Full wwPDB X-ray Structure Validation Report

Mar 8, 2018 – 11:09 pm GMT

PDB ID : 5AQ9
Title : DARPin-based Crystallization Chaperones exploit Molecular Geometry as a Screening Dimension in Protein Crystallography
Authors : Batyuk, A.; Wu, Y.; Honegger, A.; Heberling, M.; Plückthun, A.
Deposited on : 2015-09-21
Resolution : 1.86 Å (reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org

A user guide is available at
with specific help available everywhere you see the symbol.

The following versions of software and data (see references) were used in the production of this report:

MolProbity : 4.02b-467
Xtriage (Phenix) : 1.13
EDS : trunk30967
Percentile statistics : 20171227.v01 (using entries in the PDB archive December 27th 2017)
Refmac : 5.8.0158
CCP4 : 7.0 (Gargrove)
Ideal geometry (proteins) : Engh & Huber (2001)
Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP) : trunk30967
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

X-RAY DIFFRACTION

The reported resolution of this entry is 1.86 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>Similar resolution (#Entries, resolution range(Å))</th>
</tr>
</thead>
<tbody>
<tr>
<td>R<sub>free</sub></td>
<td>111664</td>
<td>2111 (1.86-1.86)</td>
</tr>
<tr>
<td>Clashscore</td>
<td>122126</td>
<td>2258 (1.86-1.86)</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>120053</td>
<td>2234 (1.86-1.86)</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>120020</td>
<td>2234 (1.86-1.86)</td>
</tr>
<tr>
<td>RSRZ outliers</td>
<td>108989</td>
<td>2075 (1.86-1.86)</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >3, 2, 1 and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <5%.

The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.
2 Entry composition

There are 3 unique types of molecules in this entry. The entry contains 25157 atoms, of which 11966 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called OFF7_DB08V4.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>419</td>
<td>Total C H N O S</td>
<td>6379 2006 3172 563 624 14</td>
<td>0</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>419</td>
<td>Total C H N O S</td>
<td>6374 2005 3169 563 622 15</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

- Molecule 2 is a protein called MALTOSE-BINDING PERIPLASMIC PROTEIN.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>371</td>
<td>Total C H N O S</td>
<td>5672 1837 2812 465 552 6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>371</td>
<td>Total C H N O S</td>
<td>5673 1837 2813 465 552 6</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

There are 70 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>1</td>
<td>MET</td>
<td>-</td>
<td>initiating methionine</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>2</td>
<td>ARG</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>3</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>SER</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>5</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>7</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>8</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>9</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>11</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>12</td>
<td>SER</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>13</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>14</td>
<td>SER</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>15</td>
<td>MET</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>16</td>
<td>LYS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>17</td>
<td>THR</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>18</td>
<td>GLU</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>19</td>
<td>GLU</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>20</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>21</td>
<td>ASN</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>382</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>383</td>
<td>SER</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>384</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>385</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>386</td>
<td>THR</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>387</td>
<td>PRO</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>388</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>389</td>
<td>ARG</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>390</td>
<td>PRO</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>391</td>
<td>ALA</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>392</td>
<td>ALA</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>393</td>
<td>LYS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>394</td>
<td>LEU</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>B</td>
<td>395</td>
<td>ASN</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>MET</td>
<td>-</td>
<td>initiating methionine</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>ARG</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>3</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>4</td>
<td>SER</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>5</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>6</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>7</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>8</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>9</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>10</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>11</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>12</td>
<td>SER</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>13</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>14</td>
<td>SER</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>15</td>
<td>MET</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>16</td>
<td>LYS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>17</td>
<td>THR</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>18</td>
<td>GLU</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>19</td>
<td>GLU</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>20</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>21</td>
<td>ASN</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>382</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>383</td>
<td>SER</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>384</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>385</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>386</td>
<td>THR</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>387</td>
<td>PRO</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>388</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>389</td>
<td>ARG</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>390</td>
<td>PRO</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>391</td>
<td>ALA</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>392</td>
<td>ALA</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>393</td>
<td>LYS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>394</td>
<td>LEU</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
<tr>
<td>D</td>
<td>395</td>
<td>ASN</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P0AEX9</td>
</tr>
</tbody>
</table>

- Molecule 3 is water.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>409</td>
<td>Total</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>409</td>
<td>409</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>101</td>
<td>Total</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>101</td>
<td>101</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>336</td>
<td>Total</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>336</td>
<td>336</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>213</td>
<td>Total</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>213</td>
<td>213</td>
<td></td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: OFF7_DB08V4

 Chain A:

- Molecule 1: OFF7_DB08V4

 Chain C:

- Molecule 2: MALTOSE-BINDING PERIPLASMIC PROTEIN

 Chain B:

- Molecule 2: MALTOSE-BINDING PERIPLASMIC PROTEIN

 Chain D:
4 Data and refinement statistics

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P 21 21 21</td>
<td>Depositor</td>
</tr>
<tr>
<td>Cell constants</td>
<td></td>
<td></td>
</tr>
<tr>
<td>a, b, c, α, β, γ</td>
<td>41.48Å 191.12Å 219.51Å</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>90.00° 90.00° 90.00°</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>48.05 – 1.86</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>48.05 – 1.86</td>
<td>EDS</td>
</tr>
<tr>
<td>% Data completeness (in resolution range)</td>
<td>100.0 (48.05-1.86)</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>100.0 (48.05-1.86)</td>
<td>EDS</td>
</tr>
<tr>
<td>R<sub>merge</sub></td>
<td>0.09</td>
<td>Depositor</td>
</tr>
<tr>
<td>R<sub>sym</sub></td>
<td>(Not available)</td>
<td>Depositor</td>
</tr>
<tr>
<td><I/σ(I)><sup>1</sup></td>
<td>2.04 (at 1.86Å)</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Refinement program</td>
<td>PHENIX (PHENIX.REFINE)</td>
<td>Depositor</td>
</tr>
<tr>
<td>R, R<sub>free</sub></td>
<td>0.182 , 0.204</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>0.183 , 0.205</td>
<td>DCC</td>
</tr>
<tr>
<td>R<sub>free</sub> test set</td>
<td>7410 reflections (5.00%)</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Wilson B-factor (Å<sup>2</sup>)</td>
<td>29.7</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Anisotropy</td>
<td>0.281</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Bulk solvent k<sub>sol</sub>(e/Å<sup>3</sup>) , B<sub>sol</sub>(Å<sup>2</sup>)</td>
<td>0.38 , 47.5</td>
<td>EDS</td>
</tr>
<tr>
<td>L-test for twinning<sup>2</sup></td>
<td><L> = 0.47, <L<sup>2</sup>> = 0.30</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Estimated twinning fraction</td>
<td>No twinning to report.</td>
<td>Xtriage</td>
</tr>
<tr>
<td>F<sub>o</sub>-F<sub>c</sub> correlation</td>
<td>0.96</td>
<td>EDS</td>
</tr>
<tr>
<td>Total number of atoms</td>
<td>25157</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Average B, all atoms (Å<sup>2</sup>)</td>
<td>52.0</td>
<td>wwPDB-VP</td>
</tr>
</tbody>
</table>

Xtriage’s analysis on translational NCS is as follows: *The largest off-origin peak in the Patterson function is 3.31% of the height of the origin peak. No significant pseudotranslation is detected.*

¹Intensities estimated from amplitudes.

²Theoretical values of <L>, <L²> for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.
5 Model quality

5.1 Standard geometry

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol | Chain | Bond lengths RMSZ | #|Z| >5 | Bond angles RMSZ | #|Z| >5 |
|-----|-------|------------------|------|------|------------------|------|
| 1 | A | 0.27 | 0/3281 | 0.48 | 0/4454 |
| 1 | C | 0.26 | 0/3276 | 0.46 | 0/4446 |
| 2 | B | 0.25 | 0/2930 | 0.41 | 0/3980 |
| 2 | D | 0.26 | 0/2930 | 0.41 | 0/3980 |
| All | All | 0.26 | 0/12417 | 0.44 | 0/16860 |

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>3207</td>
<td>3172</td>
<td>3172</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>3205</td>
<td>3169</td>
<td>3169</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>2860</td>
<td>2812</td>
<td>2812</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>2860</td>
<td>2813</td>
<td>2812</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>409</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>101</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>336</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>213</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>13191</td>
<td>11966</td>
<td>11965</td>
<td>18</td>
<td>3</td>
</tr>
</tbody>
</table>

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 1.
All (18) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:125:TYR:OH</td>
<td>2:B:152:LYS:NZ</td>
<td>2.17</td>
<td>0.75</td>
</tr>
<tr>
<td>1:A:151:ASP:OD1</td>
<td>3:A:2134:HOH:O</td>
<td>2.07</td>
<td>0.72</td>
</tr>
<tr>
<td>1:C:326:LYS:NZ</td>
<td>3:C:2244:HOH:O</td>
<td>2.21</td>
<td>0.72</td>
</tr>
<tr>
<td>2:B:357:ALA:O</td>
<td>3:B:2096:HOH:O</td>
<td>2.13</td>
<td>0.66</td>
</tr>
<tr>
<td>2:B:54:HIS:ND1</td>
<td>2:B:54:HIS:O</td>
<td>2.32</td>
<td>0.61</td>
</tr>
<tr>
<td>1:C:195:ARG:NH2</td>
<td>3:C:2129:HOH:O</td>
<td>2.30</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:166:GLN:NE2</td>
<td>3:A:2148:HOH:O</td>
<td>2.41</td>
<td>0.53</td>
</tr>
<tr>
<td>2:B:155:LYS:NZ</td>
<td>2:B:217:LYS:O</td>
<td>2.44</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:26:GLN:OE1</td>
<td>3:C:2026:HOH:O</td>
<td>2.20</td>
<td>0.49</td>
</tr>
<tr>
<td>2:B:156:ALA:O</td>
<td>1:C:245:LYS:NZ</td>
<td>2.47</td>
<td>0.48</td>
</tr>
<tr>
<td>2:B:137:LEU:HD21</td>
<td>2:B:150:LEU:HD21</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:374:ARG:NE</td>
<td>3:C:2314:HOH:O</td>
<td>2.34</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:13:ASP:OD1</td>
<td>1:A:16:ARG:NH1</td>
<td>2.52</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:34[B]:MET:HE1</td>
<td>1:C:69:HIS:HB2</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>2:B:173:TRP:N</td>
<td>2:B:174:PRO:CD</td>
<td>2.82</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:34[B]:MET:HE1</td>
<td>1:A:65:VAL:HG12</td>
<td>2.03</td>
<td>0.41</td>
</tr>
</tbody>
</table>

All (3) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:A:2061:HOH:O</td>
<td>3:A:2249:HOH:O[4_455]</td>
<td>2.05</td>
<td>0.15</td>
</tr>
</tbody>
</table>

5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>422/422 (100%)</td>
<td>416 (99%)</td>
<td>6 (1%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>421/422 (100%)</td>
<td>416 (99%)</td>
<td>5 (1%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>369/395 (93%)</td>
<td>360 (98%)</td>
<td>9 (2%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>369/395 (93%)</td>
<td>361 (98%)</td>
<td>8 (2%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1581/1634 (97%)</td>
<td>1553 (98%)</td>
<td>28 (2%)</td>
<td>0</td>
<td>100 100</td>
</tr>
</tbody>
</table>

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>338/335 (101%)</td>
<td>336 (99%)</td>
<td>2 (1%)</td>
<td>87 85</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>337/335 (101%)</td>
<td>335 (99%)</td>
<td>2 (1%)</td>
<td>87 85</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>294/313 (94%)</td>
<td>292 (99%)</td>
<td>2 (1%)</td>
<td>85 81</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>294/313 (94%)</td>
<td>293 (100%)</td>
<td>1 (0%)</td>
<td>93 93</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1263/1296 (98%)</td>
<td>1256 (99%)</td>
<td>7 (1%)</td>
<td>87 85</td>
</tr>
</tbody>
</table>

All (7) residues with a non-rotameric sidechain are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>56</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>264</td>
<td>SER</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>137</td>
<td>LEU</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>185</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>56</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>264</td>
<td>SER</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>137</td>
<td>LEU</td>
</tr>
</tbody>
</table>

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.
5.3.3 RNA

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates

There are no carbohydrates in this entry.

5.6 Ligand geometry

There are no ligands in this entry.

5.7 Other polymers

There are no such residues in this entry.

5.8 Polymer linkage issues

There are no chain breaks in this entry.
6 Fit of model and data

6.1 Protein, DNA and RNA chains

In the following table, the column labelled ‘#RSRZ > 2’ contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled ‘Q< 0.9’ lists the number of (and percentage) of residues with an average occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>RSRZ</th>
<th>#RSRZ > 2</th>
<th>OWAB(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>419/422 (99%)</td>
<td>0.07</td>
<td>1 (0%)</td>
<td>94/94</td>
<td>17, 34, 70, 107</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>419/422 (99%)</td>
<td>-0.05</td>
<td>1 (0%)</td>
<td>94/94</td>
<td>22, 35, 55, 106</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>371/395 (93%)</td>
<td>0.61</td>
<td>42 (11%)</td>
<td>5/5</td>
<td>48, 62, 98, 144</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>371/395 (93%)</td>
<td>0.30</td>
<td>29 (7%)</td>
<td>13/13</td>
<td>34, 49, 84, 120</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1580/1634 (96%)</td>
<td>0.22</td>
<td>73 (4%)</td>
<td>32/31</td>
<td>17, 45, 83, 144</td>
</tr>
</tbody>
</table>

All (73) RSRZ outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>D</td>
<td>67</td>
<td>ALA</td>
<td>7.5</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>68</td>
<td>THR</td>
<td>6.9</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>24</td>
<td>ILE</td>
<td>5.8</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>66</td>
<td>ALA</td>
<td>4.8</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>38</td>
<td>VAL</td>
<td>4.6</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>76</td>
<td>PHE</td>
<td>4.5</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>22</td>
<td>LEU</td>
<td>4.4</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>66</td>
<td>ALA</td>
<td>4.3</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>65</td>
<td>VAL</td>
<td>4.2</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>388</td>
<td>GLY</td>
<td>4.2</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>21</td>
<td>ASN</td>
<td>4.1</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>62</td>
<td>PHE</td>
<td>3.9</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>67</td>
<td>ALA</td>
<td>3.9</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>23</td>
<td>VAL</td>
<td>3.7</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>68</td>
<td>THR</td>
<td>3.7</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>50</td>
<td>VAL</td>
<td>3.7</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>291</td>
<td>ALA</td>
<td>3.7</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>52</td>
<td>VAL</td>
<td>3.6</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>21</td>
<td>ASN</td>
<td>3.5</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>298</td>
<td>TYR</td>
<td>3.4</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>290</td>
<td>LEU</td>
<td>3.4</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>D</td>
<td>94</td>
<td>ILE</td>
<td>3.4</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>61</td>
<td>LYS</td>
<td>3.3</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>19</td>
<td>GLU</td>
<td>3.2</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>26</td>
<td>ILE</td>
<td>3.2</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>19</td>
<td>GLU</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>5</td>
<td>HIS</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>48</td>
<td>ILE</td>
<td>2.9</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>45</td>
<td>ASP</td>
<td>2.8</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>86</td>
<td>ALA</td>
<td>2.7</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>44</td>
<td>LYS</td>
<td>2.7</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>285</td>
<td>SER</td>
<td>2.7</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>369</td>
<td>ARG</td>
<td>2.6</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>98</td>
<td>LYS</td>
<td>2.6</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>118</td>
<td>LEU</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>22</td>
<td>ALA</td>
<td>2.6</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>284</td>
<td>ALA</td>
<td>2.6</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>121</td>
<td>TYR</td>
<td>2.6</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>74</td>
<td>ILE</td>
<td>2.6</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>75</td>
<td>ILE</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>77</td>
<td>TRP</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>188</td>
<td>ASN</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>279</td>
<td>ALA</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>387</td>
<td>PRO</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>41</td>
<td>LYS</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>121</td>
<td>TYR</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>20</td>
<td>GLY</td>
<td>2.4</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>190</td>
<td>LYS</td>
<td>2.4</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>281</td>
<td>ILE</td>
<td>2.4</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>198</td>
<td>VAL</td>
<td>2.4</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>100</td>
<td>PHE</td>
<td>2.4</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>46</td>
<td>THR</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>69</td>
<td>GLY</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>92</td>
<td>ALA</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>298</td>
<td>TYR</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>25</td>
<td>TRP</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>96</td>
<td>PRO</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>86</td>
<td>ALA</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>40</td>
<td>LYS</td>
<td>2.2</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>42</td>
<td>PHE</td>
<td>2.2</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>18</td>
<td>GLU</td>
<td>2.2</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>100</td>
<td>PHE</td>
<td>2.2</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>281</td>
<td>ILE</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>D</td>
<td>95</td>
<td>THR</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>70</td>
<td>ASP</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>22</td>
<td>LEU</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>117</td>
<td>LYS</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>34</td>
<td>GLY</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>85</td>
<td>TYR</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>90</td>
<td>LEU</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>91</td>
<td>LEU</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>63</td>
<td>PRO</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>96</td>
<td>PRO</td>
<td>2.0</td>
</tr>
</tbody>
</table>

6.2 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates

There are no carbohydrates in this entry.

6.4 Ligands

There are no ligands in this entry.

6.5 Other polymers

There are no such residues in this entry.