	B3	1607	U
4	B3	1608	G
4	B3	1609	U
4	B3	1611	G
4	B3	1614	U
4	B3	1615	A
4	B3	1625	A
4	B3	1631	С
4	B3	1632	U



Mol	Chain	Res	Type
4	B3	1634	А
4	B3	1641	G
4	B3	1644	G
4	B3	1645	A
4	B3	1665	С
4	B3	1667	С
86	A6	654	U
86	A6	655	А
86	A6	675	U
86	A6	678	U
86	A6	682	U
86	A6	684	U
86	A6	686	A
86	A6	692	А
86	A6	694	U
86	A6	695	A
86	A6	698	С
86	A6	701	G
86	A6	707	А
86	A6	708	U
86	A6	709	С
86	A6	715	U
86	A6	716	С
86	A6	717	С
86	A6	722	А
86	A6	724	U
86	A6	725	U
86	A6	726	С
86	A6	727	А
86	A6	749	А
86	A6	757	А
86	A6	761	А
86	A6	765	A
86	A6	768	А
86	A6	770	G
86	A6	774	C
86	A6	775	A
86	A6	777	U
86	A6	786	A
86	A6	787	A
86	A6	792	U
86	A6	795	G



Mol	Chain	Res	Type
86	A6	797	С
86	A6	798	U
86	A6	799	А
86	A6	800	G
86	A6	811	А
86	A6	812	С
86	A6	813	G
86	A6	816	А
86	A6	818	А
86	A6	819	С
86	A6	820	А
86	A6	821	G
86	A6	831	A
86	A6	834	U
86	A6	836	U
86	A6	839	С
86	A6	840	А
86	A6	850	А
86	A6	851	G
86	A6	853	U
86	A6	857	С
86	A6	859	А
86	A6	865	U
86	A6	869	А
86	A6	872	С
86	A6	873	С
86	A6	874	С
86	A6	884	С
86	A6	886	А
86	A6	887	U
86	A6	889	U
86	A6	894	С
86	A6	903	G
86	A6	907	U
86	A6	908	C
86	A6	909	A
86	A6	923	А
86	A6	924	G
86	A6	931	G
86	A6	937	G
86	A6	938	G
86	A6	942	A



Mol	Chain	Res	Type
86	A6	943	А
86	A6	946	А
86	A6	947	G
86	A6	951	U
86	A6	952	U
86	A6	954	А
86	A6	957	U
86	A6	958	С
86	A6	959	А
86	A6	970	А
86	A6	971	A
86	A6	981	A
86	A6	982	A
86	A6	989	U
86	A6	992	G
86	A6	996	U
86	A6	997	А
86	A6	1005	С
86	A6	1006	С
86	A6	1011	G
86	A6	1012	А
86	A6	1015	С
86	A6	1018	А
86	A6	1019	А
86	A6	1023	А
86	A6	1026	A
86	A6	1032	G
86	A6	1035	G
86	A6	1036	С
86	A6	1038	U
86	A6	1043	А
86	A6	1046	U
86	A6	1050	A
86	A6	1053	A
86	A6	1056	С
86	A6	1069	С
86	A6	1085	U
86	A6	1086	A
86	A6	1102	С
86	A6	1107	A
86	A6	1109	С
86	A6	1110	С



Mol	Chain	Res	Type
86	A6	1113	А
86	A6	1125	A
86	A6	1129	А
86	A6	1130	А
86	A6	1133	U
86	A6	1141	А
86	A6	1142	G
86	A6	1146	А
86	A6	1148	U
86	A6	1155	С
86	A6	1157	С
86	A6	1158	А
86	A6	1170	А
86	A6	1171	А
86	A6	1183	G
86	A6	1184	U
86	A6	1189	С
86	A6	1191	U
86	A6	1192	А
86	A6	1193	U
86	A6	1194	С
86	A6	1195	С
86	A6	1196	С
86	A6	1198	С
86	A6	1207	С
86	A6	1210	G
86	A6	1218	А
86	A6	1219	U
86	A6	1220	С
86	A6	1224	А
86	A6	1226	А
86	A6	1227	С
86	A6	1229	С
86	A6	1230	С
86	A6	1233	U
86	A6	1235	А
86	A6	1236	А
86	A6	1241	А
86	A6	1247	U
86	A6	1249	U
86	A6	1250	U
86	A6	1251	G



Mol	Chain	Res	Type
86	A6	1252	С
86	A6	1254	С
86	A6	1255	А
86	A6	1256	G
86	A6	1258	С
86	A6	1261	U
86	A6	1265	С
86	A6	1274	U
86	A6	1275	С
86	A6	1276	А
86	A6	1287	А
86	A6	1288	U
86	A6	1289	G
86	A6	1291	A
86	A6	1294	С
86	A6	1296	A
86	A6	1297	С
86	A6	1298	А
86	A6	1299	А
86	A6	1300	А
86	A6	1301	G
86	A6	1304	А
86	A6	1330	А
86	A6	1331	G
86	A6	1333	U
86	A6	1334	С
86	A6	1336	А
86	A6	1346	С
86	A6	1347	А
86	A6	1348	U
86	A6	1355	G
86	A6	1357	A
86	A6	1358	А
86	A6	1359	G
86	A6	1360	А
86	A6	1363	U
86	A6	1371	А
86	A6	1372	U
86	A6	1373	U
86	A6	1375	U
86	A6	1380	С
86	A6	1381	С



Mol	Chain	Res	Type
86	A6	1382	С
86	A6	1383	А
86	A6	1385	А
86	A6	1394	А
86	A6	1395	U
86	A6	1397	G
86	A6	1400	С
86	A6	1401	U
86	A6	1406	А
86	A6	1407	А
86	A6	1420	А
86	A6	1421	А
86	A6	1423	G
86	A6	1424	U
86	A6	1428	U
86	A6	1434	A
86	A6	1436	U
86	A6	1441	U
86	A6	1444	G
86	A6	1448	А
86	A6	1451	G
86	A6	1452	U
86	A6	1456	U
86	A6	1458	G
86	A6	1460	U
86	A6	1466	G
86	A6	1469	С
86	A6	1470	С
86	A6	1485	С
86	A6	1486	А
86	A6	1498	C
86	A6	1506	A
86	A6	1516	А
86	A6	1521	A
86	A6	1522	C
86	A6	1529	С
86	A6	1531	А
86	A6	1536	С
86	A6	1537	C
86	A6	1538	С
86	A6	1539	U
86	A6	1540	А



Mol	Chain	Res	Type
86	A6	1541	С
86	A6	1542	G
86	A6	1543	С
86	A6	1544	А
86	A6	1545	U
86	A6	1547	U
86	A6	1551	U
86	A6	1562	А
86	A6	1563	G
86	A6	1566	G
86	A6	1568	А
86	A6	1572	U
86	A6	1575	U
86	A6	1576	A
86	A6	1586	G
86	A6	1588	A
86	A6	1595	С
86	A6	1598	G
86	A6	1599	G
86	A6	1603	А
86	A6	1604	А
87	24	2	U
87	24	3	U
87	24	7	G
87	24	8	U
87	24	9	А
87	24	12	U
87	24	13	U
87	24	14	А
87	24	16	А
87	24	17	U
87	24	18	U
87	24	19	A
87	24	20	U
87	24	21	С
87	24	22	А
87	24	27	A
87	24	28	A
87	24	30	G
87	24	31	С
87	24	32	A
87	24	35	G



Mol	Chain	Res	Type
87	24	41	G
87	24	45	А
87	24	46	G
87	24	51	G
87	24	52	С
87	24	54	U
87	24	55	С
87	24	56	А
87	24	57	С
87	24	58	А
87	24	59	G
87	24	62	C
87	24	65	U
87	24	67	A
87	24	71	С
87	24	72	С
87	24	73	А
3	8	18	А
3	8	19	А
3	8	21	U
3	8	23	А
87	FE	2	U
87	$\mathbf{FE}$	3	U
87	$\mathbf{FE}$	7	G
87	$\mathbf{FE}$	8	U
87	$\mathbf{FE}$	9	А
87	$\mathbf{FE}$	12	U
87	$\mathbf{FE}$	13	U
87	$\mathbf{FE}$	14	А
87	$\mathbf{FE}$	16	А
87	$\mathbf{FE}$	17	U
87	FE	18	U
87	$\mathbf{FE}$	19	A
87	FE	20	U
87	FE	21	C
87	$\overline{FE}$	22	A
87	FE	27	А
87	$\overline{FE}$	28	A
87	FE	30	G
87	FE	31	С
87	FE	32	А
87	$\overline{FE}$	35	G



Mol	Chain	Res	Type
87	FE	41	G
87	FE	45	А
87	FE	46	G
87	FE	51	G
87	FE	52	С
87	FE	54	U
87	FE	55	С
87	FE	56	А
87	FE	57	С
87	FE	58	А
87	FE	59	G
87	FE	62	С
87	FE	65	U
87	FE	67	А
87	FE	71	С
87	FE	72	С
87	FE	73	А

All (55) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
3	A3	1703	С
3	A3	1805	А
3	A3	1806	U
3	A3	1807	U
3	A3	1809	U
3	A3	1823	А
3	A3	1871	А
3	A3	1901	С
3	A3	1994	А
3	A3	2165	С
3	A3	2172	А
3	A3	2182	G
3	A3	2186	С
3	A3	2243	А
3	A3	2245	А
3	A3	2315	А
3	A3	2374	А
3	A3	2507	А
3	A3	2523	С
3	A3	2530	А
3	A3	2558	А



Mol	Chain	Res	Type
3	A3	2559	U
3	A3	2628	U
3	A3	2653	С
3	A3	2744	U
3	A3	2757	А
3	A3	2779	С
3	A3	2784	А
3	A3	2788	С
3	A3	2789	С
3	A3	2905	А
3	A3	2989	G
3	A3	3041	U
3	A3	3092	U
3	A3	3123	G
3	A3	3157	С
3	A3	3201	А
3	A3	3206	С
4	B3	1607	U
86	A6	721	G
86	A6	797	С
86	A6	886	А
86	A6	1025	U
86	A6	1034	G
86	A6	1045	А
86	A6	1170	А
86	A6	1193	U
86	A6	1250	U
86	A6	1335	А
86	A6	1419	G
86	A6	1433	С
86	A6	1538	С
86	A6	1541	С
87	24	1	G
87	FE	1	G

## 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.



### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

### 5.6 Ligand geometry (i)

Of 138 ligands modelled in this entry, 135 are monoatomic - leaving 3 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	B	ond leng	gths	E	Bond ang	gles
MOI	туре	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
95	GDP	X6	500	-	24,30,30	0.95	1 (4%)	30,47,47	1.29	4 (13%)
93	SPD	A3	3396	-	9,9,9	0.35	0	8,8,8	0.50	0
91	GCP	r1	801	1,92	27,34,34	<mark>3.59</mark>	11 (40%)	34,54,54	5.22	13 (38%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
95	GDP	X6	500	-	-	4/12/32/32	0/3/3/3
93	SPD	A3	3396	-	-	6/7/7/7	-
91	GCP	r1	801	1,92	-	8/15/38/38	0/3/3/3

All (12) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
91	r1	801	GCP	O4'-C1'	-8.41	1.29	1.41
91	r1	801	GCP	C2'-C3'	-8.15	1.31	1.53
91	r1	801	GCP	PB-O3A	6.28	1.65	1.58
91	r1	801	GCP	C2-N2	6.23	1.46	1.33
91	r1	801	GCP	O6-C6	6.18	1.40	1.24
91	r1	801	GCP	C2'-C1'	5.48	1.62	1.53
91	r1	801	GCP	O4'-C4'	4.14	1.54	1.45
91	r1	801	GCP	O3'-C3'	3.13	1.50	1.43



Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
91	r1	801	GCP	C5'-C4'	-3.02	1.42	1.51
95	X6	500	GDP	C6-N1	-2.55	1.34	1.37
91	r1	801	GCP	PB-O2B	-2.29	1.51	1.56
91	r1	801	GCP	PG-O3G	-2.20	1.49	1.54

All (17) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
91	r1	801	GCP	O3G-PG-C3B	-16.88	65.45	106.40
91	r1	801	GCP	O3G-PG-O1G	-14.36	74.41	112.39
91	r1	801	GCP	O1G-PG-C3B	13.11	139.50	111.24
91	r1	801	GCP	O3G-PG-O2G	12.05	143.27	108.08
91	r1	801	GCP	PB-O3A-PA	-4.10	119.55	132.56
91	r1	801	GCP	C2-N3-C4	3.84	119.74	115.36
91	r1	801	GCP	C3'-C2'-C1'	3.72	106.58	100.98
91	r1	801	GCP	C4-C5-C6	-3.69	117.27	120.80
95	X6	500	GDP	C3'-C2'-C1'	3.68	106.51	100.98
91	r1	801	GCP	N3-C2-N1	-3.55	122.49	127.22
95	X6	500	GDP	PA-O3A-PB	-3.11	122.17	132.83
91	r1	801	GCP	C4-C5-N7	-2.93	106.34	109.40
91	r1	801	GCP	C2-N1-C6	2.49	119.88	115.93
91	r1	801	GCP	C5-C6-N1	-2.43	120.11	123.43
95	X6	500	GDP	C5-C6-N1	2.33	118.06	113.95
91	r1	801	GCP	O2G-PG-O1G	-2.28	106.37	112.39
95	X6	500	GDP	C8-N7-C5	2.22	107.22	102.99

There are no chirality outliers.

All (18) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
91	r1	801	GCP	PG-C3B-PB-O1B
91	r1	801	GCP	PG-C3B-PB-O2B
91	r1	801	GCP	PG-C3B-PB-O3A
91	r1	801	GCP	C5'-O5'-PA-O1A
95	X6	500	GDP	C5'-O5'-PA-O1A
95	X6	500	GDP	C3'-C4'-C5'-O5'
93	A3	3396	SPD	N6-C7-C8-C9
93	A3	3396	SPD	C3-C4-C5-N6
95	X6	500	GDP	O4'-C4'-C5'-O5'
93	A3	3396	SPD	C8-C7-N6-C5
93	A3	3396	SPD	C7-C8-C9-N10
91	r1	801	GCP	O4'-C4'-C5'-O5'



Mol	Chain	Res	Type	Atoms
91	r1	801	GCP	C3'-C4'-C5'-O5'
93	A3	3396	SPD	N1-C2-C3-C4
91	r1	801	GCP	C4'-C5'-O5'-PA
95	X6	500	GDP	C5'-O5'-PA-O3A
93	A3	3396	SPD	C2-C3-C4-C5
91	r1	801	GCP	C5'-O5'-PA-O3A

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient must be highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.







# 5.7 Other polymers (i)

There are no such residues in this entry.

## 5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
13	M3	1
25	Y3	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	M3	61:THR	С	62:ARG	N	1.19
1	Y3	123:ARG	С	124:LEU	N	1.19


# 6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-11646. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

# 6.1 Orthogonal projections (i)

### 6.1.1 Primary map



6.1.2 Raw map



The images above show the map projected in three orthogonal directions.



# 6.2 Central slices (i)

# 6.2.1 Primary map







Y Index: 256



Z Index: 256

## 6.2.2 Raw map



X Index: 256

Y Index: 256

Z Index: 256

The images above show central slices of the map in three orthogonal directions.



# 6.3 Largest variance slices (i)

# 6.3.1 Primary map



X Index: 286





Z Index: 256

## 6.3.2 Raw map



X Index: 286

Y Index: 305



The images above show the largest variance slices of the map in three orthogonal directions.



## 6.4 Orthogonal surface views (i)

6.4.1 Primary map



The images above show the 3D surface view of the map at the recommended contour level 0.05. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

#### 6.4.2 Raw map



These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.



#### Mask visualisation (i) 6.5

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

#### $emd_{11646}msk_{1.map}$ (i) 6.5.1





# 7 Map analysis (i)

This section contains the results of statistical analysis of the map.

# 7.1 Map-value distribution (i)



The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.



# 7.2 Volume estimate (i)



The volume at the recommended contour level is 706  $\rm nm^3;$  this corresponds to an approximate mass of 638 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.



# 7.3 Rotationally averaged power spectrum (i)



*Reported resolution corresponds to spatial frequency of 0.270  ${\rm \AA^{-1}}$ 



# 8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

## 8.1 FSC (i)



*Reported resolution corresponds to spatial frequency of 0.270  ${\rm \AA^{-1}}$ 



# 8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.70	-	-
Author-provided FSC curve	3.70	4.61	3.78
Unmasked-calculated*	4.58	8.26	4.94

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 4.58 differs from the reported value 3.7 by more than 10 %



# 9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-11646 and PDB model 7A5K. Per-residue inclusion information can be found in section 3 on page 23.

# 9.1 Map-model overlay (i)



The images above show the 3D surface view of the map at the recommended contour level 0.05 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.



# 9.2 Q-score mapped to coordinate model (i)

This section was not generated.

# 9.3 Atom inclusion mapped to coordinate model (i)



The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.05).



# 9.4 Atom inclusion (i)



At the recommended contour level, 59% of all backbone atoms, 54% of all non-hydrogen atoms, are inside the map.



# 9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.05) and Q-score for the entire model and for each chain.

Chain	Atom inclusion
All	0.5403
03	0.6659
13	0.6714
23	0.7889
24	0.1138
33	0.7807
43	0.7850
53	0.6443
63	0.6389
73	0.6060
8	0.1486
93	0.6365
A	0.2203
A3	0.8367
A5	0.0000
A6	0.5826
В	0.3000
B3	0.6331
B6	0.3386
C6	0.0752
D	0.1997
D3	0.6719
D6	0.3431
E3	0.7274
E6	0.2540
F3	0.7219
F6	0.0375
FE	0.2864
G6	0.1465
H3	0.5831
H6	0.0962
I3	0.4944
I6	0.2779
J3	0.3244
J6	0.5644



Continued on next page...



Continued from previous page...

Chain	Atom inclusion
K3	0.7544
K6	0.1152
L3	0.6371
L6	0.3696
M3	0.7177
M6	0.3202
N3	0.7013
N6	0.4547
O3	0.7108
O6	0.2784
P3	0.6715
P6	0.2852
Q3	0.6368
Q6	0.4077
R3	0.7292
R6	0.1849
S3	0.7250
S6	0.2376
T3	0.7151
T6	0.3367
U3	0.7556
U6	0.2359
V3	0.5650
V6	0.1583
W3	0.7368
W6	0.1952
X3	0.6322
X6	0.0481
<u>Y2</u>	0.1655
Y3	0.6990
Y6	0.0631
Z3	0.7312
Z6	0.0766
a3	0.7128
a6	0.2410
b3	
b6	
c3	0.0528
C0	
	0.5091
db	0.2202
e3	0.2203

Continued on next page...



Chain	Atom inclusion
e6	0.0488
f3	0.3717
g3	0.6987
h3	0.5665
i3	0.7472
j3	0.6657
k3	0.4540
13	0.7136
m3	0.3598
n	0.0909
03	0.7546
p3	0.5773
q3	0.5620
r1	0.4441
r3	0.7461
s3	0.6872
u3	0.8571

#### Continued from previous page...

