PDB ID : 6BER
Title : Solution structure of de novo macrocycle design
Authors : Shortridge, M.D.; Hosseinadeh, P.; Pardo-Avila, F.; Varani, G.; Baker, D.
Deposited on : 2017-10-25

This is a Full wwPDB NMR Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at https://www.wwpdb.org/validation/2017/NMRValidationReportHelp
with specific help available everywhere you see the symbol.

The following versions of software and data (see references) were used in the production of this report:

- Cyrange : Kirchner and Güntert (2011)
- NmrClust : Kelley et al. (1996)
- MolProbity : 4.02b-467
- Mogul : 1.7.3 (157068), CSD as539be (2018)
- Percentile statistics : 20171227.v01 (using entries in the PDB archive December 27th 2017)
- RCI : v_ln_11_5_13_A (Berjanski et al., 2005)
- PANAV : Wang et al. (2010)
- ShiftChecker : trunk30686
- Ideal geometry (proteins) : Engh & Huber (2001)
- Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
- Validation Pipeline (wwPDB-VP) : trunk30686
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:
SOLUTION NMR

The overall completeness of chemical shifts assignment is 49%.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>NMR archive (#Entries)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clashscore</td>
<td>136279</td>
<td>12091</td>
</tr>
</tbody>
</table>

WHATAPPEARED
2 Ensemble composition and analysis

This entry contains 20 models. This entry does not contain polypeptide chains, therefore identification of well-defined residues and clustering analysis are not possible. All residues are included in the validation scores.
3 Entry composition

There is only 1 type of molecule in this entry. The entry contains 142 atoms, of which 65 are hydrogens and 0 are deuteriums.

- Molecule 1 is a protein (with D amino acids) called E(DVA)DP(DGL)(DHI)(DPR)N(DAL)(DPR).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>10</td>
<td>Total</td>
<td>C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>142</td>
<td>47</td>
</tr>
</tbody>
</table>
4 Residue-property plots

4.1 Average score per residue in the NMR ensemble

These plots are provided for all protein, RNA and DNA chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey.

4.2 Scores per residue for each member of the ensemble

Colouring as in section 4.1 above.

4.2.1 Score per residue for model 1

There is no protein, DNA or RNA molecules in this entry to show sequence plots.

4.2.2 Score per residue for model 2

There is no protein, DNA or RNA molecules in this entry to show sequence plots.

4.2.3 Score per residue for model 3

There is no protein, DNA or RNA molecules in this entry to show sequence plots.

4.2.4 Score per residue for model 4

There is no protein, DNA or RNA molecules in this entry to show sequence plots.

4.2.5 Score per residue for model 5

There is no protein, DNA or RNA molecules in this entry to show sequence plots.

4.2.6 Score per residue for model 6

There is no protein, DNA or RNA molecules in this entry to show sequence plots.
4.2.7 Score per residue for model 7
There is no protein, DNA or RNA molecules in this entry to show sequence plots.

4.2.8 Score per residue for model 8
There is no protein, DNA or RNA molecules in this entry to show sequence plots.

4.2.9 Score per residue for model 9
There is no protein, DNA or RNA molecules in this entry to show sequence plots.

4.2.10 Score per residue for model 10
There is no protein, DNA or RNA molecules in this entry to show sequence plots.

4.2.11 Score per residue for model 11
There is no protein, DNA or RNA molecules in this entry to show sequence plots.

4.2.12 Score per residue for model 12
There is no protein, DNA or RNA molecules in this entry to show sequence plots.

4.2.13 Score per residue for model 13
There is no protein, DNA or RNA molecules in this entry to show sequence plots.

4.2.14 Score per residue for model 14
There is no protein, DNA or RNA molecules in this entry to show sequence plots.

4.2.15 Score per residue for model 15
There is no protein, DNA or RNA molecules in this entry to show sequence plots.

4.2.16 Score per residue for model 16
There is no protein, DNA or RNA molecules in this entry to show sequence plots.
4.2.17 Score per residue for model 17

There is no protein, DNA or RNA molecules in this entry to show sequence plots.

4.2.18 Score per residue for model 18

There is no protein, DNA or RNA molecules in this entry to show sequence plots.

4.2.19 Score per residue for model 19

There is no protein, DNA or RNA molecules in this entry to show sequence plots.

4.2.20 Score per residue for model 20

There is no protein, DNA or RNA molecules in this entry to show sequence plots.
5 Refinement protocol and experimental data overview

The models were refined using the following method: molecular dynamics.

Of the 200 calculated structures, 20 were deposited, based on the following criterion: structures with the lowest energy.

The following table shows the software used for structure solution, optimisation and refinement.

<table>
<thead>
<tr>
<th>Software name</th>
<th>Classification</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>gromacs</td>
<td>refinement</td>
<td>2016.1</td>
</tr>
<tr>
<td>X-PLOR NIH</td>
<td>structure calculation</td>
<td></td>
</tr>
</tbody>
</table>

The following table shows chemical shift validation statistics as aggregates over all chemical shift files. Detailed validation can be found in section 7 of this report.

<table>
<thead>
<tr>
<th>Chemical shift file(s)</th>
<th>6ber_cs.str</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of chemical shift lists</td>
<td>1</td>
</tr>
<tr>
<td>Total number of shifts</td>
<td>53</td>
</tr>
<tr>
<td>Number of shifts mapped to atoms</td>
<td>53</td>
</tr>
<tr>
<td>Number of unparsed shifts</td>
<td>0</td>
</tr>
<tr>
<td>Number of shifts with mapping errors</td>
<td>0</td>
</tr>
<tr>
<td>Number of shifts with mapping warnings</td>
<td>0</td>
</tr>
<tr>
<td>Assignment completeness (well-defined parts)</td>
<td>49%</td>
</tr>
</tbody>
</table>

No validations of the models with respect to experimental NMR restraints is performed at this time.
6 Model quality

6.1 Standard geometry

Bond lengths and bond angles in the following residue types are not validated in this section: DAL, DHI, DVA, DPR, DGL.

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with \(|Z| > 5 \) is considered an outlier worth inspection. RMSZ is the (average) root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#Z>5 (Value, Zarate)</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0.55±0.04</td>
<td>0±0/30 (0.0±0.0%)</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0.56</td>
<td>0/600 (0.0%)</td>
</tr>
</tbody>
</table>

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Chirality</th>
<th>Planarity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>0.0±0.0</td>
<td>0.1±0.3</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0</td>
<td>2</td>
</tr>
</tbody>
</table>

There are no bond-length outliers.

All unique angle outliers are listed below. They are sorted according to the Z-score of the worst occurrence in the ensemble.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
<th>Models</th>
<th>Models (Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>1</td>
<td>GLU</td>
<td>OE1-CD-OE2</td>
<td>-8.06</td>
<td>113.62</td>
<td>123.30</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>3</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>-6.99</td>
<td>112.01</td>
<td>118.30</td>
<td>5</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>4</td>
<td>PRO</td>
<td>N-CA-CB</td>
<td>6.54</td>
<td>111.15</td>
<td>103.30</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>3</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.62</td>
<td>123.36</td>
<td>118.30</td>
<td>6</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>4</td>
<td>PRO</td>
<td>CA-N-CD</td>
<td>-5.28</td>
<td>104.11</td>
<td>111.50</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

All unique planar outliers are listed below. They are sorted by the frequency of occurrence in the ensemble.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Group</th>
<th>Models (Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>1</td>
<td>GLU</td>
<td>Peptide</td>
<td>1</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Group</th>
<th>Models (Total)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>7</td>
<td>DPR</td>
<td>Mainchain</td>
<td>1</td>
</tr>
</tbody>
</table>

6.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>All</td>
<td>1540</td>
<td>1300</td>
<td>1224</td>
<td>-</td>
</tr>
</tbody>
</table>

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is -. There are no clashes.

6.3 Torsion angles

6.3.1 Protein backbone

There are no protein molecules in this entry.

6.3.2 Protein sidechains

There are no protein molecules in this entry.

6.3.3 RNA

There are no RNA molecules in this entry.

6.4 Non-standard residues in protein, DNA, RNA chains

6 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds for which Mogul statistics could be retrieved, the number of bonds that are observed in the model and the number of bonds that are defined in the chemical component dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length is the number of standard deviations the observed value is removed from the expected value. A bond length with $|Z| > 2$ is...
considered an outlier worth inspection. RMSZ is the average root-mean-square of all Z scores of the bond lengths.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Counts</th>
<th>Bond lengths</th>
<th>Bond lengths</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#Z>2</td>
</tr>
<tr>
<td>1</td>
<td>DPR</td>
<td>A</td>
<td>10</td>
<td>1</td>
<td>6,7,8</td>
<td>0.92±0.09</td>
<td>0±0 (0±0%)</td>
</tr>
<tr>
<td>1</td>
<td>DVA</td>
<td>A</td>
<td>2</td>
<td>1</td>
<td>6,6,7</td>
<td>0.88±0.07</td>
<td>0±0 (0±0%)</td>
</tr>
<tr>
<td>1</td>
<td>DGL</td>
<td>A</td>
<td>5</td>
<td>1</td>
<td>5,8,9</td>
<td>1.02±0.09</td>
<td>0±0 (0±0%)</td>
</tr>
<tr>
<td>1</td>
<td>DHI</td>
<td>A</td>
<td>6</td>
<td>1</td>
<td>6,10,11</td>
<td>1.19±0.11</td>
<td>0±0 (0±0%)</td>
</tr>
<tr>
<td>1</td>
<td>DPR</td>
<td>A</td>
<td>7</td>
<td>1</td>
<td>6,7,8</td>
<td>0.95±0.10</td>
<td>0±0 (0±0%)</td>
</tr>
<tr>
<td>1</td>
<td>DAL</td>
<td>A</td>
<td>9</td>
<td>1</td>
<td>4,4,5</td>
<td>1.09±0.18</td>
<td>0±0 (0±0%)</td>
</tr>
</tbody>
</table>

In the following table, the Counts columns list the number of angles for which Mogul statistics could be retrieved, the number of angles that are observed in the model and the number of angles that are defined in the chemical component dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond angle is the number of standard deviations the observed value is removed from the expected value. A bond angle with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the average root-mean-square of all Z scores of the bond angles.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Counts</th>
<th>Bond angles</th>
<th>#Z>2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>RMSZ</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DPR</td>
<td>A</td>
<td>10</td>
<td>1</td>
<td>7,8,10</td>
<td>1.38±0.40</td>
<td>0±0 (0±3%)</td>
</tr>
<tr>
<td>1</td>
<td>DVA</td>
<td>A</td>
<td>2</td>
<td>1</td>
<td>6,7,9</td>
<td>1.55±0.39</td>
<td>0±0 (0±0%)</td>
</tr>
<tr>
<td>1</td>
<td>DGL</td>
<td>A</td>
<td>5</td>
<td>1</td>
<td>2,9,11</td>
<td>1.92±0.84</td>
<td>0±0 (2±10%)</td>
</tr>
<tr>
<td>1</td>
<td>DHI</td>
<td>A</td>
<td>6</td>
<td>1</td>
<td>4,12,14</td>
<td>1.81±0.56</td>
<td>0±0 (0±0%)</td>
</tr>
<tr>
<td>1</td>
<td>DPR</td>
<td>A</td>
<td>7</td>
<td>1</td>
<td>7,8,10</td>
<td>1.35±0.52</td>
<td>0±0 (0±3%)</td>
</tr>
<tr>
<td>1</td>
<td>DAL</td>
<td>A</td>
<td>9</td>
<td>1</td>
<td>1,4,6</td>
<td>0.66±0.62</td>
<td>0±0 (0±0%)</td>
</tr>
</tbody>
</table>

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the chemical component dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>DPR</td>
<td>A</td>
<td>10</td>
<td>1</td>
<td>-</td>
<td>0±0,0,1,1</td>
<td>0±0,0,0,0</td>
</tr>
<tr>
<td>1</td>
<td>DVA</td>
<td>A</td>
<td>2</td>
<td>1</td>
<td>-</td>
<td>0±0,0,1,1</td>
<td>0±0,0,0,0</td>
</tr>
<tr>
<td>1</td>
<td>DGL</td>
<td>A</td>
<td>5</td>
<td>1</td>
<td>-</td>
<td>0±0,0,1,1</td>
<td>0±0,0,0,0</td>
</tr>
<tr>
<td>1</td>
<td>DHI</td>
<td>A</td>
<td>6</td>
<td>1</td>
<td>-</td>
<td>0±0,0,1,1</td>
<td>0±0,0,0,0</td>
</tr>
<tr>
<td>1</td>
<td>DPR</td>
<td>A</td>
<td>7</td>
<td>1</td>
<td>-</td>
<td>0±0,0,1,1</td>
<td>0±0,0,0,0</td>
</tr>
<tr>
<td>1</td>
<td>DAL</td>
<td>A</td>
<td>9</td>
<td>1</td>
<td>-</td>
<td>0±0,0,1,1</td>
<td>0±0,0,0,0</td>
</tr>
</tbody>
</table>

There are no bond-length outliers.

All unique angle outliers are listed below. They are sorted according to the Z-score of the worst
occurrence in the ensemble.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
<th>Models</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>7</td>
<td>DPR</td>
<td>CB-CA-C</td>
<td>7.65</td>
<td>102.17</td>
<td>112.70</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>5</td>
<td>DGL</td>
<td>CB-CA-C</td>
<td>5.76</td>
<td>100.86</td>
<td>111.85</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>10</td>
<td>DPR</td>
<td>CB-CA-C</td>
<td>5.17</td>
<td>119.82</td>
<td>112.70</td>
<td>16</td>
</tr>
</tbody>
</table>

There are no chirality outliers.
There are no torsion outliers.
There are no ring outliers.

6.5 Carbohydrates

There are no carbohydrates in this entry.

6.6 Ligand geometry

There are no ligands in this entry.

6.7 Other polymers

There are no such molecules in this entry.

6.8 Polymer linkage issues

There are no chain breaks in this entry.
7 Chemical shift validation

The completeness of assignment taking into account all chemical shift lists is 49% for the well-defined parts and 49% for the entire structure.

7.1 Chemical shift list 1

File name: 6ber_cs.str
Chemical shift list name: marie_bmr.txt

7.1.1 Bookkeeping

The following table shows the results of parsing the chemical shift list and reports the number of nuclei with statistically unusual chemical shifts.

<table>
<thead>
<tr>
<th>Total number of shifts</th>
<th>53</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of shifts mapped to atoms</td>
<td>53</td>
</tr>
<tr>
<td>Number of unparsed shifts</td>
<td>0</td>
</tr>
<tr>
<td>Number of shifts with mapping errors</td>
<td>0</td>
</tr>
<tr>
<td>Number of shifts with mapping warnings</td>
<td>0</td>
</tr>
<tr>
<td>Number of shift outliers (ShiftChecker)</td>
<td>0</td>
</tr>
</tbody>
</table>

7.1.2 Chemical shift referencing

No chemical shift referencing corrections were calculated (not enough data).

7.1.3 Completeness of resonance assignments

The following table shows the completeness of the chemical shift assignments for the well-defined regions of the structure. The overall completeness is 49%, i.e. 22 atoms were assigned a chemical shift out of a possible 45. 0 out of 0 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>(^1H)</th>
<th>(^{13}C)</th>
<th>(^{15}N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backbone</td>
<td>6/18 (33%)</td>
<td>6/7 (86%)</td>
<td>0/8 (0%)</td>
<td>0/3 (0%)</td>
</tr>
<tr>
<td>Sidechain</td>
<td>16/27 (59%)</td>
<td>16/16 (100%)</td>
<td>0/10 (0%)</td>
<td>0/1 (0%)</td>
</tr>
<tr>
<td>Aromatic</td>
<td>0/0 (—%)</td>
<td>0/0 (—%)</td>
<td>0/0 (—%)</td>
<td>0/0 (—%)</td>
</tr>
<tr>
<td>Overall</td>
<td>22/45 (49%)</td>
<td>22/23 (96%)</td>
<td>0/18 (0%)</td>
<td>0/4 (0%)</td>
</tr>
</tbody>
</table>

The following table shows the completeness of the chemical shift assignments for the full structure. The overall completeness is 49%, i.e. 22 atoms were assigned a chemical shift out of a possible 45. 0 out of 0 assigned methyl groups (LEU and VAL) were assigned stereospecifically.
<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>(^1)H</th>
<th>(^{13})C</th>
<th>(^{15})N</th>
</tr>
</thead>
<tbody>
<tr>
<td>Backbone</td>
<td>6/18 (33%)</td>
<td>6/7 (86%)</td>
<td>0/8 (0%)</td>
<td>0/3 (0%)</td>
</tr>
<tr>
<td>Sidechain</td>
<td>16/27 (59%)</td>
<td>16/16 (100%)</td>
<td>0/10 (0%)</td>
<td>0/1 (0%)</td>
</tr>
<tr>
<td>Aromatic</td>
<td>0/0 (—%)</td>
<td>0/0 (—%)</td>
<td>0/0 (—%)</td>
<td>0/0 (—%)</td>
</tr>
<tr>
<td>Overall</td>
<td>22/45 (49%)</td>
<td>22/23 (96%)</td>
<td>0/18 (0%)</td>
<td>0/4 (0%)</td>
</tr>
</tbody>
</table>

7.1.4 Statistically unusual chemical shifts

There are no statistically unusual chemical shifts.

7.1.5 Random Coil Index (RCI) plots

No random coil index (RCI) plot could be generated from the current chemical shift list (marie_bmr.txt). RCI is only applicable to proteins.