Full wwPDB X-ray Structure Validation Report

Mar 10, 2018 – 05:21 pm GMT

PDB ID : 3AWI
Title : Bifunctional tRNA modification enzyme MnmC from Escherichia coli
Authors : Kitamura, A.; Sengoku, T.; Nishimoto, M.; Yokoyama, S.; Bessho, Y.
Deposited on : 2011-03-23
Resolution : 3.00 Å (reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
with specific help available everywhere you see the symbol.

The following versions of software and data (see references) were used in the production of this report:

- MolProbity : 4.02b-467
- Mogul : 1.7.3 (157068), CSD as539be (2018)
- Xtriage (Phenix) : 1.13
- EDS : trunk30967
- Percentile statistics : 20171227.v01 (using entries in the PDB archive December 27th 2017)
- Refmac : 5.8.0158
- CCP4 : 7.0 (Gargrove)
- Ideal geometry (proteins) : Engh & Huber (2001)
- Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
- Validation Pipeline (wwPDB-VP) : trunk30967
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

X-RAY DIFFRACTION

The reported resolution of this entry is 3.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>Similar resolution (#Entries, resolution range(Å))</th>
</tr>
</thead>
<tbody>
<tr>
<td>R<sub>free</sub></td>
<td>111664</td>
<td>1851 (3.00-3.00)</td>
</tr>
<tr>
<td>Clashscore</td>
<td>122126</td>
<td>2167 (3.00-3.00)</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>120053</td>
<td>2101 (3.00-3.00)</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>120020</td>
<td>2104 (3.00-3.00)</td>
</tr>
<tr>
<td>RSRZ outliers</td>
<td>108989</td>
<td>1751 (3.00-3.00)</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>688</td>
<td>68%</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>688</td>
<td>69%</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>688</td>
<td>64%</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>688</td>
<td>59%</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>688</td>
<td>63%</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>688</td>
<td>18%</td>
</tr>
</tbody>
</table>
2 Entry composition

There are 4 unique types of molecules in this entry. The entry contains 30287 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called tRNA 5-methylaminomethyl-2-thiouridine biosynthesis bifunctional protein mnmC.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>628</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>628</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>628</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>659</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>628</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>628</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

There are 120 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-19</td>
<td>MET</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>A</td>
<td>-18</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>A</td>
<td>-17</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>A</td>
<td>-16</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>A</td>
<td>-15</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>A</td>
<td>-14</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>A</td>
<td>-13</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>A</td>
<td>-12</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>A</td>
<td>-11</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>A</td>
<td>-10</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>A</td>
<td>-9</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>A</td>
<td>-8</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>A</td>
<td>-7</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>A</td>
<td>-6</td>
<td>LEU</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>A</td>
<td>-5</td>
<td>VAL</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>A</td>
<td>-4</td>
<td>PRO</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-3</td>
<td>ARG</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>A</td>
<td>-2</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>A</td>
<td>-1</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>B</td>
<td>-19</td>
<td>MET</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>B</td>
<td>-18</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>B</td>
<td>-17</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>B</td>
<td>-16</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>B</td>
<td>-15</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>B</td>
<td>-14</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>B</td>
<td>-13</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>B</td>
<td>-12</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>B</td>
<td>-11</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>B</td>
<td>-10</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>B</td>
<td>-9</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>B</td>
<td>-8</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>B</td>
<td>-7</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>B</td>
<td>-6</td>
<td>LEU</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>B</td>
<td>-5</td>
<td>VAL</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>B</td>
<td>-4</td>
<td>PRO</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>B</td>
<td>-3</td>
<td>ARG</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>B</td>
<td>-2</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>B</td>
<td>-1</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>C</td>
<td>-19</td>
<td>MET</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>C</td>
<td>-18</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>C</td>
<td>-17</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>C</td>
<td>-16</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>C</td>
<td>-15</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>C</td>
<td>-14</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>C</td>
<td>-13</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>C</td>
<td>-12</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>C</td>
<td>-11</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>C</td>
<td>-10</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>C</td>
<td>-9</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>C</td>
<td>-8</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>C</td>
<td>-7</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>C</td>
<td>-6</td>
<td>LEU</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>C</td>
<td>-5</td>
<td>VAL</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>C</td>
<td>-4</td>
<td>PRO</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>C</td>
<td>-3</td>
<td>ARG</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>C</td>
<td>-2</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>-1</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>C</td>
<td>0</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>D</td>
<td>-19</td>
<td>MET</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>D</td>
<td>-17</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>D</td>
<td>-16</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>D</td>
<td>-15</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>D</td>
<td>-14</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>D</td>
<td>-13</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>D</td>
<td>-12</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>D</td>
<td>-11</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>D</td>
<td>-10</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>D</td>
<td>-9</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>D</td>
<td>-8</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>D</td>
<td>-7</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>D</td>
<td>-6</td>
<td>LEU</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>D</td>
<td>-5</td>
<td>VAL</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>D</td>
<td>-4</td>
<td>PRO</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>D</td>
<td>-3</td>
<td>ARG</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>D</td>
<td>-2</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>D</td>
<td>-1</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>E</td>
<td>-19</td>
<td>MET</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>E</td>
<td>-18</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>E</td>
<td>-17</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>E</td>
<td>-16</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>E</td>
<td>-15</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>E</td>
<td>-14</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>E</td>
<td>-13</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>E</td>
<td>-12</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>E</td>
<td>-11</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>E</td>
<td>-10</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>E</td>
<td>-9</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>E</td>
<td>-8</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>E</td>
<td>-7</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>E</td>
<td>-6</td>
<td>LEU</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>E</td>
<td>-5</td>
<td>VAL</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>E</td>
<td>-4</td>
<td>PRO</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>E</td>
<td>-3</td>
<td>ARG</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>E</td>
<td>-2</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>E</td>
<td>-1</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>F</td>
<td>-19</td>
<td>MET</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>F</td>
<td>-18</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>F</td>
<td>-17</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>F</td>
<td>-16</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>F</td>
<td>-15</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>F</td>
<td>-14</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>F</td>
<td>-13</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>F</td>
<td>-12</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>F</td>
<td>-11</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>F</td>
<td>-10</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>F</td>
<td>-9</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>F</td>
<td>-8</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>F</td>
<td>-7</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>F</td>
<td>-6</td>
<td>LEU</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>F</td>
<td>-5</td>
<td>VAL</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>F</td>
<td>-4</td>
<td>PRO</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>F</td>
<td>-3</td>
<td>ARG</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>F</td>
<td>-2</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>F</td>
<td>-1</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>HIS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P77182</td>
</tr>
</tbody>
</table>

- Molecule 2 is FLAVIN-ADENINE DINUCLEOTIDE (three-letter code: FAD) (formula: $C_{27}H_{33}N_9O_{15}P_2$).

![FAD diagram](image)

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C N O P</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>53</td>
<td>27 9 15 2</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td>Total C N O P</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>53 27 9 15 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C N O P</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>53 27 9 15 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1</td>
<td>Total C N O P</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>53 27 9 15 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1</td>
<td>Total C N O P</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>53 27 9 15 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>1</td>
<td>Total C N O P</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>53 27 9 15 2</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 3 is SULFATE ION (three-letter code: SO4) (formula: O$_4$S).

![SO4 diagram]

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>A</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 4 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 4 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 4 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 4 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 4 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 4 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 4 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 4 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 4 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 4 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1</td>
<td>Total O S</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 4 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 4 is water.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>A</td>
<td>17</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>17 17</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>11</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>11 11</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>27</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27 27</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>5</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5 5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>1</td>
<td>Total O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: tRNA 5-methylaminomethyl-2-thiouridine biosynthesis bifunctional protein mnmC

Chain A:

- Molecule 1: tRNA 5-methylaminomethyl-2-thiouridine biosynthesis bifunctional protein mnmC

Chain B:
- Molecule 1: tRNA 5-methylaminomethyl-2-thiouridine biosynthesis bifunctional protein mnmC

Chain C:

- Molecule 1: tRNA 5-methylaminomethyl-2-thiouridine biosynthesis bifunctional protein mnmC

Chain D:
• Molecule 1: tRNA 5-methylaminomethyl-2-thiouridine biosynthesis bifunctional protein mnmC

Chain E:

• Molecule 1: tRNA 5-methylaminomethyl-2-thiouridine biosynthesis bifunctional protein mnmC

Chain F:
4 Data and refinement statistics

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P 1 21 1</td>
<td>Depositor</td>
</tr>
<tr>
<td>Cell constants</td>
<td>92.14Å 243.02Å 175.53Å</td>
<td>Depositor</td>
</tr>
<tr>
<td>a, b, c, α, β, γ</td>
<td>90.00° 90.42° 90.00°</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>46.07 – 3.00</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>46.07 – 2.80</td>
<td>EDS</td>
</tr>
<tr>
<td>% Data completeness (in resolution range)</td>
<td>95.3 (46.07-3.00)</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>91.9 (46.07-2.80)</td>
<td>Depositor</td>
</tr>
<tr>
<td>R_{merge}</td>
<td>(Not available)</td>
<td>Depositor</td>
</tr>
<tr>
<td>R_{sym}</td>
<td>(Not available)</td>
<td>Depositor</td>
</tr>
<tr>
<td>$< I/\sigma(I) >^1$</td>
<td>2.75 (at 2.81Å)</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Refinement program</td>
<td>PHENIX (phenix.refine: 1.7_650)</td>
<td>Depositor</td>
</tr>
<tr>
<td>R, R_{free}</td>
<td>0.204 , 0.251</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>0.195 , 0.237</td>
<td>DCC</td>
</tr>
<tr>
<td>R_{free} test set</td>
<td>2002 reflections (1.15%)</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Wilson B-factor (Å²)</td>
<td>50.0</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Anisotropy</td>
<td>0.355</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Bulk solvent $k_{sol}(e/Å³)$, $B_{sol}(Å²)$</td>
<td>0.31 , 58.5</td>
<td>EDS</td>
</tr>
<tr>
<td>L-test for twinning^2</td>
<td>$<</td>
<td>L</td>
</tr>
<tr>
<td>Estimated twinning fraction</td>
<td>0.033 for h,-k,-l</td>
<td>Xtriage</td>
</tr>
<tr>
<td>F_o-F_c correlation</td>
<td>0.92</td>
<td>EDS</td>
</tr>
<tr>
<td>Total number of atoms</td>
<td>30287</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Average B, all atoms (Å²)</td>
<td>87.0</td>
<td>wwPDB-VP</td>
</tr>
</tbody>
</table>

Xtriage’s analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.27% of the height of the origin peak. No significant pseudotranslation is detected.

^1Intensities estimated from amplitudes.

^2Theoretical values of $< |L| >$, $< L^2 >$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.
5 Model quality

5.1 Standard geometry

Bond lengths and bond angles in the following residue types are not validated in this section: SO4, FAD

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0.31</td>
<td>0/5060</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>0.32</td>
<td>0/5060</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>0.32</td>
<td>0/5060</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>0.28</td>
<td>0/5322</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>0.27</td>
<td>0/5060</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>0.24</td>
<td>0/5060</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0.29</td>
<td>0/30622</td>
</tr>
</tbody>
</table>

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>#Chirality outliers</th>
<th>#Planarity outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (1) planarity outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>3</td>
<td>HIS</td>
<td>Peptide</td>
</tr>
</tbody>
</table>

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within
the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>4933</td>
<td>0</td>
<td>4777</td>
<td>109</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>4933</td>
<td>0</td>
<td>4777</td>
<td>116</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>4933</td>
<td>0</td>
<td>4777</td>
<td>138</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>5188</td>
<td>0</td>
<td>5004</td>
<td>220</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>4933</td>
<td>0</td>
<td>4777</td>
<td>151</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>4933</td>
<td>0</td>
<td>4777</td>
<td>229</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>53</td>
<td>0</td>
<td>31</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>53</td>
<td>0</td>
<td>31</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>53</td>
<td>0</td>
<td>31</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>53</td>
<td>0</td>
<td>31</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>53</td>
<td>0</td>
<td>31</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>53</td>
<td>0</td>
<td>31</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>17</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>27</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>30287</td>
<td>0</td>
<td>29075</td>
<td>946</td>
<td>0</td>
</tr>
</tbody>
</table>

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 16.

All (946) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:271:GLY:HA3</td>
<td>1:C:292:LEU:HD11</td>
<td>1.41</td>
<td>1.03</td>
</tr>
<tr>
<td>1:D:354:LEU:HD22</td>
<td>1:D:393:THR:HG21</td>
<td>1.40</td>
<td>1.01</td>
</tr>
<tr>
<td>1:C:519:ALA:HB3</td>
<td>1:C:538:ASN:OD1</td>
<td>1.61</td>
<td>1.00</td>
</tr>
<tr>
<td>1:D:21:SER:HB2</td>
<td>1:D:26:ASP:H</td>
<td>1.23</td>
<td>0.99</td>
</tr>
<tr>
<td>1:E:385:VAL:HG21</td>
<td>1:E:393:THR:HG22</td>
<td>1.45</td>
<td>0.98</td>
</tr>
<tr>
<td>1:D:136:PRO:HB2</td>
<td>1:D:324:ARG:HH22</td>
<td>1.35</td>
<td>0.91</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:650:ASN:O</td>
<td>1:C:653:ARG:HG3</td>
<td>1.73</td>
<td>0.89</td>
</tr>
<tr>
<td>1:F:392:ALA:O</td>
<td>1:F:551:TRP:HH2</td>
<td>1.58</td>
<td>0.86</td>
</tr>
<tr>
<td>1:F:170:GLN:HA</td>
<td>1:F:201:ALA:O</td>
<td>1.76</td>
<td>0.86</td>
</tr>
<tr>
<td>1:E:217:ARG:HB2</td>
<td>1:E:240:LEU:HD2</td>
<td>1.57</td>
<td>0.86</td>
</tr>
<tr>
<td>1:D:334:ARG:HG3</td>
<td>1:D:334:ARG:NH1</td>
<td>1.80</td>
<td>0.85</td>
</tr>
<tr>
<td>1:D:618:ARG:HH11</td>
<td>1:D:618:ARG:HG3</td>
<td>1.41</td>
<td>0.85</td>
</tr>
<tr>
<td>1:F:270:ILE:HG22</td>
<td>1:F:461:ASN:HB3</td>
<td>1.60</td>
<td>0.83</td>
</tr>
<tr>
<td>1:C:618:ARG:CG</td>
<td>1:C:618:ARG:HH11</td>
<td>1.92</td>
<td>0.82</td>
</tr>
<tr>
<td>1:D:9:ALA:HB2</td>
<td>1:D:103:PHE:HB3</td>
<td>1.61</td>
<td>0.82</td>
</tr>
<tr>
<td>1:F:434:ASN:HB3</td>
<td>1:F:445:ASN:HB2</td>
<td>1.61</td>
<td>0.82</td>
</tr>
<tr>
<td>1:A:620:LEU:HG</td>
<td>2:A:901:FAD:O2</td>
<td>1.80</td>
<td>0.82</td>
</tr>
<tr>
<td>1:B:517:ILE:HG12</td>
<td>1:B:518:GLY:H</td>
<td>1.45</td>
<td>0.81</td>
</tr>
<tr>
<td>1:F:284:LEU:HD23</td>
<td>1:F:422:GLN:HB2</td>
<td>1.61</td>
<td>0.81</td>
</tr>
<tr>
<td>1:D:199:ARG:HG3</td>
<td>1:D:250:LEU:HD13</td>
<td>1.62</td>
<td>0.81</td>
</tr>
<tr>
<td>1:B:230:ARG:NH2</td>
<td>1:B:239:MET:HE3</td>
<td>1.96</td>
<td>0.80</td>
</tr>
<tr>
<td>1:E:324:ARG:HG2</td>
<td>1:E:324:ARG:NH1</td>
<td>1.85</td>
<td>0.79</td>
</tr>
<tr>
<td>1:D:270:ILE:HG22</td>
<td>1:D:461:ASN:HB3</td>
<td>1.63</td>
<td>0.79</td>
</tr>
<tr>
<td>1:C:296:ASP:OD1</td>
<td>1:F:106:THR:HG2</td>
<td>1.83</td>
<td>0.79</td>
</tr>
<tr>
<td>1:D:21:SER:CB</td>
<td>1:D:26:ASP:H</td>
<td>1.95</td>
<td>0.79</td>
</tr>
<tr>
<td>1:B:177:LEU:HB3</td>
<td>1:B:209:THR:HG2</td>
<td>1.65</td>
<td>0.78</td>
</tr>
<tr>
<td>1:C:519:ALA:HB1</td>
<td>1:C:541:ARG:NH2</td>
<td>1.98</td>
<td>0.78</td>
</tr>
<tr>
<td>1:E:59:LEU:HD11</td>
<td>1:E:96:HIS:HB2</td>
<td>1.65</td>
<td>0.78</td>
</tr>
<tr>
<td>1:D:518:GLY:HA3</td>
<td>1:D:538:ASN:CG</td>
<td>2.03</td>
<td>0.78</td>
</tr>
<tr>
<td>1:F:66:GLY:HA2</td>
<td>1:F:100:PHE:O</td>
<td>1.83</td>
<td>0.78</td>
</tr>
<tr>
<td>1:D:489:THR:HB</td>
<td>1:D:490:PRO:HD2</td>
<td>1.66</td>
<td>0.77</td>
</tr>
<tr>
<td>1:F:580:VAL:O</td>
<td>1:F:605:VAL:HA</td>
<td>1.85</td>
<td>0.77</td>
</tr>
<tr>
<td>1:C:37:GLU:HB2</td>
<td>1:C:233:PHE:CE2</td>
<td>2.20</td>
<td>0.77</td>
</tr>
<tr>
<td>1:D:530:TYR:OH</td>
<td>1:D:560:LYS:HD3</td>
<td>1.85</td>
<td>0.76</td>
</tr>
<tr>
<td>1:E:535:GLN:HG3</td>
<td>1:E:557:VAL:CG1</td>
<td>2.15</td>
<td>0.76</td>
</tr>
<tr>
<td>1:F:508:GLN:HB3</td>
<td>1:F:515:HIS:NE2</td>
<td>2.01</td>
<td>0.76</td>
</tr>
<tr>
<td>1:A:388:ILE:HG22</td>
<td>1:A:497:GLN:OE1</td>
<td>1.86</td>
<td>0.76</td>
</tr>
<tr>
<td>1:C:618:ARG:HG3</td>
<td>1:C:618:ARG:HH11</td>
<td>1.49</td>
<td>0.76</td>
</tr>
<tr>
<td>1:E:255:PRO:O</td>
<td>1:E:258:ASN:HB2</td>
<td>1.86</td>
<td>0.76</td>
</tr>
<tr>
<td>1:F:59:LEU:HD11</td>
<td>1:F:96:HIS:HB2</td>
<td>1.68</td>
<td>0.75</td>
</tr>
<tr>
<td>1:D:114:HIS:HD2</td>
<td>1:D:128:GLN:HE2</td>
<td>1.32</td>
<td>0.75</td>
</tr>
<tr>
<td>1:D:517:ILE:HG12</td>
<td>1:D:518:GLY:H</td>
<td>1.52</td>
<td>0.75</td>
</tr>
<tr>
<td>1:C:377:ALA:HB1</td>
<td>1:C:398:ILE:HD11</td>
<td>1.69</td>
<td>0.75</td>
</tr>
<tr>
<td>1:D:66:GLY:HA2</td>
<td>1:D:100:PHE:O</td>
<td>1.87</td>
<td>0.74</td>
</tr>
<tr>
<td>1:E:146:GLY:HA3</td>
<td>1:E:285:ARG:HD2</td>
<td>1.68</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:136:PRO:HB2</td>
<td>1:D:324:ARG:NH2</td>
<td>2.03</td>
<td>0.74</td>
</tr>
<tr>
<td>1:B:183:ALA:O</td>
<td>1:B:184:LYS:HB3</td>
<td>1.88</td>
<td>0.74</td>
</tr>
<tr>
<td>1:E:157:ILE:O</td>
<td>1:E:161:THR:HG23</td>
<td>1.88</td>
<td>0.74</td>
</tr>
<tr>
<td>1:D:380:VAL:HG21</td>
<td>1:D:388:ILE:HD12</td>
<td>1.70</td>
<td>0.74</td>
</tr>
<tr>
<td>1:D:618:ARG:HH11</td>
<td>1:D:618:ARG:CG</td>
<td>2.00</td>
<td>0.73</td>
</tr>
<tr>
<td>1:D:508:GLN:HB3</td>
<td>1:D:515:HIS:NE2</td>
<td>2.04</td>
<td>0.73</td>
</tr>
<tr>
<td>1:E:408:PRO:HB3</td>
<td>1:E:620:LEU:HD21</td>
<td>1.71</td>
<td>0.72</td>
</tr>
<tr>
<td>1:F:391:VAL:HG13</td>
<td>1:F:551:TRP:CZ2</td>
<td>2.24</td>
<td>0.72</td>
</tr>
<tr>
<td>1:F:604:PRO:HB2</td>
<td>1:F:605:VAL:HG23</td>
<td>1.72</td>
<td>0.72</td>
</tr>
<tr>
<td>1:E:232:GLY:H</td>
<td>1:E:238:GLU:HA</td>
<td>1.54</td>
<td>0.72</td>
</tr>
<tr>
<td>1:F:269:ILE:HG13</td>
<td>1:F:458:VAL:HB</td>
<td>1.71</td>
<td>0.72</td>
</tr>
<tr>
<td>1:A:236:LYS:HG2</td>
<td>1:A:237:ARG:H</td>
<td>1.52</td>
<td>0.71</td>
</tr>
<tr>
<td>1:D:59:LEU:HD11</td>
<td>1:D:96:HIS:HB2</td>
<td>1.72</td>
<td>0.71</td>
</tr>
<tr>
<td>1:D:232:GLY:HA3</td>
<td>1:D:237:ARG:O</td>
<td>1.91</td>
<td>0.71</td>
</tr>
<tr>
<td>1:B:518:GLY:HA3</td>
<td>1:B:538:ASN:CG</td>
<td>2.11</td>
<td>0.71</td>
</tr>
<tr>
<td>1:B:230:ARG:HH21</td>
<td>1:B:239:MET:HE3</td>
<td>1.52</td>
<td>0.70</td>
</tr>
<tr>
<td>1:F:307:ARG:HB2</td>
<td>1:F:485:HIS:HE1</td>
<td>1.55</td>
<td>0.70</td>
</tr>
<tr>
<td>1:E:170:GLN:HA</td>
<td>1:E:201:ALA:O</td>
<td>1.91</td>
<td>0.70</td>
</tr>
<tr>
<td>1:E:550:GLN:HG2</td>
<td>1:E:551:TRP:N</td>
<td>2.06</td>
<td>0.70</td>
</tr>
<tr>
<td>1:D:133:MET:HE1</td>
<td>1:D:376:LEU:HB2</td>
<td>1.73</td>
<td>0.70</td>
</tr>
<tr>
<td>1:D:570:THR:HG21</td>
<td>1:D:574:LEU:O</td>
<td>1.92</td>
<td>0.70</td>
</tr>
<tr>
<td>1:A:482:GLN:H</td>
<td>1:A:520:SER:HB3</td>
<td>1.54</td>
<td>0.70</td>
</tr>
<tr>
<td>1:E:517:ILE:HG12</td>
<td>1:E:518:GLY:H</td>
<td>1.55</td>
<td>0.70</td>
</tr>
<tr>
<td>1:D:620:LEU:HB2</td>
<td>2:D:901:FAD:O2</td>
<td>1.91</td>
<td>0.70</td>
</tr>
<tr>
<td>1:B:186:PRO:HG3</td>
<td>1:D:253:SER:HB3</td>
<td>1.72</td>
<td>0.70</td>
</tr>
<tr>
<td>1:A:620:LEU:HG</td>
<td>2:A:901:FAD:C2</td>
<td>2.22</td>
<td>0.69</td>
</tr>
<tr>
<td>1:C:301:LEU:HD22</td>
<td>1:F:112:LEU:HG</td>
<td>1.74</td>
<td>0.69</td>
</tr>
<tr>
<td>1:C:433:GLN:HB3</td>
<td>1:F:373:PRO:HA</td>
<td>1.74</td>
<td>0.69</td>
</tr>
<tr>
<td>1:F:550:GLN:HG2</td>
<td>1:F:551:TRP:HE3</td>
<td>1.56</td>
<td>0.69</td>
</tr>
<tr>
<td>1:D:354:LEU:CD2</td>
<td>1:D:393:THR:HG21</td>
<td>2.21</td>
<td>0.69</td>
</tr>
<tr>
<td>1:E:550:GLN:HG2</td>
<td>1:E:551:TRP:H</td>
<td>1.58</td>
<td>0.69</td>
</tr>
<tr>
<td>1:C:492:LEU:O</td>
<td>1:C:493:ALA:HB3</td>
<td>1.92</td>
<td>0.69</td>
</tr>
<tr>
<td>1:E:504:TYR:CE2</td>
<td>1:E:519:ALA:HB2</td>
<td>2.27</td>
<td>0.68</td>
</tr>
<tr>
<td>1:C:434:ASN:HB3</td>
<td>1:C:445:ASN:HB2</td>
<td>1.76</td>
<td>0.68</td>
</tr>
<tr>
<td>1:D:21:SER:HB2</td>
<td>1:D:26:ASP:N</td>
<td>2.03</td>
<td>0.67</td>
</tr>
<tr>
<td>1:D:488:THR:OG1</td>
<td>1:D:493:ALA:HB2</td>
<td>1.94</td>
<td>0.67</td>
</tr>
<tr>
<td>1:D:173:ASP:OD2</td>
<td>1:D:202:ARG:HD3</td>
<td>1.94</td>
<td>0.67</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:352:THR:HG23</td>
<td>1:D:497:GLN:OE1</td>
<td>1.95</td>
<td>0.67</td>
</tr>
<tr>
<td>1:D:491:GLU:HG23</td>
<td>1:D:551:TRP:HB3</td>
<td>1.75</td>
<td>0.67</td>
</tr>
<tr>
<td>1:F:276:SER:O</td>
<td>1:F:280:SER:HB2</td>
<td>1.95</td>
<td>0.67</td>
</tr>
<tr>
<td>1:D:385:VAL:HG11</td>
<td>1:D:393:THR:HG23</td>
<td>1.76</td>
<td>0.67</td>
</tr>
<tr>
<td>1:C:593:LEU:HA</td>
<td>1:C:596:GLN:HB3</td>
<td>1.76</td>
<td>0.67</td>
</tr>
<tr>
<td>1:F:484:SER:HB2</td>
<td>1:F:517:ILE:HG23</td>
<td>1.78</td>
<td>0.66</td>
</tr>
<tr>
<td>1:C:144:ASP:HB3</td>
<td>1:C:147:ARG:HB2</td>
<td>1.78</td>
<td>0.66</td>
</tr>
<tr>
<td>1:D:12:GLU:H</td>
<td>1:D:20:VAL:HG12</td>
<td>1.61</td>
<td>0.66</td>
</tr>
<tr>
<td>1:C:381:GLU:HG2</td>
<td>1:C:383:ASN:HD22</td>
<td>1.60</td>
<td>0.66</td>
</tr>
<tr>
<td>1:D:35:LEU:HD23</td>
<td>1:D:39:ARG:NH2</td>
<td>2.12</td>
<td>0.65</td>
</tr>
<tr>
<td>1:B:232:GLY:N</td>
<td>1:B:238:GLU:HA</td>
<td>2.11</td>
<td>0.65</td>
</tr>
<tr>
<td>1:C:207:LEU:C</td>
<td>1:C:207:LEU:HD12</td>
<td>2.17</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:483:VAL:HG23</td>
<td>2:A:901:FAD:HM72</td>
<td>1.77</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:144:ASP:HB3</td>
<td>1:A:147:ARG:HB2</td>
<td>1.78</td>
<td>0.65</td>
</tr>
<tr>
<td>1:E:476:VAL:HG12</td>
<td>1:E:570:THR:HG22</td>
<td>1.79</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:350:GLY:HA3</td>
<td>1:A:497:GLN:HE21</td>
<td>1.60</td>
<td>0.65</td>
</tr>
<tr>
<td>1:E:295:ALA:O</td>
<td>1:E:429:GLN:HA</td>
<td>1.95</td>
<td>0.65</td>
</tr>
<tr>
<td>1:C:429:GLN:HB3</td>
<td>1:F:103:PHE:HB3</td>
<td>1.79</td>
<td>0.65</td>
</tr>
<tr>
<td>1:D:463:HIS:HA</td>
<td>1:D:568:CYS:HB2</td>
<td>1.78</td>
<td>0.64</td>
</tr>
<tr>
<td>1:E:518:GLY:HA3</td>
<td>1:E:538:ASN:CG</td>
<td>2.18</td>
<td>0.64</td>
</tr>
<tr>
<td>1:F:462:GLY:O</td>
<td>1:F:465:ILE:HG23</td>
<td>1.97</td>
<td>0.64</td>
</tr>
<tr>
<td>1:D:314:LEU:HD22</td>
<td>1:D:618:ARG:NH1</td>
<td>2.12</td>
<td>0.64</td>
</tr>
<tr>
<td>1:B:492:LEU:O</td>
<td>1:B:493:ALA:HB3</td>
<td>1.97</td>
<td>0.64</td>
</tr>
<tr>
<td>1:C:140:ARG:C</td>
<td>1:C:141:LEU:HD23</td>
<td>2.18</td>
<td>0.64</td>
</tr>
<tr>
<td>1:C:523:ARG:HH22</td>
<td>1:C:571:ARG:NH2</td>
<td>1.94</td>
<td>0.64</td>
</tr>
<tr>
<td>1:D:13:PHE:HA</td>
<td>1:D:19:PRO:HA</td>
<td>1.80</td>
<td>0.64</td>
</tr>
<tr>
<td>1:D:19:PRO:HD2</td>
<td>1:D:29:PHE:CZ</td>
<td>2.33</td>
<td>0.64</td>
</tr>
<tr>
<td>1:D:486:ILE:HG12</td>
<td>1:D:515:HIS:HB2</td>
<td>1.80</td>
<td>0.64</td>
</tr>
<tr>
<td>1:D:461:ASN:HB2</td>
<td>2:D:901:FAD:C8A</td>
<td>2.28</td>
<td>0.64</td>
</tr>
<tr>
<td>1:C:583:TYR:O</td>
<td>1:C:587:LEU:HD12</td>
<td>1.98</td>
<td>0.64</td>
</tr>
<tr>
<td>1:F:655:TRP:O</td>
<td>1:F:659:LEU:HB2</td>
<td>1.97</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:550:GLN:NE2</td>
<td>1:A:553:LYS:HE3</td>
<td>2.13</td>
<td>0.64</td>
</tr>
<tr>
<td>1:C:483:VAL:HG23</td>
<td>2:C:901:FAD:HM72</td>
<td>1.79</td>
<td>0.63</td>
</tr>
<tr>
<td>1:D:340:LEU:HD12</td>
<td>1:D:341:PRO:HD2</td>
<td>1.80</td>
<td>0.63</td>
</tr>
<tr>
<td>1:D:334:ARG:HH12</td>
<td>1:D:402:GLN:HB3</td>
<td>1.63</td>
<td>0.63</td>
</tr>
<tr>
<td>1:B:209:THR:O</td>
<td>1:B:239:MET:HB2</td>
<td>1.99</td>
<td>0.63</td>
</tr>
<tr>
<td>1:B:517:ILE:HG12</td>
<td>1:B:518:GLY:N</td>
<td>2.11</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:492:LEU:O</td>
<td>1:D:493:ALA:HB3</td>
<td>1.98</td>
<td>0.63</td>
</tr>
<tr>
<td>1:C:381:GLU:HG2</td>
<td>1:C:383:ASN:ND2</td>
<td>2.14</td>
<td>0.63</td>
</tr>
<tr>
<td>1:D:9:ALA:O</td>
<td>1:D:10:ASN:HB3</td>
<td>1.98</td>
<td>0.63</td>
</tr>
<tr>
<td>1:D:20:VAL:HG22</td>
<td>1:D:21:SER:H</td>
<td>1.64</td>
<td>0.63</td>
</tr>
<tr>
<td>1:D:10:ASN:O</td>
<td>1:D:11:LEU:HD13</td>
<td>1.99</td>
<td>0.63</td>
</tr>
<tr>
<td>1:A:212:SER:HB3</td>
<td>1:A:238:GLU:O</td>
<td>1.99</td>
<td>0.63</td>
</tr>
<tr>
<td>1:B:408:PRO:HB3</td>
<td>1:B:620:LEU:HD21</td>
<td>1.81</td>
<td>0.63</td>
</tr>
<tr>
<td>1:F:612:PHE:HE1</td>
<td>1:F:615:LEU:HD11</td>
<td>1.64</td>
<td>0.63</td>
</tr>
<tr>
<td>1:D:29:PHE:HD2</td>
<td>1:D:31:ASN:H</td>
<td>1.46</td>
<td>0.63</td>
</tr>
<tr>
<td>1:F:97:PHE:CE2</td>
<td>1:F:99:SER:HB2</td>
<td>2.34</td>
<td>0.63</td>
</tr>
<tr>
<td>1:D:352:THR:HG22</td>
<td>1:D:399:THR:OG1</td>
<td>1.99</td>
<td>0.62</td>
</tr>
<tr>
<td>1:D:9:ALA:HB1</td>
<td>1:D:23:ASP:OD1</td>
<td>2.00</td>
<td>0.62</td>
</tr>
<tr>
<td>1:B:243:VAL:HG13</td>
<td>1:B:245:GLU:HG3</td>
<td>1.81</td>
<td>0.62</td>
</tr>
<tr>
<td>1:D:10:ASN:OD1</td>
<td>1:D:22:ARG:HG2</td>
<td>1.98</td>
<td>0.62</td>
</tr>
<tr>
<td>1:F:435:LEU:CD2</td>
<td>1:F:468:PHE:HB3</td>
<td>2.30</td>
<td>0.62</td>
</tr>
<tr>
<td>1:B:122:PRO:HG2</td>
<td>1:B:123:TRP:CE3</td>
<td>2.34</td>
<td>0.62</td>
</tr>
<tr>
<td>1:D:658:LYS:HG3</td>
<td>1:D:659:LEU:N</td>
<td>2.15</td>
<td>0.62</td>
</tr>
<tr>
<td>1:C:482:GLN:H</td>
<td>1:C:520:SER:HB3</td>
<td>1.65</td>
<td>0.62</td>
</tr>
<tr>
<td>1:E:232:GLY:N</td>
<td>1:E:238:GLU:HA</td>
<td>2.15</td>
<td>0.61</td>
</tr>
<tr>
<td>1:C:255:PRO:O</td>
<td>1:C:258:ASN:HB2</td>
<td>1.99</td>
<td>0.61</td>
</tr>
<tr>
<td>1:D:35:LEU:HD11</td>
<td>1:D:120:LEU:HD11</td>
<td>1.81</td>
<td>0.61</td>
</tr>
<tr>
<td>1:D:13:PHE:O</td>
<td>1:D:14:ASN:HB3</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>1:C:575:PRO:O</td>
<td>1:C:653:ARG:NH2</td>
<td>2.34</td>
<td>0.61</td>
</tr>
<tr>
<td>1:F:135:LEU:HD13</td>
<td>1:F:327:SER:HB3</td>
<td>1.83</td>
<td>0.61</td>
</tr>
<tr>
<td>1:F:87:HIS:N</td>
<td>1:F:87:HIS:CD2</td>
<td>2.68</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:308:GLN:HG2</td>
<td>1:A:405:TRP:CE3</td>
<td>2.36</td>
<td>0.61</td>
</tr>
<tr>
<td>1:D:571:ARG:O</td>
<td>1:D:572:ASP:CG</td>
<td>2.39</td>
<td>0.61</td>
</tr>
<tr>
<td>1:E:331:THR:HG22</td>
<td>1:E:335:ARG:NH1</td>
<td>2.14</td>
<td>0.61</td>
</tr>
<tr>
<td>1:E:386:GLU:HA</td>
<td>1:E:391:VAL:O</td>
<td>2.00</td>
<td>0.61</td>
</tr>
<tr>
<td>1:D:4:TYR:C</td>
<td>1:D:4:TYR:CD2</td>
<td>2.73</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:183:ALA:O</td>
<td>1:A:184:LYS:HB3</td>
<td>2.00</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:264:LYS:HD3</td>
<td>1:A:455:SER:HB3</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>1:E:504:TYR:HE2</td>
<td>1:E:519:ALA:HB2</td>
<td>1.66</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:435:LEU:CD2</td>
<td>1:A:444:LEU:HD22</td>
<td>2.31</td>
<td>0.60</td>
</tr>
<tr>
<td>1:C:124:ALA:O</td>
<td>1:C:128:GLN:HG3</td>
<td>2.01</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:F:461:ASN:OD1</td>
<td>1:F:465:ILE:HG22</td>
<td>2.02</td>
<td>0.60</td>
</tr>
<tr>
<td>1:C:584:GLU:HG2</td>
<td>1:F:381:GLU:HB3</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:432:LEU:HD21</td>
<td>1:B:435:LEU:HD13</td>
<td>1.82</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:576:MET:HG2</td>
<td>1:B:653:ARG:NH2</td>
<td>2.17</td>
<td>0.60</td>
</tr>
<tr>
<td>1:E:576:MET:HG2</td>
<td>1:E:653:ARG:HH12</td>
<td>1.66</td>
<td>0.60</td>
</tr>
<tr>
<td>1:E:471:THR:HB</td>
<td>1:E:474:LEU:HD12</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>1:D:78:GLN:HG3</td>
<td>1:D:123:TRP:CH2</td>
<td>2.36</td>
<td>0.60</td>
</tr>
<tr>
<td>1:D:114:HIS:CD2</td>
<td>1:D:128:GLN:HE21</td>
<td>2.17</td>
<td>0.59</td>
</tr>
<tr>
<td>1:D:228:GLN:HG2</td>
<td>1:D:229:LYS:O</td>
<td>2.01</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:232:GLY:H</td>
<td>1:B:238:GLU:HA</td>
<td>1.66</td>
<td>0.59</td>
</tr>
<tr>
<td>1:D:71:LEU:HD13</td>
<td>1:D:117:TRP:CE3</td>
<td>2.37</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:40:TYR:CE2</td>
<td>1:B:239:MET:HE1</td>
<td>2.37</td>
<td>0.59</td>
</tr>
<tr>
<td>1:C:358:GLU:HG2</td>
<td>1:C:359:LYS:N</td>
<td>2.18</td>
<td>0.59</td>
</tr>
<tr>
<td>1:E:385:VAL:HG21</td>
<td>1:E:393:THR:CG2</td>
<td>2.26</td>
<td>0.59</td>
</tr>
<tr>
<td>1:F:550:GLN:HG2</td>
<td>1:F:551:TRP:H</td>
<td>1.66</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:463:HIS:HA</td>
<td>1:B:568:CYS:HB2</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:391:VAL:HG13</td>
<td>1:A:551:TRP:CE2</td>
<td>2.37</td>
<td>0.59</td>
</tr>
<tr>
<td>1:E:237:ARG:HG3</td>
<td>1:E:238:GLU:H</td>
<td>1.68</td>
<td>0.59</td>
</tr>
<tr>
<td>1:D:121:ALA:N</td>
<td>1:D:122:PRO:HD2</td>
<td>2.17</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:367:MET:O</td>
<td>1:A:370:MET:HG2</td>
<td>2.02</td>
<td>0.59</td>
</tr>
<tr>
<td>1:D:590:TYR:HB2</td>
<td>1:D:659:LEU:HD23</td>
<td>1.85</td>
<td>0.58</td>
</tr>
<tr>
<td>1:C:349:CYS:O</td>
<td>1:C:497:GLN:HG2</td>
<td>2.02</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:377:ALA:HB1</td>
<td>1:B:398:ILE:HD11</td>
<td>1.84</td>
<td>0.58</td>
</tr>
<tr>
<td>1:D:69:THR:O</td>
<td>1:D:114:HIS:HE1</td>
<td>1.87</td>
<td>0.58</td>
</tr>
<tr>
<td>1:E:207:LEU:HD12</td>
<td>1:E:207:LEU:C</td>
<td>2.24</td>
<td>0.58</td>
</tr>
<tr>
<td>1:F:274:ILE:HD13</td>
<td>1:F:620:LEU:HD23</td>
<td>1.84</td>
<td>0.58</td>
</tr>
<tr>
<td>1:D:317:LYS:HE3</td>
<td>1:D:318:HIS:CE1</td>
<td>2.39</td>
<td>0.58</td>
</tr>
<tr>
<td>1:E:354:LEU:HD22</td>
<td>1:E:393:THR:HG21</td>
<td>1.86</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:157:ILE:O</td>
<td>1:A:161:THR:HG23</td>
<td>2.03</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:485:HIS:HE1</td>
<td>4:A:674:HOH:O</td>
<td>1.86</td>
<td>0.58</td>
</tr>
<tr>
<td>1:E:458:VAL:HA</td>
<td>1:E:610:PHE:O</td>
<td>2.03</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:37:GLU:HB2</td>
<td>1:B:233:PHE:CE2</td>
<td>2.39</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:255:PRO:HD2</td>
<td>1:B:256:TRP:CE3</td>
<td>2.39</td>
<td>0.58</td>
</tr>
<tr>
<td>1:C:502:ASP:HB3</td>
<td>1:C:541:ARG:HG2</td>
<td>1.86</td>
<td>0.58</td>
</tr>
<tr>
<td>1:D:615:LEU:HD12</td>
<td>2:D:901:FAD:H5'2</td>
<td>1.86</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:518:GLY:O</td>
<td>1:A:519:ALA:HB3</td>
<td>2.03</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:81:ASP:O</td>
<td>1:C:85:GLU:HG2</td>
<td>2.04</td>
<td>0.57</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:F:283:LEU:O</td>
<td>1:F:288:TRP:HB2</td>
<td>2.03</td>
<td>0.57</td>
</tr>
<tr>
<td>1:D:3:HIS:O</td>
<td>1:D:3:HIS:CG</td>
<td>2.57</td>
<td>0.57</td>
</tr>
<tr>
<td>1:E:144:ASP:C</td>
<td>1:E:145:GLU:HG2</td>
<td>2.24</td>
<td>0.57</td>
</tr>
<tr>
<td>1:D:51:ARG:O</td>
<td>1:D:55:HIS:HB2</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:255:PRO:O</td>
<td>1:B:258:ASN:HB2</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>1:D:367:MET:O</td>
<td>1:D:370:MET:HG2</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>1:D:618:ARG:NH1</td>
<td>1:D:618:ARG:CG</td>
<td>2.65</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:106:THR:O</td>
<td>1:A:107:ARG:HB3</td>
<td>2.05</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:461:ASN:HB2</td>
<td>2:A:901:FAD:C8A</td>
<td>2.34</td>
<td>0.57</td>
</tr>
<tr>
<td>1:E:650:ASN:OD1</td>
<td>1:E:651:PRO:HD2</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>1:F:492:LEU:O</td>
<td>1:F:493:ALA:HB3</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>1:E:321:ALA:HA</td>
<td>1:E:645:THR:HG22</td>
<td>1.87</td>
<td>0.57</td>
</tr>
<tr>
<td>1:D:157:ILE:O</td>
<td>1:D:161:THR:HG23</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:E:349:CYS:O</td>
<td>1:E:497:GLN:HG2</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:E:217:ARG:CB</td>
<td>1:E:240:LEU:HD21</td>
<td>2.33</td>
<td>0.56</td>
</tr>
<tr>
<td>1:F:280:SER:O</td>
<td>1:F:284:LEU:HD13</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:F:474:LEU:HG</td>
<td>1:F:475:PRO:HD2</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:212:SER:HB3</td>
<td>1:B:238:GLU:O</td>
<td>2.06</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:426:TYR:O</td>
<td>1:D:429:GLN:HB2</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:351:VAL:HG22</td>
<td>1:B:498:VAL:HB</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:357:ASP:O</td>
<td>1:B:361:GLN:HB2</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:F:579:ASN:HB3</td>
<td>1:F:605:VAL:CG2</td>
<td>2.35</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:177:LEU:O</td>
<td>1:D:209:THR:HG23</td>
<td>2.06</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:364:ILE:HG23</td>
<td>1:D:398:ILE:HB</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>1:E:277:ALA:HB1</td>
<td>1:E:415:VAL:HG12</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:236:LYS:HG2</td>
<td>1:A:237:ARG:N</td>
<td>2.21</td>
<td>0.56</td>
</tr>
<tr>
<td>1:F:491:GLU:O</td>
<td>1:F:494:GLU:HB3</td>
<td>2.06</td>
<td>0.56</td>
</tr>
<tr>
<td>1:C:616:GLY:O</td>
<td>2:C:901:FAD:H2'</td>
<td>2.05</td>
<td>0.55</td>
</tr>
<tr>
<td>1:D:170:GLN:O</td>
<td>1:D:202:ARG:HB3</td>
<td>2.05</td>
<td>0.55</td>
</tr>
<tr>
<td>1:F:217:ARG:O</td>
<td>1:F:221:GLN:HG3</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:590:TYR:HB2</td>
<td>1:B:659:LEU:HD23</td>
<td>1.87</td>
<td>0.55</td>
</tr>
<tr>
<td>1:C:177:LEU:HB3</td>
<td>1:C:209:THR:HB</td>
<td>1.87</td>
<td>0.55</td>
</tr>
<tr>
<td>1:C:596:GLN:O</td>
<td>1:C:596:GLN:HG2</td>
<td>2.07</td>
<td>0.55</td>
</tr>
<tr>
<td>1:D:4:TYR:HD2</td>
<td>1:D:5:SER:N</td>
<td>2.05</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:64:GLU:HG3</td>
<td>1:A:176:PHE:HB2</td>
<td>1.87</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:428:TYR:O</td>
<td>1:B:429:GLN:HB2</td>
<td>2.05</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:207:LEU:O</td>
<td>1:C:207:LEU:HD12</td>
<td>2.07</td>
<td>0.55</td>
</tr>
<tr>
<td>1:D:331:THR:O</td>
<td>1:D:335:ARG:HB2</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>1:E:655:TRP:HA</td>
<td>1:E:658:LYS:HE3</td>
<td>1.88</td>
<td>0.55</td>
</tr>
<tr>
<td>1:E:535:GLN:HG3</td>
<td>1:E:557:VAL:HG11</td>
<td>1.87</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:184:LYS:HG3</td>
<td>1:A:184:LYS:O</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>1:C:381:GLU:HA</td>
<td>1:C:396:SER:HB2</td>
<td>1.89</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:650:ASN:O</td>
<td>1:B:653:ARG:HG3</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>1:C:456:VAL:HG22</td>
<td>1:C:608:ASP:HB3</td>
<td>1.89</td>
<td>0.55</td>
</tr>
<tr>
<td>1:E:570:THR:HG23</td>
<td>1:E:614:ALA:HB1</td>
<td>1.88</td>
<td>0.55</td>
</tr>
<tr>
<td>1:C:336:PHE:O</td>
<td>1:C:339:GLN:HG3</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:F:508:GLN:HB3</td>
<td>1:F:515:HIS:CD2</td>
<td>2.42</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:616:GLY:O</td>
<td>2:A:901:FAD:H2'</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:435:GLU:CD1</td>
<td>1:B:444:LEU:HD22</td>
<td>2.36</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:334:ARG:CG</td>
<td>1:D:334:ARG:HH11</td>
<td>1.94</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:492:LEU:O</td>
<td>1:C:493:ALA:CB</td>
<td>2.55</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:572:ASP:O</td>
<td>1:C:573:HIS:HB2</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:41:VAL:HA</td>
<td>1:D:239:MET:HE1</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:410:GLU:HG2</td>
<td>1:D:414:ASN:ND2</td>
<td>2.23</td>
<td>0.54</td>
</tr>
<tr>
<td>1:E:590:TYR:OH</td>
<td>1:E:602:SER:O</td>
<td>2.24</td>
<td>0.54</td>
</tr>
<tr>
<td>1:F:106:THR:O</td>
<td>1:F:106:THR:HG22</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>1:F:479:VAL:HG22</td>
<td>1:F:523:ARG:HA</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:334:ARG:NH1</td>
<td>1:D:402:GLN:HB3</td>
<td>2.21</td>
<td>0.54</td>
</tr>
<tr>
<td>1:E:368:LEU:HD22</td>
<td>1:E:379:ALA:HB2</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>1:F:157:ILE:O</td>
<td>1:F:161:THR:HG23</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:F:276:SER:O</td>
<td>1:F:280:SER:CB</td>
<td>2.55</td>
<td>0.54</td>
</tr>
<tr>
<td>1:F:432:LEU:HD11</td>
<td>1:F:434:ASN:O</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:F:435:LEU:HD11</td>
<td>1:F:469:SER:OG</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:12:GLU:HB2</td>
<td>1:D:20:VAL:HG11</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:E:367:MET:O</td>
<td>1:E:370:MET:HG2</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:71:LEU:HD13</td>
<td>1:D:117:TRP:CE3</td>
<td>2.43</td>
<td>0.54</td>
</tr>
<tr>
<td>1:E:380:VAL:HG21</td>
<td>1:E:388:ILE:HD12</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:E:59:LEU:HD12</td>
<td>1:E:94:ARG:O</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:F:272:GLY:H</td>
<td>1:F:276:SER:CB</td>
<td>2.21</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:F:39:ARG:O</td>
<td>1:F:43:LEU:HB2</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:24:PHE:HD1</td>
<td>1:D:185:ASN:HB2</td>
<td>1.72</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:35:LEU:O</td>
<td>1:E:39:ARG:HG3</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:508:GLN:HB3</td>
<td>1:E:515:HIS:NE2</td>
<td>2.23</td>
<td>0.53</td>
</tr>
<tr>
<td>1:F:641:MET:HG3</td>
<td>1:F:645:THR:HG23</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:243:VAL:HG12</td>
<td>1:D:245:GLU:HG2</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:349:CYS:HB2</td>
<td>1:C:496:LYS:O</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:78:GLN:HG3</td>
<td>1:C:123:TRP:CH2</td>
<td>2.43</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:217:ARG:O</td>
<td>1:E:221:GLN:HG3</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:655:TRP:O</td>
<td>1:E:658:LYS:HG2</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:517:ILE:CG1</td>
<td>1:B:518:GLY:H</td>
<td>2.18</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:584:GLU:HG3</td>
<td>1:F:383:ASN:HB2</td>
<td>1.91</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:14:ASN:HD21</td>
<td>1:D:18:THR:HG23</td>
<td>1.74</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:215:PHE:HB2</td>
<td>1:D:249:PRO:O</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:367:MET:O</td>
<td>1:B:370:MET:HG2</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:393:THR:OG1</td>
<td>1:E:546:PHE:CE1</td>
<td>2.61</td>
<td>0.53</td>
</tr>
<tr>
<td>1:C:358:GLU:HG2</td>
<td>1:C:359:LYS:H</td>
<td>1.72</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:550:GLN:CD</td>
<td>1:D:550:GLN:H</td>
<td>2.11</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:349:CYS:O</td>
<td>1:B:497:GLN:HG2</td>
<td>2.08</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:267:ALA:HB2</td>
<td>1:F:288:TRP:HZ3</td>
<td>1.74</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:583:TYR:CZ</td>
<td>1:D:587:LEU:HD11</td>
<td>2.44</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:601:VAL:O</td>
<td>1:E:601:VAL:HG12</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:342:VAL:HG12</td>
<td>1:A:344:PHE:HD1</td>
<td>1.75</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:349:CYS:O</td>
<td>1:A:497:GLN:HG2</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:232:GLY:N</td>
<td>1:C:238:GLU:HA</td>
<td>2.24</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:362:HIS:O</td>
<td>1:C:365:ALA:HB3</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:56:PRO:O</td>
<td>1:F:57:HIS:CG</td>
<td>2.62</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:207:LEU:C</td>
<td>1:A:207:LEU:HD12</td>
<td>2.30</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:362:HIS:O</td>
<td>1:B:365:ALA:HB3</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:71:LEU:HD13</td>
<td>1:B:117:TRP:CH2</td>
<td>2.45</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:130:GLN:HB3</td>
<td>1:D:141:LEU:HD13</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:486:ILE:CG1</td>
<td>1:D:515:HIS:HB2</td>
<td>2.39</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:111:ALA:O</td>
<td>1:E:115:GLN:HG3</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:523:ARG:HH22</td>
<td>1:C:571:ARG:HH22</td>
<td>1.56</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:285:ARG:NH2</td>
<td>1:C:628:GLU:OE2</td>
<td>2.42</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:290:VAL:O</td>
<td>1:C:424:LEU:HD12</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:221:GLN:HG2</td>
<td>1:E:227:MET:HG2</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:444:LEU:HD21</td>
<td>1:E:457:VAL:HG21</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:377:ALA:HB1</td>
<td>1:F:398:ILE:HD11</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:463:HIS:HA</td>
<td>1:F:568:CYS:HB2</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:207:LEU:HD21</td>
<td>1:B:220:LEU:HD13</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:168:LEU:HG</td>
<td>1:C:200:LEU:HD13</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:217:ARG:HB2</td>
<td>1:D:240:LEU:HD11</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:489:THR:HB</td>
<td>1:F:490:PRO:HD2</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:353:GLN:HA</td>
<td>1:F:500:CYS:HB2</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:122:PRO:HG2</td>
<td>1:A:123:TRP:CE3</td>
<td>2.44</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:259:ARG:HB3</td>
<td>1:A:633:GLN:CD</td>
<td>2.31</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:121:ALA:O</td>
<td>1:B:125:GLU:HG3</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:492:LEU:O</td>
<td>1:B:493:ALA:CB</td>
<td>2.58</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:648:ALA:O</td>
<td>1:B:653:ARG:HD3</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:368:LEU:CD1</td>
<td>1:D:379:ALA:HB2</td>
<td>2.40</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:583:TYR:CZ</td>
<td>1:C:587:LEU:HD11</td>
<td>2.45</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:620:LEU:HG</td>
<td>2:C:901:FAD:O2</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:517:ILE:HG12</td>
<td>1:D:518:GLY:N</td>
<td>2.21</td>
<td>0.51</td>
</tr>
<tr>
<td>1:E:97:PHE:CE2</td>
<td>1:E:99:SER:HB2</td>
<td>2.46</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:156:ASP:HB3</td>
<td>1:A:159:GLU:HB2</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:182:PRO:O</td>
<td>1:D:186:PRO:HB3</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:E:191:GLN:HG3</td>
<td>1:E:195:ASN:HD21</td>
<td>1.74</td>
<td>0.51</td>
</tr>
<tr>
<td>1:E:255:PRO:HB2</td>
<td>1:E:602:SER:HA</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:620:LEU:HB2</td>
<td>2:B:901:FAD:O2</td>
<td>2.09</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:620:LEU:HG</td>
<td>2:C:901:FAD:C2</td>
<td>2.40</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:286:ARG:HD3</td>
<td>1:C:637:GLU:OE1</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:20:VAL:HG13</td>
<td>1:D:21:SER:N</td>
<td>2.25</td>
<td>0.51</td>
</tr>
<tr>
<td>1:F:221:GLN:HG2</td>
<td>1:F:227:MET:HG3</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:35:LEU:C</td>
<td>1:A:35:LEU:HD23</td>
<td>2.30</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:299:PRO:HD3</td>
<td>1:C:428:TYR:CZ</td>
<td>2.46</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:343:LYS:O</td>
<td>1:D:414:ASN:ND2</td>
<td>2.42</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:484:SER:HB2</td>
<td>1:D:517:ILE:HG22</td>
<td>1.91</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:311:LEU:HD23</td>
<td>1:A:348:TRP:CZ3</td>
<td>2.46</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:322:LEU:HA</td>
<td>1:A:574:LEU:HD21</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:207:LEU:C</td>
<td>1:B:207:LEU:HD12</td>
<td>2.31</td>
<td>0.51</td>
</tr>
<tr>
<td>1:F:530:TYR:HE2</td>
<td>1:F:532:GLU:HG3</td>
<td>1.74</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:385:VAL:HG12</td>
<td>1:D:391:VAL:O</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>1:E:97:PHE:HE2</td>
<td>1:E:99:SER:HB2</td>
<td>1.75</td>
<td>0.51</td>
</tr>
<tr>
<td>1:F:284:LEU:HD11</td>
<td>1:F:290:VAL:HB</td>
<td>1.93</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:F:405:TRP:CD1</td>
<td>1:F:507:PRO:HD2</td>
<td>2.45</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:256:TRP:CD1</td>
<td>1:B:656:VAL:HG11</td>
<td>2.46</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:207:LEU:HD12</td>
<td>1:D:207:LEU:C</td>
<td>2.30</td>
<td>0.51</td>
</tr>
<tr>
<td>1:E:121:ALA:N</td>
<td>1:E:122:PRO:HD2</td>
<td>2.26</td>
<td>0.51</td>
</tr>
<tr>
<td>1:F:275:ALA:O</td>
<td>1:F:279:LEU:HB2</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:211:THR:O</td>
<td>1:A:240:LEU:HB2</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:320:GLU:O</td>
<td>1:C:321:ALA:HB3</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:504:TYR:CE2</td>
<td>1:C:518:GLY:HA3</td>
<td>2.46</td>
<td>0.51</td>
</tr>
<tr>
<td>1:E:259:ARG:HB3</td>
<td>1:E:633:GLN:CD</td>
<td>2.31</td>
<td>0.51</td>
</tr>
<tr>
<td>1:F:278:LEU:HD12</td>
<td>1:F:623:ALA:HB1</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:177:LEU:O</td>
<td>1:B:209:THR:HG23</td>
<td>2.10</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:657:ARG:O</td>
<td>1:C:657:ARG:HD3</td>
<td>2.10</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:518:GLY:HA3</td>
<td>1:D:538:ASN:ND2</td>
<td>2.26</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:122:PRO:HG2</td>
<td>1:F:123:TRP:CE3</td>
<td>2.46</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:267:ALA:HB2</td>
<td>1:F:288:TRP:CZ3</td>
<td>2.45</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:523:ARG:HG2</td>
<td>1:A:523:ARG:HH11</td>
<td>1.76</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:474:LEU:HD22</td>
<td>1:A:576:MET:HE1</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:269:ILE:HG12</td>
<td>1:E:458:VAL:HG13</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:508:GLN:O</td>
<td>1:E:510:PRO:HD3</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:342:VAL:HG13</td>
<td>1:B:414:ASN:HB3</td>
<td>1.92</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:515:HIS:CD2</td>
<td>1:E:515:HIS:N</td>
<td>2.80</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:40:TYR:HE1</td>
<td>1:F:230:ARG:NH1</td>
<td>2.09</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:380:VAL:HG21</td>
<td>1:F:399:THR:OG1</td>
<td>2.10</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:458:VAL:HG22</td>
<td>1:C:610:PHE:HB2</td>
<td>1.94</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:29:PHE:CG</td>
<td>1:D:117:TRP:HH2</td>
<td>2.30</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:383:ASN:OD1</td>
<td>1:E:383:ASN:N</td>
<td>2.44</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:286:ARG:HG11</td>
<td>1:A:286:ARG:HG3</td>
<td>1.76</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:217:ARG:HB2</td>
<td>1:E:240:LEU:CD2</td>
<td>2.37</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:372:LEU:H</td>
<td>1:E:372:LEU:HD12</td>
<td>1.76</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:39:ARG:O</td>
<td>1:B:43:LEU:HB2</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:104:PRO:HG3</td>
<td>1:D:154:PHE:CD1</td>
<td>2.47</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:98:ILE:CD1</td>
<td>1:D:168:LEU:HD11</td>
<td>2.42</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:389:THR:O</td>
<td>1:D:495:LEU:HD12</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:530:TYR:C</td>
<td>1:D:530:TYR:CD2</td>
<td>2.84</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:114:HIS:ND1</td>
<td>1:F:115:GLN:HG3</td>
<td>2.27</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:518:GLY:O</td>
<td>1:A:519:ALA:CB</td>
<td>2.59</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:517:ILE:HD12</td>
<td>1:D:555:VAL:HG11</td>
<td>1.92</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:485:HIS:CE1</td>
<td>1:D:563:ARG:HG2</td>
<td>2.47</td>
<td>0.50</td>
</tr>
<tr>
<td>1:F:131:TRP:CD2</td>
<td>1:F:132:PRO:HD2</td>
<td>2.47</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:121:ALA:N</td>
<td>1:A:122:PRO:HD2</td>
<td>2.27</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:596:GLN:HE21</td>
<td>1:A:596:GLN:HA</td>
<td>1.76</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:110:LEU:HG</td>
<td>1:B:114:HIS:CE1</td>
<td>2.47</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:354:LEU:HD23</td>
<td>1:C:346:PHE:HZ</td>
<td>1.77</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:435:LEU:HB3</td>
<td>1:D:444:LEU:HD23</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:F:325:PHE:O</td>
<td>1:F:329:ALA:CB</td>
<td>2.60</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:418:LEU:HD11</td>
<td>1:C:422:GLN:HE21</td>
<td>1.77</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:97:PHE:O</td>
<td>1:C:150:LEU:HD12</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:485:HIS:NE2</td>
<td>1:D:563:ARG:HG2</td>
<td>2.26</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:177:LEU:O</td>
<td>1:E:209:THR:HG23</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:577:VAL:HA</td>
<td>1:E:611:MET:O</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:122:PRO:HG2</td>
<td>1:B:123:TRP:CZ3</td>
<td>2.48</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:461:ASN:HB2</td>
<td>2:B:901:FAD:C8A</td>
<td>2.42</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:435:LEU:HD12</td>
<td>1:D:435:LEU:H</td>
<td>1.77</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:236:LYS:HD3</td>
<td>1:E:237:ARG:N</td>
<td>2.27</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:303:ALA:HB1</td>
<td>2:B:901:FAD:H3'</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:391:VAL:HG11</td>
<td>1:B:551:TRP:CZ2</td>
<td>2.48</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:112:LEU:O</td>
<td>1:C:115:GLN:HB2</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:583:TYR:CE2</td>
<td>1:C:587:LEU:HD11</td>
<td>2.47</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:22:ARG:O</td>
<td>1:D:23:ASP:C</td>
<td>2.49</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:340:LEU:HD12</td>
<td>1:E:341:PRO:HD2</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:625:LEU:O</td>
<td>1:C:629:ILE:HG13</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:184:LYS:O</td>
<td>1:D:185:ASN:HB3</td>
<td>2.11</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:56:PRO:O</td>
<td>1:D:57:HIS:CG</td>
<td>2.66</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:274:ILE:HG23</td>
<td>1:E:275:ALA:N</td>
<td>2.27</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:484:SER:CB</td>
<td>1:E:538:ASN:HD22</td>
<td>2.26</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:517:ILE:HG23</td>
<td>1:E:518:GLY:N</td>
<td>2.26</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:50:VAL:O</td>
<td>1:D:53:PRO:HG2</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:467:ARG:O</td>
<td>1:F:374:ALA:HB1</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:315:LEU:HD13</td>
<td>1:E:372:LEU:HD22</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:483:VAL:HG21</td>
<td>1:E:504:TYR:OH</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:66:GLY:HA2</td>
<td>1:E:100:PHE:O</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:F:435:LEU:HD13</td>
<td>1:F:470:GLN:NE2</td>
<td>2.27</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:133:MET:HE1</td>
<td>1:C:376:LEU:HA</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:504:TYR:CE2</td>
<td>1:B:519:ALA:HB2</td>
<td>2.48</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:492:LEU:O</td>
<td>1:D:493:ALA:CB</td>
<td>2.60</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:486:ILE:HD13</td>
<td>1:E:555:VAL:HG13</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:110:LEU:HD22</td>
<td>1:D:131:TRP:CD2</td>
<td>2.48</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:484:SER:HB2</td>
<td>1:D:517:ILE:CG2</td>
<td>2.43</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:259:ARG:NH2</td>
<td>1:D:646:LEU:O</td>
<td>2.45</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:324:ARG:NH1</td>
<td>1:E:324:ARG:CG</td>
<td>2.64</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:121:ALA:N</td>
<td>1:C:122:PRO:HD2</td>
<td>2.28</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:10:ASN:N</td>
<td>1:D:10:ASN:HD22</td>
<td>2.11</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:576:MET:HE2</td>
<td>1:D:651:PRO:HA</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:539:ARG:HG2</td>
<td>1:E:543:ILE:HD13</td>
<td>1.94</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:367:MET:HE1</td>
<td>1:B:398:ILE:HD13</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:570:THR:HG21</td>
<td>1:C:576:MET:HE2</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:102:LYS:HA</td>
<td>1:E:155:GLY:O</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:334:ARG:NH1</td>
<td>1:A:338:ASP:OD2</td>
<td>2.46</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:408:PRO:HB3</td>
<td>1:C:620:LEU:HD21</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:F:623:ALA:HB3</td>
<td>1:F:624:PRO:HD3</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:F:303:ALA:N</td>
<td>2:F:901:FAD:O2A</td>
<td>2.46</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:111:ALA:HA</td>
<td>1:A:128:GLN:NE2</td>
<td>2.28</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:305:GLY:O</td>
<td>1:A:563:ARG:HD2</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:285:ARG:HH22</td>
<td>1:B:286:ARG:NH2</td>
<td>2.11</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:35:LEU:HD22</td>
<td>1:C:39:ARG:NH2</td>
<td>2.27</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:270:ILE:HG12</td>
<td>1:D:432:LEU:HD22</td>
<td>1.94</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:165:ASP:HA</td>
<td>1:E:643:ALA:HB2</td>
<td>1.94</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:595:GLU:HA</td>
<td>1:E:477:TYR:CB</td>
<td>2.27</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:37:GLU:HB2</td>
<td>1:C:233:PHE:CZ</td>
<td>2.47</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:370:MET:HG3</td>
<td>1:D:372:LEU:HD21</td>
<td>1.94</td>
<td>0.48</td>
</tr>
<tr>
<td>4:C:693:HOH:O</td>
<td>1:F:102:LYS:HE3</td>
<td>2.12</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:36:GLU:H</td>
<td>1:A:36:GLU:CD</td>
<td>2.16</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:349:CYS:HB2</td>
<td>1:A:496:LYS:O</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:575:PRO:O</td>
<td>1:B:653:ARG:NH2</td>
<td>2.46</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:207:LEU:HD12</td>
<td>1:D:208:ALA:N</td>
<td>2.28</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:596:GLN:HG2</td>
<td>1:E:599:GLU:HG2</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:F:197:MET:O</td>
<td>1:F:201:ALA:HB2</td>
<td>2.12</td>
<td>0.48</td>
</tr>
<tr>
<td>1:F:299:PRO:HG2</td>
<td>1:F:413:ARG:HG3</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:138:CYS:HB2</td>
<td>1:C:153:TRP:CE2</td>
<td>2.48</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:612:PHE:CE2</td>
<td>1:E:615:LEU:HD21</td>
<td>2.45</td>
<td>0.48</td>
</tr>
<tr>
<td>1:F:486:ILE:HD12</td>
<td>1:F:555:VAL:HG22</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:F:86:ALA:HB3</td>
<td>1:F:87:HIS:HD2</td>
<td>1.78</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:329:ALA:HA</td>
<td>1:C:625:LEU:HD22</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:322:LEU:HA</td>
<td>1:E:574:LEU:HD21</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:557:VAL:O</td>
<td>1:E:557:VAL:HG12</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:501:TYR:CD2</td>
<td>1:A:501:TYR:N</td>
<td>2.82</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:535:GLN:HG3</td>
<td>1:E:557:VAL:HG12</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:F:292:LEU:HB3</td>
<td>1:F:426:ILE:HG12</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:110:LEU:HD22</td>
<td>1:C:131:TRP:CD2</td>
<td>2.49</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:24:PHE:CD1</td>
<td>1:D:185:ASN:HB2</td>
<td>2.49</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:355:GLY:HA3</td>
<td>1:D:361:GLN:HG3</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:3:HIS:CD2</td>
<td>1:D:3:HIS:O</td>
<td>2.67</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:484:SER:OG</td>
<td>1:E:538:ASN:ND2</td>
<td>2.47</td>
<td>0.47</td>
</tr>
<tr>
<td>1:F:463:HIS:CD2</td>
<td>1:F:464:GLN:HG3</td>
<td>2.49</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:428:TYR:O</td>
<td>1:C:429:GLN:HB2</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:43:LEU:HB3</td>
<td>1:C:49:GLU:OE2</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:505:LEU:HD12</td>
<td>1:C:506:THR:H</td>
<td>1.79</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:410:GLU:HG2</td>
<td>1:D:414:ASN:HD21</td>
<td>1.78</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:144:ASP:O</td>
<td>1:E:145:GLU:HG2</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:180:PHE:HB2</td>
<td>1:E:185:ASN:HB3</td>
<td>1.95</td>
<td>0.47</td>
</tr>
<tr>
<td>1:F:475:PRO:HG2</td>
<td>1:F:576:MET:CE</td>
<td>2.43</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:181:ALA:O</td>
<td>1:D:183:ALA:O</td>
<td>2.32</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:550:GLN:HG2</td>
<td>1:D:551:TRP:H</td>
<td>1.78</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:399:THR:O</td>
<td>1:E:401:PRO:HD3</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:F:227:MET:HE3</td>
<td>1:F:242:GLY:HA3</td>
<td>1.94</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:314:LEU:HD13</td>
<td>1:A:618:ARG:NH2</td>
<td>2.28</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:121:ALA:N</td>
<td>1:B:122:PRO:HD2</td>
<td>2.29</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:485:HIS:HE1</td>
<td>4:B:674:HOH:O</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:130:GLN:HB3</td>
<td>1:C:141:LEU:HD13</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:271:GLY:CA</td>
<td>1:C:292:LEU:HD11</td>
<td>2.29</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:391:VAL:HG22</td>
<td>1:E:551:TRP:CD1</td>
<td>2.50</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Continued on next page...
Interatomic distances and clashes

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:411:LEU:O</td>
<td>1:C:415:VAL:HG23</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>2:C:901:FAD:H1'2</td>
<td>2:C:901:FAD:H9</td>
<td>1.71</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:342:VAL:HG13</td>
<td>1:C:414:ASN:HB3</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:F:492:LEU:C</td>
<td>1:F:494:GLU:H</td>
<td>2.17</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:181:ALA:O</td>
<td>1:C:183:ALA:O</td>
<td>2.33</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:501:TYR:CD1</td>
<td>1:C:503:GLY:N</td>
<td>2.82</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:259:ARG:NH1</td>
<td>1:D:577:VAL:O</td>
<td>2.47</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:168:LEU:HG</td>
<td>1:E:200:LEU:HD22</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:299:PRO:HG3</td>
<td>1:E:428:TYR:CE2</td>
<td>2.50</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:380:VAL:HG22</td>
<td>1:B:384:ALA:HB1</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:78:GLN:HG3</td>
<td>1:B:123:TRP:CH2</td>
<td>2.49</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:140:ARG:C</td>
<td>1:D:141:LEU:HD23</td>
<td>2.35</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:248:LEU:HA</td>
<td>1:D:249:PRO:HG3</td>
<td>1.75</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:175:TRP:HB2</td>
<td>1:A:207:LEU:CB</td>
<td>2.45</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:170:GLN:O</td>
<td>1:B:202:ARG:HD3</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:271:GLY:O</td>
<td>2:C:901:FAD:H1B</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:F:256:TRP:HB2</td>
<td>1:F:656:VAL:HG11</td>
<td>1.96</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:39:ARG:HA</td>
<td>1:B:43:LEU:HD22</td>
<td>1.95</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:356:TRP:CD2</td>
<td>1:D:357:ASP:HB2</td>
<td>2.49</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:256:TRP:CH2</td>
<td>1:F:597:LYS:HB3</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:317:LYS:HE3</td>
<td>1:D:318:HIS:HE1</td>
<td>1.81</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:275:ALA:HB2</td>
<td>1:E:615:LEU:HD11</td>
<td>1.96</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:475:PRO:HG2</td>
<td>1:F:576:MET:HE3</td>
<td>1.95</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:483:VAL:HG23</td>
<td>2:F:901:FAD:HM72</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:356:TRP:CZ2</td>
<td>1:B:502:ASP:HB2</td>
<td>2.50</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:590:TYR:CB</td>
<td>1:B:659:LEU:HD23</td>
<td>2.44</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:642:ASP:OD1</td>
<td>1:B:645:THR:HG23</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:475:PRO:HG2</td>
<td>1:C:576:MET:HE1</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:343:LYS:HE2</td>
<td>1:F:414:ASN:HD21</td>
<td>1.81</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:40:TYR:HE1</td>
<td>1:F:230:ARG:HH12</td>
<td>1.64</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:269:ILE:O</td>
<td>1:C:292:LEU:HD12</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:307:ARG:NH2</td>
<td>1:A:485:HIS:HB3</td>
<td>2.30</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:306:ASN:HB2</td>
<td>4:C:680:HOH:O</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:489:THR:HB</td>
<td>1:F:490:PRO:CD</td>
<td>2.46</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:486:ILE:HG13</td>
<td>1:F:515:HIS:HB2</td>
<td>1.96</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:603:ALA:N</td>
<td>1:F:604:PRO:HG3</td>
<td>2.31</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:175:TRP:HB2</td>
<td>1:A:207:LEU:HB3</td>
<td>1.96</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:66:GLY:HA2</td>
<td>1:A:100:PHE:O</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:177:LEU:CB</td>
<td>1:B:209:THR:HG23</td>
<td>2.40</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:64:GLU:OE2</td>
<td>1:B:72:ASN:HB2</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:357:ASP:O</td>
<td>1:C:361:GLN:HB2</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:390:GLY:HA3</td>
<td>1:C:494:GLU:O</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:353:GLN:HG2</td>
<td>1:D:398:ILE:CG2</td>
<td>2.45</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:461:ASN:HB2</td>
<td>2:E:901:FAD:C8A</td>
<td>2.45</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:399:THR:O</td>
<td>1:F:401:PRO:HD3</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:359:LYS:O</td>
<td>1:A:363:LYS:HG2</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:619:GLY:HA3</td>
<td>2:A:901:FAD:O2'</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:61:VAL:HG22</td>
<td>1:C:96:HIS:HB3</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:41:VAL:HG22</td>
<td>1:D:239:MET:CE</td>
<td>2.45</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:307:ARG:HG3</td>
<td>1:D:485:HIS:CE1</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:83:PHE:CE2</td>
<td>1:E:92:LEU:HD23</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:391:VAL:CG1</td>
<td>1:B:551:TRP:C2Z2</td>
<td>2.99</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:416:LEU:O</td>
<td>1:C:420:GLN:HG3</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:463:HIS:HA</td>
<td>1:C:568:CYS:HB2</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:121:ALA:N</td>
<td>1:F:122:PRO:HD2</td>
<td>2.30</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:340:LEU:HD12</td>
<td>1:B:341:PRO:HD2</td>
<td>1.97</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:37:GLU:HG3</td>
<td>1:B:233:PHE:CD2</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:71:LEU:HD13</td>
<td>1:B:117:TRP:C2Z2</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:29:PHE:CD2</td>
<td>1:D:117:TRP:CH2</td>
<td>3.04</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:430:TYR:HB3</td>
<td>1:D:446:PHE:CD1</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:256:TRP:O</td>
<td>1:E:603:ALA:HB2</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:256:TRP:CD1</td>
<td>1:E:656:VAL:HG11</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:F:277:ALA:HB1</td>
<td>1:F:415:VAL:HG12</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:315:LEU:HD12</td>
<td>1:B:367:MET:HE2</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:571:ARG:O</td>
<td>1:A:572:ASP:OD1</td>
<td>2.35</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:177:LEU:O</td>
<td>1:B:209:THR:CG2</td>
<td>2.65</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:229:LYS:HD3</td>
<td>1:B:238:GLU:OE2</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:483:VAL:HG23</td>
<td>2:B:901:FAD:HM72</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:64:GLU:CB</td>
<td>1:C:176:PHE:HB2</td>
<td>2.46</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:349:CY5:HB2</td>
<td>1:D:496:LYS:O</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:52:PHE:N</td>
<td>1:D:53:PRO:HD2</td>
<td>2.31</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:587:LEU:HD21</td>
<td>1:D:658:LYS:HZ1</td>
<td>1.81</td>
<td>0.45</td>
</tr>
<tr>
<td>1:F:255:PRO:O</td>
<td>1:F:258:ASN:HB2</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:428:TYR:O</td>
<td>1:A:429:GLN:HB2</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:504:TYR:HE2</td>
<td>1:D:519:ALA:HB2</td>
<td>1.81</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:480:ALA:HB2</td>
<td>1:E:525:SER:O</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:517:ILE:HG23</td>
<td>1:E:538:ASN:HB3</td>
<td>1.98</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:F:114:HIS:CD2</td>
<td>1:F:121:ALA:HB1</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:237:ARG:HH21</td>
<td>1:D:509:GLU:HG2</td>
<td>1.81</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:518:GLY:CA</td>
<td>1:B:538:ASN:CG</td>
<td>2.84</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:618:ARG:HG3</td>
<td>1:C:618:ARG:NH1</td>
<td>2.26</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:13:PHE:O</td>
<td>1:D:14:ASN:CB</td>
<td>2.65</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:479:VAL:O</td>
<td>1:D:567:ARG:HG2</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:446:PHE:HB2</td>
<td>1:E:450:GLN:HB2</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:593:LEU:HA</td>
<td>1:A:593:LEU:HD12</td>
<td>1.74</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:368:LEU:HD13</td>
<td>1:B:379:ALA:HB2</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:42:PHE:CZ</td>
<td>1:C:178:ASP:HB2</td>
<td>2.52</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:586:THR:HA</td>
<td>1:C:604:PRO:HG2</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:437:ARG:HD2</td>
<td>1:D:441:CYS:O</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:489:THR:HB</td>
<td>1:D:490:PRO:CD</td>
<td>2.44</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:78:GLN:HG3</td>
<td>1:E:123:TRP:CH2</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:164:LEU:HD13</td>
<td>1:B:200:LEU:HD11</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:191:GLN:HG3</td>
<td>1:E:195:ASN:ND2</td>
<td>2.31</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:518:GLY:HA3</td>
<td>1:E:538:ASN:ND2</td>
<td>2.32</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:596:GLN:CG</td>
<td>1:E:599:GLU:HG2</td>
<td>2.47</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:355:GLY:HA2</td>
<td>1:B:360:SER:HB2</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:258:ASN:HD22</td>
<td>1:B:602:SER:HB2</td>
<td>1.82</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:568:CYS:O</td>
<td>1:C:614:ALA:HA</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:384:ALA:O</td>
<td>1:D:387:GLN:HG2</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:183:ALA:O</td>
<td>1:E:184:LYS:HB2</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:159:GLU:OE2</td>
<td>1:D:190:THR:HB</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:122:PRO:HG2</td>
<td>1:C:123:TRP:CE3</td>
<td>2.52</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:501:TYR:CE2</td>
<td>1:D:542:LEU:HD13</td>
<td>2.52</td>
<td>0.45</td>
</tr>
<tr>
<td>1:F:473:THR:HG21</td>
<td>1:F:583:TYR:CD2</td>
<td>2.52</td>
<td>0.45</td>
</tr>
<tr>
<td>1:F:473:THR:HG21</td>
<td>1:F:583:TYR:HD2</td>
<td>1.82</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:655:TRP:O</td>
<td>1:D:659:LEU:HB2</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:9:ALA:O</td>
<td>1:D:10:ASN:CB</td>
<td>2.65</td>
<td>0.45</td>
</tr>
<tr>
<td>1:F:133:MET:HA</td>
<td>1:F:134:PRO:HD3</td>
<td>1.78</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:372:LEU:HB3</td>
<td>1:A:373:PRO:HD2</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:593:LEU:O</td>
<td>1:A:594:ALA:C</td>
<td>2.55</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:475:PRO:HG2</td>
<td>1:B:576:MET:CE</td>
<td>2.46</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:375:GLU:O</td>
<td>1:C:401:PRO:HG2</td>
<td>2.16</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:11:LEU:HD11</td>
<td>1:D:20:VAL:O</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:308:GLN:NE2</td>
<td>1:D:509:ASN:HB2</td>
<td>2.33</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:269:ILE:HG12</td>
<td>1:E:458:VAL:CG1</td>
<td>2.47</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:648:ALA:O</td>
<td>1:E:653:ARG:HD3</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:221:GLN:CG</td>
<td>1:F:227:MET:HG3</td>
<td>2.47</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:430:TYR:HD1</td>
<td>1:E:446:PHE:CD2</td>
<td>2.34</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:484:SER:HB2</td>
<td>1:F:517:ILE:CG2</td>
<td>2.47</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:650:ASN:OD1</td>
<td>1:F:651:PRO:HD2</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:475:PRO:HO2</td>
<td>1:F:654:LEU:HD12</td>
<td>1.98</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:550:GLN:NE2</td>
<td>1:A:553:LYS:CE</td>
<td>2.79</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:256:TRP:O</td>
<td>1:B:603:ALA:HB2</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:435:LEU:HD11</td>
<td>1:B:444:LEU:HD22</td>
<td>1.97</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:313:PRO:HD3</td>
<td>1:D:330:PHE:CE</td>
<td>2.51</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:3:HIS:O</td>
<td>1:D:4:TYR:HB3</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:110:LEU:HG</td>
<td>1:E:114:HIS:CE1</td>
<td>2.53</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:86:ALA:HB3</td>
<td>1:A:87:HIS:CD2</td>
<td>2.52</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:458:VAL:HG22</td>
<td>1:D:610:PHE:HB2</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:656:VAL:O</td>
<td>1:F:660:LEU:HG</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:36:GLU:OE1</td>
<td>1:D:36:GLU:HA</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:260:THR:HB</td>
<td>1:E:579:ASN:ND2</td>
<td>2.32</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:595:GLU:CA</td>
<td>1:E:477:TYR:HB3</td>
<td>2.28</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:656:VAL:O</td>
<td>1:A:660:LEU:HG</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:584:GLU:CG</td>
<td>1:F:381:GLU:HB3</td>
<td>2.46</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:22:ARG:HA</td>
<td>1:D:22:ARG:HD2</td>
<td>1.84</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:551:TRP:O</td>
<td>1:E:554:GLU:HB2</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:596:GLN:HE21</td>
<td>1:E:599:GLU:HG3</td>
<td>1.83</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:584:GLU:CD</td>
<td>1:F:381:GLU:HB3</td>
<td>2.37</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:519:ALA:HB3</td>
<td>1:C:538:ASN:CG</td>
<td>2.34</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:545:CYS:C</td>
<td>1:C:547:PRO:HD3</td>
<td>2.38</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:4:TYR:CD2</td>
<td>1:D:5:SER:N</td>
<td>2.85</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:164:LEU:HD13</td>
<td>1:E:168:LEU:HD23</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:265:ARG:HD3</td>
<td>1:E:265:ARG:HA</td>
<td>1.78</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:256:TRP:HD1</td>
<td>1:E:656:VAL:HG11</td>
<td>1.83</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:177:LEU:HD22</td>
<td>1:F:189:TRP:CE3</td>
<td>2.53</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:625:LEU:O</td>
<td>1:F:629:ILE:HG12</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:286:ARG:NH1</td>
<td>1:A:286:ARG:HG3</td>
<td>2.33</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:381:GLU:O</td>
<td>1:A:385:VAL:HG23</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:650:ASN:HA</td>
<td>1:A:651:PRO:HD3</td>
<td>1.86</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:112:LEU:O</td>
<td>1:B:115:GLN:HB2</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:486:ILE:HD12</td>
<td>1:B:555:VAL:HG13</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:444:LEU:HD21</td>
<td>1:C:457:VAL:HG21</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:501:TYR:CE2</td>
<td>1:C:542:LEU:HD13</td>
<td>2.53</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:170:GLN:HA</td>
<td>1:D:201:ALA:O</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:29:PHE:CG</td>
<td>1:D:117:TRP:CH2</td>
<td>3.06</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:391:VAL:HG13</td>
<td>1:D:392:ALA:N</td>
<td>2.33</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:100:PHE:CG</td>
<td>1:F:157:ILE:HG13</td>
<td>2.52</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:629:ILE:HG23</td>
<td>1:C:639:ILE:CG2</td>
<td>2.48</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:441:CYS:HB2</td>
<td>1:D:454:HIS:O</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:576:MET:N</td>
<td>1:F:614:ALA:HB3</td>
<td>2.30</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:381:GLU:OE1</td>
<td>1:C:381:GLU:N</td>
<td>2.50</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:356:TRP:CE3</td>
<td>1:D:357:ASP:HB2</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:411:LEU:O</td>
<td>1:D:415:VAL:HG23</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:191:GLN:OE1</td>
<td>1:E:194:PHE:HD2</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:265:ARG:HD3</td>
<td>1:A:265:ARG:HA</td>
<td>1.80</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:551:TRP:O</td>
<td>1:A:554:GLU:HB2</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:250:LEU:HA</td>
<td>1:B:251:PRO:HD3</td>
<td>1.74</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:315:LEU:HD12</td>
<td>1:B:367:MET:CE</td>
<td>2.49</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:189:TRP:CD1</td>
<td>1:C:189:TRP:N</td>
<td>2.86</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:603:ALA:HA</td>
<td>1:D:604:PRO:HD3</td>
<td>1.59</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:354:LEU:CD2</td>
<td>1:E:393:THR:HG21</td>
<td>2.48</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:144:ASP:C</td>
<td>1:F:145:GLU:HG2</td>
<td>2.39</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:603:ALA:N</td>
<td>1:F:604:PRO:CD</td>
<td>2.81</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:270:ILE:HG22</td>
<td>1:E:461:ASN:HB3</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:265:ARG:HA</td>
<td>1:F:265:ARG:HD3</td>
<td>1.78</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:435:LEU:HD22</td>
<td>1:A:444:LEU:HD22</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:386:GLU:HA</td>
<td>1:B:391:VAL:O</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:69:THR:HG22</td>
<td>1:C:105:LEU:HD11</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:383:ASN:H</td>
<td>1:C:383:ASN:ND2</td>
<td>2.15</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:572:ASP:CG</td>
<td>1:C:653:ARG:NH1</td>
<td>2.71</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:334:ARG:NH1</td>
<td>1:F:334:ARG:HB3</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:479:VAL:HA</td>
<td>1:B:522:HIS:O</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:352:THR:HG23</td>
<td>1:C:497:GLN:OE1</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:270:ILE:N</td>
<td>1:D:270:ILE:HD12</td>
<td>2.34</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:177:LEU:HB3</td>
<td>1:E:209:THR:OG1</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>Atom-1</td>
<td>Atom-2</td>
<td>Interatomic distance (Å)</td>
<td>Clash overlap (Å)</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>1:F:256:TRP:HH2</td>
<td>1:F:597:LYS:HB3</td>
<td>1.83</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:593:LEU:HD13</td>
<td>1:F:600:ALA:HB2</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:642:ASP:CG</td>
<td>1:F:645:THR:HG22</td>
<td>2.39</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:86:ALA:CB</td>
<td>1:F:87:HIS:HD2</td>
<td>2.31</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:411:LEU:O</td>
<td>1:B:415:VAL:HG23</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:355:GLY:HA2</td>
<td>1:D:360:SER:HB2</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:377:ALA:HA</td>
<td>1:D:399:THR:O</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:307:ARG:HE</td>
<td>1:D:563:ARG:NH2</td>
<td>2.16</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:394:ASN:O</td>
<td>1:E:394:ASN:CG</td>
<td>2.57</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:354:LEU:CD1</td>
<td>1:F:393:THR:HG21</td>
<td>2.48</td>
<td>0.43</td>
</tr>
<tr>
<td>2:F:901:FAD:N1</td>
<td>2:F:901:FAD:C2</td>
<td>2.82</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:329:ALA:HB2</td>
<td>1:A:625:LEU:HD23</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:230:ARG:HD3</td>
<td>1:B:239:MET:HE2</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:64:GLU:HG3</td>
<td>1:D:178:ASP:OD1</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:2:LYS:HA</td>
<td>1:D:2:LYS:HD3</td>
<td>1.82</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:353:GLN:CB</td>
<td>1:D:500:CY5:HB2</td>
<td>2.49</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:387:GLN:HG3</td>
<td>1:E:388:ILE:N</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:406:LEU:HD11</td>
<td>1:E:620:LEU:HD13</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:112:LEU:O</td>
<td>1:F:115:GLN:N</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:380:VAL:HG21</td>
<td>1:B:388:ILE:HD13</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:502:ASP:HB2</td>
<td>1:C:545:CY5:SG</td>
<td>2.59</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:438:LYS:HG2</td>
<td>1:E:439:ASP:H</td>
<td>1.84</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:391:VAL:CG</td>
<td>1:A:551:TRP:CE2</td>
<td>3.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:138:CY5:HB2</td>
<td>1:C:153:TRP:CZ2</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:141:LEU:HD12</td>
<td>1:E:150:LEU:HD23</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:105:LEU:HB3</td>
<td>1:F:131:TRP:CZ2</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:274:ILE:HD13</td>
<td>1:A:411:LEU:HD23</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:108:ALA:HB1</td>
<td>1:C:190:THR:HG22</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:339:GLN:O</td>
<td>1:D:339:GLN:HG2</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:508:GLN:HB3</td>
<td>1:E:515:HIS:CD2</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:78:GLN:HG3</td>
<td>1:F:123:TRP:CH2</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:175:TRP:CH2</td>
<td>1:F:197:MET:HG2</td>
<td>2.53</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:581:PRO:HA</td>
<td>1:F:605:VAL:H</td>
<td>1.84</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:43:LEU:N</td>
<td>1:B:43:LEU:CD1</td>
<td>2.82</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:141:LEU:N</td>
<td>1:C:141:LEU:HD23</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:106:THR:CG2</td>
<td>1:F:108:ALA:HB3</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:589:GLU:O</td>
<td>1:A:590:TYR:HB2</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:325:PHE:HB2</td>
<td>1:A:645:TRP:CG2</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:271:GLY:O</td>
<td>2:B:901:FAD:H1B</td>
<td>2.18</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:618:ARG:HG2</td>
<td>1:C:618:ARG:HH11</td>
<td>1.79</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:133:MET:CE</td>
<td>1:D:376:LEU:HB2</td>
<td>2.46</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:272:GLY:H</td>
<td>1:E:276:SER:CB</td>
<td>2.32</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:103:PHE:HA</td>
<td>1:F:104:PRO:HD2</td>
<td>1.83</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:135:LEU:HB2</td>
<td>1:F:139:HIS:CE1</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:279:LEU:HD21</td>
<td>1:F:630:LEU:HB3</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:326:PHE:O</td>
<td>1:C:330:PHE:HB3</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:536:GLN:HB3</td>
<td>1:F:536:GLN:HE21</td>
<td>1.69</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:476:VAL:HG12</td>
<td>1:B:570:THR:HG22</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:619:GLY:HA3</td>
<td>2:C:901:FAD:O2'</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:391:VAL:CG1</td>
<td>1:D:392:ALA:N</td>
<td>2.80</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:43:LEU:N</td>
<td>1:A:43:LEU:HD12</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:299:PRO:HD3</td>
<td>1:B:428:TYR:CZ</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:520:SER:O</td>
<td>1:B:567:ARG:NH2</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:658:LYS:HE3</td>
<td>1:B:659:LEU:CD1</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:584:GLU:HG2</td>
<td>1:F:381:GLU:CB</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:353:GLN:HG2</td>
<td>1:D:398:ILE:HG22</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:56:PRO:HA</td>
<td>1:E:91:GLN:NE2</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:278:LEU:HD22</td>
<td>1:F:336:PHE:CE2</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:342:VAL:HG23</td>
<td>1:F:418:LEU:HD13</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:642:ASP:OD1</td>
<td>1:F:644:SER:HB3</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:602:SER:O</td>
<td>1:C:603:ALA:C</td>
<td>2.58</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:269:ILE:O</td>
<td>1:D:292:LEU:HD12</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:280:SER:O</td>
<td>1:D:284:LEU:HG</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:60:PHE:HB2</td>
<td>1:E:92:LEU:HD11</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>2:F:901:FAD:9</td>
<td>2:F:901:FAD:91'</td>
<td>1.71</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:177:LEU:HB3</td>
<td>1:A:209:THR:HB</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:635:SER:HB2</td>
<td>1:A:637:GLU:HG3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:40:TYR:CD2</td>
<td>1:E:233:PHE:HB2</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:439:ASP:CG</td>
<td>1:E:440:ASP:H</td>
<td>2.23</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:209:THR:HG22</td>
<td>1:F:211:THR:H</td>
<td>1.84</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:392:ALA:O</td>
<td>1:F:551:TRP:CH2</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:486:ILE:CG1</td>
<td>1:F:515:HIS:HB2</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:72:ASN:ND2</td>
<td>1:F:72:ASN:H</td>
<td>2.18</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:282:ALA:O</td>
<td>1:A:286:ARG:NH1</td>
<td>2.53</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:193:LEU:O</td>
<td>1:D:197:MET:HG3</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:349:CYS:O</td>
<td>1:D:497:GLN:HG2</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:550:GLN:OE1</td>
<td>1:D:550:GLN:N</td>
<td>2.48</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:518:GLY:O</td>
<td>1:E:519:ALA:HB3</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:492:LEU:O</td>
<td>1:F:493:ALA:CB</td>
<td>2.68</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:489:THR:O</td>
<td>1:B:492:LEU:O</td>
<td>2.38</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:534:ASP:HA</td>
<td>1:B:537:GLN:HB2</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:620:LEU:CB</td>
<td>2:B:901:FAD:O2</td>
<td>2.67</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:313:PRO:HD3</td>
<td>1:D:330:PHE:CE2</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:31:ASN:OD1</td>
<td>1:D:116:HIS:CE1</td>
<td>2.73</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:313:PRO:HD3</td>
<td>1:D:330:PHE:CE1</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:277:ALA:HB1</td>
<td>1:E:415:VAL:CG1</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:298:ALA:HB1</td>
<td>1:E:299:PRO:HD2</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:450:GLN:HA</td>
<td>1:E:450:GLN:OE1</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:484:SER:HB2</td>
<td>1:E:517:ILE:HG22</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:144:ASP:HB3</td>
<td>1:F:147:ARG:HB3</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:55:HIS:NE2</td>
<td>1:A:57:HIS:HB2</td>
<td>2.35</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:340:LEU:HD12</td>
<td>1:C:341:PRO:HD2</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:144:ASP:O</td>
<td>1:D:147:ARG:HB2</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:178:ASP:O</td>
<td>1:D:188:MET:HE1</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:329:ALA:O</td>
<td>1:D:333:ALA:HB2</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:504:TYR:CE2</td>
<td>1:D:519:ALA:HB2</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:620:LEU:HD13</td>
<td>2:D:901:FAD:N1</td>
<td>2.35</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:313:PRO:HB3</td>
<td>1:F:330:PHE:HB2</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:354:LEU:HD21</td>
<td>1:B:499:LEU:HD22</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:49:GLU:HG2</td>
<td>1:B:50:VAL:N</td>
<td>2.35</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:584:GLU:HG2</td>
<td>1:F:381:GLU:CG</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:209:THR:CG2</td>
<td>1:D:211:THR:HG22</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:279:LEU:CD2</td>
<td>1:D:458:VAL:HG11</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:41:VAL:HG13</td>
<td>1:D:239:MET:HE2</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:264:LYS:HD2</td>
<td>1:D:455:SER:HB3</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:133:MET:HA</td>
<td>1:E:134:PRO:HD3</td>
<td>1.80</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:498:VAL:HG22</td>
<td>1:F:507:PRO:HD3</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:441:CYS:HB2</td>
<td>1:C:454:HIS:O</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:581:PRO:HD3</td>
<td>1:C:651:PRO:HB2</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:505:LEU:HD13</td>
<td>1:E:517:ILE:HG13</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:581:PRO:CB</td>
<td>1:E:652:ASN:HB3</td>
<td>2.49</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:545:CYS:C</td>
<td>1:B:547:PRO:HD3</td>
<td>2.41</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:391:VAL:HG13</td>
<td>1:B:551:TRP:CE2</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:301:LEU:HD13</td>
<td>1:F:109:ASP:HB3</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:43:LEU:CD1</td>
<td>1:C:43:LEU:N</td>
<td>2.82</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:6:ILE:O</td>
<td>1:D:104:PRO:HD2</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:489:THR:O</td>
<td>1:D:492:LEU:O</td>
<td>2.38</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:56:PRO:O</td>
<td>1:D:57:HIS:CD2</td>
<td>2.73</td>
<td>0.41</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:F:111:ALA:O</td>
<td>1:F:114:HIS:HB3</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:164:LEU:HA</td>
<td>1:A:164:LEU:HD23</td>
<td>1.93</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:416:LEU:O</td>
<td>1:A:420:GLN:HG3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:334:ARG:HH12</td>
<td>1:D:402:GLN:CB</td>
<td>2.33</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:63:ALA:HA</td>
<td>1:D:98:ILE:O</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:112:LEU:C</td>
<td>1:F:114:HIS:N</td>
<td>2.73</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:586:THR:O</td>
<td>1:F:590:TYR:HB2</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:620:LEU:HB2</td>
<td>2:F:901:FAD:O2</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:132:PRO:HD3</td>
<td>1:A:141:LEU:HD11</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:316:SER:HB2</td>
<td>1:A:322:LEU:HD23</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:319:ASP:OD2</td>
<td>1:C:322:LEU:HB2</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:135:LEU:HD13</td>
<td>1:D:327:SER:HB3</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:265:ARG:HA</td>
<td>1:D:265:ARG:HD3</td>
<td>1.83</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:250:LEU:HA</td>
<td>1:E:251:PRO:HD3</td>
<td>1.91</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:362:HIS:O</td>
<td>1:E:365:ALA:HB3</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:576:MET:HG2</td>
<td>1:E:653:ARG:NH1</td>
<td>2.34</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:230:ARG:O</td>
<td>1:D:238:GLU:HA</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:250:LEU:HA</td>
<td>1:D:251:PRO:HD3</td>
<td>1.85</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:357:ASP:CG</td>
<td>1:D:358:GLU:N</td>
<td>2.74</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:5:SER:O</td>
<td>1:D:6:ILE:HB</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:240:LEU:HA</td>
<td>1:A:240:LEU:HD12</td>
<td>1.80</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:279:LEU:CD2</td>
<td>1:B:458:VAL:HG11</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:603:ALA:HA</td>
<td>1:B:604:PRO:HD3</td>
<td>1.87</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:377:ALA:HA</td>
<td>1:C:399:THR:O</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:481:GLY:HA2</td>
<td>1:C:520:SER:O</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:259:ARG:HB3</td>
<td>1:D:633:GLN:HG3</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:590:TYR:CB</td>
<td>1:F:659:LEU:HD23</td>
<td>2.51</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:39:ARG:NH1</td>
<td>1:B:78:GLN:OE1</td>
<td>2.53</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:240:LEU:HA</td>
<td>1:D:240:LEU:HD23</td>
<td>1.91</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:514:HIS:C</td>
<td>1:D:515:HIS:HD2</td>
<td>2.23</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:479:VAL:HA</td>
<td>1:D:522:HIS:O</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:659:LEU:HD12</td>
<td>1:D:659:LEU:HA</td>
<td>1.89</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:199:ARG:HD3</td>
<td>1:E:251:PRO:HG2</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:301:LEU:CD1</td>
<td>1:F:109:ASP:HB3</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:277:ALA:HB1</td>
<td>1:F:415:VAL:CG1</td>
<td>2.51</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:504:TYR:CE2</td>
<td>1:F:519:ALA:HB2</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:535:GLN:HG3</td>
<td>1:C:557:VAL:HB</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:122:PRO:HG2</td>
<td>1:D:123:TRP:CE3</td>
<td>2.56</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:537:GLN:HA</td>
<td>1:D:540:GLN:HB3</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:60:PHE:HB2</td>
<td>1:E:92:LEU:CD1</td>
<td>2.51</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:465:ILE:HD12</td>
<td>1:B:613:ALA:CB</td>
<td>2.49</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:508:GLN:HA</td>
<td>1:B:514:HIS:O</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:146:GLY:HA3</td>
<td>1:E:285:ARG:CD</td>
<td>2.44</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:77:TRP:CD1</td>
<td>1:A:148:VAL:HG21</td>
<td>2.56</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:230:ARG:HD3</td>
<td>1:B:239:MET:CE</td>
<td>2.51</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:489:THR:O</td>
<td>1:C:492:LEU:O</td>
<td>2.39</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:505:LEU:HD12</td>
<td>1:C:506:THR:N</td>
<td>2.36</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:24:PHE:CD2</td>
<td>1:D:180:PHE:CE2</td>
<td>3.10</td>
<td>0.40</td>
</tr>
<tr>
<td>1:E:518:GLY:CA</td>
<td>1:E:538:ASN:CG</td>
<td>2.87</td>
<td>0.40</td>
</tr>
<tr>
<td>1:F:140:ARG:HG2</td>
<td>1:F:332:PHE:HE2</td>
<td>1.86</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:367:MET:O</td>
<td>1:B:370:MET:CG</td>
<td>2.69</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:304:SER:O</td>
<td>1:C:408:PRO:HB2</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:21:SER:OG</td>
<td>1:D:180:PHE:CE1</td>
<td>2.74</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:11:LEU:CD1</td>
<td>1:D:20:VAL:O</td>
<td>2.69</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:255:PRO:HB2</td>
<td>1:D:602:SER:HA</td>
<td>2.04</td>
<td>0.40</td>
</tr>
<tr>
<td>1:F:144:ASP:O</td>
<td>1:F:145:GLU:HG2</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>1:F:438:LYS:HG2</td>
<td>1:F:443:LEU:HB2</td>
<td>2.02</td>
<td>0.40</td>
</tr>
<tr>
<td>1:F:572:ASP:O</td>
<td>1:F:573:HIS:HB2</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>1:F:87:HIS:N</td>
<td>1:F:87:HIS:HD2</td>
<td>2.15</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:104:PRO:C</td>
<td>1:A:105:LEU:HD12</td>
<td>2.41</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:368:LEU:HD13</td>
<td>1:A:379:ALA:HB2</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:344:PHE:CD1</td>
<td>1:B:344:PHE:N</td>
<td>2.89</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:489:THR:HB</td>
<td>1:B:490:PRO:CD</td>
<td>2.51</td>
<td>0.40</td>
</tr>
<tr>
<td>1:C:131:TRP:CD2</td>
<td>1:C:132:PRO:HD2</td>
<td>2.56</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:34:GLY:HA3</td>
<td>1:D:117:TRP:HZ2</td>
<td>1.87</td>
<td>0.40</td>
</tr>
<tr>
<td>1:D:491:GLU:HG2</td>
<td>1:D:551:TRP:CB</td>
<td>2.46</td>
<td>0.40</td>
</tr>
<tr>
<td>1:E:517:ILE:HD11</td>
<td>1:E:542:LEU:HD22</td>
<td>2.02</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:37:GLU:HG3</td>
<td>1:A:233:PHE:HB3</td>
<td>2.04</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:67:PHE:O</td>
<td>1:A:68:GLY:C</td>
<td>2.60</td>
<td>0.40</td>
</tr>
<tr>
<td>2:A:901:FAD:H12</td>
<td>2:A:901:FAD:H9</td>
<td>1.70</td>
<td>0.40</td>
</tr>
<tr>
<td>1:F:581:PRO:HB3</td>
<td>1:F:652:ASN:HB3</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>1:F:475:PRO:CB</td>
<td>1:F:654:LEU:HD12</td>
<td>2.51</td>
<td>0.40</td>
</tr>
</tbody>
</table>

There are no symmetry-related clashes.
5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>626/688 (91%)</td>
<td>594 (95%)</td>
<td>31 (5%)</td>
<td>1 (0%)</td>
<td>49 85</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>626/688 (91%)</td>
<td>600 (96%)</td>
<td>25 (4%)</td>
<td>1 (0%)</td>
<td>49 85</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>626/688 (91%)</td>
<td>600 (96%)</td>
<td>25 (4%)</td>
<td>1 (0%)</td>
<td>49 85</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>655/688 (95%)</td>
<td>599 (92%)</td>
<td>53 (8%)</td>
<td>3 (0%)</td>
<td>31 71</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>626/688 (91%)</td>
<td>591 (94%)</td>
<td>33 (5%)</td>
<td>2 (0%)</td>
<td>43 80</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>626/688 (91%)</td>
<td>590 (94%)</td>
<td>34 (5%)</td>
<td>2 (0%)</td>
<td>43 80</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>3785/4128 (92%)</td>
<td>3574 (94%)</td>
<td>201 (5%)</td>
<td>10 (0%)</td>
<td>43 80</td>
</tr>
</tbody>
</table>

All (10) Ramachandran outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>6</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>601</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>519</td>
<td>ALA</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>519</td>
<td>ALA</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>10</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>237</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>601</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>601</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>605</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>601</td>
<td>VAL</td>
</tr>
</tbody>
</table>

5.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>517/567 (91%)</td>
<td>495 (96%)</td>
<td>22 (4%)</td>
<td>32 70</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>517/567 (91%)</td>
<td>504 (98%)</td>
<td>13 (2%)</td>
<td>50 82</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>517/567 (91%)</td>
<td>497 (96%)</td>
<td>20 (4%)</td>
<td>35 73</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>546/567 (96%)</td>
<td>515 (94%)</td>
<td>31 (6%)</td>
<td>23 60</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>517/567 (91%)</td>
<td>492 (95%)</td>
<td>25 (5%)</td>
<td>28 66</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>517/567 (91%)</td>
<td>493 (95%)</td>
<td>24 (5%)</td>
<td>29 68</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>3131/3402 (92%)</td>
<td>2996 (96%)</td>
<td>135 (4%)</td>
<td>32 70</td>
</tr>
</tbody>
</table>

All (135) residues with a non-rotameric sidechain are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>116</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>147</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>162</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>184</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>243</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>253</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>334</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>358</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>372</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>440</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>444</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>453</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>473</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>531</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>537</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>576</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>579</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>589</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>596</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>612</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>644</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>661</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>62</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>83</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>168</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>209</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>307</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>358</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>375</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>380</td>
<td>VAL</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>479</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>595</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>597</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>612</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>618</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>116</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>141</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>145</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>149</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>162</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>185</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>253</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>296</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>354</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>367</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>369</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>383</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>440</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>446</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>508</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>567</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>572</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>612</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>618</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>644</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>2</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>3</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>4</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>10</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>11</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>22</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>32</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>62</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>69</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>130</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>147</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>152</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>162</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>217</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>334</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>354</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>368</td>
<td>LEU</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>369</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>375</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>381</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>391</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>435</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>453</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>474</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>530</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>532</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>533</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>602</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>612</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>618</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>657</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>69</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>81</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>145</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>239</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>257</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>276</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>289</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>320</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>324</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>354</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>372</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>383</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>391</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>393</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>394</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>436</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>441</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>473</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>483</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>577</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>579</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>587</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>598</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>612</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>654</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>87</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>112</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>177</td>
<td>LEU</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>207</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>226</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>237</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>276</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>301</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>342</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>345</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>349</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>356</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>358</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>370</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>387</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>391</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>440</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>474</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>514</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>521</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>523</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>612</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>630</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>645</td>
<td>THR</td>
</tr>
</tbody>
</table>

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (43) such sidechains are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>130</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>221</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>550</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>579</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>596</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>130</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>221</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>650</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>221</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>318</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>366</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>383</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>422</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>429</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>508</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>550</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>579</td>
<td>ASN</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>596</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>7</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>10</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>114</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>116</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>318</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>383</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>414</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>515</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>57</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>91</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>93</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>394</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>538</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>47</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>72</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>87</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>221</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>361</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>383</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>414</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>431</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>445</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>485</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>536</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>579</td>
<td>ASN</td>
</tr>
</tbody>
</table>

5.3.3 RNA

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates

There are no carbohydrates in this entry.
5.6 Ligand geometry

17 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>A</td>
<td>669</td>
<td>-</td>
<td>4,4,4</td>
<td>0.17</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>A</td>
<td>670</td>
<td>-</td>
<td>4,4,4</td>
<td>0.16</td>
</tr>
<tr>
<td>2</td>
<td>FAD</td>
<td>A</td>
<td>901</td>
<td>-</td>
<td>51,58,58</td>
<td>1.31</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>B</td>
<td>669</td>
<td>-</td>
<td>4,4,4</td>
<td>0.18</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>B</td>
<td>670</td>
<td>-</td>
<td>4,4,4</td>
<td>0.17</td>
</tr>
<tr>
<td>2</td>
<td>FAD</td>
<td>B</td>
<td>901</td>
<td>-</td>
<td>51,58,58</td>
<td>1.27</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>C</td>
<td>669</td>
<td>-</td>
<td>4,4,4</td>
<td>0.14</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>C</td>
<td>670</td>
<td>-</td>
<td>4,4,4</td>
<td>0.19</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>C</td>
<td>671</td>
<td>-</td>
<td>4,4,4</td>
<td>0.27</td>
</tr>
<tr>
<td>2</td>
<td>FAD</td>
<td>C</td>
<td>901</td>
<td>-</td>
<td>51,58,58</td>
<td>1.29</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>D</td>
<td>669</td>
<td>-</td>
<td>4,4,4</td>
<td>0.17</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>D</td>
<td>670</td>
<td>-</td>
<td>4,4,4</td>
<td>0.18</td>
</tr>
<tr>
<td>2</td>
<td>FAD</td>
<td>D</td>
<td>901</td>
<td>-</td>
<td>51,58,58</td>
<td>1.31</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>E</td>
<td>669</td>
<td>-</td>
<td>4,4,4</td>
<td>0.17</td>
</tr>
<tr>
<td>2</td>
<td>FAD</td>
<td>E</td>
<td>901</td>
<td>-</td>
<td>51,58,58</td>
<td>1.34</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>F</td>
<td>669</td>
<td>-</td>
<td>4,4,4</td>
<td>0.15</td>
</tr>
<tr>
<td>2</td>
<td>FAD</td>
<td>F</td>
<td>901</td>
<td>-</td>
<td>51,58,58</td>
<td>1.35</td>
</tr>
</tbody>
</table>

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. ‘-’ means no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>SO4</td>
<td>A</td>
<td>669</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>A</td>
<td>670</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>FAD</td>
<td>A</td>
<td>901</td>
<td>-</td>
<td>0/28/50/50</td>
<td>0/6/6/6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>B</td>
<td>669</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>B</td>
<td>670</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>FAD</td>
<td>B</td>
<td>901</td>
<td>-</td>
<td>0/28/50/50</td>
<td>0/6/6/6</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>SO4</td>
<td>C</td>
<td>669</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>C</td>
<td>670</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>C</td>
<td>671</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>FAD</td>
<td>C</td>
<td>901</td>
<td>-</td>
<td>-</td>
<td>0/28/50/50</td>
<td>0/6/6/6</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>D</td>
<td>669</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>D</td>
<td>670</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>FAD</td>
<td>D</td>
<td>901</td>
<td>-</td>
<td>-</td>
<td>0/28/50/50</td>
<td>0/6/6/6</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>E</td>
<td>669</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
<tr>
<td>2</td>
<td>FAD</td>
<td>E</td>
<td>901</td>
<td>-</td>
<td>-</td>
<td>0/28/50/50</td>
<td>0/6/6/6</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>F</td>
<td>669</td>
<td>-</td>
<td>-</td>
<td>0/0/0/0</td>
<td>0/0/0/0</td>
</tr>
</tbody>
</table>

All (36) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>D</td>
<td>901</td>
<td>FAD</td>
<td>C5X-N5</td>
<td>2.04</td>
<td>1.38</td>
<td>1.35</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>901</td>
<td>FAD</td>
<td>C1'-N10</td>
<td>2.16</td>
<td>1.50</td>
<td>1.48</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>901</td>
<td>FAD</td>
<td>C1'-N10</td>
<td>2.25</td>
<td>1.50</td>
<td>1.48</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>901</td>
<td>FAD</td>
<td>C2A-N1A</td>
<td>2.29</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>901</td>
<td>FAD</td>
<td>C2A-N1A</td>
<td>2.42</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>901</td>
<td>FAD</td>
<td>C1'-N10</td>
<td>2.44</td>
<td>1.50</td>
<td>1.48</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>901</td>
<td>FAD</td>
<td>C2A-N1A</td>
<td>2.44</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>901</td>
<td>FAD</td>
<td>C2A-N1A</td>
<td>2.48</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>901</td>
<td>FAD</td>
<td>C2A-N1A</td>
<td>2.50</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>901</td>
<td>FAD</td>
<td>C2A-N1A</td>
<td>2.55</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>901</td>
<td>FAD</td>
<td>C4-N3</td>
<td>2.62</td>
<td>1.37</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>901</td>
<td>FAD</td>
<td>C1'-N10</td>
<td>2.67</td>
<td>1.51</td>
<td>1.48</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>901</td>
<td>FAD</td>
<td>C4-N3</td>
<td>2.71</td>
<td>1.37</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>901</td>
<td>FAD</td>
<td>C4-N3</td>
<td>2.75</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>901</td>
<td>FAD</td>
<td>C4-N3</td>
<td>2.80</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>901</td>
<td>FAD</td>
<td>C4-N3</td>
<td>2.84</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>901</td>
<td>FAD</td>
<td>C4-N3</td>
<td>2.88</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>901</td>
<td>FAD</td>
<td>C4X-N5</td>
<td>3.18</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>901</td>
<td>FAD</td>
<td>C1'-N10</td>
<td>3.24</td>
<td>1.51</td>
<td>1.48</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>901</td>
<td>FAD</td>
<td>C4X-N5</td>
<td>3.28</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>901</td>
<td>FAD</td>
<td>C4X-N5</td>
<td>3.38</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>901</td>
<td>FAD</td>
<td>C4X-N5</td>
<td>3.43</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>901</td>
<td>FAD</td>
<td>C2A-N3A</td>
<td>3.45</td>
<td>1.37</td>
<td>1.32</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>901</td>
<td>FAD</td>
<td>C4X-N5</td>
<td>3.50</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>901</td>
<td>FAD</td>
<td>C4X-N5</td>
<td>3.64</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>901</td>
<td>FAD</td>
<td>C2A-N3A</td>
<td>3.66</td>
<td>1.38</td>
<td>1.32</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>901</td>
<td>FAD</td>
<td>C10-N1</td>
<td>3.76</td>
<td>1.38</td>
<td>1.33</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>C</td>
<td>901</td>
<td>FAD</td>
<td>C2A-N3A</td>
<td>3.79</td>
<td>1.38</td>
<td>1.32</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>901</td>
<td>FAD</td>
<td>C2A-N3A</td>
<td>3.82</td>
<td>1.38</td>
<td>1.32</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>901</td>
<td>FAD</td>
<td>C10-N1</td>
<td>3.91</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>901</td>
<td>FAD</td>
<td>C2A-N3A</td>
<td>3.92</td>
<td>1.38</td>
<td>1.32</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>901</td>
<td>FAD</td>
<td>C10-N1</td>
<td>3.93</td>
<td>1.38</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>901</td>
<td>FAD</td>
<td>C2A-N3A</td>
<td>4.00</td>
<td>1.38</td>
<td>1.32</td>
</tr>
</tbody>
</table>

All (43) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>901</td>
<td>FAD</td>
<td>N3A-C2A-N1A</td>
<td>-10.70</td>
<td>119.70</td>
<td>128.86</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>901</td>
<td>FAD</td>
<td>N3A-C2A-N1A</td>
<td>-10.65</td>
<td>119.75</td>
<td>128.86</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>901</td>
<td>FAD</td>
<td>N3A-C2A-N1A</td>
<td>-10.61</td>
<td>119.78</td>
<td>128.86</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>901</td>
<td>FAD</td>
<td>N3A-C2A-N1A</td>
<td>-10.40</td>
<td>119.96</td>
<td>128.86</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>901</td>
<td>FAD</td>
<td>N3A-C2A-N1A</td>
<td>-10.02</td>
<td>120.29</td>
<td>128.86</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>901</td>
<td>FAD</td>
<td>N3A-C2A-N1A</td>
<td>-9.95</td>
<td>120.34</td>
<td>128.86</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>901</td>
<td>FAD</td>
<td>P-O3P-PA</td>
<td>-3.04</td>
<td>122.42</td>
<td>132.63</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>901</td>
<td>FAD</td>
<td>C4X-C4-N3</td>
<td>-2.87</td>
<td>119.39</td>
<td>123.47</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>901</td>
<td>FAD</td>
<td>C4X-C4-N3</td>
<td>-2.84</td>
<td>119.44</td>
<td>123.47</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>901</td>
<td>FAD</td>
<td>C4X-C4-N3</td>
<td>-2.78</td>
<td>119.52</td>
<td>123.47</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>901</td>
<td>FAD</td>
<td>C4X-C4-N3</td>
<td>-2.65</td>
<td>119.71</td>
<td>123.47</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>901</td>
<td>FAD</td>
<td>P-O3P-PA</td>
<td>-2.51</td>
<td>124.18</td>
<td>132.63</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>901</td>
<td>FAD</td>
<td>C4X-C4-N3</td>
<td>-2.50</td>
<td>119.92</td>
<td>123.47</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>901</td>
<td>FAD</td>
<td>P-O3P-PA</td>
<td>-2.41</td>
<td>124.52</td>
<td>132.63</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>901</td>
<td>FAD</td>
<td>C4X-C4-N3</td>
<td>-2.32</td>
<td>120.17</td>
<td>123.47</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>901</td>
<td>FAD</td>
<td>P-O3P-PA</td>
<td>-2.21</td>
<td>125.20</td>
<td>132.63</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>901</td>
<td>FAD</td>
<td>P-O3P-PA</td>
<td>-2.18</td>
<td>125.31</td>
<td>132.63</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>901</td>
<td>FAD</td>
<td>P-O3P-PA</td>
<td>-2.17</td>
<td>125.33</td>
<td>132.63</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>901</td>
<td>FAD</td>
<td>C1B-N9A-C4A</td>
<td>-2.11</td>
<td>122.99</td>
<td>126.64</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>901</td>
<td>FAD</td>
<td>C9A-N10-C10</td>
<td>-2.03</td>
<td>119.06</td>
<td>121.77</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>901</td>
<td>FAD</td>
<td>C1'-N10-C9A</td>
<td>2.24</td>
<td>120.30</td>
<td>118.31</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>901</td>
<td>FAD</td>
<td>C1'-N10-C9A</td>
<td>2.33</td>
<td>120.38</td>
<td>118.31</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>901</td>
<td>FAD</td>
<td>C5X-C9A-N10</td>
<td>2.59</td>
<td>119.69</td>
<td>117.71</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>901</td>
<td>FAD</td>
<td>C4X-N5-C5X</td>
<td>3.00</td>
<td>119.91</td>
<td>116.76</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>901</td>
<td>FAD</td>
<td>C4X-N5-C5X</td>
<td>3.01</td>
<td>119.92</td>
<td>116.76</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>901</td>
<td>FAD</td>
<td>C4X-N5-C5X</td>
<td>3.01</td>
<td>119.92</td>
<td>116.76</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>901</td>
<td>FAD</td>
<td>C1'-N10-C10</td>
<td>3.09</td>
<td>121.55</td>
<td>118.46</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>901</td>
<td>FAD</td>
<td>C4X-N5-C5X</td>
<td>3.21</td>
<td>120.12</td>
<td>116.76</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>901</td>
<td>FAD</td>
<td>C5X-C9A-N10</td>
<td>3.21</td>
<td>120.16</td>
<td>117.71</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>C</td>
<td>901</td>
<td>FAD</td>
<td>C5X-C9A-N10</td>
<td>3.40</td>
<td>120.31</td>
<td>117.71</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>901</td>
<td>FAD</td>
<td>C5X-C9A-N10</td>
<td>3.40</td>
<td>120.31</td>
<td>117.71</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>901</td>
<td>FAD</td>
<td>C4X-N5-C5X</td>
<td>3.47</td>
<td>120.39</td>
<td>116.76</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>901</td>
<td>FAD</td>
<td>C5X-C9A-N10</td>
<td>3.51</td>
<td>120.39</td>
<td>117.71</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>901</td>
<td>FAD</td>
<td>C4X-N5-C5X</td>
<td>3.54</td>
<td>120.47</td>
<td>116.76</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>901</td>
<td>FAD</td>
<td>C1'-N10-C10</td>
<td>3.74</td>
<td>122.20</td>
<td>118.46</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>901</td>
<td>FAD</td>
<td>C5X-C9A-N10</td>
<td>4.03</td>
<td>120.79</td>
<td>117.71</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>901</td>
<td>FAD</td>
<td>C4-N3-C2</td>
<td>5.30</td>
<td>119.66</td>
<td>115.14</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>901</td>
<td>FAD</td>
<td>C4-N3-C2</td>
<td>5.48</td>
<td>119.81</td>
<td>115.14</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>901</td>
<td>FAD</td>
<td>C4-N3-C2</td>
<td>5.59</td>
<td>119.90</td>
<td>115.14</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>901</td>
<td>FAD</td>
<td>C4-N3-C2</td>
<td>5.70</td>
<td>120.00</td>
<td>115.14</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>901</td>
<td>FAD</td>
<td>C1'-N10-C10</td>
<td>5.76</td>
<td>124.22</td>
<td>118.46</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>901</td>
<td>FAD</td>
<td>C4-N3-C2</td>
<td>5.98</td>
<td>120.24</td>
<td>115.14</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>901</td>
<td>FAD</td>
<td>C4-N3-C2</td>
<td>6.11</td>
<td>120.34</td>
<td>115.14</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

6 monomers are involved in 30 short contacts:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>901</td>
<td>FAD</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>901</td>
<td>FAD</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>901</td>
<td>FAD</td>
<td>7</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>901</td>
<td>FAD</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>901</td>
<td>FAD</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>901</td>
<td>FAD</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

5.7 Other polymers

There are no such residues in this entry.

5.8 Polymer linkage issues

There are no chain breaks in this entry.
6 Fit of model and data

6.1 Protein, DNA and RNA chains

In the following table, the column labelled ‘#RSRZ> 2’ contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled ‘Q< 0.9’ lists the number of (and percentage) of residues with an average occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th><RSRZ></th>
<th>#RSRZ>2</th>
<th>OWAB(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>628/688 (91%)</td>
<td>-0.58</td>
<td>0</td>
<td>37, 62, 103, 137</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>628/688 (91%)</td>
<td>-0.59</td>
<td>0</td>
<td>36, 58, 96, 133</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>628/688 (91%)</td>
<td>-0.60</td>
<td>2 (0%)</td>
<td>33, 61, 99, 148</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>659/688 (95%)</td>
<td>-0.29</td>
<td>8 (1%)</td>
<td>44, 84, 143, 180</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>628/688 (91%)</td>
<td>-0.38</td>
<td>5 (0%)</td>
<td>61, 91, 133, 167</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>628/688 (91%)</td>
<td>0.89</td>
<td>124 (19%)</td>
<td>96, 142, 178, 246</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>3799/4128 (92%)</td>
<td>-0.26</td>
<td>139 (3%)</td>
<td>33, 78, 155, 246</td>
<td>0</td>
</tr>
</tbody>
</table>

All (139) RSRZ outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>514</td>
<td>HIS</td>
<td>6.1</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>596</td>
<td>GLN</td>
<td>5.5</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>588</td>
<td>VAL</td>
<td>5.2</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>439</td>
<td>ASP</td>
<td>5.1</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>483</td>
<td>VAL</td>
<td>4.7</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>235</td>
<td>ARG</td>
<td>4.7</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>452</td>
<td>ALA</td>
<td>4.7</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>482</td>
<td>GLN</td>
<td>4.7</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>487</td>
<td>PRO</td>
<td>4.7</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>182</td>
<td>PRO</td>
<td>4.4</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>427</td>
<td>TYR</td>
<td>4.3</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>433</td>
<td>GLN</td>
<td>4.2</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>438</td>
<td>LYS</td>
<td>4.2</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>428</td>
<td>TYR</td>
<td>4.1</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>515</td>
<td>HIS</td>
<td>4.1</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>558</td>
<td>SER</td>
<td>4.1</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>263</td>
<td>SER</td>
<td>4.0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>451</td>
<td>GLN</td>
<td>4.0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>239</td>
<td>MET</td>
<td>3.9</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>357</td>
<td>ASP</td>
<td>3.9</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>592</td>
<td>SER</td>
<td>3.8</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>241</td>
<td>CYS</td>
<td>3.8</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>234</td>
<td>GLY</td>
<td>3.8</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>600</td>
<td>ALA</td>
<td>3.8</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>441</td>
<td>CYS</td>
<td>3.8</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>91</td>
<td>GLN</td>
<td>3.7</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>535</td>
<td>GLN</td>
<td>3.7</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>448</td>
<td>GLY</td>
<td>3.6</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>562</td>
<td>ALA</td>
<td>3.6</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>593</td>
<td>LEU</td>
<td>3.6</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>89</td>
<td>GLN</td>
<td>3.6</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>447</td>
<td>ALA</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>216</td>
<td>VAL</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>662</td>
<td>GLY</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>183</td>
<td>ALA</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>240</td>
<td>LEU</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>590</td>
<td>TYR</td>
<td>3.3</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>601</td>
<td>VAL</td>
<td>3.3</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>560</td>
<td>LYS</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>595</td>
<td>GLU</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>248</td>
<td>LEU</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>421</td>
<td>GLN</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>662</td>
<td>GLY</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>430</td>
<td>TYR</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>557</td>
<td>VAL</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>486</td>
<td>ILE</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>425</td>
<td>GLN</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>525</td>
<td>SER</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>449</td>
<td>ASP</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>661</td>
<td>LYS</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>506</td>
<td>THR</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>603</td>
<td>ALA</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>526</td>
<td>GLU</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>660</td>
<td>LEU</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>599</td>
<td>GLU</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>518</td>
<td>GLY</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>90</td>
<td>ALA</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>559</td>
<td>ASP</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>453</td>
<td>THR</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>429</td>
<td>GLN</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>501</td>
<td>TYR</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>F</td>
<td>422</td>
<td>GLN</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>204</td>
<td>GLY</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>454</td>
<td>HIS</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>209</td>
<td>THR</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>185</td>
<td>ASN</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>513</td>
<td>GLN</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>170</td>
<td>GLN</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>33</td>
<td>ASN</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>223</td>
<td>ALA</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>293</td>
<td>TYR</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>437</td>
<td>ARG</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>181</td>
<td>ALA</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>594</td>
<td>ALA</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>45</td>
<td>GLY</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>440</td>
<td>ASP</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>358</td>
<td>GLU</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>86</td>
<td>ALA</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>661</td>
<td>LYS</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>536</td>
<td>GLN</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>272</td>
<td>GLY</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>436</td>
<td>SER</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>256</td>
<td>TRP</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>469</td>
<td>SER</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>54</td>
<td>GLU</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>485</td>
<td>HIS</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>431</td>
<td>GLN</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>551</td>
<td>TRP</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>264</td>
<td>LYS</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>213</td>
<td>ALA</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>318</td>
<td>HIS</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>53</td>
<td>PRO</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>426</td>
<td>ILE</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>211</td>
<td>THR</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>490</td>
<td>PRO</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>358</td>
<td>GLU</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>561</td>
<td>GLU</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>553</td>
<td>LYS</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>233</td>
<td>PHE</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>44</td>
<td>GLY</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>184</td>
<td>LYS</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>417</td>
<td>GLU</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>30</td>
<td>SER</td>
<td>2.4</td>
</tr>
</tbody>
</table>

Continued on next page...
6.2 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.
6.3 Carbohydrates

There are no carbohydrates in this entry.

6.4 Ligands

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95th percentile and maximum values of B factors of atoms in the group. The column labelled ‘Q<0.9’ lists the number of atoms with occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RCC</th>
<th>RSR</th>
<th>B-factors(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>FAD</td>
<td>F</td>
<td>901</td>
<td>53/53</td>
<td>0.81</td>
<td>0.24</td>
<td>132,162,172,408</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>C</td>
<td>671</td>
<td>5/5</td>
<td>0.88</td>
<td>0.21</td>
<td>84,111,116,123</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>E</td>
<td>669</td>
<td>5/5</td>
<td>0.90</td>
<td>0.16</td>
<td>123,131,134,137</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>D</td>
<td>669</td>
<td>5/5</td>
<td>0.91</td>
<td>0.17</td>
<td>137,140,145,146</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>A</td>
<td>670</td>
<td>5/5</td>
<td>0.91</td>
<td>0.18</td>
<td>114,115,120,121</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>FAD</td>
<td>E</td>
<td>901</td>
<td>53/53</td>
<td>0.93</td>
<td>0.19</td>
<td>48,80,97,137</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>F</td>
<td>669</td>
<td>5/5</td>
<td>0.93</td>
<td>0.23</td>
<td>162,163,164,165</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>FAD</td>
<td>D</td>
<td>901</td>
<td>53/53</td>
<td>0.95</td>
<td>0.17</td>
<td>58,85,129,130</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>FAD</td>
<td>A</td>
<td>901</td>
<td>53/53</td>
<td>0.95</td>
<td>0.17</td>
<td>32,52,66,71</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>C</td>
<td>670</td>
<td>5/5</td>
<td>0.96</td>
<td>0.13</td>
<td>90,104,111,117</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>FAD</td>
<td>B</td>
<td>901</td>
<td>53/53</td>
<td>0.97</td>
<td>0.18</td>
<td>40,57,75,82</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>D</td>
<td>670</td>
<td>5/5</td>
<td>0.97</td>
<td>0.12</td>
<td>96,103,108,116</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>A</td>
<td>669</td>
<td>5/5</td>
<td>0.97</td>
<td>0.14</td>
<td>75,87,93,95</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>B</td>
<td>670</td>
<td>5/5</td>
<td>0.98</td>
<td>0.11</td>
<td>85,91,94,98</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>FAD</td>
<td>C</td>
<td>901</td>
<td>53/53</td>
<td>0.98</td>
<td>0.18</td>
<td>36,54,70,76</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>C</td>
<td>669</td>
<td>5/5</td>
<td>0.99</td>
<td>0.17</td>
<td>77,82,87,99</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>SO4</td>
<td>B</td>
<td>669</td>
<td>5/5</td>
<td>0.99</td>
<td>0.14</td>
<td>65,74,80,83</td>
<td>0</td>
</tr>
</tbody>
</table>

6.5 Other polymers

There are no such residues in this entry.