

Full wwPDB X-ray Structure Validation Report (i)

Nov 11, 2024 – 12:31 PM EST

PDB ID	:	9BE4
Title	:	The post-condensation state of the dimodular NRPS protein LgrA
Authors	:	Pistofidis, A.; Schmeing, T.M.
Deposited on	:	2024-04-13
Resolution	:	3.00 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	2022.3.0, CSD as543be (2022)
Xtriage (Phenix)	:	1.20.1
EDS	:	3.0
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
CCP4	:	9.0.003 (Gargrove)
Density-Fitness	:	1.0.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 3.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R _{free}	164625	2511 (3.00-3.00)
Clashscore	180529	2866 (3.00-3.00)
Ramachandran outliers	177936	2778 (3.00-3.00)
Sidechain outliers	177891	2781 (3.00-3.00)
RSRZ outliers	164620	2523 (3.00-3.00)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	1814	% • 79%	17%	•••
1	В	1814	% • 77%	19%	•••

1

В

2 Entry composition (i)

1758

There are 5 unique types of molecules in this entry. The entry contains 28158 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

				_						
Mol	Chain	Residues	Atoms						ZeroOcc	AltConf
1	Δ	1769	Total	С	Ν	Ο	Р	S	0	1
	1702	13959	8927	2376	2596	1	59	0		
1	р	1750	Total	С	Ν	Ο	Р	S	0	

2332

2580

1

60

• Molecule 1 is a protein called Linear gramicidin synthase subunit A.

13796

Chain	Residue	Modelled	Actual	Comment	Reference
А	1	MET	-	initiating methionine	UNP Q70LM7
А	2	GLY	-	expression tag	UNP Q70LM7
А	3	ARG	-	expression tag	UNP Q70LM7
А	770A	ASN	-	insertion	UNP Q70LM7
А	770B	GLY	-	insertion	UNP Q70LM7
А	771	LEU	SER	conflict	UNP Q70LM7
А	1804	ALA	-	expression tag	UNP Q70LM7
А	1805	ALA	-	expression tag	UNP Q70LM7
А	1806	ALA	-	expression tag	UNP Q70LM7
А	1807	GLU	-	expression tag	UNP Q70LM7
А	1808	ASN	-	expression tag	UNP Q70LM7
А	1809	LEU	-	expression tag	UNP Q70LM7
А	1810	TYR	-	expression tag	UNP Q70LM7
А	1811	PHE	-	expression tag	UNP Q70LM7
А	1812	GLN	-	expression tag	UNP Q70LM7
В	1	MET	-	initiating methionine	UNP Q70LM7
В	2	GLY	-	expression tag	UNP Q70LM7
В	3	ARG	-	expression tag	UNP Q70LM7
В	770A	ASN	-	insertion	UNP Q70LM7
В	770B	GLY	-	insertion	UNP Q70LM7
В	771	LEU	SER	conflict	UNP Q70LM7
В	1804	ALA	-	expression tag	UNP Q70LM7
В	1805	ALA	-	expression tag	UNP Q70LM7
В	1806	ALA	-	expression tag	UNP Q70LM7
В	1807	GLU	-	expression tag	UNP Q70LM7
				Continued	l on next page

There are 30 discrepancies between the modelled and reference sequences:

8823

Trace

0

0

0

0

0 0	- $ -$								
Chain	Residue	Modelled	Actual	Comment	Reference				
В	1808	ASN	-	expression tag	UNP Q70LM7				
В	1809	LEU	-	expression tag	UNP Q70LM7				
В	1810	TYR	-	expression tag	UNP Q70LM7				
В	1811	PHE	-	expression tag	UNP Q70LM7				
В	1812	GLN	-	expression tag	UNP Q70LM7				

Continued from previous page...

• Molecule 2 is GLYCEROL (three-letter code: GOL) (formula: $C_3H_8O_3$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
2	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0

• Molecule 3 is N-formyl-L-valyl-N-[2-({N-[(2S)-2-hydroxy-4-{[(S)-hydroxy(oxo)-lambda 5 - phosphanyl]oxy}-3,3-dimethylbutanoyl]-beta-alanyl}amino)ethyl]glycinamide (three-letter code: A1AMN) (formula: $C_{19}H_{36}N_5O_{10}P$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf		
2	Λ	1	Total	С	Ν	0	Р	0	0
3 A	A	L	34	19	5	9	1	0	0

• Molecule 4 is MANGANESE (II) ION (three-letter code: MN) (formula: Mn).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	В	1	Total Mn 1 1	0	0

• Molecule 5 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	189	Total O 189 189	0	0
5	В	161	Total O 161 161	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Linear gramicidin synthase subunit A

• Molecule 1: Linear gramicidin synthase subunit A

Chain B:	77%	19% • •
M1 18 M11 811 813 813 813 813 813 124 125 124 832 832 832 832 832 858 858	160 163 163 169 169 177 169 177 199 1100 1100	E106 H106 V114 V114 1138 1130 Y130 Y130 Y130 Y130 Y130
V173 L176 L176 L184 L184 L184 R196 R196 R196 R196 R196 R199 R199 R199	L264 R291 Y294 Y294 B311 L305 L305 L305 L305 L321 T321 T321 T322 T321 T322 T322 T322 T	A358 A358 A362 L368 L368 L368 L368 F390 F390 F390 F390
F403 H415 H415 F416 F416 F416 F416 F417 F417 F415 M445 M445 M446 M446 M446	6482 E485 E485 E486 E486 E486 E486 E486 E486 E488 E488	R540 R545 R565 R565 D575 d577 1600 E601 E601 E601 E601
L612 L622 R624 R624 R625 Y625 Y625 V625 V625 C671 C671 C671 C671 C671 C671 C671 C671	D697 (701 (701 (713 (715 (715 (715 (715 (715 (715 (715 (715	V732 8745 8745 1746 1757 1757 7751 7751 7751 7751 7751
P774 E778 E783 E783 F794 7794 7895 8805 1811 1811 1812 1812 1813 1833 1833 1833	N843 R851 R851 A856 V861 P862 P863 P865 P887 L889 L889 L889 L889	D898 W8900 W901 P904 F904 F904 F904 F905 H906 H908 F933 F933 F933
Y939 X940 S941 B944 B944 F965 F965 R965 R965 R965 R965 R965 R965 R965 R	R980 G988 T1000 F1000 F1000 F1000 F1000 F1000 F1001 F1011 F1010 F1011 F1021	V1022 V1022 V1025 V1025 V1026 V1026 V1026 V1025 V1025 V1025 V1025 V1025 V1025 V1026 V1026 V1025 V1
L1053 L1055 L1055 M1056 M1056 L1061 L1061 L1063 L1063 R1063 M1079 M1079 M1095 M1095 M101	M109 L1113 L1128 M132 X1140 X1141 L1155 Y1161 Y1161 M171 M174	L1189 K1194 K1194 L1206 L1206 L1208 V1211 N1212 D1212 D1213 T1214
E1228 D1229 N1230 N1230 N1240 N1246 N1256 R1256 R1256 N1256 N1256 N1256 N1266 N1266 N1266 N1266 N1266 N1266	K1266 N1274 N1275 L1275 L1276 A1287 N1287 V1291 L1299 L1299 L1299 L1200 L12301 L12301 L1301	A1311 1313 1312 1315 1316 81317 81320 1322 1322 1323 1323 1323 1323 1337 71368
T1369 S1370 S1370 C117 S137 T1379 T1399 L1399 L1399 L1399 L1399 L1399 L1399 L1400 C1400 C1406 L1406 T1409 T1409 T1409 T1411	11415 11424 11424 11425 11430 11433 11433 11433 11433 11433 11433 11433 11433 11433 11433 11433 11433 11433 11433 11433 11433 11433 11433 11440	11444 11445 11445 11445 11453 11453 11455 11465 11465 11465 11465 11465 11465 11465 11465 11470
N1 477 11 482 M1 489 M1 489 D1 491 D1	L1524 L1524 01529 01529 1533 81531 81533 1533 1533 1533 1533 15	q1552 1.1563 1.1565 4.1566 4.1566 A.1566 A.1566 A.1568 A.1568 H.1575 H.1575 H.1588 H.1588 H.1588 H.1588 H.1588 H.1588 H.1588 H.1588 H.1588 H.1588
R1597 L1601 L1601 L1601 R1605 E1601 D1607 L1613 L1613 L1613 L1613 L1623 L1633 L1634 L1635 L1635<	GLU THR THR GLN GLN ASP ASP ASP ASP A1646 V1646 V1646 V1646 V1648 A1649 A1649 A1649 A1657 C1660 ALA ALA	LLEU LLEU SLET SLET CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 2	Depositor
Cell constants	184.41Å 426.58Å 77.30Å	Deperitor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
$\mathbf{Posolution} \left(\overset{\circ}{\mathbf{A}} \right)$	49.87 - 3.00	Depositor
Resolution (A)	49.87 - 3.00	EDS
% Data completeness	96.6 (49.87-3.00)	Depositor
(in resolution range)	97.2 (49.87-3.00)	EDS
R_{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.56 (at 3.01 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.21.1_5286	Depositor
B B.	0.218 , 0.258	Depositor
II, II, <i>free</i>	0.218 , 0.257	DCC
R_{free} test set	120666 reflections (2.18%)	wwPDB-VP
Wilson B-factor $(Å^2)$	62.0	Xtriage
Anisotropy	0.259	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.33, 67.6	EDS
L-test for twinning ²	$ < L >=0.47, < L^2>=0.29$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.92	EDS
Total number of atoms	28158	wwPDB-VP
Average B, all atoms $(Å^2)$	61.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 11.64% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: A1AMN, MN, GOL, $4\mathrm{HH}$

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bo	ond angles
1VIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.25	0/14237	0.48	0/19339
1	В	0.27	0/14069	0.49	1/19133~(0.0%)
All	All	0.26	0/28306	0.48	1/38472~(0.0%)

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	1321	LEU	CA-CB-CG	6.93	131.25	115.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	13959	0	13807	188	1
1	В	13796	0	13548	215	0
2	А	12	0	16	0	0
2	В	6	0	8	0	0
3	А	34	0	0	0	0
4	В	1	0	0	0	0
5	А	189	0	0	0	0
5	В	161	0	0	0	0

Continued from previous page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
All	All	28158	0	27379	403	1

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 7.

All (403) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:1678:LEU:HD11	1:B:1688:PRO:HD3	1.51	0.92
1:B:193:GLU:OE1	1:B:193:GLU:N	2.05	0.90
1:B:130:TYR:OH	1:B:170:ARG:NH2	2.10	0.83
1:A:251:LYS:HD3	1:A:252:PRO:HD2	1.57	0.83
1:B:697:ASP:OD2	1:B:761:LYS:NZ	2.14	0.80
1:B:1436:GLU:OE1	1:B:1439:LYS:NZ	2.15	0.77
1:A:123:GLU:OE1	1:A:123:GLU:N	2.18	0.74
1:A:248:LYS:NZ	1:A:319:ASP:OD2	2.14	0.74
1:A:1406:LEU:HB2	1:A:1453:ILE:HD13	1.68	0.74
1:B:729:4HH:HL23	1:B:729:4HH:HB2	1.71	0.73
1:A:785:GLU:OE2	1:A:944:ARG:HD2	1.90	0.72
1:B:622:ASP:OD2	1:B:624:ARG:NE	2.23	0.71
1:B:1320:LYS:O	1:B:1337:VAL:HG22	1.90	0.71
1:A:1050:THR:HA	1:A:1053:LEU:HD13	1.73	0.71
1:A:1590:GLU:HB3	1:A:1593:GLU:HB2	1.72	0.71
1:B:1778:VAL:H	1:B:1795:VAL:HG21	1.55	0.71
1:A:224:ASP:OD1	1:A:225:ARG:NH1	2.24	0.70
1:B:13:LYS:HE3	1:B:32:GLN:HE22	1.56	0.70
1:A:1401:GLN:OE1	1:A:1427:ARG:NH2	2.26	0.69
1:B:1553:LEU:HG	1:B:1589:LEU:HD21	1.73	0.68
1:A:833:ARG:NH2	1:A:933:SER:O	2.26	0.68
1:A:205:PHE:HB3	1:A:274:MET:HE1	1.76	0.67
1:A:170:ARG:NH2	1:A:177:ASN:OD1	2.29	0.66
1:A:539:GLY:O	1:A:562:ARG:NH2	2.28	0.66
1:B:805:ALA:O	1:B:1141:LYS:NZ	2.29	0.66
1:A:1043:ASP:OD1	1:A:1044:GLY:N	2.28	0.65
1:B:833:ARG:NH2	1:B:933:SER:O	2.22	0.65
1:B:1407:LEU:HB2	1:B:1430:LEU:HD11	1.78	0.65
1:B:13:LYS:H	1:B:13:LYS:HD2	1.62	0.64
1:A:649:ASP:HB3	1:A:1002:LYS:HG3	1.79	0.64
1:A:943:ALA:O	1:A:947:ASN:ND2	2.30	0.64
1:B:126:LEU:HD21	1:B:184:LEU:HD22	1.80	0.64
1:B:816:LEU:HD23	1:B:900:LYS:HG3	1.80	0.64

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:1605:ARG:NH2	1:B:1607:ASP:OD2	2.31	0.64
1:A:366:HIS:ND1	1:A:536:GLU:OE2	2.30	0.63
1:A:13:LYS:HE2	1:A:13:LYS:H	1.64	0.62
1:A:1778:VAL:H	1:A:1795:VAL:HG21	1.64	0.61
1:A:721:HIS:HB3	1:A:724:GLU:HG2	1.80	0.61
1:A:419:ARG:O	1:A:421:TYR:N	2.31	0.60
1:A:1198:LEU:HD23	1:A:1555:PRO:HG3	1.83	0.60
1:A:1627:ILE:HG23	1:A:1686:MET:HG2	1.82	0.60
1:B:693:VAL:HB	1:B:718:ILE:HG12	1.82	0.59
1:B:1489:MET:HE1	1:B:1524:LEU:HD11	1.83	0.59
1:A:1096:ASP:OD1	1:A:1096:ASP:N	2.34	0.59
1:A:1301:ILE:O	1:A:1411:TYR:OH	2.20	0.59
1:B:1210:ARG:NH2	1:B:1606:GLU:O	2.35	0.59
1:B:207:GLN:HG3	1:B:338:HIS:CE1	2.37	0.59
1:B:1539:LEU:HB2	1:B:1542:TYR:CD2	2.37	0.59
1:A:1467:VAL:HG11	1:A:1496:LYS:HB3	1.85	0.58
1:A:467:LYS:NZ	1:A:613:THR:O	2.34	0.58
1:A:1529:GLN:OE1	1:A:1529:GLN:N	2.35	0.58
1:B:1035:GLN:OE1	1:B:1066:SER:OG	2.18	0.58
1:B:988:GLY:HA3	1:B:1140:SER:HB2	1.85	0.58
1:B:1275:MET:HB2	1:B:1322:VAL:HG22	1.85	0.58
1:A:167:LYS:H	1:A:167:LYS:HD2	1.67	0.58
1:B:1778:VAL:HG23	1:B:1795:VAL:HG21	1.84	0.58
1:B:1027:SER:OG	1:B:1033:SER:O	2.22	0.58
1:B:944:ARG:O	1:B:948:GLU:HG2	2.04	0.57
1:B:1047:HIS:HD2	1:B:1049:ASP:HB2	1.69	0.57
1:B:953:ASP:O	1:B:957:GLN:NE2	2.36	0.57
1:A:1491:ASP:N	1:A:1491:ASP:OD1	2.35	0.57
1:B:1539:LEU:HB2	1:B:1542:TYR:HD2	1.69	0.57
1:A:1263:LEU:HD21	1:A:1323:LEU:HD11	1.86	0.57
1:A:1629:LEU:HD23	1:A:1647:VAL:HG22	1.87	0.57
1:B:416:PRO:HB2	1:B:418:GLU:HG3	1.87	0.57
1:B:624:ARG:NH2	1:B:685:ALA:O	2.33	0.57
1:B:889:LEU:HD12	1:B:906:SER:HB2	1.85	0.56
1:A:612:LEU:HB2	1:A:632:VAL:HB	1.87	0.56
1:A:1792:ALA:O	1:A:1796:THR:OG1	2.23	0.56
1:B:1516:THR:HG22	1:B:1517:ILE:HG13	1.87	0.56
1:B:894:ILE:HB	1:B:901:VAL:HG13	1.86	0.56
1:B:77:LEU:HD22	1:B:81:LYS:HG2	1.88	0.56
1:B:1438:GLU:HG2	1:B:1439:LYS:HD3	1.88	0.56
1:A:513:ILE:HD12	1:A:531:LEU:HD21	1.89	0.55

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:59:LYS:HG3	1:A:105:GLU:OE2	2.06	0.55
1:A:981:PRO:HG2	1:A:985:THR:HG21	1.88	0.55
1:B:1237:LYS:HD2	1:B:1427:ARG:HD3	1.88	0.55
1:B:488:ILE:HG22	1:B:489:MET:HG3	1.87	0.55
1:B:1223:ILE:HD11	1:B:1425:PRO:HD3	1.89	0.55
1:B:532:PHE:CE2	1:B:565:ARG:HG2	2.42	0.55
1:A:390:TYR:CE1	1:A:420:LYS:HG3	2.42	0.55
1:B:1302:ASP:H	1:B:1309:ARG:NH2	2.05	0.55
1:A:980:ARG:HD3	1:A:1109:ASN:HD22	1.72	0.54
1:B:100:ILE:HG13	1:B:137:ILE:HD11	1.90	0.54
1:A:1769:ARG:HD3	1:A:1772:ARG:NH2	2.22	0.54
1:B:1406:LEU:HD11	1:B:1433:LEU:HD13	1.89	0.54
1:B:1601:LEU:HD23	1:B:1613:LEU:HB3	1.88	0.54
1:A:922:GLU:HB3	1:A:932:LEU:HD21	1.90	0.54
1:A:1565:ALA:HB2	1:A:1595:ILE:HG22	1.90	0.54
1:B:745:SER:O	1:B:769:GLN:NE2	2.41	0.54
1:B:1605:ARG:HD3	1:B:1611:GLU:OE2	2.08	0.54
1:A:98:VAL:HB	1:A:137:ILE:HD13	1.90	0.54
1:B:980:ARG:NH2	1:B:1109:ASN:O	2.35	0.54
1:B:1482:ILE:HG13	1:B:1504:VAL:HG21	1.90	0.53
1:A:1099:LEU:HD22	1:A:1104:VAL:HG21	1.90	0.53
1:A:1461:SER:HB3	1:A:1487:GLU:OE2	2.09	0.53
1:B:1470:LEU:HD22	1:B:1501:LEU:HD21	1.91	0.53
1:B:605:MET:HE2	1:B:612:LEU:HA	1.91	0.53
1:A:889:LEU:HD12	1:A:906:SER:HB2	1.89	0.53
1:A:1622:ILE:HB	1:A:1627:ILE:HD11	1.90	0.53
1:A:1785:TYR:HB3	1:A:1790:GLN:HB3	1.90	0.53
1:A:3:ARG:HB3	1:A:45:ILE:HA	1.89	0.53
1:A:921:ARG:HA	1:A:1126:THR:HG21	1.91	0.53
1:B:1047:HIS:O	1:B:1050:THR:HG22	2.09	0.53
1:B:1538:PRO:HB3	1:B:1544:MET:HG3	1.90	0.53
1:A:190:LEU:HD21	1:A:576:GLY:HA2	1.90	0.52
1:A:729:4HH:HU	1:A:1121:GLN:HB2	1.74	0.52
1:A:1750:ARG:HA	1:A:1787:THR:HB	1.91	0.52
1:A:488:ILE:HG22	1:A:489:MET:HG3	1.92	0.52
1:B:1648:VAL:HG22	1:B:1649:ALA:H	1.74	0.52
1:B:1795:VAL:HG22	1:B:1796:THR:H	1.74	0.52
1:A:291:ARG:O	1:A:295:MET:HG3	2.10	0.52
1:B:1263:LEU:HD22	1:B:1321:LEU:HD21	1.91	0.52
1:B:1622:ILE:HG13	1:B:1659:LEU:HD22	1.92	0.52
1:A:445:ALA:O	1:A:449:MET:HG3	2.10	0.51

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:A:83:ARG:HG3	1:A:167:LYS:HG3	1.93	0.51
1:A:1025:TRP:HZ2	1:A:1174:MET:HB3	1.73	0.51
1:B:721:HIS:HB3	1:B:724:GLU:HB2	1.93	0.51
1:A:988:GLY:HA3	1:A:1140:SER:HB2	1.91	0.51
1:B:856:ALA:HB1	1:B:887:PRO:HD3	1.92	0.51
1:A:1321:LEU:HG	1:A:1337:VAL:HB	1.91	0.51
1:A:1538:PRO:HB3	1:A:1544:MET:HG3	1.91	0.51
1:A:1752:ASN:HB3	1:A:1755:GLU:HB2	1.92	0.51
1:A:1287:ALA:O	1:A:1291:VAL:HG23	2.11	0.51
1:A:1678:LEU:HG	1:A:1682:LEU:HD12	1.91	0.51
1:B:953:ASP:N	1:B:953:ASP:OD1	2.38	0.51
1:A:74:PRO:HA	1:A:98:VAL:HG12	1.92	0.51
1:A:97:GLY:HA2	1:A:118:ILE:H	1.75	0.51
1:A:1765:GLN:O	1:A:1769:ARG:HG2	2.10	0.51
1:B:1075:HIS:O	1:B:1079:GLN:HG2	2.11	0.51
1:B:747:ARG:HB2	1:B:750:GLN:HG3	1.93	0.51
1:B:1214:THR:OG1	1:B:1542:TYR:O	2.29	0.51
1:A:1223:ILE:HD11	1:A:1424:VAL:HB	1.92	0.50
1:A:1206:ASP:OD1	1:A:1210:ARG:HG3	2.11	0.50
1:B:1401:GLN:HG3	1:B:1402:ASP:OD1	2.11	0.50
1:A:311:GLU:HG3	1:A:320:ILE:HG12	1.92	0.50
1:B:721:HIS:CE1	1:B:723:LEU:HB2	2.47	0.50
1:B:898:ASP:OD1	1:B:898:ASP:N	2.43	0.50
1:B:1230:TRP:HZ3	1:B:1427:ARG:CZ	2.24	0.50
1:B:1470:LEU:HB2	1:B:1500:VAL:HG13	1.94	0.50
1:A:995:VAL:HB	1:A:1155:LEU:HB2	1.93	0.50
1:A:1464:ILE:HB	1:A:1465:PRO:HD3	1.94	0.50
1:B:688:LEU:HD21	1:B:715:GLN:HB2	1.94	0.50
1:A:9:THR:HB	1:A:54:GLY:H	1.76	0.50
1:A:1309:ARG:O	1:A:1313:ILE:HG13	2.12	0.49
1:B:1004:LYS:HG2	1:B:1014:LEU:HD22	1.94	0.49
1:B:1208:PHE:HD2	1:B:1209:LEU:HD12	1.77	0.49
1:B:58:ASP:HB2	1:B:61:ILE:HD12	1.93	0.49
1:B:1316:ASP:O	1:B:1575:ASN:ND2	2.45	0.49
1:A:1261:HIS:CD2	1:A:1350:ASP:HB3	2.47	0.49
1:A:1514:GLU:OE1	1:A:1514:GLU:N	2.43	0.49
1:A:812:ILE:HG12	1:A:1132:MET:HG2	1.95	0.49
1:A:78:PRO:O	1:A:162:GLY:HA3	2.13	0.49
1:B:1020:THR:O	1:B:1023:SER:N	2.45	0.49
1:A:794:TYR:O	1:A:798:GLN:HG2	2.12	0.49
1:B:1161:TYR:CG	1:B:1171:ILE:HG13	2.48	0.49

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:963:LYS:HG3	1:B:1101:ALA:HB1	1.95	0.48
1:B:1423:TRP:CD1	1:B:1430:LEU:HB2	2.48	0.48
1:B:1511:GLY:HA3	1:B:1518:TYR:HA	1.94	0.48
1:B:1301:ILE:HD11	1:B:1310:ILE:HG12	1.95	0.48
1:A:534:VAL:HG22	1:A:563:MET:HG2	1.94	0.48
1:A:1128:LEU:O	1:A:1132:MET:HG3	2.13	0.48
1:B:729:4HH:HL11	1:B:729:4HH:HB3	1.94	0.48
1:B:772:LEU:O	1:B:774:PRO:HD3	2.13	0.48
1:A:501:ASN:OD1	1:A:579:GLU:HG3	2.14	0.48
1:B:1551:GLY:HA3	1:B:1587:HIS:HE2	1.79	0.48
1:B:1781:HIS:O	1:B:1785:TYR:HD1	1.96	0.48
1:A:1298:TYR:CE2	1:A:1300:PRO:HG3	2.49	0.48
1:B:445:ALA:O	1:B:449:MET:HG3	2.14	0.48
1:B:718:ILE:HA	1:B:757:ILE:HB	1.94	0.48
1:A:1752:ASN:OD1	1:A:1755:GLU:N	2.44	0.48
1:B:106:HIS:HB2	1:B:109:THR:HG21	1.95	0.48
1:B:686:GLU:HB3	1:B:688:LEU:HG	1.96	0.48
1:B:1050:THR:HA	1:B:1053:LEU:HG	1.94	0.48
1:A:1511:GLY:HA3	1:A:1518:TYR:HA	1.96	0.48
1:A:846:ASP:OD1	1:A:1772:ARG:NH2	2.39	0.48
1:A:1750:ARG:HE	1:A:1789:GLU:CD	2.17	0.48
1:B:833:ARG:NH1	1:B:922:GLU:OE2	2.47	0.48
1:A:1522:TYR:OH	1:A:1530:GLU:OE2	2.30	0.47
1:A:1544:MET:HE3	1:A:1564:ILE:HD13	1.96	0.47
1:B:482:GLY:HA3	1:B:489:MET:HA	1.94	0.47
1:B:1287:ALA:O	1:B:1291:VAL:HG23	2.14	0.47
1:B:1047:HIS:CD2	1:B:1049:ASP:H	2.32	0.47
1:B:1212:ASN:HB3	1:B:1543:ARG:HG2	1.96	0.47
1:A:1269:GLN:H	1:A:1269:GLN:HG2	1.59	0.47
1:A:1770:LEU:HD23	1:A:1773:ILE:HD11	1.95	0.47
1:B:388:LEU:HD21	1:B:426:LEU:HD11	1.95	0.47
1:B:1317:SER:HA	1:B:1574:LEU:HD21	1.94	0.47
1:B:1399:LEU:HD23	1:B:1455:HIS:CG	2.50	0.47
1:A:1795:VAL:HG22	1:A:1796:THR:H	1.80	0.47
1:B:1448:VAL:HG13	1:B:1453:ILE:HB	1.95	0.47
1:A:1044:GLY:HA3	1:A:1057:PHE:O	2.15	0.47
1:B:8:THR:O	1:B:32:GLN:HA	2.14	0.47
1:B:427:ASN:HD21	1:B:452:ASP:C	2.18	0.47
1:B:622:ASP:OD1	1:B:622:ASP:N	2.46	0.47
1:A:1120:MET:HE3	1:A:1120:MET:HB2	1.76	0.47
1:A:1423:TRP:CD1	1:A:1430:LEU:HB2	2.49	0.47

	AL O	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:1263:LEU:HD21	1:B:1323:LEU:HD11	1.97	0.47
1:B:1440:ASN:OD1	1:B:1443:ALA:N	2.38	0.47
1:A:1750:ARG:HG3	1:A:1789:GLU:HG2	1.96	0.47
1:A:805:ALA:HA	1:A:1139:ILE:HG12	1.97	0.47
1:A:1414:ASP:OD1	1:A:1414:ASP:N	2.47	0.47
1:B:1000:THR:HG23	1:B:1155:LEU:HG	1.97	0.47
1:A:73:HIS:CD2	1:A:77:LEU:HD21	2.50	0.46
1:A:269:SER:O	1:A:273:VAL:HG23	2.15	0.46
1:A:1728:THR:HG23	1:A:1731:GLU:H	1.79	0.46
1:B:1275:MET:HG2	1:B:1299:LEU:HD23	1.97	0.46
1:B:1448:VAL:HA	1:B:1453:ILE:HG12	1.97	0.46
1:A:1795:VAL:HG13	1:A:1796:THR:N	2.31	0.46
1:B:1785:TYR:HB3	1:B:1790:GLN:CB	2.45	0.46
1:B:1785:TYR:HB2	1:B:1791:ILE:HG23	1.97	0.46
1:A:1269:GLN:O	1:A:1272:ASP:HB2	2.15	0.46
1:B:330:SER:OG	1:B:331:GLU:N	2.48	0.46
1:B:388:LEU:HG	1:B:415:VAL:CG2	2.45	0.46
1:B:1470:LEU:HB2	1:B:1500:VAL:CG1	2.46	0.46
1:A:190:LEU:HD22	1:A:525:ILE:HD11	1.96	0.46
1:A:1549:ARG:H	1:A:1549:ARG:HG2	1.45	0.46
1:B:100:ILE:HB	1:B:114:VAL:HG23	1.97	0.46
1:B:975:LEU:HD21	1:B:1026:LEU:HD22	1.97	0.46
1:B:199:LYS:O	1:B:510:ARG:NE	2.47	0.46
1:B:224:ASP:HB3	1:B:264:LEU:HG	1.98	0.46
1:B:1061:LEU:HD21	1:B:1091:GLN:HA	1.98	0.46
1:A:1675:ARG:HG2	1:A:1691:PHE:CZ	2.50	0.46
1:A:15:ASN:HB2	1:A:17:VAL:HG22	1.99	0.45
1:A:312:GLU:OE1	1:A:312:GLU:N	2.39	0.45
1:A:485:GLU:OE1	1:A:485:GLU:N	2.45	0.45
1:B:1784:LEU:HB2	1:B:1785:TYR:CE1	2.51	0.45
1:A:493:PHE:HB2	1:A:505:GLY:CA	2.46	0.45
1:A:821:GLU:HB3	1:A:824:ARG:HH21	1.81	0.45
1:B:835:GLU:HG2	1:B:838:ARG:HH21	1.81	0.45
1:A:482:GLY:HA3	1:A:489:MET:HA	1.99	0.45
1:A:658:TYR:OH	1:A:682:GLN:NE2	2.49	0.45
1:A:1445:TRP:O	1:A:1449:VAL:HG23	2.16	0.45
1:A:1531:SER:N	1:A:1532:PRO:HD2	2.32	0.45
1:B:1629:LEU:HD12	1:B:1629:LEU:H	1.82	0.45
1:A:721:HIS:HE1	1:A:1011:ASP:OD1	2.00	0.45
1:A:1069:HIS:HA	1:A:1193:VAL:HB	1.97	0.45
1:B:783:GLU:OE2	1:B:851:ARG:NH1	2.50	0.45

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:1388:ASN:HD21	1:B:1541:ASN:HB2	1.81	0.45
1:A:1627:ILE:HG21	1:A:1659:LEU:HD11	1.99	0.45
1:B:20:TYR:CZ	1:B:24:LEU:HD11	2.52	0.45
1:B:1489:MET:CE	1:B:1533:VAL:HG11	2.47	0.45
1:B:1784:LEU:HB2	1:B:1785:TYR:CD1	2.52	0.45
1:A:1749:ILE:HG22	1:A:1788:ILE:HB	1.99	0.45
1:B:173:TYR:HB3	1:B:176:LEU:HD12	1.98	0.45
1:B:684:ASP:OD1	1:B:687:LEU:N	2.50	0.45
1:B:1128:LEU:O	1:B:1132:MET:HG3	2.17	0.45
1:B:1369:THR:HG23	1:B:1377:LYS:O	2.16	0.45
1:B:18:VAL:HG13	1:B:28:VAL:HG11	1.98	0.44
1:B:575:ASP:OD1	1:B:577:ASN:ND2	2.50	0.44
1:B:1063:LEU:HD23	1:B:1063:LEU:HA	1.82	0.44
1:A:719:ASP:OD2	1:A:758:ARG:NH1	2.49	0.44
1:A:989:ALA:HB3	1:A:1161:TYR:CZ	2.53	0.44
1:A:1240:LEU:HD13	1:A:1432:ILE:HD11	2.00	0.44
1:A:1468:GLU:O	1:A:1469:TYR:HB3	2.17	0.44
1:B:305:LEU:HD23	1:B:321:ILE:HB	1.98	0.44
1:B:1050:THR:O	1:B:1050:THR:OG1	2.35	0.44
1:B:1252:LEU:O	1:B:1256:VAL:HG23	2.17	0.44
1:A:785:GLU:OE2	1:A:944:ARG:NH1	2.35	0.44
1:A:1605:ARG:HD3	1:A:1607:ASP:HB2	2.00	0.44
1:A:1733:THR:O	1:A:1737:ILE:HD12	2.17	0.44
1:B:59:LYS:HA	1:B:62:VAL:HG22	2.00	0.44
1:B:1228:GLU:HA	1:B:1253:ASN:ND2	2.33	0.44
1:A:886:ALA:HB1	1:A:887:PRO:HA	1.98	0.44
1:B:12:SER:O	1:B:15:ASN:ND2	2.49	0.44
1:B:1508:ASN:ND2	1:B:1534:PRO:O	2.39	0.44
1:A:78:PRO:O	1:A:81:LYS:HD2	2.18	0.44
1:A:1515:ALA:O	1:A:1516:THR:OG1	2.35	0.44
1:B:62:VAL:HA	1:B:69:ILE:HD12	2.00	0.44
1:A:8:THR:O	1:A:32:GLN:HA	2.18	0.44
1:A:1403:ASP:OD2	1:A:1480:ARG:NH2	2.51	0.44
1:B:441:PRO:HB2	1:B:671:GLY:HA3	2.00	0.44
1:B:1647:VAL:HB	1:B:1648:VAL:H	1.64	0.44
1:A:799:GLN:HE21	1:A:799:GLN:HB3	1.62	0.43
1:A:984:LEU:HD23	1:A:984:LEU:H	1.82	0.43
1:B:939:TYR:OH	1:B:1056:MET:O	2.31	0.43
1:A:1364:VAL:HG12	1:A:1381:ILE:HG22	2.01	0.43
1:B:1274:VAL:HG22	1:B:1321:LEU:HD23	2.00	0.43
1:B:1489:MET:HB3	1:B:1489:MET:HE3	1.52	0.43

	A L O	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:742:ILE:HD13	1:A:742:ILE:HA	1.86	0.43
1:A:1407:LEU:HD12	1:A:1430:LEU:HD21	1.99	0.43
1:A:122:ASP:HA	1:A:181:VAL:HB	2.00	0.43
1:A:367:ASN:ND2	1:A:536:GLU:O	2.47	0.43
1:A:916:LYS:HE3	1:A:916:LYS:HB3	1.72	0.43
1:A:1274:VAL:HG23	1:A:1321:LEU:C	2.39	0.43
1:B:713:ILE:HG21	1:B:725:ARG:NH2	2.33	0.43
1:A:471:ARG:HD3	1:A:475:TYR:CE1	2.54	0.43
1:A:804:ILE:HD13	1:A:804:ILE:H	1.84	0.43
1:A:1781:HIS:ND1	1:A:1795:VAL:HB	2.34	0.43
1:B:600:ILE:HD11	1:B:654:MET:HG2	2.01	0.43
1:B:721:HIS:NE2	1:B:1011:ASP:OD1	2.50	0.43
1:B:1313:ILE:O	1:B:1317:SER:OG	2.18	0.43
1:B:1542:TYR:CZ	1:B:1568:SER:HB2	2.54	0.43
1:A:718:ILE:HG22	1:A:758:ARG:HB2	2.00	0.43
1:A:809:VAL:HB	1:A:1135:ILE:HB	2.01	0.43
1:A:1240:LEU:HD12	1:A:1282:VAL:HG13	2.01	0.43
1:B:1565:ALA:HB2	1:B:1595:ILE:HG22	2.01	0.43
1:A:530:GLU:OE2	1:A:567:GLY:HA2	2.19	0.43
1:B:291:ARG:O	1:B:295:MET:HG3	2.18	0.43
1:A:274:MET:HB3	1:A:274:MET:HE3	1.81	0.43
1:A:406:LEU:HG	1:A:412:LEU:HD11	2.01	0.43
1:A:1684:GLU:HA	1:A:1687:ILE:HG13	1.99	0.43
1:B:1025:TRP:HZ2	1:B:1174:MET:HB3	1.83	0.43
1:A:224:ASP:HB3	1:A:264:LEU:HG	2.00	0.43
1:A:866:GLU:O	1:A:870:VAL:HG23	2.19	0.43
1:B:8:THR:OG1	1:B:11:MET:HB2	2.18	0.43
1:B:396:ASP:OD1	1:B:396:ASP:N	2.38	0.43
1:A:77:LEU:O	1:A:115:GLN:NE2	2.45	0.43
1:A:193:GLU:HG3	1:A:512:ARG:NH2	2.34	0.43
1:A:825:VAL:O	1:A:829:GLN:HG3	2.18	0.43
1:A:985:THR:OG1	1:A:1162:ASN:ND2	2.47	0.43
1:A:1729:GLU:O	1:A:1733:THR:OG1	2.32	0.43
1:B:74:PRO:HA	1:B:98:VAL:HG12	2.01	0.43
1:B:362:MET:HE3	1:B:540:ARG:HB3	2.01	0.43
1:A:187:LEU:HD21	1:A:522:LEU:HG	2.01	0.42
1:A:490:VAL:HG11	1:A:533:ILE:HG21	2.00	0.42
1:A:1634:SER:O	1:A:1638:GLN:HG3	2.19	0.42
1:A:1679:ARG:NH2	1:A:1755:GLU:OE1	2.52	0.42
1:A:1730:LEU:HD13	1:A:1775:TRP:CE2	2.54	0.42
1:B:386:LYS:HD2	1:B:413:HIS:HE2	1.83	0.42

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:B:1062:PRO:HG3	1:B:1095:PHE:HE1	1.85	0.42
1:B:1207:LEU:HD12	1:B:1207:LEU:HA	1.87	0.42
1:B:1258:GLN:HB3	1:B:1348:ALA:H	1.84	0.42
1:B:1276:LEU:HD23	1:B:1323:LEU:HB2	2.01	0.42
1:B:485:GLU:OE1	1:B:485:GLU:N	2.51	0.42
1:B:1024:ILE:HD12	1:B:1024:ILE:H	1.83	0.42
1:B:1194:LYS:HB2	1:B:1550:HIS:CE1	2.53	0.42
1:B:1223:ILE:HD11	1:B:1424:VAL:HB	2.02	0.42
1:A:364:GLU:OE2	1:A:540:ARG:NE	2.40	0.42
1:B:294:TYR:OH	1:B:545:ARG:NH2	2.53	0.42
1:B:730:ILE:H	1:B:730:ILE:HG12	1.67	0.42
1:B:1237:LYS:HE3	1:B:1427:ARG:O	2.19	0.42
1:B:1240:LEU:HB2	1:B:1247:VAL:HB	2.02	0.42
1:B:1368:TYR:HA	1:B:1377:LYS:O	2.20	0.42
1:B:311:GLU:HG2	1:B:320:ILE:HG21	2.01	0.42
1:B:1445:TRP:HA	1:B:1445:TRP:CE3	2.55	0.42
1:B:1678:LEU:CD1	1:B:1688:PRO:HD3	2.36	0.42
1:B:1778:VAL:HG23	1:B:1795:VAL:CG2	2.48	0.42
1:A:1600:ASP:OD1	1:A:1615:ARG:NH1	2.53	0.42
1:B:97:GLY:HA2	1:B:118:ILE:H	1.85	0.42
1:B:812:ILE:HG12	1:B:1132:MET:HG2	2.01	0.42
1:A:699:LEU:HD11	1:A:744:LEU:HD11	2.02	0.42
1:A:1263:LEU:HD23	1:A:1263:LEU:HA	1.91	0.42
1:A:1605:ARG:HG2	1:A:1606:GLU:N	2.34	0.42
1:B:262:LYS:NZ	1:B:390:TYR:O	2.47	0.42
1:B:368:LEU:HD21	1:B:403:PHE:CD2	2.54	0.42
1:B:1016:MET:O	1:B:1020:THR:OG1	2.30	0.42
1:B:1022:VAL:HG12	1:B:1038:LEU:HD11	2.01	0.42
1:B:1263:LEU:HD11	1:B:1323:LEU:HD21	2.02	0.42
1:B:1444:ILE:O	1:B:1448:VAL:HG23	2.20	0.42
1:B:1795:VAL:HG13	1:B:1796:THR:N	2.35	0.42
1:A:1074:LEU:HD23	1:A:1077:LEU:HD12	2.00	0.41
1:A:1224:MET:SD	1:A:1292:LEU:HB3	2.60	0.41
1:B:794:TYR:O	1:B:798:GLN:HG2	2.20	0.41
1:B:1678:LEU:HD11	1:B:1687:ILE:HA	2.02	0.41
1:B:1808:ASN:OD1	1:B:1808:ASN:N	2.53	0.41
1:A:1522:TYR:CE2	1:A:1534:PRO:HD2	2.55	0.41
1:B:294:TYR:CE1	1:B:358:ALA:HB3	2.55	0.41
1:B:626:TYR:HB3	1:B:687:LEU:HD21	2.01	0.41
1:B:888:LEU:HD23	1:B:888:LEU:HA	1.84	0.41
1:B:1002:LYS:O	1:B:1006:THR:OG1	2.26	0.41

	A L O	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:364:GLU:OE2	1:A:540:ARG:HG3	2.20	0.41
1:A:812:ILE:HD12	1:A:902:LEU:HD23	2.02	0.41
1:B:1250:ARG:NH1	1:B:1254:GLU:OE2	2.48	0.41
1:A:918:ILE:HG12	1:A:921:ARG:HH22	1.85	0.41
1:A:1405:PHE:HD1	1:A:1406:LEU:H	1.68	0.41
1:B:1466:PHE:O	1:B:1470:LEU:HD12	2.20	0.41
1:A:224:ASP:CB	1:A:264:LEU:HG	2.51	0.41
1:B:1409:THR:HG21	1:B:1415:ILE:HB	2.02	0.41
1:A:1121:GLN:HB3	1:A:1149:LEU:HD23	2.03	0.41
1:B:843:MET:SD	1:B:1764:LEU:HG	2.60	0.41
1:B:1622:ILE:HD13	1:B:1622:ILE:HA	1.92	0.41
1:A:1382:GLU:OE2	1:A:1571:ARG:HG3	2.20	0.41
1:B:493:PHE:HB2	1:B:505:GLY:CA	2.50	0.41
1:B:778:LEU:HD23	1:B:941:SER:HA	2.02	0.41
1:B:1262:THR:O	1:B:1266:LYS:HG2	2.20	0.41
1:B:1489:MET:CE	1:B:1524:LEU:HD11	2.50	0.41
1:B:810:TYR:HB2	1:B:904:PHE:CZ	2.55	0.41
1:B:866:GLU:O	1:B:870:VAL:HG23	2.21	0.41
1:B:1431:VAL:HG11	1:B:1451:ALA:HB1	2.02	0.41
1:B:1543:ARG:NH2	1:B:1566:GLY:HA2	2.35	0.41
1:A:747:ARG:HB2	1:A:750:GLN:HG3	2.03	0.41
1:A:1406:LEU:HD11	1:A:1433:LEU:HB2	2.02	0.41
1:A:1605:ARG:HB3	1:A:1609:ASN:O	2.21	0.41
1:B:1248:THR:HG23	1:B:1251:GLU:H	1.86	0.41
1:B:1280:ARG:NH2	1:B:1438:GLU:OE1	2.53	0.41
1:B:1312:TYR:CE1	1:B:1316:ASP:HB2	2.56	0.41
1:A:618:LYS:HB2	1:A:626:TYR:CZ	2.56	0.41
1:A:1247:VAL:HG21	1:A:1282:VAL:HG11	2.03	0.41
1:A:1381:ILE:HD13	1:A:1381:ILE:HA	1.91	0.41
1:B:1:MET:HE2	1:B:1:MET:HB2	1.95	0.41
1:B:1280:ARG:HG2	1:B:1432:ILE:HG23	2.02	0.41
1:B:1388:ASN:HB3	1:B:1568:SER:OG	2.21	0.41
1:A:100:ILE:HB	1:A:114:VAL:HG23	2.04	0.40
1:B:601:GLU:N	1:B:602:PRO:HD2	2.36	0.40
1:A:1489:MET:HB3	1:A:1533:VAL:HG11	2.04	0.40
1:B:624:ARG:HE	1:B:624:ARG:HB2	1.74	0.40
1:A:1230:TRP:HA	1:A:1230:TRP:CE3	2.56	0.40
1:A:1546:ILE:HD11	1:A:1610:ILE:HG23	2.03	0.40
1:A:1738:TRP:CH2	1:A:1753:PHE:HB2	2.56	0.40
1:B:861:VAL:HG12	1:B:863:GLN:HG3	2.03	0.40
1:B:958:GLN:HE22	1:B:1092:TYR:H	1.69	0.40

Atom-1 Atom-2		Interatomic distance (Å)	Clash overlap (Å)
1:B:1464:ILE:HB	1:B:1465:PRO:HD3	2.03	0.40

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:167:LYS:NZ	1:A:953:ASP:OD2[1_556]	1.85	0.35

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles	\mathbf{s}
1	А	1746/1814~(96%)	1659~(95%)	83~(5%)	4 (0%)	44	77	
1	В	1745/1814~(96%)	1649 (94%)	87 (5%)	9 (0%)	25	61	
All	All	3491/3628~(96%)	3308 (95%)	170 (5%)	13 (0%)	30	66	

All (13) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	1795	VAL
1	А	1804	ALA
1	В	1804	ALA
1	В	1805	ALA
1	А	419	ARG
1	В	1113	LEU
1	В	1466	PHE
1	В	1649	ALA
1	В	1795	VAL
1	А	41	ASN
1	В	1020	THR
1	В	508	ILE

Continued from previous page...

Mol	Chain	\mathbf{Res}	Type
1	В	1647	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percer	ntiles
1	А	1482/1562~(95%)	1435~(97%)	47 (3%)	34	67
1	В	1453/1562~(93%)	1402~(96%)	51 (4%)	31	65
All	All	2935/3124~(94%)	2837~(97%)	98~(3%)	33	67

All (98) residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	11	MET
1	А	12	SER
1	А	13	LYS
1	А	15	ASN
1	А	34	LYS
1	А	39	SER
1	А	75	SER
1	А	167	LYS
1	А	170	ARG
1	А	341	ARG
1	А	352	SER
1	А	388	LEU
1	А	392	SER
1	А	393	PHE
1	А	559	THR
1	А	622	ASP
1	А	680	ASP
1	A	701	GLN
1	A	799	GLN
1	А	801	VAL
1	А	804	ILE
1	А	908	HIS

Mol	Chain	Res	Type
1	А	941	SER
1	А	964	THR
1	А	969	GLU
1	A	984	LEU
1	A	1045	ARG
1	А	1072	SER
1	А	1110	ARG
1	А	1167	ASP
1	А	1206	ASP
1	А	1269	GLN
1	А	1272	ASP
1	А	1405	PHE
1	А	1411	TYR
1	А	1448	VAL
1	А	1483	LEU
1	А	1491	ASP
1	А	1503	GLU
1	А	1504	VAL
1	А	1531	SER
1	А	1564	ILE
1	А	1568	SER
1	А	1607	ASP
1	А	1670	THR
1	А	1787	THR
1	А	1789	GLU
1	В	13	LYS
1	В	64	ARG
1	В	256	VAL
1	В	261	ASP
1	В	343	ASP
1	В	393	PHE
1	В	396	ASP
1	В	423	LEU
1	В	465	VAL
1	В	534	VAL
1	В	622	ASP
1	В	649	ASP
1	В	657	THR
1	В	701	GLN
1	В	732	VAL
1	В	771	LEU
1	В	889	LEU

Mol	Chain	Res	Type
1	В	901	VAL
1	В	908	HIS
1	В	933	SER
1	В	935	VAL
1	В	1035	GLN
1	В	1054	LEU
1	В	1091	GLN
1	В	1189	LEU
1	В	1205	ARG
1	В	1210	ARG
1	В	1301	ILE
1	В	1312	TYR
1	В	1370	SER
1	В	1405	PHE
1	В	1411	TYR
1	В	1438	GLU
1	В	1469	TYR
1	В	1477	ASN
1	В	1491	ASP
1	В	1513	THR
1	В	1529	GLN
1	В	1531	SER
1	В	1589	LEU
1	В	1597	ARG
1	В	1630	ASP
1	В	1632	ILE
1	В	1634	SER
1	В	1646	VAL
1	В	1647	VAL
1	В	1749	ILE
1	В	1754	PHE
1	В	1760	SER
1	В	1794	PHE
1	В	1808	ASN

Continued from previous page...

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (16) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	43	GLN
1	А	175	ASN
1	А	211	GLN
1	А	447	GLN

	3	1	1 0
Mol	Chain	Res	Type
1	А	648	ASN
1	А	682	GLN
1	А	721	HIS
1	А	799	GLN
1	А	1780	ASN
1	В	32	GLN
1	В	338	HIS
1	В	957	GLN
1	В	958	GLN
1	В	974	GLN
1	В	1010	HIS
1	В	1047	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

2 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tinle	Bo	Bond lengths			Bond angles		
	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
1	4HH	В	729	1	22,26,27	2.05	4 (18%)	27,35,37	1.19	1 (3%)	
1	4HH	А	729	1	22,26,27	2.15	5 (22%)	27,35,37	1.19	<mark>3 (11%)</mark>	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	4HH	В	729	1	-	8/33/35/37	-

Continued from previous page...

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	4HH	А	729	1	-	5/33/35/37	-

All (9) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\operatorname{\AA})$
1	В	729	4HH	CQ-NR	5.78	1.47	1.33
1	В	729	4HH	CL3-NN	5.62	1.46	1.33
1	А	729	4HH	CQ-NR	5.58	1.46	1.33
1	А	729	4HH	CL3-NN	5.53	1.46	1.33
1	А	729	4HH	P-O2P	3.92	1.64	1.50
1	А	729	4HH	ON-CL3	-2.45	1.18	1.23
1	В	729	4HH	ON-CL3	-2.39	1.18	1.23
1	А	729	4HH	OR-CQ	-2.12	1.19	1.23
1	В	729	4HH	OR-CQ	-2.06	1.19	1.23

All (4) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	729	4HH	OG-CB-CA	3.75	111.79	108.14
1	А	729	4HH	OG-CB-CA	3.17	111.23	108.14
1	А	729	4HH	CT-CS-NR	-2.17	107.38	112.31
1	А	729	4HH	CP-CO-NN	-2.11	107.50	112.00

There are no chirality outliers.

All (13) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
1	В	729	4HH	CB-OG-P-O1P
1	В	729	4HH	O3P-CJ-CK-CL1
1	В	729	4HH	O3P-CJ-CK-CL2
1	В	729	4HH	O3P-CJ-CK-CM
1	В	729	4HH	NN-CO-CP-CQ
1	А	729	4HH	CA-CB-OG-P
1	А	729	4HH	NR-CS-CT-SU
1	В	729	4HH	NR-CS-CT-SU
1	В	729	4HH	CB-OG-P-O2P
1	В	729	4HH	CB-OG-P-O3P
1	А	729	4HH	CL1-CK-CM-CL3
1	А	729	4HH	CL2-CK-CM-OM
1	А	729	4HH	CJ-CK-CM-CL3

There are no ring outliers.

2 monomers are involved in 3 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
1	В	729	4HH	2	0
1	А	729	4HH	1	0

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 5 ligands modelled in this entry, 1 is monoatomic - leaving 4 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bond lengths			Bond angles		
	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
3	A1AMN	А	1904	1	28,33,34	2.50	9 (32%)	35,43,46	1.09	3 (8%)
2	GOL	А	1901	-	$5,\!5,\!5$	0.08	0	$5,\!5,\!5$	0.33	0
2	GOL	В	1901	-	$5,\!5,\!5$	0.08	0	$5,\!5,\!5$	0.31	0
2	GOL	А	1902	-	$5,\!5,\!5$	0.08	0	$5,\!5,\!5$	0.31	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	A1AMN	А	1904	1	-	16/43/45/46	-
2	GOL	А	1901	-	-	0/4/4/4	-
2	GOL	В	1901	-	-	0/4/4/4	-
2	GOL	А	1902	-	-	0/4/4/4	-

All (9) bond length outliers are listed below:

9BE4

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
3	А	1904	A1AMN	C02-N03	5.78	1.47	1.33
3	А	1904	A1AMN	C10-N29	5.77	1.47	1.33
3	А	1904	A1AMN	C07-N06	5.69	1.46	1.33
3	А	1904	A1AMN	C11-N10	5.47	1.46	1.33
3	А	1904	A1AMN	C30-N30	4.06	1.46	1.33
3	А	1904	A1AMN	O02-C10	-2.43	1.18	1.23
3	А	1904	A1AMN	O23-C11	-2.38	1.18	1.23
3	А	1904	A1AMN	O01-C02	-2.31	1.18	1.23
3	А	1904	A1AMN	O24-C07	-2.10	1.19	1.23

All (3) bond angle outliers are listed below:

Mol	Chain	Res	Type Atoms			$Observed(^{o})$	$Ideal(^{o})$
3	А	1904	A1AMN	C50-C10-N29	2.09	119.82	116.38
3	А	1904	A1AMN	C08-C07-N06	2.08	120.14	116.34
3	А	1904	A1AMN	O31-C30-N30	-2.04	120.05	125.32

There are no chirality outliers.

All (16) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	А	1904	A1AMN	C11-C12-C14-C15
3	А	1904	A1AMN	C11-C12-C14-C16
3	А	1904	A1AMN	C11-C12-C14-C22
3	А	1904	A1AMN	O13-C12-C14-C16
3	А	1904	A1AMN	O13-C12-C14-C22
3	А	1904	A1AMN	C12-C14-C16-O17
3	А	1904	A1AMN	C15-C14-C16-O17
3	А	1904	A1AMN	C22-C14-C16-O17
3	А	1904	A1AMN	C28-C26-C50-C10
3	А	1904	A1AMN	C27-C26-C50-N30
3	А	1904	A1AMN	C28-C26-C50-N30
3	А	1904	A1AMN	C27-C26-C50-C10
3	А	1904	A1AMN	O02-C10-N29-C25
3	А	1904	A1AMN	C50-C10-N29-C25
3	А	1904	A1AMN	O13-C12-C14-C15
3	А	1904	A1AMN	C02-C25-N29-C10

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In

addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	1761/1814~(97%)	-0.06	25 (1%) 73 52	31, 56, 92, 128	1 (0%)
1	В	1757/1814~(96%)	0.02	21 (1%) 76 56	27, 61, 100, 125	0
All	All	3518/3628~(96%)	-0.02	46 (1%) 74 54	27, 59, 96, 128	1 (0%)

All (46) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	А	1794	PHE	4.7
1	В	955	TYR	4.1
1	А	1652	ASP	3.8
1	В	1659	LEU	3.4
1	А	1105	LYS	3.3
1	В	1647	VAL	3.1
1	А	1667	GLN	2.9
1	А	1516	THR	2.8
1	В	1796	THR	2.8
1	А	194	PRO	2.8
1	А	1670	THR	2.8
1	В	1652	ASP	2.7
1	В	1783	PHE	2.6
1	А	1320	LYS	2.6
1	В	1689	ALA	2.6
1	В	25	HIS	2.5
1	В	959	ILE	2.5
1	В	1685	TYR	2.5
1	А	1646	VAL	2.5
1	А	353	GLY	2.5
1	А	1657	ALA	2.5
1	А	1672	GLY	2.4
1	А	622	ASP	2.4
1	А	1107	GLU	2.3

9BE4

Mol	Chain	Res	Type	RSRZ
1	А	1109	ASN	2.3
1	В	1096	ASP	2.3
1	А	1532	PRO	2.3
1	В	1760	SER	2.3
1	А	1356	LEU	2.2
1	В	1779	ILE	2.2
1	А	1645	ALA	2.2
1	А	1673	GLN	2.2
1	А	687	LEU	2.2
1	А	1796	THR	2.2
1	А	357	LEU	2.2
1	В	1637	ILE	2.2
1	А	1321	LEU	2.1
1	В	104	ASP	2.1
1	В	966	LEU	2.1
1	А	1724	ALA	2.1
1	А	1686	MET	2.1
1	В	1678	LEU	2.1
1	В	1646	VAL	2.1
1	В	1209	LEU	2.0
1	В	1657	ALA	2.0
1	В	487	THR	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathrm{\AA}^2)$	Q<0.9
1	4HH	В	729	27/28	0.89	0.15	43,60,77,86	0
1	4HH	А	729	27/28	0.96	0.10	28,48,72,107	0

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
2	GOL	В	1901	6/6	0.72	0.18	$66,\!83,\!85,\!86$	0
2	GOL	A	1902	6/6	0.81	0.18	39,47,65,68	0
3	A1AMN	A	1904	34/35	0.87	0.18	58,79,94,101	0
4	MN	В	1903	1/1	0.89	0.19	117,117,117,117	0
2	GOL	А	1901	6/6	0.92	0.13	48,54,55,57	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

