

wwPDB EM Validation Summary Report (i)

Nov 11, 2024 – 03:01 AM EST

PDB ID	:	9AXU
EMDB ID	:	EMD-43973
Title	:	Non-translating S. pombe ribosome large subunit
Authors	:	Gluc, M.; Gemin, O.; Purdy, M.; Mattei, S.; Jomaa, A.
Deposited on	:	2024-03-06
Resolution	:	1.94 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 1.94 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motric	Whole archive	EM structures		
	$(\# {\rm Entries})$	$(\# { m Entries})$		
Ramachandran outliers	207382	16835		
Sidechain outliers	206894	16415		
RNA backbone	6643	2191		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	0	106	84%	• 12%
2	1	94	98%	••
3	2	3498	21% 71% 19	9% • 8%
4	3	246	• 41% 6% • 52%	
5	4	165	10%	16% • 5%
6	Ν	253	96%	•••
7	0	388	5%	••
8	Р	363	5% 96%	•

Continued on next page...

Mol	Chain	Length	Quality of chain	
0	0	204	40%	
9	Q	294	96%	• •
10	R	195	81% •	17%
11	S	251	92%	7%
			29%	
12	Т	259	84% • 89%	12%
13	U	189	85%	• 11%
14	V	221	86%	1.49/
11	v		87%	14%
15	W	174	90%	6% •
16	Х	208	97%	•
17	V	194	32%	
11	ľ	104	96%	••
18	Z	201	98%	•
19	a	197	9%	••
		105		
20	b	187	79% • 7%	19%
21	с	187	97%	••
22	d	193	8%	10%
	u	100	20%	1378
23	e	176	96%	• •
24	f	160	98%	•••
25	G	117	59%	450/
20	g	111	6%	15%
26	h	139	95%	• •
27	i	149	40% • 58%	
		1 4 1		
28	J	141	82% ···	16%
29	k	126	98%	••
30	1	136	98%	•••
31	m	148	96%	
			13%	
32	n	61	97%	•
33	О	109	86%	14%

Continued from previous page...

Continued on next page...

Mol	Chain	Length	Quality of chain	
34	р	113	90%	• 9%
35	q	127	5% 91%	• 7%
36	r	108	91%	6% •
37	s	111	<u>6%</u> 94%	• 5%
38	t	122	96%	
39	u	99	<u>6%</u> 94%	
40	V	91	●	• 10%
41	W	74	54% 92%	• 7%
42	x	51	33%	·
43	У	134	31%	•

Continued from previous page...

2 Entry composition (i)

There are 45 unique types of molecules in this entry. The entry contains 123561 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Large ribosomal subunit protein eL42.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	0	93	Total 758	C 479	N 152	0 122	${ m S}{ m 5}$	0	0

• Molecule 2 is a protein called Large ribosomal subunit protein eL43A.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
2	1	93	Total 718	C 442	N 147	0 123	S 6	0	0

• Molecule 3 is a RNA chain called 28S ribosomal RNA.

Mol	Chain	Residues				AltConf	Trace		
3	2	3212	Total 68676	C 30687	N 12377	O 22400	Р 3212	0	0

• Molecule 4 is a RNA chain called 5S ribosomal RNA.

Mol	Chain	Residues		A	AltConf	Trace			
4	3	119	Total 2539	C 1133	N 454	O 833	Р 119	0	0

• Molecule 5 is a RNA chain called 5.8S ribosomal RNA.

Mol	Chain	Residues		Α	AltConf	Trace			
5	4	157	Total 3332	C 1491	N 583	0 1101	Р 157	0	0

• Molecule 6 is a protein called Large ribosomal subunit protein uL2C.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	Ν	248	Total 1872	C 1166	N 377	0 324	${ m S}{ m 5}$	0	0

• Molecule 7 is a protein called Large ribosomal subunit protein uL3A.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	О	384	Total 3050	C 1929	N 576	O 535	S 10	0	0

• Molecule 8 is a protein called Large ribosomal subunit protein uL4A.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
8	Р	362	Total 2799	C 1768	N 538	0 490	${ m S} { m 3}$	0	0

• Molecule 9 is a protein called Large ribosomal subunit protein uL18B.

Mol	Chain	Residues	Atoms					AltConf	Trace
9	Q	287	Total 2312	C 1461	N 410	O 437	$\frac{S}{4}$	0	0

• Molecule 10 is a protein called Large ribosomal subunit protein eL6.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	R	162	Total 1251	C 802	N 231	0 215	${ m S} { m 3}$	0	0

• Molecule 11 is a protein called Large ribosomal subunit protein uL30C.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	S	233	Total 1897	C 1211	N 349	0 334	$\frac{S}{3}$	0	0

• Molecule 12 is a protein called Large ribosomal subunit protein eL8.

Mol	Chain	Residues		At	oms			AltConf	Trace
12	Т	229	Total 1772	C 1135	N 325	O 309	${ m S} { m 3}$	0	0

• Molecule 13 is a protein called Large ribosomal subunit protein uL6B.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	U	168	Total 1319	C 828	N 244	0 242	${S \atop 5}$	0	0

• Molecule 14 is a protein called Large ribosomal subunit protein uL16A.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	V	191	Total 1549	C 982	N 291	0 270	S 6	0	0

• Molecule 15 is a protein called Large ribosomal subunit protein uL5A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	W	167	Total 1346	C 854	N 252	O 235	${f S}{5}$	0	0

• Molecule 16 is a protein called Large ribosomal subunit protein eL13.

Mol	Chain	Residues		Ate	AltConf	Trace			
16	Х	207	Total 1654	C 1034	N 329	0 290	S 1	0	0

• Molecule 17 is a protein called Large ribosomal subunit protein eL14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	Y	130	Total 1038	C 662	N 198	0 174	${ m S}$	0	0

• Molecule 18 is a protein called Large ribosomal subunit protein eL15B.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	Z	200	Total 1676	C 1050	N 348	0 275	${ m S} { m 3}$	0	0

• Molecule 19 is a protein called Large ribosomal subunit protein uL13A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
19	a	196	Total 1545	C 991	N 294	O 256	${f S}$ 4	0	0

• Molecule 20 is a protein called Large ribosomal subunit protein uL22A.

Mol	Chain	Residues		At	AltConf	Trace			
20	b	152	Total 1212	C 770	N 229	0 210	${ m S} { m 3}$	0	0

• Molecule 21 is a protein called Large ribosomal subunit protein eL18B.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
21	с	186	Total 1487	C 937	N 300	O 250	0	0

• Molecule 22 is a protein called Large ribosomal subunit protein eL19B.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	d	157	Total 1301	C 809	N 275	O 212	${ m S}{ m 5}$	0	0

• Molecule 23 is a protein called Large ribosomal subunit protein eL20A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
23	е	173	Total 1423	C 916	N 268	0 234	${ m S}{ m 5}$	0	0

• Molecule 24 is a protein called Large ribosomal subunit protein eL21B.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
24	f	159	Total 1286	C 810	N 247	O 226	${ m S} { m 3}$	0	0

• Molecule 25 is a protein called Large ribosomal subunit protein eL22.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
25	g	99	Total 798	C 518	N 138	0 142	0	0

• Molecule 26 is a protein called Large ribosomal subunit protein uL14B.

Mol	Chain	Residues		At	oms	AltConf	Trace		
26	h	134	Total 999	C 630	N 184	0 177	S 8	0	0

• Molecule 27 is a protein called Large ribosomal subunit protein eL24B.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
27	i	63	Total 523	C 336	N 102	O 82	${ m S} { m 3}$	0	0

• Molecule 28 is a protein called Large ribosomal subunit protein uL23A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
28	j	118	Total 947	$\begin{array}{c} \mathrm{C} \\ 605 \end{array}$	N 175	O 166	S 1	0	0

• Molecule 29 is a protein called Large ribosomal subunit protein uL24.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	k	125	Total 998	C 622	N 201	0 173	${S \over 2}$	0	0

• Molecule 30 is a protein called Large ribosomal subunit protein eL27A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	1	135	Total 1078	C 698	N 200	0 178	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 31 is a protein called Large ribosomal subunit protein uL15B.

Mol	Chain	Residues		At	oms	AltConf	Trace		
31	m	147	Total 1171	С 740	N 235	0 194	${ m S} { m 2}$	0	0

• Molecule 32 is a protein called Large ribosomal subunit protein eL29.

Mol	Chain	Residues		Ator	ns		AltConf	Trace
32	n	59	Total 495	C 299	N 112	0 84	0	0

• Molecule 33 is a protein called Large ribosomal subunit protein eL30A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
33	О	94	Total 705	C 450	N 121	O 130	${f S}$ 4	0	0

• Molecule 34 is a protein called Large ribosomal subunit protein eL31.

Mol	Chain	Residues		At	oms	AltConf	Trace		
34	р	103	Total 857	C 538	N 167	0 149	${ m S} { m 3}$	0	0

• Molecule 35 is a protein called Large ribosomal subunit protein eL32A.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	q	118	Total 944	C 591	N 191	O 157	${ m S}{ m 5}$	0	0

• Molecule 36 is a protein called Large ribosomal subunit protein eL33A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
36	r	104	Total 831	C 531	N 160	0 137	${ m S} { m 3}$	0	0

• Molecule 37 is a protein called Large ribosomal subunit protein eL34B.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	s	106	Total 858	C 538	N 176	0 142	$\frac{S}{2}$	0	0

• Molecule 38 is a protein called Large ribosomal subunit protein uL29.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
38	t	121	Total 999	C 629	N 194	O 176	0	0

• Molecule 39 is a protein called Large ribosomal subunit protein eL36B.

Mol	Chain	Residues		At	AltConf	Trace			
39	u	95	Total 759	C 472	N 159	O 127	S 1	0	0

• Molecule 40 is a protein called Large ribosomal subunit protein eL37B.

Mol	Chain	Residues		At	oms	AltConf	Trace		
40	v	82	Total 652	C 399	N 140	O 106	${ m S} 7$	0	0

• Molecule 41 is a protein called Large ribosomal subunit protein eL38A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
41	W	69	Total 560	C 355	N 103	0 101	S 1	0	0

• Molecule 42 is a protein called Large ribosomal subunit protein eL39.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
42	x	50	Total 436	C 273	N 98	O 64	S 1	0	0

• Molecule 43 is a protein called Large ribosomal subunit protein eL28.

Mol	Chain	Residues	Atoms				AltConf	Trace	
43	У	134	Total 1039	C 646	N 204	0 187	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 44 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
44	0	1	Total Zn 1 1	0
44	1	1	Total Zn 1 1	0
44	V	1	Total Zn 1 1	0

• Molecule 45 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
45	2	91	Total Mg 91 91	0
45	3	2	Total Mg 2 2	0
45	4	1	Total Mg 1 1	0
45	b	1	Total Mg 1 1	0
45	h	1	Total Mg 1 1	0
45	q	1	Total Mg 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Large ribosomal subunit protein eL42

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	00004004004004040
• Molecule 5: 5.8S ribosomal RNA	
Chain 4: 79	% <u>16%</u> 5%
A U U U 4 A A A A A A A A A A A A A A A	A87 A87 A88 A88 C91 C92 C92 C92 C92 C92 C92 C92 C92 C114 C114 C114 C114 C113 C114 C113 C114 C113 C114 C113 C114 C113 C114 C135 C114 C135 C114 C135 C114 C135 C114 C135 C114 C135 C114 C135 C114 C135 C114 C135 C114 C135 C114 C135 C114 C135 C114 C135 C114 C135 C114 C135 C114 C135 C114 C135 C114 C114 C135 C114 C135 C114 C114 C135 C114 C114 C114 C114 C114 C114 C114 C11
• Molecule 6: Large ribosomal subu	unit protein uL2C
Chain N:	96% • •
MET G2 K23 K23 K23 K23 K148 V140 V140 V140 V140 K142 K142 K142 K142 K142 K142 K142 K142 K256 K256 K142 K142 K142 K142 K142 K146	GLU ASN
• Molecule 7: Large ribosomal subu	unit protein uL3A
Chain O:	97%
MET SER HIS CYS K5 D59 D61 D61 D61 D61 D61 D61 D61 D61 D61 D61	W255 1276 E302 E302 E322 C3881 K348 K3884 K3884 V3885 V3885 K3884 M3885 V3887
• Molecule 8: Large ribosomal subu	unit protein uL4A
Chain P:	96% •
MET A3 A4 A4 K13 B14 B14 K13 K13 S55 S55 R178 R71 R71 S252 S252	R291 D296 R309 R309 K335 R344 K344 K345 K345 K345 K345 K349
• Molecule 9: Large ribosomal subu	unit protein uL18B
Chain Q:	96% ••
MET PRD PHE LLYS ALIA VAL KB R58 HT9 F84 F85 F84 R58 F84 F86 K85 F84 K89 K86 K89 K89 K89 K89 K89 K89 K89 K89 K80 K80 K80 K80 K80 K80 K90 K90 K90 K90 K00 K10 K11 K00 K11 K00 K11 K00 K11 K00 K11 K00 K11 K00 K11 K00 K11 K00 K11 K00 K11 K00 K11 K00 K11 K00 K11 K00 K11 K00 K11 K00 K11 K00 K11 K00 K11 K00 K10 K00 K10 K00 K10 K00 K0	L92 A93 A117 A122 E124 E124 E126 E126 E126 E128 E128 E130 E133 E136 E133 E136 E136 E136 E136 E136
A205 E206 E206 M207 M208 E205 M210 L211 1212 D215 E216 E216 C216 C216 C216 C216 C216 C216 C216 C	L226 L226 L226 C230 C230 C230 C233 C234 C233 C234 C233 C234 C233 C233
K266 Y270 T271 Q272 R273 R273 R273 R275 R275 R279 R281 R281 R281 R282 R281 R283 R284 R283 R284 R283 R285 R	I 1289 A 231 A 292 A 293 A 294 A 294
• Molecule 10: Large ribosomal sub	ounit protein eL6
Chain R:	• 17%

• Molecule 14: Large ribosomal subunit protein uL16A

• Molecule 18: Large ribosomal subunit protein eL15B Chain Z: 98% • Molecule 19: Large ribosomal subunit protein uL13A Chain a: 99% • Molecule 20: Large ribosomal subunit protein uL22A Chain b: 79% 19% • Molecule 21: Large ribosomal subunit protein eL18B Chain c: 97% • Molecule 22: Large ribosomal subunit protein eL19B Chain d: 80% 19% GLU • Molecule 23: Large ribosomal subunit protein eL20A 20% Chain e: 96% Y13 V13 È • Molecule 24: Large ribosomal subunit protein eL21B 25% Chain f: . . 98%

• Molecule 30: Large ribosomal subunit protein eL27A	
Chain l: 98%	
MET V2 V2 K3 K6 K6 K6 K6 K3 K5 K5 K5 K5 K5 K5 K5 K5 K5 K5 K5 K5 K5	P104 1105 1105 1105 1105 K126 K126 F136
• Molecule 31: Large ribosomal subunit protein uL15B	
Chain m: 96%	
MET P2 H28 H28 N94 F85 E96 F110 A148 A148	
\bullet Molecule 32: Large ribosomal subunit protein eL29	
Chain n:	· ·
ALLA ALLA K3 S4 S5 A57 A51 A51 A51	
\bullet Molecule 33: Large ribosomal subunit protein eL30A	
Chain o: 86%	14%
MET ALLA SER VAL TTRR LIYS LIYS SER SER SER SER A21 L15 A11 A21 L22 L22 A21 A21 L22 A21 A21 L22 A21 A21 A21 A21 A21 A21 A21 A21 A21 A	G102 D103 S104 D105 1106 L107 ASP ALA
\bullet Molecule 34: Large ribosomal subunit protein eL31	
Chain p: 90%	• 9%
MET ALA ASN LYS SER ALA ILS SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
\bullet Molecule 35: Large ribosomal subunit protein eL32A	
Chain q:	• 7%
MET Alla V4 V5 V4 All9 All9 All9 Gl20 GL20 GL20 GL20 GL20 GL20 GL20 GL20 GL	
\bullet Molecule 36: Large ribosomal subunit protein eL33A	
Chain r: 91%	6% •

• Molecule 43: Large ribosomal subunit protein eL28

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	820453	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	600	Depositor
Maximum defocus (nm)	1600	Depositor
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor
Maximum map value	3.551	Depositor
Minimum map value	-1.428	Depositor
Average map value	0.003	Depositor
Map value standard deviation	0.080	Depositor
Recommended contour level	0.38	Depositor
Map size (Å)	424.96, 424.96, 424.96	wwPDB
Map dimensions	512, 512, 512	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.83, 0.83, 0.83	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	0	0.36	0/772	0.59	0/1025	
2	1	0.35	0/727	0.63	0/973	
3	2	0.79	2/76871~(0.0%)	1.02	131/119827~(0.1%)	
4	3	0.66	0/2838	0.93	5/4422~(0.1%)	
5	4	0.79	0/3723	0.96	3/5796~(0.1%)	
6	Ν	0.38	0/1910	0.62	0/2575	
7	0	0.38	0/3116	0.61	0/4190	
8	Р	0.38	0/2852	0.60	0/3850	
9	Q	0.37	0/2361	0.56	0/3173	
10	R	0.34	0/1275	0.55	0/1719	
11	S	0.37	0/1929	0.55	0/2583	
12	Т	0.34	0/1801	0.55	0/2430	
13	U	0.27	0/1330	0.54	0/1789	
14	V	0.29	0/1579	0.55	0/2115	
15	W	0.29	0/1369	0.57	0/1830	
16	Х	0.35	0/1686	0.58	0/2267	
17	Y	0.32	0/1054	0.56	0/1413	
18	Ζ	0.43	0/1717	0.67	0/2306	
19	a	0.38	0/1575	0.56	0/2109	
20	b	0.38	0/1237	0.58	0/1661	
21	с	0.36	0/1511	0.64	0/2021	
22	d	0.30	0/1320	0.56	0/1757	
23	е	0.37	0/1458	0.57	0/1961	
24	f	0.40	0/1314	0.57	0/1771	
25	g	0.32	0/812	0.54	0/1090	
26	h	0.36	0/1015	0.61	0/1369	
27	i	0.36	0/534	0.60	0/709	
28	j	0.35	$0/\overline{963}$	0.59	$1/1296\ \overline{(0.1\%)}$	
29	k	0.34	0/1008	0.62	0/1341	
30	1	0.33	0/1101	0.55	0/1477	
31	m	0.38	$0/1\overline{200}$	0.65	$0/1\overline{611}$	
32	n	0.34	0/503	0.58	0/664	

Mal	Chain	Bo	ond lengths	Bond angles		
MOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
33	0	0.36	0/714	0.55	0/961	
34	р	0.38	0/872	0.64	0/1172	
35	q	0.38	0/958	0.65	0/1278	
36	r	0.40	0/853	0.60	0/1146	
37	S	0.37	0/870	0.63	0/1165	
38	t	0.34	0/1008	0.60	0/1340	
39	u	0.34	0/766	0.61	0/1017	
40	V	0.40	0/666	0.66	0/881	
41	W	0.33	0/566	0.55	0/757	
42	Х	0.32	0/447	0.64	0/597	
43	У	0.34	0/1053	0.61	0/1414	
All	All	0.66	2/133234~(0.0%)	0.90	$140/1968\overline{48}\ (0.1\%)$	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
2	1	0	1
10	R	0	1
All	All	0	2

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
3	2	2730	A	N9-C4	-8.13	1.32	1.37
3	2	2730	А	N3-C4	-5.12	1.31	1.34

The worst 5 of 140 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	2	1542	С	O5'-P-OP1	-12.46	94.48	105.70
3	2	3363	С	OP1-P-OP2	12.29	138.03	119.60
3	2	3362	С	OP2-P-O3'	-11.73	79.40	105.20
3	2	414	G	O4'-C1'-N9	11.50	117.40	108.20
3	2	1464	U	N3-C2-O2	-10.07	115.15	122.20

There are no chirality outliers.

All (2) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
2	1	51	ALA	Peptide
10	R	84	GLY	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	0	91/106~(86%)	86 (94%)	5~(6%)	0	100	100
2	1	91/94~(97%)	83 (91%)	8 (9%)	0	100	100
6	Ν	246/253~(97%)	233~(95%)	12 (5%)	1 (0%)	30	22
7	Ο	382/388~(98%)	371 (97%)	10 (3%)	1 (0%)	37	30
8	Р	360/363~(99%)	347~(96%)	13 (4%)	0	100	100
9	Q	285/294~(97%)	277 (97%)	8 (3%)	0	100	100
10	R	160/195~(82%)	148 (92%)	11 (7%)	1 (1%)	22	12
11	S	231/251~(92%)	228 (99%)	3 (1%)	0	100	100
12	Т	227/259~(88%)	213 (94%)	14 (6%)	0	100	100
13	U	162/189~(86%)	153~(94%)	8 (5%)	1 (1%)	22	12
14	V	187/221~(85%)	179~(96%)	8 (4%)	0	100	100
15	W	165/174~(95%)	158 (96%)	7 (4%)	0	100	100
16	Х	205/208~(99%)	200 (98%)	5 (2%)	0	100	100
17	Y	128/134~(96%)	126 (98%)	2 (2%)	0	100	100
18	Z	198/201~(98%)	188 (95%)	9 (4%)	1 (0%)	25	15
19	a	$19\overline{4}/197~(98\%)$	191 (98%)	3 (2%)	0	100	100
20	b	150/187~(80%)	145(97%)	5 (3%)	0	100	100

Continued on next page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
21	с	184/187~(98%)	174 (95%)	10 (5%)	0	100	100
22	d	155/193~(80%)	152 (98%)	3 (2%)	0	100	100
23	е	171/176~(97%)	164 (96%)	6 (4%)	1 (1%)	22	12
24	f	157/160~(98%)	149 (95%)	8 (5%)	0	100	100
25	g	97/117~(83%)	83 (86%)	14 (14%)	0	100	100
26	h	132/139~(95%)	123 (93%)	9 (7%)	0	100	100
27	i	61/149 (41%)	60 (98%)	1 (2%)	0	100	100
28	j	116/141 (82%)	111 (96%)	5 (4%)	0	100	100
29	k	123/126~(98%)	120 (98%)	3 (2%)	0	100	100
30	1	133/136~(98%)	119 (90%)	14 (10%)	0	100	100
31	m	145/148 (98%)	140 (97%)	4 (3%)	1 (1%)	19	9
32	n	57/61~(93%)	55 (96%)	2 (4%)	0	100	100
33	0	92/109~(84%)	91 (99%)	1 (1%)	0	100	100
34	р	101/113 (89%)	99~(98%)	2 (2%)	0	100	100
35	q	116/127~(91%)	110 (95%)	6 (5%)	0	100	100
36	r	102/108~(94%)	100 (98%)	2 (2%)	0	100	100
37	S	104/111 (94%)	102 (98%)	2 (2%)	0	100	100
38	t	119/122~(98%)	115 (97%)	3 (2%)	1 (1%)	16	7
39	u	93/99~(94%)	90 (97%)	3 (3%)	0	100	100
40	V	80/91~(88%)	77 (96%)	3 (4%)	0	100	100
41	W	67/74~(90%)	65~(97%)	2 (3%)	0	100	100
42	x	48/51~(94%)	43 (90%)	5 (10%)	0	100	100
43	У	132/134 (98%)	121 (92%)	11 (8%)	0	100	100
All	All	6047/6586~(92%)	5789 (96%)	250 (4%)	8 (0%)	50	41

Continued from previous page...

5 of 8 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
6	Ν	29	ARG
10	R	144	ALA
13	U	134	ILE
18	Ζ	183	SER
23	е	159	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric Outliers		Percentiles	
1	0	84/93~(90%)	80 (95%)	4(5%)	21	8
2	1	74/75~(99%)	74 (100%)	0	100	100
6	Ν	188/192~(98%)	185 (98%)	3 (2%)	58	49
7	О	318/326~(98%)	311 (98%)	7 (2%)	47	35
8	Р	293/294~(100%)	281 (96%)	12 (4%)	26	12
9	Q	235/241~(98%)	230 (98%)	5 (2%)	48	36
10	R	132/155~(85%)	129 (98%)	3(2%)	45	33
11	S	198/213~(93%)	197 (100%)	1 (0%)	86	86
12	Т	182/212~(86%)	171 (94%)	11 (6%)	16	5
13	U	149/168~(89%)	142 (95%)	7 (5%)	22	9
14	V	165/187~(88%)	158 (96%)	7 (4%)	25	12
15	W	141/146~(97%)	131 (93%)	10 (7%)	12	3
16	Х	166/167~(99%)	161 (97%)	5(3%)	36	23
17	Y	110/113~(97%)	108 (98%)	2(2%)	54	43
18	Ζ	175/176~(99%)	173 (99%)	2(1%)	70	64
19	a	159/160~(99%)	158 (99%)	1 (1%)	84	83
20	b	124/149~(83%)	119 (96%)	5(4%)	27	13
21	с	157/158~(99%)	153 (98%)	4 (2%)	42	30
22	d	136/163~(83%)	133 (98%)	3 (2%)	47	35
23	е	151/154~(98%)	148 (98%)	3 (2%)	50	38
24	f	138/139~(99%)	135 (98%)	3~(2%)	47	35
25	g	86/103~(84%)	85 (99%)	1 (1%)	67	61
26	h	103/107~(96%)	101 (98%)	2 (2%)	52	41
27	i	57/121~(47%)	53 (93%)	4 (7%)	12	3
28	j	105/122 (86%)	103 (98%)	2 (2%)	52	41
29	k	110/111 (99%)	108 (98%)	2 (2%)	54	43

Continued on next page...

Mol	Chain	Analysed	Rotameric	Outliers	Percer	ntiles
30	1	114/115~(99%)	112 (98%)	2(2%)	54	43
31	m	122/123~(99%)	118 (97%)	4 (3%)	33	20
32	n	50/51~(98%)	50 (100%)	0	100	100
33	О	75/87~(86%)	75 (100%)	0	100	100
34	р	94/102~(92%)	93~(99%)	1 (1%)	70	64
35	q	100/107~(94%)	98~(98%)	2(2%)	50	38
36	r	91/94~(97%)	85~(93%)	6 (7%)	14	4
37	S	91/96~(95%)	89~(98%)	2(2%)	47	35
38	t	106/107~(99%)	103~(97%)	3~(3%)	38	25
39	u	81/84~(96%)	79~(98%)	2(2%)	42	30
40	v	68/71~(96%)	67~(98%)	1 (2%)	60	52
41	W	63/66~(96%)	62~(98%)	1 (2%)	58	49
42	х	46/47~(98%)	46 (100%)	0	100	100
43	У	113/113 (100%)	109 (96%)	4 (4%)	31	18
All	All	5150/5508~(94%)	5013 (97%)	137 (3%)	41	26

Continued from previous page...

5 of 137 residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
34	р	106	MET
36	r	37	ASP
39	u	33	LYS
13	U	69	ARG
13	U	58	TRP

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 44 such sidechains are listed below:

Mol	Chain	Res	Type
29	k	54	GLN
36	r	6	HIS
30	1	123	GLN
32	n	6	ASN
38	t	15	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
3	2	3204/3498~(91%)	656~(20%)	49 (1%)
4	3	118/246~(47%)	18 (15%)	1 (0%)
5	4	156/165~(94%)	26 (16%)	1 (0%)
All	All	3478/3909~(88%)	700 (20%)	51 (1%)

5 of 700 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
3	2	16	А
3	2	26	А
3	2	40	А
3	2	49	А
3	2	59	G

5 of 51 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
3	2	1897	А
3	2	2993	G
4	3	12	U
3	2	2200	U
3	2	2867	С

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 100 ligands modelled in this entry, 100 are monoatomic - leaving 0 for Mogul analysis. There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-43973. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

Z Index: 256

6.2.2 Raw map

X Index: 256

Y Index: 256

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 275

Z Index: 324

6.3.2 Raw map

X Index: 275

Y Index: 246

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.38. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 381 nm^3 ; this corresponds to an approximate mass of 344 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.515 \AA^{-1}

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.515 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{B}_{\mathrm{assolution ostimato}}(\mathbf{\hat{\lambda}})$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	1.94	-	-
Author-provided FSC curve	-	-	-
Unmasked-calculated*	2.52	2.93	2.57

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 2.52 differs from the reported value 1.94 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-43973 and PDB model 9AXU. Per-residue inclusion information can be found in section 3 on page 12.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.38 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.38).

9.4 Atom inclusion (i)

At the recommended contour level, 75% of all backbone atoms, 73% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.38) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	$\mathbf{Q} ext{-score}$
All	0.7290	0.6610
0	0.6590	0.6920
1	0.7990	0.7110
2	0.7360	0.6390
3	0.7530	0.6620
4	0.8300	0.6840
Ν	0.9360	0.7670
О	0.8860	0.7510
Р	0.8990	0.7550
Q	0.5560	0.6430
R	0.5680	0.6300
S	0.8200	0.7180
Т	0.6350	0.6780
U	0.0030	0.3280
V	0.0340	0.4920
W	0.0980	0.4460
Х	0.7390	0.7060
Y	0.5390	0.6550
Z	0.9830	0.7810
a	0.8620	0.7510
b	0.8970	0.7610
с	0.8850	0.7540
d	0.8380	0.7280
е	0.7350	0.6940
f	0.7040	0.6870
g	0.3370	0.5810
h	0.8410	0.7390
i	0.5790	0.6840
j	0.8320	0.7330
k	0.7390	0.7150
1	0.6230	0.6720
m	0.9330	0.7690
n	0.7860	0.7160
0	0.6120	0.6610
р	0.8230	0.7190

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
q	0.8980	0.7610
r	0.8770	0.7450
s	0.8980	0.7490
t	0.7550	0.7170
u	0.7950	0.7210
V	0.9510	0.7790
W	0.3970	0.5910
X	0.6240	0.6430
У	0.5960	0.6890

