

Full wwPDB X-ray Structure Validation Report (i)

Aug 7, 2023 – 04:47 pm BST

PDB ID	:	8AJV
Title	:	Crystal structure of the Q65N mutant of S-adenosyl-L-homocysteine hydrolase
		from Pseudomonas aeruginosa crystallized in the presence of K+ cations
Authors	:	Drozdzal, P.; Wozniak, K.; Malecki, P.; Gawel, M.; Komorowska, M.; Brzezin-
		ski, K.
Deposited on	:	2022-07-28
Resolution	:	1.90 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (i)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.34
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.34

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 1.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motria	Whole archive	Similar resolution
Metric	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R_{free}	130704	6207 (1.90-1.90)
Clashscore	141614	6847 (1.90-1.90)
Ramachandran outliers	138981	6760 (1.90-1.90)
Sidechain outliers	138945	6760 (1.90-1.90)
RSRZ outliers	127900	6082 (1.90-1.90)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	AAA	472	88%	10% ••
1	BBB	472	% 89%	8% ••
1	CCC	472	91%	7% •
1	DDD	472	89%	8% ••

Mol	Chain	Length	Quality of chain		
1	FFF	472	89%	8%	·
1	GGG	472	% 89%	8%	·
1	HHH	472	89%	8%	·
1	III	472	85%	12%	•••

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
6	PEG	CCC	505	-	-	Х	-

2 Entry composition (i)

There are 7 unique types of molecules in this entry. The entry contains 32384 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1		461	Total	С	Ν	0	\mathbf{S}	25	1.4	0
	ААА	401	3642	2292	633	694	23	55	14	0
1	BBB	461	Total	С	Ν	0	S	53	10	0
1		401	3626	2284	630	689	23		10	0
1	CCC	461	Total	С	Ν	0	S	97	0	0
		401	3606	2272	626	685	23	21	9	0
1	מממ	461	Total	С	Ν	0	S	24	12	0
1		401	3626	2283	629	691	23	24	10	0
1	FFF	461	Total	С	Ν	0	S	4	12	0
1	I, I, I,	401	3636	2287	631	695	23	4	10	0
1	CCC	461	Total	С	Ν	0	S	4.4	11	0
	GGG	401	3623	2280	627	693	23	44	11	0
1	ипп	461	Total	С	Ν	0	S	24	0	0
	111111	401	3592	2263	623	683	23	24	8	0
1	TTT	461	Total	С	Ν	0	S	30	1/	0
	111	401	3654	2301	636	694	23		14	

• Molecule 1 is a protein called Adenosylhomocysteinase.

There are 32 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Actual Comment	
AAA	-2	SER	-	expression tag	UNP Q9I685
AAA	-1	ASN	-	expression tag	UNP Q9I685
AAA	0	ALA	-	expression tag	UNP Q9I685
AAA	65	ASN	GLN	engineered mutation	UNP Q9I685
BBB	-2	SER	-	expression tag	UNP Q9I685
BBB	-1	ASN	-	expression tag	UNP Q9I685
BBB	0	ALA	-	expression tag	UNP Q9I685
BBB	65	ASN	GLN	engineered mutation	UNP Q9I685
CCC	-2	SER	-	expression tag	UNP Q9I685
CCC	-1	ASN	-	expression tag	UNP Q9I685
CCC	0	ALA	-	expression tag	UNP Q9I685
CCC	65	ASN	GLN	engineered mutation	UNP Q9I685
DDD	-2	SER	-	expression tag	UNP Q9I685

Chain	Residue	Modelled	Actual Comment		Reference
DDD	-1	ASN	-	expression tag	UNP Q9I685
DDD	0	ALA	-	expression tag	UNP Q9I685
DDD	65	ASN	GLN	engineered mutation	UNP Q9I685
FFF	-2	SER	-	expression tag	UNP Q9I685
FFF	-1	ASN	-	expression tag	UNP Q9I685
FFF	0	ALA	-	expression tag	UNP Q9I685
FFF	65	ASN	GLN	engineered mutation	UNP Q9I685
GGG	-2	SER	-	expression tag	UNP Q9I685
GGG	-1	ASN	-	expression tag	UNP Q9I685
GGG	0	ALA	-	expression tag	UNP Q9I685
GGG	65	ASN	GLN	engineered mutation	UNP Q9I685
HHH	-2	SER	-	expression tag	UNP Q9I685
HHH	-1	ASN	-	expression tag	UNP Q9I685
HHH	0	ALA	-	expression tag	UNP Q9I685
HHH	65	ASN	GLN	engineered mutation	UNP Q9I685
III	-2	SER	-	expression tag	UNP Q9I685
III	-1	ASN	-	expression tag	UNP Q9I685
III	0	ALA	-	expression tag	UNP Q9I685
III	65	ASN	GLN	engineered mutation	UNP Q9I685

• Molecule 2 is NICOTINAMIDE-ADENINE-DINUCLEOTIDE (three-letter code: NAD) (formula: $C_{21}H_{27}N_7O_{14}P_2$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	
0	ΛΛΛ	1	Total	С	Ν	Ο	Р	0	0
	лла	L	44	21	7	14	2	0	0

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf
0	BBB	1	Total	С	Ν	Ο	Р	0	0
	DDD	1	44	21	7	14	2	0	0
2	CCC	1	Total	С	Ν	Ο	Р	0	0
		1	44	21	7	14	2	0	0
2	מממ	1	Total	С	Ν	Ο	Р	0	0
	עעע	1	44	21	7	14	2	0	0
2	FFF	1	Total	С	Ν	Ο	Р	0	0
	I, I, I,	1	44	21	7	14	2	0	0
2	CCC	1	Total	С	Ν	Ο	Р	0	0
	999	1	44	21	7	14	2	0	0
2	ипп	1	Total	С	Ν	Ο	Р	0	0
	111111	1	44	21	7	14	2	0	0
2	III	1	Total	С	N	0	Р	0	0
	111	L	44	21	7	14	2	U	

Continued from previous page...

• Molecule 3 is GLYCEROL (three-letter code: GOL) (formula: $C_3H_8O_3$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	AAA	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	BBB	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	BBB	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	BBB	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	CCC	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	DDD	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	DDD	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	DDD	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	GGG	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	HHH	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	III	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
3	III	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0

• Molecule 4 is PHOSPHATE ION (three-letter code: PO4) (formula: O_4P).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	AAA	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
4	AAA	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
4	AAA	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	BBB	1	Total O P 5 4 1	0	0
4	BBB	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
4	BBB	1	TotalOP541	0	0
4	BBB	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
4	CCC	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
4	CCC	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
4	DDD	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
4	DDD	1	Total O P 5 4 1	0	0
4	DDD	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
4	FFF	1	TotalOP541	0	0
4	FFF	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
4	FFF	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
4	GGG	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
4	GGG	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
4	GGG	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
4	GGG	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
4	ННН	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
4	ННН	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
4	III	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
4	III	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
4	III	1	Total O P 5 4 1	0	0

• Molecule 5 is POTASSIUM ION (three-letter code: K) (formula: K) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	BBB	1	Total K 1 1	0	0

• Molecule 6 is DI(HYDROXYETHYL)ETHER (three-letter code: PEG) (formula: C₄H₁₀O₃).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	CCC	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 7 & 4 & 3 \end{array}$	0	0
6	CCC	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 7 & 4 & 3 \end{array}$	0	0

• Molecule 7 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	AAA	429	Total O 429 429	0	0
7	BBB	337	Total O 337 337	0	0
7	CCC	385	Total O 385 385	0	0
7	DDD	333	Total O 333 333	0	0
7	FFF	390	Total O 390 390	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	GGG	280	Total O 280 280	0	0
7	HHH	337	Total O 337 337	0	0
7	III	329	Total O 329 329	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Adenosylhomocysteinase

• Molecule 1: Adenosylhomocysteinase

.

M258 M276 1275 0277 0277 0277 0277 0278 1235 1373 1373 1373 1355 1355 1355 1355 13	123 1424 1425 1424 1429 1429 1429	
• Molecule 1: Adenosylhomocysteina	ase	
Chain FFF:	89%	8% •
SER MET MET MET MET MET MET MET MET MET MET	4 156 1158 1158 1158 1158 1158 1158 1158 1	H205 H217 L218 L219 K222
• Molecule 1: Adenosylhomocysteins	V458 99 99 88 1	
• Molecule 1. Adenosymomocystema	ase	
Chain GGG:	89%	8% •
SER ALA MET ALA NET ALA VAL THE THE PRO G ALA C 44 C 44 C 44 C 44 C 44 C 44 C 44	E71 E71 E85 F88 E114 F88 F120 F130 F148 F114 F148 F115 F1161	A185 N189 D190 T193 K194 S195
M199 M105 H205 H217 L219 C230 M28 M28 M28 M28 M28 M28 M28 M28 M28 M28	E413 E413 ¥469	
• Molecule 1: Adenosylhomocysteina	ase	
Chain HHH:	89%	8% •
SER ASN MET ASN MET ASN ALA MAT ALA ALA ALA ALA ALA ALA ALA ALA ALA A	11 61 11 61 11 61 11 62 11 85 11 90 11 90	D263 K272 1275 N276 D277 C278
1279 1283 1283 1288 1288 1288 1288 1288 1288	1461 2 2489 4489	
• Molecule 1: Adenosylhomocysteina	ase	
Chain III:	85% 12	2% ••
SER ALSW META META ALSA ALA ALA ALA A46 A46 A46 A46 A46 A46 A46 A46 A46 A4	D132 A133 M134 A133 A135 A135 G140 H148 A152 A155 A155 A155 A155 A155 A155 A155	T193 K194 S195 K196 N195 N197 N199
H205 H217 L219 L219 C230 Q230 Q230 Q230 Q230 C230 F265 F265 F265 F265 F265 T283 L287 L287 K290		4404 K405 L409 R417 K426
E429 E434 P448 F452 F452		

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	111.48Å 211.88Å 111.35Å	Deperitor
a, b, c, α , β , γ	90.00° 105.33° 90.00°	Depositor
$\mathbf{P}_{\text{osolution}}(\hat{\mathbf{A}})$	95.88 - 1.90	Depositor
Resolution (A)	95.88 - 1.90	EDS
% Data completeness	99.2 (95.88-1.90)	Depositor
(in resolution range)	99.2 (95.88-1.90)	EDS
R_{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.01 (at 1.90 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.8.0267	Depositor
D D	0.160 , 0.194	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.167 , 0.201	DCC
R_{free} test set	1122 reflections (0.29%)	wwPDB-VP
Wilson B-factor $(Å^2)$	33.2	Xtriage
Anisotropy	0.283	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.34, 34.7	EDS
L-test for $twinning^2$	$< L >=0.44, < L^2>=0.26$	Xtriage
Estimated twinning fraction	0.140 for l,-k,h	Xtriage
Pererted twinning freation	0.861 for H, K, L	Deperitor
Reported twinning fraction	0.139 for -L, -K, -H	Depositor
Outliers	1 of 386695 reflections (0.000%)	Xtriage
F_o, F_c correlation	0.97	EDS
Total number of atoms	32384	wwPDB-VP
Average B, all atoms $(Å^2)$	38.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.93% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAD, PEG, K, PO4, GOL

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angles	
WIOI	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	AAA	0.88	3/3711~(0.1%)	0.85	3/5015~(0.1%)
1	BBB	0.92	5/3699~(0.1%)	0.85	7/4998~(0.1%)
1	CCC	0.90	2/3681~(0.1%)	0.88	6/4975~(0.1%)
1	DDD	0.97	2/3701~(0.1%)	0.85	7/5002~(0.1%)
1	FFF	0.86	5/3705~(0.1%)	0.82	1/5008~(0.0%)
1	GGG	0.83	3/3698~(0.1%)	0.83	5/4998~(0.1%)
1	HHH	0.88	5/3664~(0.1%)	0.83	5/4952~(0.1%)
1	III	0.86	6/3729~(0.2%)	0.82	0/5039
All	All	0.89	31/29588~(0.1%)	0.84	34/39987~(0.1%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	AAA	0	1
1	BBB	0	1
1	CCC	0	1
1	DDD	0	3
1	GGG	0	2
1	HHH	0	1
1	III	0	1
All	All	0	10

All (31) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
1	DDD	156	GLU	CD-OE2	20.98	1.48	1.25
1	DDD	156	GLU	CD-OE1	-18.28	1.05	1.25
1	BBB	156	GLU	CD-OE1	-11.41	1.13	1.25

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
1	BBB	434	GLU	CD-OE2	10.32	1.37	1.25
1	HHH	434	GLU	CD-OE2	10.12	1.36	1.25
1	BBB	421	GLU	CD-OE2	-8.99	1.15	1.25
1	HHH	417	ARG	CD-NE	7.89	1.59	1.46
1	GGG	114	GLU	CD-OE1	7.48	1.33	1.25
1	HHH	413	GLU	CD-OE1	7.23	1.33	1.25
1	AAA	434[A]	GLU	CD-OE2	7.15	1.33	1.25
1	AAA	434[B]	GLU	CD-OE2	7.15	1.33	1.25
1	HHH	413	GLU	CB-CG	7.01	1.65	1.52
1	FFF	429	GLU	CD-OE1	6.44	1.32	1.25
1	BBB	114	GLU	CD-OE2	6.19	1.32	1.25
1	FFF	370	GLU	CD-OE1	-6.18	1.18	1.25
1	CCC	452	GLU	CG-CD	-6.10	1.42	1.51
1	FFF	156	GLU	CD-OE2	-5.99	1.19	1.25
1	III	434	GLU	CD-OE2	5.88	1.32	1.25
1	FFF	434[A]	GLU	CD-OE2	5.79	1.32	1.25
1	FFF	434[B]	GLU	CD-OE2	5.79	1.32	1.25
1	III	452	GLU	CD-OE1	-5.71	1.19	1.25
1	III	429	GLU	CD-OE2	5.50	1.31	1.25
1	HHH	370	GLU	CD-OE1	-5.49	1.19	1.25
1	GGG	153	GLN	CB-CG	5.36	1.67	1.52
1	BBB	452	GLU	CD-OE1	-5.33	1.19	1.25
1	III	153	GLN	CB-CG	5.24	1.66	1.52
1	CCC	403	GLU	CD-OE1	-5.24	1.19	1.25
1	III	452	GLU	CB-CG	-5.24	1.42	1.52
1	III	370	GLU	CD-OE1	-5.20	1.20	1.25
1	GGG	44	LYS	CB-CG	-5.15	1.38	1.52
1	AAA	452	GLU	CD-OE2	-5.08	1.20	1.25

Continued from previous page...

All (34) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	CCC	204	ARG	NE-CZ-NH2	10.48	125.54	120.30
1	BBB	421	GLU	OE1-CD-OE2	9.40	134.59	123.30
1	DDD	204	ARG	NE-CZ-NH1	9.26	124.93	120.30
1	DDD	204	ARG	CB-CG-CD	8.92	134.80	111.60
1	CCC	204	ARG	NE-CZ-NH1	-8.91	115.84	120.30
1	HHH	413	GLU	OE1-CD-OE2	8.45	133.44	123.30
1	DDD	204	ARG	NE-CZ-NH2	-8.33	116.13	120.30
1	DDD	156	GLU	CG-CD-OE2	-8.09	102.12	118.30
1	DDD	156	GLU	N-CA-CB	7.33	123.80	110.60
1	HHH	279	THR	OG1-CB-CG2	-6.90	94.12	110.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	CCC	204	ARG	CB-CG-CD	6.87	129.45	111.60
1	HHH	279	THR	CA-CB-CG2	6.84	121.98	112.40
1	BBB	197	ASN	N-CA-CB	6.70	122.66	110.60
1	GGG	153	GLN	CA-CB-CG	-6.63	98.82	113.40
1	CCC	204	ARG	CD-NE-CZ	6.33	132.46	123.60
1	AAA	452	GLU	CG-CD-OE1	-6.31	105.68	118.30
1	CCC	334	ARG	NE-CZ-NH2	-6.18	117.21	120.30
1	GGG	372	ARG	NE-CZ-NH2	-6.10	117.25	120.30
1	BBB	459	GLU	CG-CD-OE1	-6.05	106.20	118.30
1	BBB	204[A]	ARG	NE-CZ-NH1	-6.03	117.28	120.30
1	BBB	204[B]	ARG	NE-CZ-NH1	-6.03	117.28	120.30
1	DDD	156	GLU	CG-CD-OE1	5.96	130.23	118.30
1	GGG	277[A]	ASP	CB-CA-C	-5.95	98.51	110.40
1	GGG	277[B]	ASP	CB-CA-C	-5.95	98.51	110.40
1	DDD	334	ARG	NE-CZ-NH2	-5.93	117.33	120.30
1	HHH	277	ASP	CB-CA-C	-5.89	98.61	110.40
1	BBB	459	GLU	CG-CD-OE2	5.80	129.90	118.30
1	GGG	153	GLN	CB-CG-CD	-5.67	96.85	111.60
1	AAA	117	GLU	OE1-CD-OE2	5.58	129.99	123.30
1	FFF	334	ARG	CG-CD-NE	5.31	122.94	111.80
1	CCC	149	LYS	CB-CG-CD	5.10	124.86	111.60
1	AAA	26	ARG	NE-CZ-NH2	-5.09	117.76	120.30
1	HHH	417	ARG	CD-NE-CZ	-5.06	116.51	123.60
1	BBB	421	GLU	CG-CD-OE2	-5.01	108.28	118.30

There are no chirality outliers.

All (10) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	AAA	452	GLU	Sidechain
1	BBB	358	ASP	Sidechain
1	CCC	114	GLU	Sidechain
1	DDD	156	GLU	Sidechain
1	DDD	355	ASP	Mainchain
1	DDD	356[B]	GLY	Peptide
1	GGG	190	ASP	Peptide
1	GGG	277[A]	ASP	Mainchain
1	HHH	417	ARG	Sidechain
1	III	356	GLY	Mainchain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	AAA	3642	0	3641	37	0
1	BBB	3626	0	3630	29	0
1	CCC	3606	0	3620	19	0
1	DDD	3626	0	3627	29	0
1	FFF	3636	0	3627	34	0
1	GGG	3623	0	3621	28	0
1	HHH	3592	0	3599	28	0
1	III	3654	0	3656	55	0
2	AAA	44	0	26	0	0
2	BBB	44	0	26	0	0
2	CCC	44	0	26	0	0
2	DDD	44	0	26	0	0
2	\mathbf{FFF}	44	0	26	0	0
2	GGG	44	0	26	1	0
2	HHH	44	0	26	0	0
2	III	44	0	26	2	0
3	AAA	6	0	8	3	0
3	BBB	18	0	24	1	0
3	CCC	6	0	8	0	0
3	DDD	18	0	24	4	0
3	GGG	6	0	8	1	0
3	HHH	6	0	8	0	0
3	III	12	0	16	2	0
4	AAA	15	0	0	0	0
4	BBB	20	0	0	2	0
4	CCC	10	0	0	0	0
4	DDD	15	0	0	2	0
4	\mathbf{FFF}	15	0	0	0	0
4	GGG	20	0	0	0	0
4	HHH	10	0	0	0	0
4	III	15	0	0	1	0
5	BBB	1	0	0	0	0
6	CCC	14	0	20	5	0
7	AAA	429	0	0	9	0
7	BBB	337	0	0	8	0
7	CCC	385	0	0	1	0
7	DDD	333	0	0	6	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
7	FFF	390	0	0	9	1
7	GGG	280	0	0	9	0
7	HHH	337	0	0	11	1
7	III	329	0	0	12	0
All	All	32384	0	29345	252	1

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

All (252) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom_1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:HHH:43[A]:ARG:HG3	7:HHH:637:HOH:O	1.45	1.11
1:BBB:355[B]:ASP:O	7:BBB:601:HOH:O	1.75	1.02
1:BBB:409:LEU:HD21	1:BBB:417:ARG:NH1	1.82	0.94
1:FFF:49:GLN:OE1	7:FFF:601:HOH:O	1.89	0.90
3:GGG:506:GOL:O3	7:GGG:601:HOH:O	1.91	0.89
1:FFF:177:LYS:HG3	7:FFF:693:HOH:O	1.74	0.88
1:BBB:409:LEU:HD21	1:BBB:417:ARG:HH12	1.40	0.86
1:FFF:457:SER:OG	1:FFF:459:GLU:OE1	1.96	0.84
1:FFF:197[B]:ASN:OD1	1:III:258[B]:MET:SD	2.36	0.83
1:BBB:409:LEU:CD2	1:BBB:417:ARG:NH1	2.41	0.82
1:III:223[B]:GLN:HG2	7:III:734:HOH:O	1.79	0.81
1:HHH:284:ASP:O	1:HHH:288:LEU:HD13	1.80	0.81
1:DDD:335:LYS:HD3	7:DDD:821:HOH:O	1.81	0.79
1:BBB:370:GLU:OE2	7:BBB:602:HOH:O	2.01	0.78
1:III:44:LYS:HE2	1:III:45:TYR:CE2	2.19	0.77
1:AAA:355:ASP:OD1	1:AAA:356:GLY:N	2.18	0.77
1:FFF:355:ASP:OD1	1:FFF:356:GLY:N	2.15	0.77
1:FFF:334:ARG:HD2	1:FFF:339:TRP:CZ2	2.20	0.77
1:AAA:170:HIS:ND1	3:AAA:502:GOL:H32	2.00	0.76
1:GGG:11:THR:HG23	7:GGG:839:HOH:O	1.83	0.76
1:III:287:LEU:HD12	7:III:660:HOH:O	1.83	0.76
1:BBB:204[A]:ARG:NH2	7:BBB:604:HOH:O	2.19	0.74
1:GGG:258[A]:MET:SD	1:HHH:193:THR:HG22	2.29	0.73
1:AAA:156:GLU:OE2	7:AAA:602:HOH:O	2.07	0.72
1:GGG:276[B]:ASN:OD1	7:GGG:602:HOH:O	2.08	0.72
1:III:345:GLN:HE22	3:III:505:GOL:H11	1.54	0.72
1:HHH:303:VAL:O	7:HHH:601:HOH:O	2.08	0.70
1:AAA:190:ASP:OD2	7:AAA:603:HOH:O	2.10	0.70
1:III:362:ASP:OD2	7:III:603:HOH:O	2.09	0.70

	Juge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:HHH:241[B]:ARG:NH2	1:HHH:263:ASP:O	2.25	0.70
1:III:426:LYS:HD2	7:III:680:HOH:O	1.91	0.69
1:CCC:409:LEU:CD1	1:CCC:417:ARG:HD2	2.22	0.69
1:GGG:276[A]:ASN:OD1	7:GGG:602:HOH:O	2.11	0.69
1:GGG:182:LYS:HE2	1:GGG:182:LYS:HA	1.76	0.68
1:HHH:241[B]:ARG:NH2	7:HHH:605:HOH:O	2.27	0.68
1:HHH:275:ILE:HB	7:HHH:602:HOH:O	1.94	0.68
1:FFF:182:LYS:HA	1:FFF:182:LYS:HE2	1.77	0.67
1:CCC:409:LEU:HD11	1:CCC:417:ARG:HD2	1.76	0.66
1:AAA:170:HIS:HE1	7:DDD:724:HOH:O	1.80	0.65
1:GGG:71[B]:GLU:OE1	7:GGG:603:HOH:O	2.08	0.65
1:GGG:121[A]:GLU:OE2	1:GGG:151:TYR:OH	2.13	0.64
1:BBB:409:LEU:CD1	1:BBB:417:ARG:HD3	2.28	0.64
1:III:404[A]:GLN:NE2	1:III:417:ARG:HD3	2.13	0.63
1:AAA:258[B]:MET:SD	1:DDD:197:ASN:OD1	2.56	0.63
3:DDD:502:GOL:H2	7:DDD:679:HOH:O	1.98	0.63
1:CCC:64:ILE:HG21	6:CCC:505:PEG:H21	1.82	0.62
1:III:323:HIS:HD2	4:III:502:PO4:O4	1.83	0.61
1:DDD:134:ASN:C	1:DDD:158[A]:ILE:HD13	2.21	0.61
1:AAA:197:ASN:HD21	1:AAA:386:ILE:HA	1.67	0.60
1:III:134:ASN:C	1:III:158[A]:ILE:HD13	2.22	0.60
1:AAA:134:ASN:C	1:AAA:158[A]:ILE:HD13	2.22	0.60
1:DDD:140:GLY:HA3	1:DDD:323:HIS:CE1	2.37	0.60
1:FFF:334:ARG:NE	7:FFF:607:HOH:O	2.32	0.59
1:AAA:258[A]:MET:SD	1:DDD:193:THR:HG22	2.42	0.59
1:AAA:400:HIS:HD2	7:AAA:976:HOH:O	1.86	0.59
1:HHH:241[B]:ARG:HD2	7:HHH:862:HOH:O	2.03	0.59
1:FFF:134:ASN:C	1:FFF:158[A]:ILE:HD13	2.23	0.59
1:III:370:GLU:OE2	7:III:604:HOH:O	2.17	0.59
1:III:217:HIS:HE1	7:III:709:HOH:O	1.86	0.58
1:CCC:204:ARG:HD2	1:CCC:238:GLN:HG2	1.85	0.57
1:FFF:258[A]:MET:SD	1:III:193:THR:HG22	2.45	0.57
1:III:241[B]:ARG:O	1:III:241[B]:ARG:HG3	2.03	0.57
1:FFF:193:THR:HG22	1:III:258[A]:MET:SD	2.45	0.57
1:III:406:TYR:HA	1:III:409:LEU:HD22	1.87	0.56
4:BBB:506:PO4:O4	7:BBB:603:HOH:O	2.18	0.56
1:III:290:LYS:HE2	7:III:895:HOH:O	2.04	0.56
1:III:140:GLY:HA3	1:III:323:HIS:CE1	2.41	0.56
1:III:345:GLN:HE22	3:III:505:GOL:C1	2.19	0.56
1:DDD:114:GLU:HG3	7:DDD:627:HOH:O	2.06	0.55
1:BBB:409:LEU:HD13	1:BBB:417:ARG:HD3	1.87	0.55

	h i c	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:III:134:ASN:CA	1:III:158[A]:ILE:HD13	2.37	0.55
1:BBB:193:THR:O	1:BBB:197:ASN:ND2	2.39	0.54
1:HHH:272:LYS:O	7:HHH:602:HOH:O	2.18	0.54
1:AAA:195:SER:O	1:AAA:199:ASN:HB2	2.07	0.54
1:DDD:134:ASN:CA	1:DDD:158[A]:ILE:HD13	2.38	0.54
1:III:400:HIS:HA	1:III:403[B]:GLU:HG2	1.90	0.54
1:BBB:217:HIS:HE1	7:BBB:763:HOH:O	1.90	0.54
7:BBB:803:HOH:O	3:DDD:504:GOL:H12	2.08	0.54
1:BBB:409:LEU:CD2	1:BBB:417:ARG:HH12	2.11	0.53
1:GGG:36:PRO:HB3	7:GGG:871:HOH:O	2.07	0.53
1:AAA:134:ASN:CA	1:AAA:158[A]:ILE:HD13	2.39	0.53
1:CCC:273:ASN:ND2	1:III:403[A]:GLU:OE1	2.42	0.53
1:AAA:135:MET:N	1:AAA:158[A]:ILE:HD13	2.24	0.53
6:CCC:505:PEG:H41	1:DDD:216:ASP:CB	2.39	0.53
1:HHH:195:SER:O	1:HHH:199:ASN:HB2	2.09	0.53
1:HHH:409:LEU:HD13	1:HHH:417:ARG:HD2	1.91	0.53
1:DDD:204:ARG:HD2	7:DDD:854:HOH:O	2.08	0.53
1:FFF:135:MET:N	1:FFF:158[A]:ILE:HD13	2.24	0.52
1:III:135:MET:N	1:III:158[A]:ILE:HD13	2.25	0.52
1:FFF:134:ASN:CA	1:FFF:158[A]:ILE:HD13	2.39	0.52
1:GGG:205:HIS:CD2	1:GGG:383:PRO:HD3	2.45	0.52
1:CCC:205:HIS:CD2	1:CCC:383:PRO:HD3	2.45	0.52
1:III:334[B]:ARG:NH1	1:III:370:GLU:OE1	2.43	0.51
1:FFF:217:HIS:HE1	7:FFF:686:HOH:O	1.93	0.51
1:FFF:287:LEU:HB2	7:FFF:821:HOH:O	2.09	0.51
1:III:195:SER:O	1:III:199:ASN:HB2	2.11	0.51
1:CCC:275:ILE:HG13	1:III:45:TYR:CE1	2.45	0.51
1:III:217:HIS:CE1	7:III:709:HOH:O	2.62	0.51
1:AAA:277[B]:ASP:C	1:AAA:277[B]:ASP:OD1	2.49	0.51
1:FFF:195:SER:O	1:FFF:199:ASN:HB2	2.11	0.51
1:HHH:43[A]:ARG:CG	7:HHH:637:HOH:O	2.27	0.51
1:III:45:TYR:CD1	1:III:50:PRO:HG3	2.46	0.51
1:III:290:LYS:HD2	7:III:681:HOH:O	2.11	0.50
1:CCC:204:ARG:HD2	1:CCC:238:GLN:CG	2.41	0.50
1:III:155:LEU:HA	1:III:158[B]:ILE:HD12	1.94	0.50
1:DDD:135:MET:N	1:DDD:158[A]:ILE:HD13	2.26	0.50
1:BBB:197:ASN:HA	1:BBB:201:TYR:CD2	2.47	0.49
1:DDD:276[B]:ASN:OD1	1:DDD:278:GLY:N	2.40	0.49
1:CCC:195:SER:O	1:CCC:199:ASN:HB2	2.12	0.49
1:GGG:409:LEU:HD13	1:GGG:417:ARG:HD2	1.94	0.49
1:BBB:217:HIS:CE1	7:BBB:763:HOH:O	2.63	0.48

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:AAA:205:HIS:CD2	1:AAA:383:PRO:HD3	2.48	0.48
1:DDD:32:GLU:OE2	4:DDD:505:PO4:O3	2.32	0.48
1:AAA:193:THR:HG22	1:DDD:258[A]:MET:SD	2.54	0.48
1:GGG:11:THR:CG2	7:GGG:839:HOH:O	2.54	0.48
1:III:271:TYR:CE1	1:III:276[B]:ASN:HB2	2.48	0.48
1:AAA:400:HIS:CD2	7:AAA:976:HOH:O	2.65	0.48
1:BBB:205:HIS:CD2	1:BBB:383:PRO:HD3	2.49	0.48
1:DDD:323:HIS:HD2	4:DDD:506:PO4:O3	1.96	0.48
1:AAA:149:LYS:HD3	1:AAA:149:LYS:N	2.27	0.48
1:BBB:32:GLU:OE2	4:BBB:505:PO4:O2	2.31	0.48
1:CCC:310:LYS:HE3	1:CCC:332:PHE:CZ	2.48	0.48
1:CCC:404:GLN:HG3	1:CCC:417:ARG:NH1	2.29	0.48
1:GGG:369:ALA:O	1:GGG:372:ARG:HG2	2.14	0.48
1:HHH:205:HIS:CD2	1:HHH:383:PRO:HD3	2.48	0.47
1:FFF:205:HIS:CD2	1:FFF:383:PRO:HD3	2.49	0.47
1:DDD:195:SER:O	1:DDD:199:ASN:HB2	2.15	0.47
1:HHH:48:GLN:NE2	7:HHH:607:HOH:O	2.31	0.47
1:FFF:361:ASN:O	7:FFF:602:HOH:O	2.20	0.47
1:CCC:115:GLU:HG2	6:CCC:506:PEG:H42	1.96	0.47
1:GGG:193:THR:HG22	1:HHH:258[A]:MET:SD	2.55	0.47
1:GGG:195:SER:O	1:GGG:199:ASN:HB2	2.14	0.47
1:III:399:ILE:O	1:III:403[A]:GLU:HG2	2.15	0.47
1:AAA:170:HIS:CG	3:AAA:502:GOL:H32	2.48	0.47
1:DDD:55:LYS:HE2	1:DDD:132:ASP:OD1	2.15	0.47
1:GGG:88:PHE:CD2	1:GGG:372:ARG:HG3	2.50	0.47
1:CCC:189:ASN:HA	1:CCC:194:LYS:HD2	1.97	0.46
1:BBB:195:SER:O	1:BBB:199:ASN:HB2	2.15	0.46
1:HHH:55:LYS:HE3	7:HHH:747:HOH:O	2.15	0.46
1:BBB:219:LEU:O	1:BBB:245:MET:HG2	2.15	0.46
1:DDD:205:HIS:CD2	1:DDD:383:PRO:HD3	2.50	0.46
1:FFF:219:LEU:O	1:FFF:245:MET:HG2	2.15	0.46
1:III:55:LYS:HE2	1:III:132:ASP:OD1	2.15	0.46
1:GGG:42:ARG:O	1:GGG:46:ALA:HB2	2.15	0.46
1:III:402[B]:PHE:C	1:III:404[B]:GLN:H	2.19	0.46
1:FFF:258[B]:MET:SD	1:III:197:ASN:OD1	2.74	0.46
1:GGG:161:ILE:O	1:GGG:185:ALA:HA	2.16	0.46
1:AAA:275[B]:ILE:HD12	7:AAA:918:HOH:O	2.16	0.46
1:AAA:189:ASN:HA	1:AAA:194:LYS:HD2	1.98	0.45
1:BBB:161:ILE:O	1:BBB:185:ALA:HA	2.17	0.45
2:III:504:NAD:H8A	7:III:784:HOH:O	2.16	0.45
1:III:42:ARG:O	1:III:46:ALA:HB2	2.16	0.45

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:FFF:161:ILE:O	1:FFF:185:ALA:HA	2.15	0.45
1:GGG:277[B]:ASP:C	1:GGG:277[B]:ASP:OD1	2.55	0.45
1:HHH:190:ASP:OD2	7:HHH:603:HOH:O	2.20	0.45
1:AAA:336:ASN:C	1:AAA:354:LYS:HG2	2.36	0.45
1:DDD:161:ILE:O	1:DDD:185:ALA:HA	2.16	0.45
1:DDD:425:LYS:HB2	3:DDD:502:GOL:H31	1.99	0.45
1:FFF:258[A]:MET:SD	1:III:197:ASN:ND2	2.89	0.45
1:GGG:219:LEU:O	1:GGG:245:MET:HG2	2.16	0.45
1:III:400:HIS:O	1:III:403[B]:GLU:HG2	2.16	0.45
1:HHH:241[B]:ARG:NH1	1:HHH:263:ASP:O	2.48	0.45
1:III:161:ILE:O	1:III:185:ALA:HA	2.16	0.45
1:III:189:ASN:HA	1:III:194:LYS:HD2	1.99	0.45
1:AAA:161:ILE:O	1:AAA:185:ALA:HA	2.17	0.45
1:GGG:189:ASN:O	1:GGG:195:SER:HB3	2.17	0.45
6:CCC:505:PEG:H41	1:DDD:216:ASP:HB3	1.99	0.44
1:GGG:217:HIS:HE1	7:GGG:624:HOH:O	2.00	0.44
1:GGG:189:ASN:HA	1:GGG:194:LYS:HD2	1.99	0.44
1:HHH:283:ILE:HG13	1:HHH:307:ASN:HB3	2.00	0.44
1:AAA:170:HIS:HD1	3:AAA:502:GOL:H32	1.80	0.44
1:GGG:148:HIS:CD2	1:GGG:175:MET:HE2	2.53	0.44
1:III:241[B]:ARG:CZ	1:III:265:PHE:CZ	3.00	0.44
1:AAA:196:LYS:NZ	7:AAA:645:HOH:O	2.51	0.44
1:AAA:283:ILE:HG13	1:AAA:307:ASN:HB3	2.00	0.44
1:BBB:409:LEU:CD2	1:BBB:417:ARG:HH11	2.29	0.44
1:DDD:61:HIS:CE1	1:DDD:85:CYS:SG	3.10	0.44
1:FFF:42:ARG:O	1:FFF:46:ALA:HB2	2.18	0.44
1:FFF:153:GLN:HB3	7:FFF:908:HOH:O	2.18	0.44
1:BBB:412:ALA:HB3	1:BBB:413:GLU:OE2	2.18	0.44
1:GGG:230:GLY:HA3	2:GGG:505:NAD:O5B	2.17	0.44
1:FFF:189:ASN:O	1:FFF:195:SER:HB3	2.18	0.44
1:BBB:194:LYS:HD3	1:BBB:194:LYS:C	2.39	0.43
1:BBB:341:GLU:H	3:BBB:504:GOL:H32	1.83	0.43
1:CCC:161:ILE:O	1:CCC:185:ALA:HA	2.18	0.43
1:FFF:334:ARG:HD2	1:FFF:339:TRP:CH2	2.51	0.43
1:III:223[B]:GLN:HE22	1:III:290:LYS:HE3	1.83	0.43
1:III:271:TYR:CD1	1:III:276[B]:ASN:HB2	2.54	0.43
1:HHH:189:ASN:HA	1:HHH:194:LYS:HD2	2.00	0.43
1:III:205:HIS:CD2	1:III:383:PRO:HD3	2.53	0.43
1:AAA:55:LYS:HE3	7:AAA:826:HOH:O	2.18	0.43
1:AAA:189:ASN:O	1:AAA:195:SER:HB3	2.18	0.43
1:HHH:161:ILE:O	1:HHH:185:ALA:HA	2.18	0.43

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:III:219:LEU:O	1:III:245:MET:HG2	2.18	0.43
1:DDD:275:ILE:O	7:DDD:602:HOH:O	2.21	0.43
1:GGG:61:HIS:CE1	1:GGG:85:CYS:SG	3.11	0.43
1:AAA:336:ASN:HA	1:AAA:354:LYS:HE2	2.00	0.43
1:HHH:284:ASP:O	1:HHH:288:LEU:CD1	2.60	0.43
1:BBB:61:HIS:CE1	1:BBB:85:CYS:SG	3.12	0.43
1:BBB:283:ILE:HG13	1:BBB:307:ASN:HB3	1.99	0.43
1:CCC:310:LYS:HE3	1:CCC:332:PHE:HZ	1.84	0.43
1:CCC:404:GLN:HB2	7:CCC:925:HOH:O	2.17	0.43
1:III:189:ASN:O	1:III:195:SER:HB3	2.19	0.43
1:AAA:14:LYS:HD3	1:AAA:108:TRP:CZ3	2.54	0.43
1:FFF:222:LYS:NZ	7:FFF:626:HOH:O	2.45	0.43
1:AAA:42:ARG:O	1:AAA:46:ALA:HB2	2.19	0.42
1:AAA:354:LYS:O	1:AAA:355:ASP:O	2.37	0.42
1:BBB:97:ALA:O	7:BBB:605:HOH:O	2.21	0.42
1:DDD:219:LEU:O	1:DDD:245:MET:HG2	2.19	0.42
1:HHH:14:LYS:HD3	1:HHH:108:TRP:CH2	2.54	0.42
1:HHH:219:LEU:O	1:HHH:245:MET:HG2	2.19	0.42
1:FFF:189:ASN:HA	1:FFF:194:LYS:HD2	2.01	0.42
1:III:148:HIS:CD2	1:III:175:MET:HE1	2.55	0.42
1:FFF:61:HIS:CE1	1:FFF:85:CYS:SG	3.12	0.42
1:AAA:219:LEU:O	1:AAA:245:MET:HG2	2.20	0.42
1:HHH:288:LEU:N	1:HHH:288:LEU:HD12	2.34	0.42
1:HHH:322:GLY:HA3	1:HHH:327:GLU:OE2	2.20	0.42
1:HHH:148:HIS:CD2	1:HHH:175:MET:HE1	2.55	0.42
1:AAA:180:THR:OG1	7:AAA:601:HOH:O	2.00	0.41
1:DDD:413:GLU:OE2	1:DDD:417:ARG:NH1	2.53	0.41
7:HHH:840:HOH:O	1:III:205:HIS:HB2	2.20	0.41
1:AAA:468:ARG:NH1	7:AAA:648:HOH:O	2.52	0.41
1:DDD:189:ASN:HA	1:DDD:194:LYS:HD2	2.02	0.41
1:III:230:GLY:HA3	2:III:504:NAD:O5B	2.20	0.41
1:DDD:42:ARG:O	1:DDD:46:ALA:HB2	2.20	0.41
1:BBB:409:LEU:HD22	1:BBB:417:ARG:NH1	2.30	0.41
1:CCC:219:LEU:O	1:CCC:245:MET:HG2	2.20	0.41
1:FFF:277[A]:ASP:OD1	1:FFF:277[A]:ASP:C	2.59	0.41
1:FFF:343:LYS:HE2	7:GGG:807:HOH:O	2.20	0.41
1:DDD:194:LYS:C	1:DDD:194:LYS:HD3	2.41	0.41
1:AAA:148:HIS:CD2	1:AAA:175:MET:HE2	2.56	0.41
6:CCC:505:PEG:C4	1:DDD:216:ASP:HB3	2.51	0.41
1:GGG:194:LYS:HD3	1:GGG:194:LYS:C	2.41	0.41
1:GGG:335:LYS:HB2	1:GGG:335:LYS:HE2	1.89	0.41

8AJV

	5	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:HHH:14:LYS:HD3	1:HHH:108:TRP:CZ3	2.56	0.41
1:CCC:429:GLU:OE1	1:CCC:461:PRO:HA	2.21	0.41
1:BBB:148:HIS:CD2	1:BBB:175:MET:HE2	2.55	0.41
1:III:61:HIS:CE1	1:III:85:CYS:SG	3.14	0.41
1:III:271:TYR:CZ	1:III:276[B]:ASN:HB2	2.56	0.41
1:III:323:HIS:CE1	7:III:618:HOH:O	2.74	0.41
1:AAA:429:GLU:OE1	1:AAA:461:PRO:HA	2.21	0.41
1:FFF:170:HIS:HE1	7:FFF:757:HOH:O	2.03	0.41
1:III:448:PRO:HD2	7:III:831:HOH:O	2.20	0.41
1:BBB:189:ASN:HA	1:BBB:194:LYS:HD2	2.03	0.40
1:DDD:423:LEU:O	3:DDD:502:GOL:O2	2.37	0.40
1:FFF:258[B]:MET:HE3	1:FFF:259:GLN:HG3	2.03	0.40
1:III:283:ILE:HG13	1:III:307:ASN:HB3	2.04	0.40
1:BBB:189:ASN:O	1:BBB:195:SER:HB3	2.22	0.40
1:GGG:182:LYS:HE2	1:GGG:182:LYS:CA	2.44	0.40
1:III:194:LYS:HD3	1:III:194:LYS:C	2.41	0.40
1:CCC:14:LYS:HD3	1:CCC:108:TRP:CZ3	2.57	0.40
1:FFF:277[B]:ASP:OD1	1:FFF:277[B]:ASP:C	2.60	0.40

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
7:FFF:623:HOH:O	7:HHH:816:HOH:O[1_556]	1.97	0.23

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	AAA	471/472~(100%)	458 (97%)	10 (2%)	3 (1%)	25	15
1	BBB	469/472~(99%)	457 (97%)	10 (2%)	2(0%)	34	24

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	CCC	467/472~(99%)	454 (97%)	11 (2%)	2~(0%)	34	24
1	DDD	470/472~(100%)	459~(98%)	9~(2%)	2~(0%)	34	24
1	FFF	470/472~(100%)	458 (97%)	9~(2%)	3 (1%)	25	15
1	GGG	469/472~(99%)	457~(97%)	10~(2%)	2~(0%)	34	24
1	HHH	465/472~(98%)	454 (98%)	9~(2%)	2(0%)	34	24
1	III	472/472 (100%)	457 (97%)	13 (3%)	2(0%)	34	24
All	All	3753/3776~(99%)	3654 (97%)	81 (2%)	18 (0%)	29	18

Continued from previous page...

All (18) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	AAA	355	ASP
1	BBB	61	HIS
1	CCC	61	HIS
1	DDD	373	LEU
1	FFF	61	HIS
1	FFF	373	LEU
1	GGG	61	HIS
1	GGG	373	LEU
1	HHH	61	HIS
1	HHH	373	LEU
1	III	61	HIS
1	III	373	LEU
1	AAA	61	HIS
1	AAA	373	LEU
1	CCC	373	LEU
1	DDD	61	HIS
1	FFF	355	ASP
1	BBB	373	LEU

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	AAA	388/385~(101%)	387~(100%)	1 (0%)	92	93
1	BBB	386/385~(100%)	385~(100%)	1 (0%)	92	93
1	CCC	385/385~(100%)	385~(100%)	0	100	100
1	DDD	387/385~(100%)	386 (100%)	1 (0%)	92	93
1	\mathbf{FFF}	388/385~(101%)	387~(100%)	1 (0%)	92	93
1	GGG	387/385~(100%)	384~(99%)	3~(1%)	81	82
1	HHH	383/385~(100%)	382 (100%)	1 (0%)	92	93
1	III	390/385~(101%)	389 (100%)	1 (0%)	92	93
All	All	3094/3080~(100%)	3085 (100%)	9 (0%)	92	93

All (9) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	AAA	197	ASN
1	BBB	43	ARG
1	DDD	290	LYS
1	FFF	334	ARG
1	GGG	182	LYS
1	GGG	372	ARG
1	GGG	413	GLU
1	HHH	349	ILE
1	III	409	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 47 ligands modelled in this entry, 1 is monoatomic - leaving 46 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bo	Bond lengths		Bond angles			
WIOI	туре	Ullalli	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2	
3	GOL	III	506	-	$5,\!5,\!5$	0.15	0	$5,\!5,\!5$	0.34	0	
4	PO4	BBB	505	-	4,4,4	1.07	0	$6,\!6,\!6$	0.76	0	
4	PO4	AAA	505	-	$4,\!4,\!4$	0.55	0	$6,\!6,\!6$	0.57	0	
4	PO4	CCC	503	-	$4,\!4,\!4$	0.57	0	$6,\!6,\!6$	0.32	0	
3	GOL	CCC	502	-	$5,\!5,\!5$	0.23	0	$5,\!5,\!5$	0.31	0	
4	PO4	\mathbf{FFF}	503	-	$4,\!4,\!4$	1.36	1(25%)	$6,\!6,\!6$	0.60	0	
3	GOL	BBB	502	-	$5,\!5,\!5$	0.17	0	$5,\!5,\!5$	0.25	0	
4	PO4	DDD	507	-	4,4,4	0.89	0	$6,\!6,\!6$	0.58	0	
3	GOL	DDD	503	-	$5,\!5,\!5$	0.17	0	$5,\!5,\!5$	0.29	0	
2	NAD	DDD	501	-	42,48,48	0.98	2 (4%)	50,73,73	1.04	4 (8%)	
4	PO4	DDD	506	-	4,4,4	0.46	0	$6,\!6,\!6$	0.78	0	
4	PO4	FFF	501	-	4,4,4	0.57	0	$6,\!6,\!6$	0.73	0	
6	PEG	CCC	505	-	$6,\!6,\!6$	0.16	0	$5,\!5,\!5$	0.20	0	
2	NAD	HHH	503	-	42,48,48	0.84	2(4%)	50,73,73	0.89	2 (4%)	
3	GOL	III	505	-	$5,\!5,\!5$	0.30	0	$5,\!5,\!5$	0.45	0	
3	GOL	HHH	504	-	$5,\!5,\!5$	0.22	0	$5,\!5,\!5$	0.59	0	
2	NAD	GGG	505	-	42,48,48	0.96	3 (7%)	50,73,73	0.95	3 (6%)	
4	PO4	GGG	504	-	4,4,4	0.35	0	$6,\!6,\!6$	0.43	0	
4	PO4	BBB	506	-	4,4,4	1.01	0	$6,\!6,\!6$	0.73	0	
2	NAD	AAA	501	-	42,48,48	0.62	0	50,73,73	0.86	2(4%)	
2	NAD	CCC	501	-	42,48,48	0.82	2 (4%)	50,73,73	0.96	3 (6%)	
4	PO4	III	501	-	4,4,4	1.39	1 (25%)	6,6,6	0.71	0	
3	GOL	BBB	504	-	$5,\!5,\!5$	0.11	0	$5,\!5,\!5$	0.43	0	
6	PEG	CCC	506	-	$6,\!6,\!6$	0.29	0	$5,\!5,\!5$	0.11	0	
4	PO4	HHH	502	-	4,4,4	0.92	0	$6,\!6,\!6$	0.69	0	
2	NAD	BBB	501	-	42,48,48	0.82	2 (4%)	50,73,73	0.91	1 (2%)	
2	NAD	III	504	-	42,48,48	1.03	2 (4%)	50,73,73	0.98	2 (4%)	
4	PO4	GGG	501	-	4,4,4	0.75	0	$6,\!6,\!6$	0.57	0	
4	PO4	AAA	503	-	4,4,4	1.23	1 (25%)	$6,\!6,\!6$	0.39	0	
4	PO4	III	503	-	4,4,4	1.09	0	$6,\!6,\!6$	0.64	0	

Mal	Type	Chain	Dog	Link	Bo	ond leng	$_{\rm ths}$	B	ond ang	les
	Type	Ullalli	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	NAD	FFF	504	-	42,48,48	0.97	3 (7%)	50,73,73	1.02	2 (4%)
4	PO4	BBB	507	-	4,4,4	0.40	0	6,6,6	0.30	0
4	PO4	DDD	505	-	4,4,4	1.03	0	6,6,6	0.63	0
3	GOL	GGG	506	-	$5,\!5,\!5$	0.17	0	$5,\!5,\!5$	0.37	0
4	PO4	FFF	502	-	4,4,4	0.92	0	6,6,6	0.60	0
4	PO4	GGG	502	-	4,4,4	0.33	0	6,6,6	0.54	0
4	PO4	GGG	503	-	4,4,4	1.27	1 (25%)	6,6,6	0.34	0
4	PO4	AAA	504	-	4,4,4	1.15	0	6,6,6	0.48	0
3	GOL	DDD	502	-	5,5,5	0.13	0	5,5,5	0.34	0
4	PO4	HHH	501	-	4,4,4	0.35	0	6,6,6	0.58	0
4	PO4	CCC	504	-	4,4,4	0.77	0	6,6,6	0.41	0
4	PO4	III	502	-	4,4,4	1.34	1 (25%)	6,6,6	0.79	0
3	GOL	BBB	503	-	5,5,5	0.25	0	5,5,5	0.43	0
4	PO4	BBB	508	-	4,4,4	0.74	0	6,6,6	0.54	0
3	GOL	DDD	504	-	5,5,5	0.37	0	5,5,5	0.69	0
3	GOL	AAA	502	-	5,5,5	0.11	0	5,5,5	0.31	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	GOL	III	506	-	-	4/4/4/4	-
3	GOL	CCC	502	-	-	2/4/4/4	-
3	GOL	BBB	502	-	-	2/4/4/4	-
3	GOL	DDD	503	-	-	2/4/4/4	-
2	NAD	DDD	501	-	-	5/26/62/62	0/5/5/5
6	PEG	CCC	505	-	-	4/4/4/4	-
2	NAD	HHH	503	-	-	5/26/62/62	0/5/5/5
3	GOL	III	505	-	-	2/4/4/4	-
3	GOL	HHH	504	-	-	4/4/4/4	-
2	NAD	GGG	505	-	-	5/26/62/62	0/5/5/5
2	NAD	AAA	501	-	-	5/26/62/62	0/5/5/5
2	NAD	CCC	501	-	-	5/26/62/62	0/5/5/5
3	GOL	BBB	504	-	-	4/4/4/4	-
6	PEG	CCC	506	-	-	3/4/4/4	-
2	NAD	BBB	501	-	-	5/26/62/62	0/5/5/5

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	NAD	III	504	-	-	5/26/62/62	0/5/5/5
2	NAD	\mathbf{FFF}	504	-	-	5/26/62/62	0/5/5/5
3	GOL	GGG	506	-	-	0/4/4/4	-
3	GOL	DDD	502	-	-	$\frac{4}{4}/4}{4}$	-
3	GOL	BBB	503	-	-	4/4/4/4	-
3	GOL	DDD	504	-	-	3/4/4/4	-
3	GOL	AAA	502	-	-	4/4/4/4	-

All (21) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	III	504	NAD	C2N-N1N	4.87	1.40	1.35
2	DDD	501	NAD	C2N-N1N	4.03	1.39	1.35
2	GGG	505	NAD	C2N-N1N	3.94	1.39	1.35
2	\mathbf{FFF}	504	NAD	O4D-C1D	2.94	1.45	1.41
2	GGG	505	NAD	O4D-C1D	2.92	1.45	1.41
2	BBB	501	NAD	O4D-C1D	2.92	1.45	1.41
2	\mathbf{FFF}	504	NAD	C2N-N1N	2.89	1.38	1.35
2	HHH	503	NAD	C2N-N1N	2.86	1.38	1.35
2	CCC	501	NAD	C2N-N1N	2.85	1.38	1.35
2	HHH	503	NAD	O4D-C1D	2.71	1.44	1.41
2	BBB	501	NAD	C2N-N1N	2.67	1.38	1.35
2	DDD	501	NAD	O4D-C1D	2.45	1.44	1.41
4	GGG	503	PO4	P-01	2.39	1.56	1.50
4	AAA	503	PO4	P-01	2.29	1.56	1.50
4	III	502	PO4	P-01	2.20	1.56	1.50
2	CCC	501	NAD	O4D-C1D	2.17	1.44	1.41
2	III	504	NAD	C8A-N7A	-2.15	1.30	1.34
4	\mathbf{FFF}	503	PO4	P-01	2.11	1.55	1.50
2	GGG	505	NAD	C8A-N7A	-2.10	1.31	1.34
2	\mathbf{FFF}	504	NAD	C4N-C3N	2.09	1.42	1.39
4	III	501	PO4	P-O2	-2.05	1.48	1.54

All (19) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	DDD	501	NAD	C6N-N1N-C2N	-3.39	118.89	121.97
2	CCC	501	NAD	C6N-N1N-C2N	-3.33	118.93	121.97
2	HHH	503	NAD	C6N-N1N-C2N	-3.15	119.10	121.97
2	GGG	505	NAD	C6N-N1N-C2N	-3.05	119.19	121.97
2	FFF	504	NAD	C6N-N1N-C2N	-2.94	119.30	121.97

Mol	Chain	\mathbf{Res}	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
2	III	504	NAD	C6N-N1N-C2N	-2.67	119.54	121.97
2	BBB	501	NAD	C6N-N1N-C2N	-2.64	119.56	121.97
2	AAA	501	NAD	C6N-N1N-C2N	-2.58	119.62	121.97
2	FFF	504	NAD	C5A-C6A-N6A	2.46	124.09	120.35
2	HHH	503	NAD	C5A-C6A-N6A	2.35	123.92	120.35
2	CCC	501	NAD	O4B-C1B-C2B	-2.28	103.59	106.93
2	DDD	501	NAD	O3D-C3D-C4D	-2.22	104.63	111.05
2	GGG	505	NAD	O4B-C1B-C2B	-2.17	103.76	106.93
2	CCC	501	NAD	C5A-C6A-N6A	2.16	123.64	120.35
2	AAA	501	NAD	C5A-C6A-N6A	2.14	123.60	120.35
2	GGG	505	NAD	O4D-C1D-C2D	-2.10	103.85	106.93
2	DDD	501	NAD	O4D-C1D-C2D	-2.05	103.93	106.93
2	III	504	NAD	C5A-C6A-N6A	2.03	123.43	120.35
2	DDD	501	NAD	C5A-C6A-N6A	2.01	123.40	120.35

There are no chirality outliers.

All (82) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	AAA	501	NAD	O4D-C1D-N1N-C2N
2	AAA	501	NAD	O4D-C1D-N1N-C6N
2	AAA	501	NAD	C2D-C1D-N1N-C2N
2	AAA	501	NAD	C2D-C1D-N1N-C6N
2	BBB	501	NAD	O4D-C1D-N1N-C2N
2	BBB	501	NAD	O4D-C1D-N1N-C6N
2	BBB	501	NAD	C2D-C1D-N1N-C2N
2	BBB	501	NAD	C2D-C1D-N1N-C6N
2	CCC	501	NAD	O4D-C1D-N1N-C2N
2	CCC	501	NAD	O4D-C1D-N1N-C6N
2	CCC	501	NAD	C2D-C1D-N1N-C2N
2	CCC	501	NAD	C2D-C1D-N1N-C6N
2	DDD	501	NAD	O4D-C1D-N1N-C2N
2	DDD	501	NAD	O4D-C1D-N1N-C6N
2	DDD	501	NAD	C2D-C1D-N1N-C2N
2	DDD	501	NAD	C2D-C1D-N1N-C6N
2	FFF	504	NAD	O4D-C1D-N1N-C2N
2	FFF	504	NAD	O4D-C1D-N1N-C6N
2	FFF	504	NAD	C2D-C1D-N1N-C2N
2	FFF	504	NAD	C2D-C1D-N1N-C6N
2	GGG	505	NAD	O4D-C1D-N1N-C2N
2	GGG	505	NAD	O4D-C1D-N1N-C6N
2	GGG	505	NAD	C2D-C1D-N1N-C2N

Mol	Chain	Res	Type	Atoms
2	GGG	505	NAD	C2D-C1D-N1N-C6N
2	HHH	503	NAD	O4D-C1D-N1N-C2N
2	HHH	503	NAD	O4D-C1D-N1N-C6N
2	HHH	503	NAD	C2D-C1D-N1N-C2N
2	HHH	503	NAD	C2D-C1D-N1N-C6N
2	III	504	NAD	O4D-C1D-N1N-C2N
2	III	504	NAD	O4D-C1D-N1N-C6N
2	III	504	NAD	C2D-C1D-N1N-C2N
2	III	504	NAD	C2D-C1D-N1N-C6N
3	AAA	502	GOL	O1-C1-C2-C3
3	BBB	502	GOL	O1-C1-C2-C3
3	BBB	503	GOL	O1-C1-C2-C3
3	BBB	503	GOL	C1-C2-C3-O3
3	BBB	503	GOL	O2-C2-C3-O3
3	BBB	504	GOL	O1-C1-C2-C3
3	CCC	502	GOL	O1-C1-C2-C3
3	DDD	502	GOL	C1-C2-C3-O3
3	DDD	502	GOL	O2-C2-C3-O3
3	DDD	504	GOL	C1-C2-C3-O3
3	DDD	504	GOL	O2-C2-C3-O3
3	III	505	GOL	O1-C1-C2-C3
3	III	506	GOL	C1-C2-C3-O3
3	HHH	504	GOL	O2-C2-C3-O3
6	CCC	505	PEG	O1-C1-C2-O2
6	CCC	506	PEG	O1-C1-C2-O2
3	BBB	504	GOL	C1-C2-C3-O3
3	DDD	502	GOL	O1-C1-C2-C3
3	HHH	504	GOL	O1-C1-C2-C3
3	HHH	504	GOL	C1-C2-C3-O3
3	III	506	GOL	O1-C1-C2-C3
3	AAA	502	GOL	01-C1-C2-O2
3	BBB	503	GOL	01-C1-C2-O2
3	BBB	504	GOL	01-C1-C2-O2
3	CCC	502	GOL	O1-C1-C2-O2
3	HHH	504	GOL	O1-C1-C2-O2
3	III	505	GOL	O1-C1-C2-O2
3	III	506	GOL	O2-C2-C3-O3
6	CCC	505	PEG	O2-C3-C4-O4
3	BBB	502	GOL	O1-C1-C2-O2
6	CCC	506	PEG	O2-C3-C4-O4
6	CCC	505	PEG	C1-C2-O2-C3
3	AAA	502	GOL	O2-C2-C3-O3

Continued from previous page...

Mol	Chain	Res	Type	Atoms
3	DDD	504	GOL	O1-C1-C2-O2
6	CCC	505	PEG	C4-C3-O2-C2
6	CCC	506	PEG	C1-C2-O2-C3
3	BBB	504	GOL	O2-C2-C3-O3
3	DDD	503	GOL	O2-C2-C3-O3
3	AAA	502	GOL	C1-C2-C3-O3
3	DDD	503	GOL	C1-C2-C3-O3
3	III	506	GOL	O1-C1-C2-O2
2	BBB	501	NAD	O4B-C4B-C5B-O5B
2	GGG	505	NAD	O4B-C4B-C5B-O5B
3	DDD	502	GOL	O1-C1-C2-O2
2	\mathbf{FFF}	504	NAD	O4B-C4B-C5B-O5B
2	AAA	501	NAD	O4B-C4B-C5B-O5B
2	DDD	501	NAD	O4B-C4B-C5B-O5B
2	CCC	501	NAD	O4B-C4B-C5B-O5B
2	HHH	503	NAD	O4B-C4B-C5B-O5B
2	III	504	NAD	O4B-C4B-C5B-O5B

There are no ring outliers.

15 monomers are involved in 24 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	BBB	505	PO4	1	0
4	DDD	506	PO4	1	0
6	CCC	505	PEG	4	0
3	III	505	GOL	2	0
2	GGG	505	NAD	1	0
4	BBB	506	PO4	1	0
3	BBB	504	GOL	1	0
6	CCC	506	PEG	1	0
2	III	504	NAD	2	0
4	DDD	505	PO4	1	0
3	GGG	506	GOL	1	0
3	DDD	502	GOL	3	0
4	III	502	PO4	1	0
3	DDD	504	GOL	1	0
3	AAA	502	GOL	3	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is

within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

Rings

5.7Other polymers (i)

There are no such residues in this entry.

Torsions

Polymer linkage issues (i) 5.8

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<rsrz></rsrz>	#RSRZ>2	$OWAB(Å^2)$	$Q{<}0.9$
1	AAA	461/472~(97%)	-0.32	1 (0%) 95 95	27, 34, 47, 65	23~(4%)
1	BBB	461/472~(97%)	-0.13	3 (0%) 87 88	25, 38, 60, 86	39~(8%)
1	CCC	461/472~(97%)	-0.35	0 100 100	26, 33, 45, 61	17 (3%)
1	DDD	461/472~(97%)	-0.15	2 (0%) 92 93	25, 38, 58, 88	21 (4%)
1	FFF	461/472~(97%)	-0.26	0 100 100	26, 36, 52, 76	13~(2%)
1	GGG	461/472~(97%)	0.03	7 (1%) 73 76	28, 44, 67, 98	29~(6%)
1	HHH	461/472~(97%)	-0.20	0 100 100	28, 37, 50, 67	17 (3%)
1	III	461/472~(97%)	-0.12	2 (0%) 92 93	26, 38, 60, 78	19 (4%)
All	All	3688/3776~(97%)	-0.19	15 (0%) 92 93	25, 37, 58, 98	178 (4%)

All (15) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	GGG	10	PHE	4.4
1	DDD	9	GLY	4.1
1	GGG	9	GLY	3.8
1	BBB	420	VAL	3.7
1	BBB	9	GLY	3.4
1	GGG	151	TYR	3.4
1	GGG	413	GLU	3.3
1	III	151	TYR	3.1
1	III	45	TYR	3.1
1	AAA	355	ASP	2.8
1	GGG	120	ILE	2.5
1	GGG	57	LEU	2.4
1	DDD	409	LEU	2.3
1	GGG	155	LEU	2.3
1	BBB	409	LEU	2.2

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
3	GOL	GGG	506	6/6	0.70	0.21	36,40,45,45	6
3	GOL	DDD	503	6/6	0.76	0.25	41,46,47,53	0
3	GOL	III	505	6/6	0.76	0.29	34,48,51,58	0
3	GOL	CCC	502	6/6	0.79	0.19	42,49,51,52	0
3	GOL	DDD	504	6/6	0.84	0.23	41,48,51,51	0
3	GOL	BBB	504	6/6	0.85	0.25	35,39,46,52	0
3	GOL	AAA	502	6/6	0.86	0.21	36,38,42,47	0
3	GOL	BBB	502	6/6	0.89	0.21	34,39,43,43	0
3	GOL	III	506	6/6	0.89	0.18	37,41,43,47	0
6	PEG	CCC	506	7/7	0.89	0.12	45,47,49,58	0
6	PEG	CCC	505	7/7	0.90	0.22	31,34,42,46	3
4	PO4	AAA	505	5/5	0.91	0.12	29,33,35,35	5
3	GOL	DDD	502	6/6	0.91	0.24	34,41,45,46	0
3	GOL	BBB	503	6/6	0.91	0.25	37,38,42,45	1
4	PO4	III	501	5/5	0.93	0.10	30,38,39,40	5
4	PO4	III	503	5/5	0.94	0.11	32,33,34,40	5
4	PO4	BBB	507	5/5	0.94	0.16	36,38,41,45	1
3	GOL	HHH	504	6/6	0.94	0.13	27,36,38,40	6
4	PO4	GGG	504	5/5	0.95	0.11	33,34,38,38	5
4	PO4	FFF	503	5/5	0.96	0.11	30,31,34,35	5
4	PO4	GGG	501	5/5	0.96	0.09	40,40,43,43	5
4	PO4	GGG	502	5/5	0.96	0.08	30,33,34,34	5
4	PO4	DDD	507	5/5	0.96	0.11	32,32,35,36	5
2	NAD	HHH	503	44/44	0.97	0.09	29,35,41,50	0
2	NAD	DDD	501	44/44	0.97	0.09	24,30,34,38	0
4	PO4	BBB	505	5/5	0.97	0.10	37,37,41,43	1
2	NAD	FFF	504	44/44	0.97	0.09	27,31,38,43	0

				• • •	Dada	DOD		
WIOI	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
4	PO4	HHH	501	5/5	0.97	0.13	$35,\!36,\!42,\!45$	0
4	PO4	HHH	502	5/5	0.97	0.08	$34,\!35,\!36,\!41$	0
4	PO4	BBB	508	5/5	0.97	0.10	$35,\!36,\!37,\!37$	5
4	PO4	CCC	503	5/5	0.97	0.06	30,32,35,37	5
4	PO4	DDD	505	5/5	0.97	0.14	36,40,41,41	0
2	NAD	GGG	505	44/44	0.97	0.08	26,32,36,40	0
2	NAD	AAA	501	44/44	0.98	0.09	25,32,36,39	0
2	NAD	III	504	44/44	0.98	0.09	23,30,34,38	0
4	PO4	GGG	503	5/5	0.98	0.07	36,36,37,42	5
4	PO4	AAA	504	5/5	0.98	0.10	30,35,36,39	0
2	NAD	BBB	501	44/44	0.98	0.08	25,29,33,34	0
4	PO4	DDD	506	5/5	0.98	0.10	36,38,39,40	0
2	NAD	CCC	501	44/44	0.98	0.09	$26,\!30,\!32,\!33$	0
4	PO4	\mathbf{FFF}	501	5/5	0.98	0.06	$33,\!35,\!39,\!42$	0
5	Κ	BBB	509	1/1	0.98	0.05	36, 36, 36, 36	0
4	PO4	FFF	502	5/5	0.98	0.08	31,32,36,37	0
4	PO4	BBB	506	5/5	0.98	0.09	31,31,33,35	5
4	PO4	AAA	503	5/5	0.99	0.09	31,33,38,42	0
4	PO4	III	502	5/5	0.99	0.08	32,34,36,36	0
4	PO4	CCC	504	5/5	0.99	0.06	33,34,35,35	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

