

wwPDB X-ray Structure Validation Summary Report (i)

Aug 29, 2024 – 12:04 PM EDT

PDB ID : 9BK9

Title : Crystal structure of Rid family protein PA0814 from Pseudomonas aeruginosa

Authors: Zhou, D.; Chen, L.; Rose, J.P.; Wang, B.C.

Deposited on : 2024-04-26

Resolution : 1.78 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/XrayValidationReportHelp
with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity : 4.02b-467 Xtriage (Phenix) : 1.20.1

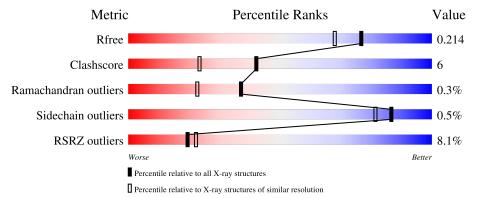
EDS : 3.0

Percentile statistics : 20231227.v01 (using entries in the PDB archive December 27th 2023)

CCP4 : 9.0.002 (Gargrove)

Density-Fitness : 1.0.11

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.38.3

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X- $RAY\ DIFFRACTION$

The reported resolution of this entry is 1.78 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive $(\# \mathrm{Entries})$	$\begin{array}{c} {\rm Similar\ resolution} \\ (\#{\rm Entries,\ resolution\ range(\mathring{A})}) \end{array}$
R_{free}	164625	1191 (1.78-1.78)
Clashscore	180529	1282 (1.78-1.78)
Ramachandran outliers	177936	1270 (1.78-1.78)
Sidechain outliers	177891	1270 (1.78-1.78)
RSRZ outliers	164620	1191 (1.78-1.78)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
			2%		
1	A	144	83%	8%	10%
	_		3%		
1	В	144	83%	12%	• •
			% •		
1	С	144	85%	6%	10%
	_		5%		
1	D	144	85%	٠.	10%
			13%		
1	Е	144	78%	13%	9%

Continued on next page...

Continued from previous page...

Mol	Chain	Length	Quality of chain	
			21%	
1	F	144	80%	10% • 10%

2 Entry composition (i)

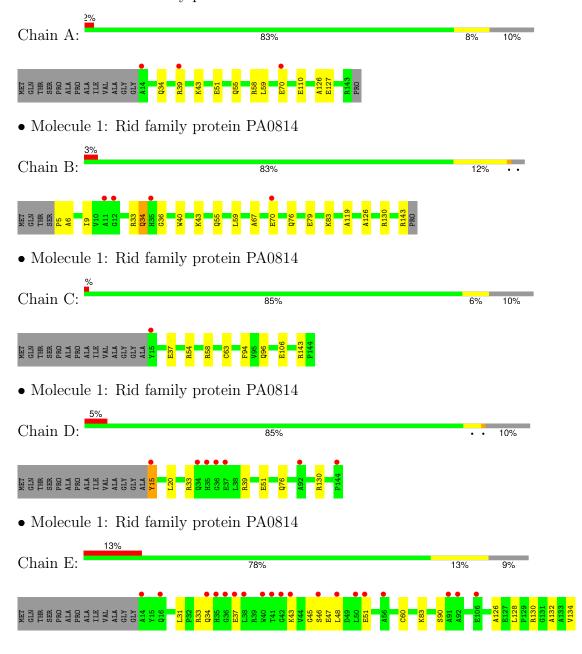
There are 2 unique types of molecules in this entry. The entry contains 6312 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Rid family protein PA0814.

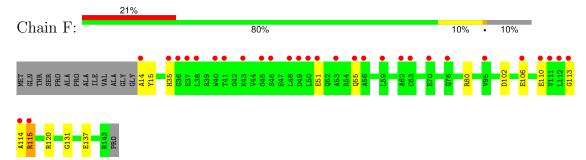
Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace									
1	A	130	Total	С	N	О	S	0	0	0									
1	A	130	959	603	177	176	3	0	U	U									
1	В	139	Total	С	N	О	S	0	0	0									
1	Ъ	139	1011	637	186	185	3	0		U									
1	С	130	Total	С	N	О	S	0	0	0									
1		130	961	605	177	176	3	U		U									
1	D	130	Total	С	N	О	S	0	0	0									
1	D	150	961	605	177	176	3	0	0	U									
1	Е	Ľ	E	E	E	Ē	E	L.	E	E.	E 131	Total	С	N	О	S	0	0	0
1		E 131	966	608	178	177	3	0	0	U									
1	1 E	F 130	Total	С	N	О	S	0	0	0									
	I'		959	603	177	176	3		U	U									

• Molecule 2 is water.


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	A	107	Total O 107 107	0	0
2	В	82	Total O 82 82	0	0
2	С	93	Total O 93 93	0	0
2	D	91	Total O 91 91	0	0
2	E	68	Total O 68 68	0	0
2	F	54	Total O 54 54	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.


• Molecule 1: Rid family protein PA0814

• Molecule 1: Rid family protein PA0814

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	46.97Å 84.65Å 85.79Å	Depositor
a, b, c, α , β , γ	90.00° 90.71° 90.00°	Depositor
Resolution (Å)	37.96 - 1.78	Depositor
rtesolution (A)	37.96 - 1.78	EDS
% Data completeness	97.2 (37.96-1.78)	Depositor
(in resolution range)	97.1 (37.96-1.78)	EDS
R_{merge}	0.06	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$3.50 \; (at \; 1.78 \text{Å})$	Xtriage
Refinement program	PHENIX 1.21_5207	Depositor
R, R_{free}	0.188 , 0.215	Depositor
, and the second	0.189 , 0.214	DCC
R_{free} test set	62323 reflections $(3.18%)$	wwPDB-VP
Wilson B-factor (Å ²)	17.3	Xtriage
Anisotropy	0.107	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	$0.38\;,50.9$	EDS
L-test for twinning ²	$< L > = 0.49, < L^2> = 0.32$	Xtriage
	0.006 for -h,l,k	
Estimated twinning fraction	0.017 for -h,-l,-k	Xtriage
	0.032 for h,-k,-l	
F_o, F_c correlation	0.95	EDS
Total number of atoms	6312	wwPDB-VP
Average B, all atoms (\mathring{A}^2)	23.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 6.07% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	Bond angles	
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	A	0.42	0/973	0.67	0/1320
1	В	0.38	0/1027	0.66	0/1395
1	С	0.41	0/976	0.66	0/1325
1	D	0.40	0/976	0.69	0/1325
1	Е	0.44	0/981	0.70	0/1332
1	F	0.39	0/973	0.65	0/1320
All	All	0.41	0/5906	0.67	0/8017

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	959	0	970	13	0
1	В	1011	0	1026	18	1
1	С	961	0	972	6	0
1	D	961	0	972	8	0
1	Е	966	0	977	18	1
1	F	959	0	970	14	0
2	A	107	0	0	5	3
2	В	82	0	0	10	1
2	С	93	0	0	3	2
2	D	91	0	0	3	2

Continued on next page...

Continued from previous page...

Mol	Chain	Non-H	H(model)	$\mathbf{H}(\mathbf{added})$	Clashes	Symm-Clashes
2	Е	68	0	0	13	3
2	F	54	0	0	7	2
All	All	6312	0	5887	73	9

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

The worst 5 of 73 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	$\begin{array}{c} {\rm Interatomic} \\ {\rm distance} \ ({\rm \AA}) \end{array}$	Clash overlap (Å)	
1:A:55:GLN:HG3	2:A:281:HOH:O	1.56	1.04	
1:F:137:GLU:OE2	2:F:201:HOH:O	1.80	0.98	
1:C:37:GLU:OE2	2:C:201:HOH:O	1.81	0.97	
1:B:34:GLN:NE2	2:B:201:HOH:O	2.01	0.94	
1:A:51:GLU:HG2	2:A:231:HOH:O	1.70	0.91	

The worst 5 of 9 symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	$\begin{array}{c} {\rm Interatomic} \\ {\rm distance} \ ({\rm \AA}) \end{array}$	Clash overlap (Å)	
2:E:217:HOH:O	2:E:255:HOH:O[1_455]	1.49	0.71	
2:A:263:HOH:O	2:D:225:HOH:O[1_455]	1.58	0.62	
2:D:254:HOH:O	2:F:244:HOH:O[2_646]	1.71	0.49	
2:E:244:HOH:O	2:E:255:HOH:O[1_455]	1.81	0.39	
2:A:275:HOH:O	2:C:288:HOH:O[2_545]	1.87	0.33	

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
1	A	128/144 (89%)	125 (98%)	3(2%)	0	100	100

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	В	137/144 (95%)	129 (94%)	8 (6%)	0	100 100
1	С	128/144 (89%)	125 (98%)	2 (2%)	1 (1%)	16 5
1	D	128/144 (89%)	124 (97%)	4 (3%)	0	100 100
1	E	129/144 (90%)	125 (97%)	4 (3%)	0	100 100
1	F	128/144 (89%)	123 (96%)	4 (3%)	1 (1%)	16 5
All	All	778/864 (90%)	751 (96%)	25 (3%)	2 (0%)	37 23

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	F	114	ALA
1	С	143	ARG

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentile	es
1	A	91/100 (91%)	91 (100%)	0	100 100)
1	В	95/100 (95%)	94 (99%)	1 (1%)	70 57	
1	С	92/100 (92%)	92 (100%)	0	100 100)
1	D	92/100 (92%)	91 (99%)	1 (1%)	70 57	
1	E	92/100 (92%)	92 (100%)	0	100 100)
1	F	91/100 (91%)	90 (99%)	1 (1%)	70 57	
All	All	553/600 (92%)	550 (100%)	3 (0%)	86 81	

All (3) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	В	34	GLN
1	D	15	TYR
1	F	115	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (3) such sidechains are listed below:

Mol	Chain	Res	Type
1	С	34	GLN
1	F	16	GLN
1	F	52	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ>2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<rsrz></rsrz>	$\# \mathrm{RSRZ}{>}2$	$OWAB(A^2)$	Q < 0.9
1	A	130/144 (90%)	-0.20	3 (2%) 61 68	7, 14, 28, 45	0
1	В	139/144 (96%)	0.02	4 (2%) 54 60	9, 17, 34, 55	0
1	С	130/144 (90%)	-0.08	1 (0%) 82 87	9, 16, 29, 34	0
1	D	130/144 (90%)	0.06	7 (5%) 32 38	10, 17, 35, 59	0
1	E	131/144 (90%)	0.96	19 (14%) 7 7	13, 26, 45, 70	0
1	F	130/144 (90%)	1.20	30 (23%) 2 2	15, 29, 47, 57	0
All	All	790/864 (91%)	0.32	64 (8%) 19 22	7, 20, 41, 70	0

The worst 5 of 64 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	D	35	HIS	5.5
1	В	11	ALA	5.0
1	A	14	ALA	4.7
1	В	35	HIS	4.4
1	F	49	ASP	4.2

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

