

Full wwPDB X-ray Structure Validation Report (i)

Dec 3, 2024 – 12:24 PM EST

PDB ID	:	9BKX
Title	:	Mycobacterium tuberculosis encapsulin in complex with DyP
Authors	:	Cuthbert, B.J.; Batot, G.O.; Contreras, H.; Chen, X.; Burley, K.H.; Goulding,
		C.W.
Deposited on	:	2024-04-29
Resolution	:	3.15 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	2022.3.0, CSD as543be (2022)
Xtriage (Phenix)	:	1.21
EDS	:	3.0
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
CCP4	:	9.0.004 (Gargrove)
Density-Fitness	:	1.0.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.40

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 3.15 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motric	Whole archive	Similar resolution		
WIEUTIC	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$		
R_{free}	164625	2168 (3.20-3.12)		
Clashscore	180529	2333 (3.20-3.12)		
Ramachandran outliers	177936	2266 (3.20-3.12)		
Sidechain outliers	177891	2265 (3.20-3.12)		
RSRZ outliers	164620	2169 (3.20-3.12)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	279	84%	12%	•
1	В	279	80%	15%	5%
1	С	279	77%	19%	·
1	D	279	% 82%	13%	5%
1	Е	279	86%	12%	·

Mol	Chain	Length	Quality of chain		
1	F	279	78% 17%)	5%
1	G	279	85%	11%	5%
1	Н	279	81% 15	5%	·
1	Ι	279	86%	9%	·
1	J	279	% 	1%	·
1	Κ	279	80% 15%	%	5%
1	L	279	83% 11	1%	5%
1	М	279	84% 1	1%	5%
1	Ν	279	80% 159	%	5%
1	О	279	79% 16%	6	5%
1	Р	279	82% 13	3%	5%
1	Q	279	84% 1	1%	5%
1	R	279	83% 1:	2%	5%
1	S	279	[%] 84% 1	1%	·
1	Т	279	84% 1	1%	5%
2	d	335	97%		_
2	g	335	% • 98%		_
2	h	335	• 97%	-	_
2	i	335	• 96%		_
2	р	335	2% • 98%		
2	q	335	2% • 98%		
2	r	335	2% ● ● ● 98%		
2	s	335	276 ••• 97%		
2	t	335	• 98%		_

Continued from previous page...

9BKX

2 Entry composition (i)

There are 8 unique types of molecules in this entry. The entry contains 42837 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace									
1	Δ	267	Total	С	Ν	0	S	0	1	0									
1	11	201	2040	1282	358	398	2	0	Ĩ	0									
1	В	265	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0									
1	D	200	2030	1276	354	398	2	0	0	0									
1	С	268	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	1	0									
	0	200	2055	1293	359	401	2	0	Ĩ	0									
1	Л	266	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	1	0									
		200	2042	1284	355	401	2	0	1	0									
1	E	272	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0									
		212	2075	1305	361	407	2	0	0	0									
1	F	266	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0									
1	Ľ	200	2035	1279	355	399	2	0	0	0									
1	G	266	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0									
1	<u> </u>	200	2035	1279	354	400	2	0		0									
1	Н	Н	267	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0								
1			201	2044	1284	356	402	2	0	0	0								
1	Т	267	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0									
1	T	201	2044	1284	356	402	2		0	0									
1	Т	1 967	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0									
T	5	201	2040	1282	356	400	2	0	0	0									
1	K	266	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0									
1	11	200	2039	1281	355	401	2	0	0	0									
1	T.	265	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	9	0									
1											200	2039	1281	356	400	2	0	2	0
1	М	266	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0									
1	111	200	2031	1277	355	397	2	0	0	0									
1	Ν	266	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0									
T	11	200	2035	1278	354	401	2	0	0	0									
1	0	266	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0									
		200	2035	1279	355	399	2		0	0									
1	Р	266	Total	С	Ν	0	\mathbf{S}	0	0	Ο									
	1	200	2027	1274	354	397	2		0	0									

• Molecule 1 is a protein called Type 1 encapsulin shell protein.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
1	0	265	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
T	Q	203	2023	1272	353	396	2	0	0	0
1	D	266	Total	С	Ν	Ο	S	0	0	0
T	п		2035	1278	354	401	2	0	0	0
1	C	S 267	Total	С	Ν	0	S	0	2	0
T	G		2065	1299	362	402	2	0	5	0
1	1 T	966	Total	С	Ν	0	S	0	0	0
	200	2039	1281	355	401	2	0	U	U	

Continued from previous page...

There are 280 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	266	LYS	-	expression tag	UNP I6WZG6
А	267	LEU	-	expression tag	UNP I6WZG6
А	268	ALA	-	expression tag	UNP I6WZG6
А	269	ALA	-	expression tag	UNP I6WZG6
А	270	ALA	-	expression tag	UNP I6WZG6
A	271	ALA	-	expression tag	UNP I6WZG6
А	272	LEU	-	expression tag	UNP I6WZG6
А	273	GLU	-	expression tag	UNP I6WZG6
А	274	HIS	-	expression tag	UNP I6WZG6
А	275	HIS	-	expression tag	UNP I6WZG6
А	276	HIS	-	expression tag	UNP I6WZG6
А	277	HIS	-	expression tag	UNP I6WZG6
А	278	HIS	-	expression tag	UNP I6WZG6
А	279	HIS	-	expression tag	UNP I6WZG6
В	266	LYS	-	expression tag	UNP I6WZG6
В	267	LEU	-	expression tag	UNP I6WZG6
В	268	ALA	-	expression tag	UNP I6WZG6
В	269	ALA	-	expression tag	UNP I6WZG6
В	270	ALA	-	expression tag	UNP I6WZG6
В	271	ALA	-	expression tag	UNP I6WZG6
В	272	LEU	-	expression tag	UNP I6WZG6
В	273	GLU	-	expression tag	UNP I6WZG6
В	274	HIS	-	expression tag	UNP I6WZG6
В	275	HIS	-	expression tag	UNP I6WZG6
В	276	HIS	-	expression tag	UNP I6WZG6
В	277	HIS	-	expression tag	UNP I6WZG6
В	278	HIS	-	expression tag	UNP I6WZG6
В	279	HIS	-	expression tag	UNP I6WZG6
С	266	LYS	-	expression tag	UNP I6WZG6
С	267	LEU	-	expression tag	UNP I6WZG6
С	268	ALA	-	expression tag	UNP I6WZG6

9B.	KХ

Continued from previous page						
Chain	Residue	Modelled	Actual	Comment	Reference	
C	269	ALA	-	expression tag	UNP I6WZG6	
C	270	ALA	-	expression tag	UNP I6WZG6	
C	271	ALA	-	expression tag	UNP I6WZG6	
C	272	LEU	-	expression tag	UNP I6WZG6	
C	273	GLU	-	expression tag	UNP I6WZG6	
C	274	HIS	-	expression tag	UNP I6WZG6	
С	275	HIS	-	expression tag	UNP I6WZG6	
C	276	HIS	-	expression tag	UNP I6WZG6	
С	277	HIS	-	expression tag	UNP I6WZG6	
С	278	HIS	-	expression tag	UNP I6WZG6	
С	279	HIS	-	expression tag	UNP I6WZG6	
D	266	LYS	-	expression tag	UNP I6WZG6	
D	267	LEU	-	expression tag	UNP I6WZG6	
D	268	ALA	-	expression tag	UNP I6WZG6	
D	269	ALA	-	expression tag	UNP I6WZG6	
D	270	ALA	-	expression tag	UNP I6WZG6	
D	271	ALA	-	expression tag	UNP I6WZG6	
D	272	LEU	-	expression tag	UNP I6WZG6	
D	273	GLU	_	expression tag	UNP I6WZG6	
D	274	HIS	_	expression tag	UNP I6WZG6	
D	275	HIS	-	expression tag	UNP I6WZG6	
D	276	HIS	-	expression tag	UNP I6WZG6	
D	277	HIS	-	expression tag	UNP I6WZG6	
D	278	HIS	_	expression tag	UNP I6WZG6	
D	279	HIS	-	expression tag	UNP I6WZG6	
E	266	LYS	-	expression tag	UNP I6WZG6	
E	267	LEU	-	expression tag	UNP I6WZG6	
E	268	ALA	-	expression tag	UNP I6WZG6	
E	269	ALA	-	expression tag	UNP I6WZG6	
E	270	ALA	_	expression tag	UNP I6WZG6	
E	271	ALA	_	expression tag	UNP I6WZG6	
E	272	LEU	_	expression tag	UNP I6WZG6	
E	273	GLU	_	expression tag	UNP I6WZG6	
E	274	HIS	-	expression tag	UNP I6WZG6	
E	275	HIS	_	expression tag	UNP I6WZG6	
E	276	HIS	_	expression tag	UNP I6WZG6	
E	277	HIS	_	expression tag	UNP I6WZC6	
E	278	HIS	_	expression tag	UNP I6WZC6	
E	210	HIS	_	expression tag	UNP I6WZC6	
ц Г	213		-	expression tag	UNP IGWZCG	
г Г	200		-	expression tag	UNP IGWZCG	
F F	201		-	expression tag	UND ISWZCE	
Г	200	ALA		expression tag	UNE 10WZG0	

d fa Cntia

9BKX

Continued from previous page						
Chain	Residue	Modelled	Actual	Comment	Reference	
F	269	ALA	-	expression tag	UNP I6WZG6	
F	270	ALA	-	expression tag	UNP I6WZG6	
F	271	ALA	-	expression tag	UNP I6WZG6	
F	272	LEU	-	expression tag	UNP I6WZG6	
F	273	GLU	-	expression tag	UNP I6WZG6	
F	274	HIS	-	expression tag	UNP I6WZG6	
F	275	HIS	-	expression tag	UNP I6WZG6	
F	276	HIS	-	expression tag	UNP I6WZG6	
F	277	HIS	-	expression tag	UNP I6WZG6	
F	278	HIS	-	expression tag	UNP I6WZG6	
F	279	HIS	-	expression tag	UNP I6WZG6	
G	266	LYS	-	expression tag	UNP I6WZG6	
G	267	LEU	-	expression tag	UNP I6WZG6	
G	268	ALA	-	expression tag	UNP I6WZG6	
G	269	ALA	-	expression tag	UNP I6WZG6	
G	270	ALA	-	expression tag	UNP I6WZG6	
G	271	ALA	-	expression tag	UNP I6WZG6	
G	272	LEU	-	expression tag	UNP I6WZG6	
G	273	GLU	-	expression tag	UNP I6WZG6	
G	274	HIS	-	expression tag	UNP I6WZG6	
G	275	HIS	-	expression tag	UNP I6WZG6	
G	276	HIS	-	expression tag	UNP I6WZG6	
G	277	HIS	-	expression tag	UNP I6WZG6	
G	278	HIS	-	expression tag	UNP I6WZG6	
G	279	HIS	-	expression tag	UNP I6WZG6	
Н	266	LYS	-	expression tag	UNP I6WZG6	
Н	267	LEU	-	expression tag	UNP I6WZG6	
Н	268	ALA	-	expression tag	UNP I6WZG6	
Н	269	ALA	-	expression tag	UNP I6WZG6	
Н	270	ALA	-	expression tag	UNP I6WZG6	
Н	271	ALA	-	expression tag	UNP I6WZG6	
Н	272	LEU	-	expression tag	UNP I6WZG6	
Н	273	GLU	-	expression tag	UNP I6WZG6	
Н	274	HIS	-	expression tag	UNP I6WZG6	
Н	275	HIS	-	expression tag	UNP I6WZG6	
Н	276	HIS	-	expression tag	UNP I6WZG6	
Н	277	HIS	-	expression tag	UNP I6WZG6	
Н	278	HIS	-	expression tag	UNP I6WZG6	
Н	279	HIS	-	expression tag	UNP I6WZG6	
Ι	266	LYS	-	expression tag	UNP I6WZG6	
Ι	267	LEU	-	expression tag	UNP I6WZG6	
Ι	268	ALA	-	expression tag	UNP I6WZG6	

d fa Cntia

9]	Β.	K	Х

Chain	Residue	Modelled	Actual	Comment	Reference
I	269	ALA	_	expression tag	UNP I6WZG6
I	270	ALA	_	expression tag	UNP I6WZG6
I	271	ALA	-	expression tag	UNP I6WZG6
Ι	272	LEU	-	expression tag	UNP I6WZG6
Ι	273	GLU	-	expression tag	UNP I6WZG6
Ι	274	HIS	-	expression tag	UNP I6WZG6
Ι	275	HIS	-	expression tag	UNP I6WZG6
Ι	276	HIS	-	expression tag	UNP I6WZG6
Ι	277	HIS	-	expression tag	UNP I6WZG6
Ι	278	HIS	-	expression tag	UNP I6WZG6
Ι	279	HIS	-	expression tag	UNP I6WZG6
J	266	LYS	-	expression tag	UNP I6WZG6
J	267	LEU	-	expression tag	UNP I6WZG6
J	268	ALA	-	expression tag	UNP I6WZG6
J	269	ALA	-	expression tag	UNP I6WZG6
J	270	ALA	-	expression tag	UNP I6WZG6
J	271	ALA	-	expression tag	UNP I6WZG6
J	272	LEU	-	expression tag	UNP I6WZG6
J	273	GLU	-	expression tag	UNP I6WZG6
J	274	HIS	-	expression tag	UNP I6WZG6
J	275	HIS	-	expression tag	UNP I6WZG6
J	276	HIS	-	expression tag	UNP I6WZG6
J	277	HIS	-	expression tag	UNP I6WZG6
J	278	HIS	-	expression tag	UNP I6WZG6
J	279	HIS	-	expression tag	UNP I6WZG6
K	266	LYS	-	expression tag	UNP I6WZG6
K	267	LEU	-	expression tag	UNP I6WZG6
K	268	ALA	-	expression tag	UNP I6WZG6
K	269	ALA	-	expression tag	UNP I6WZG6
K	270	ALA	-	expression tag	UNP I6WZG6
K	271	ALA	-	expression tag	UNP I6WZG6
K	272	LEU	-	expression tag	UNP I6WZG6
K	273	GLU	-	expression tag	UNP I6WZG6
K	274	HIS	-	expression tag	UNP I6WZG6
K	275	HIS	-	expression tag	UNP I6WZG6
K	276	HIS	-	expression tag	UNP I6WZG6
K	277	HIS	-	expression tag	UNP I6WZG6
K	278	HIS	-	expression tag	UNP I6WZG6
K	279	HIS	-	expression tag	UNP I6WZG6
L	266	LYS	-	expression tag	UNP I6WZG6
L	267	LEU	-	expression tag	UNP I6WZG6
L	268	ALA	-	expression tag	UNP I6WZG6

Continued from previous page...

9BKX

Continuea from previous page							
Chain	Residue	Modelled	Actual	Comment	Reference		
L	269	ALA	-	expression tag	UNP I6WZG6		
L	270	ALA	-	expression tag	UNP I6WZG6		
L	271	ALA	-	expression tag	UNP I6WZG6		
L	272	LEU	-	expression tag	UNP I6WZG6		
L	273	GLU	-	expression tag	UNP I6WZG6		
L	274	HIS	-	expression tag	UNP I6WZG6		
L	275	HIS	-	expression tag	UNP I6WZG6		
L	276	HIS	-	expression tag	UNP I6WZG6		
L	277	HIS	-	expression tag	UNP I6WZG6		
L	278	HIS	-	expression tag	UNP I6WZG6		
L	279	HIS	-	expression tag	UNP I6WZG6		
М	266	LYS	-	expression tag	UNP I6WZG6		
М	267	LEU	-	expression tag	UNP I6WZG6		
М	268	ALA	-	expression tag	UNP I6WZG6		
М	269	ALA	-	expression tag	UNP I6WZG6		
М	270	ALA	-	expression tag	UNP I6WZG6		
М	271	ALA	-	expression tag	UNP I6WZG6		
М	272	LEU	-	expression tag	UNP I6WZG6		
М	273	GLU	-	expression tag	UNP I6WZG6		
М	274	HIS	-	expression tag	UNP I6WZG6		
М	275	HIS	-	expression tag	UNP I6WZG6		
М	276	HIS	-	expression tag	UNP I6WZG6		
М	277	HIS	-	expression tag	UNP I6WZG6		
М	278	HIS	-	expression tag	UNP I6WZG6		
М	279	HIS	-	expression tag	UNP I6WZG6		
N	266	LYS	-	expression tag	UNP I6WZG6		
N	267	LEU	-	expression tag	UNP I6WZG6		
N	268	ALA	-	expression tag	UNP I6WZG6		
N	269	ALA	-	expression tag	UNP I6WZG6		
N	270	ALA	-	expression tag	UNP I6WZG6		
N	271	ALA	-	expression tag	UNP I6WZG6		
N	272	LEU	-	expression tag	UNP I6WZG6		
N	273	GLU	-	expression tag	UNP I6WZG6		
N	274	HIS	-	expression tag	UNP I6WZG6		
N	275	HIS	-	expression tag	UNP I6WZG6		
N	276	HIS	-	expression tag	UNP I6WZG6		
N	277	HIS	-	expression tag	UNP I6WZG6		
N	278	HIS	-	expression tag	UNP I6WZG6		
N	279	HIS	-	expression tag	UNP I6WZG6		
0	266	LYS	-	expression tag	UNP I6WZG6		
0	267	LEU	-	expression tag	UNP I6WZG6		
0	268	ALA	-	expression tag	UNP I6WZG6		

J fa α ntin

Q

Q

Q

Q

 \mathbf{R}

R

R

276

277

278

279

266

267

268

HIS

HIS

HIS

HIS

LYS

LEU

ALA

_

-

-

-

_

-

-

Chain	Residue	Modelled	Actual	Comment	Reference
0	269	ALA	-	expression tag	UNP I6WZG6
0	270	ALA	_	expression tag	UNP I6WZG6
0	271	ALA	-	expression tag	UNP I6WZG6
0	272	LEU	-	expression tag	UNP I6WZG6
0	273	GLU	-	expression tag	UNP I6WZG6
0	274	HIS	-	expression tag	UNP I6WZG6
0	275	HIS	-	expression tag	UNP I6WZG6
0	276	HIS	-	expression tag	UNP I6WZG6
0	277	HIS	-	expression tag	UNP I6WZG6
0	278	HIS	-	expression tag	UNP I6WZG6
0	279	HIS	-	expression tag	UNP I6WZG6
Р	266	LYS	-	expression tag	UNP I6WZG6
Р	267	LEU	-	expression tag	UNP I6WZG6
Р	268	ALA	-	expression tag	UNP I6WZG6
Р	269	ALA	-	expression tag	UNP I6WZG6
Р	270	ALA	-	expression tag	UNP I6WZG6
Р	271	ALA	-	expression tag	UNP I6WZG6
Р	272	LEU	-	expression tag	UNP I6WZG6
Р	273	GLU	-	expression tag	UNP I6WZG6
Р	274	HIS	-	expression tag	UNP I6WZG6
Р	275	HIS	-	expression tag	UNP I6WZG6
Р	276	HIS	-	expression tag	UNP I6WZG6
Р	277	HIS	-	expression tag	UNP I6WZG6
Р	278	HIS	-	expression tag	UNP I6WZG6
Р	279	HIS	-	expression tag	UNP I6WZG6
Q	266	LYS	-	expression tag	UNP I6WZG6
Q	267	LEU	-	expression tag	UNP I6WZG6
Q	268	ALA	-	expression tag	UNP I6WZG6
Q	269	ALA	-	expression tag	UNP I6WZG6
Q	270	ALA	-	expression tag	UNP I6WZG6
Q	271	ALA	-	expression tag	UNP I6WZG6
Q	272	LEU	-	expression tag	UNP I6WZG6
Q	273	GLU	-	expression tag	UNP I6WZG6
Q	274	HIS	-	expression tag	UNP I6WZG6
Q	275	HIS	-	expression tag	UNP I6WZG6

Continued from previous page...

Continued on next page...

UNP I6WZG6

expression tag

Continu	Deciduce	vious page	Actual	Commont	Defenence
Chain	Residue	Modelled	Actual	Comment	Reference
R	269	ALA	-	expression tag	UNP 16WZG6
R	270	ALA	-	expression tag	UNP 16WZG6
R	271	ALA	-	expression tag	UNP 16WZG6
R	272	LEU	-	expression tag	UNP I6WZG6
R	273	GLU	-	expression tag	UNP I6WZG6
R	274	HIS	-	expression tag	UNP I6WZG6
R	275	HIS	-	expression tag	UNP I6WZG6
R	276	HIS	-	expression tag	UNP I6WZG6
R	277	HIS	-	expression tag	UNP I6WZG6
R	278	HIS	-	expression tag	UNP I6WZG6
R	279	HIS	-	expression tag	UNP I6WZG6
S	266	LYS	-	expression tag	UNP I6WZG6
S	267	LEU	-	expression tag	UNP I6WZG6
S	268	ALA	-	expression tag	UNP I6WZG6
S	269	ALA	-	expression tag	UNP I6WZG6
S	270	ALA	-	expression tag	UNP I6WZG6
S	271	ALA	-	expression tag	UNP I6WZG6
S	272	LEU	-	expression tag	UNP I6WZG6
S	273	GLU	-	expression tag	UNP I6WZG6
S	274	HIS	-	expression tag	UNP I6WZG6
S	275	HIS	-	expression tag	UNP I6WZG6
S	276	HIS	-	expression tag	UNP I6WZG6
S	277	HIS	-	expression tag	UNP I6WZG6
S	278	HIS	-	expression tag	UNP I6WZG6
S	279	HIS	-	expression tag	UNP I6WZG6
Т	266	LYS	-	expression tag	UNP I6WZG6
Т	267	LEU	-	expression tag	UNP I6WZG6
Т	268	ALA	-	expression tag	UNP I6WZG6
Т	269	ALA	-	expression tag	UNP I6WZG6
Т	270	ALA	-	expression tag	UNP I6WZG6
Т	271	ALA	-	expression tag	UNP I6WZG6
Т	272	LEU	-	expression tag	UNP I6WZG6
Т	273	GLU	-	expression tag	UNP I6WZG6
Т	274	HIS	-	expression tag	UNP I6WZG6
Т	275	HIS	-	expression tag	UNP I6WZG6
Т	276	HIS	-	expression tag	UNP I6WZG6
Т	277	HIS	-	expression tag	UNP I6WZG6
Т	278	HIS	-	expression tag	UNP I6WZG6
Т	279	HIS	-	expression tag	UNP I6WZG6

 α tia 1 [

• Molecule 2 is a protein called Dye-decolorizing peroxidase.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	Trace
2	d	10	Total C N O 54 33 10 11	0	0	0
2	g	6	Total C N O 35 23 6 6	0	0	0
2	h	9	Total C N O 50 31 9 10	0	0	0
2	i	12	Total C N O 74 47 12 15	0	0	0
2	р	8	Total C N O 44 28 8 8	0	0	0
2	q	8	Total C N O 43 25 8 10	0	0	0
2	r	8	Total C N O 48 31 8 9	0	0	0
2	s	10	Total C N O 60 39 11 10	0	0	0
2	t	8	Total C N O 50 32 8 10	0	0	0

• Molecule 3 is PENTAETHYLENE GLYCOL (three-letter code: 1PE) (formula: $C_{10}H_{22}O_6$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	Total C O 13 8 5	0	0
3	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 7 & 4 & 3 \end{array}$	0	0
3	В	1	Total C O 10 6 4	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	В	1	Total C O 10 6 4	0	0
3	В	1	Total C O 16 10 6	0	0
3	С	1	Total C O 10 6 4	0	0
3	С	1	Total C O 16 10 6	0	0
3	С	1	Total C O 32 20 12	0	1
3	Е	1	Total C O 16 10 6	0	0
3	Е	1	Total C O 10 6 4	0	0
3	F	1	Total C O 13 8 5	0	0
3	F	1	Total C O 16 10 6	0	0
3	F	1	Total C O 13 8 5	0	0
3	F	1	Total C O 32 20 12	0	1
3	G	1	Total C O 10 6 4	0	0
3	Н	1	Total C O 16 10 6	0	0
3	Н	1	Total C O 20 12 8	0	1
3	Н	1	Total C O 10 6 4	0	0
3	Ι	1	Total C O 16 10 6	0	0
3	Ι	1	$\begin{array}{c cc} \hline Total & C & O \\ \hline 10 & 6 & 4 \end{array}$	0	0
3	Ι	1	Total C O 10 6 4	0	0
3	J	1	Total C O 10 6 4	0	0
3	J	1	Total C O 16 10 6	0	0
3	К	1	Total C O 10 6 4	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	Κ	1	Total C O 13 8 5	0	0
3	L	1	Total C O 16 10 6	0	0
3	L	1	Total C O 13 8 5	0	0
3	L	1	Total C O 32 20 12	0	1
3	Ν	1	Total C O 10 6 4	0	0
3	Ν	1	Total C O 10 6 4	0	0
3	Ν	1	Total C O 13 8 5	0	0
3	О	1	Total C O 10 6 4	0	0
3	Р	1	Total C O 13 8 5	0	0
3	Р	1	Total C O 13 8 5	0	0
3	Q	1	Total C O 16 10 6	0	0
3	Q	1	Total C O 10 6 4	0	0
3	R	1	Total C O 10 6 4	0	0
3	R	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 7 4 3 \end{array}$	0	0
3	R	1	Total C O 13 8 5	0	0
3	Т	1	Total C O 16 10 6	0	0
3	Т	1	Total C O 10 6 4	0	0

Continued from previous page...

• Molecule 4 is NONAETHYLENE GLYCOL (three-letter code: 2PE) (formula: $C_{18}H_{38}O_{10}$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	1	Total C O 10 6 4	0	0
4	Н	1	Total C O 25 16 9	0	0
4	Н	1	Total C O 22 14 8	0	0
4	J	1	Total C O 16 10 6	0	0
4	L	1	Total C O 25 16 9	0	0

• Molecule 5 is GLYCEROL (three-letter code: GOL) (formula: $C_3H_8O_3$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
5	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
5	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
5	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
5	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
5	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
5	Е	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	Е	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	Е	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
5	Е	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
5	F	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	F	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	F	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	G	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	Н	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	Н	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	Н	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	Н	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
5	Н	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
5	Ι	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
5	Ι	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	Ι	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	Ι	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	Ι	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	Ι	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	J	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	J	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	J	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	J	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
5	К	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
5	К	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
5	K	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	К	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
5	К	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	K	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
5	L	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
5	L	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	L	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	L	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	М	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	М	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
5	М	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	Ν	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	Ν	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
5	Ο	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	Ο	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	Ο	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	Ο	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	О	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
5	О	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
5	Q	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
5	Q	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
5	Q	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	R	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	R	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
5	R	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	R	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	S	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	S	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	\mathbf{S}	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 6 & 3 & 3 \end{array}$	0	0
5	S	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	S	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	S	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	Т	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	Т	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	Т	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0
5	Т	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 6 3 3 \end{array}$	0	0

Continued from previous page...

• Molecule 6 is NICKEL (II) ION (three-letter code: NI) (formula: Ni).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	В	1	Total Ni 1 1	0	0
6	С	4	Total Ni 4 4	0	0
6	D	2	Total Ni 2 2	0	0
6	Е	2	Total Ni 2 2	0	0
6	F	2	Total Ni 2 2	0	0

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	Н	2	Total Ni 2 2	0	0
6	Ι	2	Total Ni 2 2	0	0
6	J	2	Total Ni 2 2	0	0
6	К	1	Total Ni 1 1	0	0
6	L	2	Total Ni 2 2	0	0
6	М	1	Total Ni 1 1	0	0
6	Ν	1	Total Ni 1 1	0	0
6	Ο	3	Total Ni 3 3	0	0
6	Р	2	Total Ni 2 2	0	0
6	Q	2	Total Ni 2 2	0	0
6	R	1	Total Ni 1 1	0	0
6	S	3	Total Ni 3 3	0	0

Continued from previous page...

• Molecule 7 is DODECAETHYLENE GLYCOL (three-letter code: 12P) (formula: $C_{24}H_{50}O_{13}$).

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	
7	Т	1	Total 13	C 8	O 5	0	0

• Molecule 8 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
8	А	25	Total O 25 25	0	0
8	В	14	Total O 14 14	0	0
8	С	15	Total O 15 15	0	0
8	D	16	Total O 16 16	0	0
8	Е	14	Total O 14 14	0	0
8	F	24	Total O 24 24	0	0
8	G	12	Total O 12 12	0	0
8	Н	23	TotalO2323	0	0
8	Ι	29	Total O 29 29	0	0
8	J	30	Total O 30 30	0	0
8	К	24	$\begin{array}{ccc} \text{Total} & \text{O} \\ 24 & 24 \end{array}$	0	0
8	L	28	Total O 28 28	0	0
8	М	18	Total O 18 18	0	0
8	Ν	17	Total O 17 17	0	0
8	О	16	Total O 16 16	0	0
8	Р	14	Total O 14 14	0	0
8	Q	18	Total O 18 18	0	0
8	R	19	Total O 19 19	0	0
8	S	24	Total O 24 24	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
8	Т	12	Total O 12 12	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Type 1 encapsulin shell protein

• Molecule 1: Type 1 encapsulin shell protein

• Molecule 1: Type 1 encapsulin shell protein

- Molecule 1: Type 1 encapsulin shell protein

Chain K:	80%		15%	5%
M1 D7 D7 B7 R8 R28 R28 R28 R28 R28 R28 R28 R28 R28	V58 V65 V65 S72 B91 D91 S96 S96 D91 D91	V114 V128 X128 X128 X128 X128 X128 X133 X133	V152 R161 G167	V171 L172 V181 191 M205

LEU ALA ALA ALA ALA ALA ALA HIS HIS HIS HIS HIS

• Molecule 1: Type 1 encapsulin shell protein

• Molecule 1: Type 1 encapsulin shell protein

• Molecule 1: Type 1 encapsulin shell protein

Chain N:	80% 15%	5%
M1 E20 B20 B20 B20 B20 B20 B20 B20 B20 B20 B	H20 H20 131 133 133 133 133 133 133 153 153 153	V181 V181 V181 R191 R192 N196
W205 A206 D210 V214	R218 1224 1224 1224 1250 1250 1250 1250 1250 1250 1250 1250	
• Molecule	le 1: Type 1 encapsulin shell protein	
Chain O:	79% 16%	5%
M1 N2 N2 D7 T12	E20 131 152 152 152 166 166 166 166 166 166 166 1157 1153 1153 1153 1153 1153 1153 1153	V171 V181 V181 D186 T191 R192 E193
N196 201 0202 1203 1204	W205 P207 P207 P207 P207 W214 W214 M1A M1A M1A M1A M1A M1A M1A M1A M1A M1A	
• Molecule	le 1: Type 1 encapsulin shell protein	
Chain P:	82% 13%	5%
M1 R6 E20 131	R34 R35 R35 R35 R36 F61 F61 F61 F63 R36 R36 R36 R36 R36 R36 R36 R36 R36 R	2006 2006 2010 2010 2014 2014 2018
L224 V242 Q247 E248 T249	L250 LEU ALA ALA ALA ALA ALA HIS HIS HIS HIS HIS HIS	
• Molecule	le 1: Type 1 encapsulin shell protein	
Chain Q:	84% 11	% 5%
M1 R6 V11 W16	E20 86 188 188 188 188 188 188 188 115 115 115	V214 V214 R218 V230 V242
q247 4265 H265 LYS LYS LEU ALA ALA	ALA LEU HISS HISS HIS HIS HIS	
• Molecule	le 1: Type 1 encapsulin shell protein	
Chain R:	83% 129	6 5%
M1 R6 E20 R34	49 49 15 175 175 178 183 184 184 184 184 184 184 183 184 184 183 191 191 191 191 191 191 191 19	R218 6219 0220 1224 1224 V242 E248
T249 L250 T251 LEU LEU	ALA ALA ALA ALA ALA GLU GLU HIS HIS HIS HIS HIS	
	ROTEIN DATA BANK	

• Molecule 1:	Type 1 encapsulin shell pro	tein	
Chain S:	84%		11% •
M1 R6 E20 K28 H30 H31	A32 A32 R34 R35 R35 R35 R35 R35 R35 R35 R35 R35 R35	V181 V181 1191 1191 V199 W205 M205 M205 M205 M205 V214	R218 1224 1224 1224 8248 1248 1260 1251 1251 1253
H265 K266 K266 ALA ALA ALA ALA ALA CLU	HIS HIS HIS HIS HIS HIS		
• Molecule 1:	Type 1 encapsulin shell pro	tein	
Chain T:	84%		11% 5%
M1 B7 B7 E13 E20 E21 E21	R25 R29 R34 R34 R35 L69 L75 R35 R36 R36 R36 R36 R36 R36 R36 R36 R36 R36	L172 L172 1172 1191 M206 M206 M206 M206 M206 M206 M206 M2191	L224 V242 V242 C248 C248 C248 C248 C266 C266 L250 T251 T251
ALA ALA ALA ALA ALA LEU HIS HIS HIS	HIS HIS		
• Molecule 2:	Dye-decolorizing peroxidase	2	
Chain d: •		97%	
MET ALA VAL PRO ALA VAL SER PRO GLN PRO	LLE LEU ALA ALA PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	ALA THR VAL HIS ASP ASP ALA CEU CEU CEU VAL CEU VAL ARG ALA ALA	LLE GLY PHE ARG ASP PRO TTHR LYS HIS LEU SER VAL VAL
VAL SER ILE GLY GLY SER ASP ASP ASP ASP ASP	LEU PHE ALA ALA CLY PRO PRO FRO CLU THR PRO CLEU VAL CLEU VAL CLEU CLEU CLEU ARC CTAR ARC ARC ARC ARC ARC ARC ARC ARC ARC A	THR ALA ALA ALA ALA PRO ALA ALEU ALEU PHE FLEU ALA ALA ALA	THR MET ASP VAL CYS CYS CYS CYS CUU LEU ALA ALA ALA ALA CLY
LYS SER MET GLY GLY ASP ALA VAL VAL VAL	ASP VAL VAL VAL ALC ALC ALC ARC ARC ASP ARC ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	GLU ASN ASN ASN CLE CLE TLE TLE TLE TLE TLE TLE CLY CC CLY CLY CLY CLY CLY CLY CLY CLY	GLU ASP ASN ASN ASN ALA GLY SER CYS CYS CYS TYR HIS VAL
GLN LYS LYR VAL HIS ASP MET ALA SER SER	GLU SER SER VAL VAL VAL THR GLV GLV GLV ARG GLV ARG CLV VAL THR CLV ARG CLV CLV CLV CLV CLV CLV CLV CLV CLV CLV	LEU ASP ASP ASP ASN ALA ALA ALA ASN ALA ASN ALA ALA ALA ASU ASU ASU ASU ASU ASU ASU ASU ASU AS	TLE ASP ASP ASP ASP ASP ASP CLY CLY CLY CLY CLY ARG ARG ARG ARG
HIS ASN MET PRO PHE GLY GLY GLU VAL GLY LYS	GLY TYR TYR THR TYR TYR THR THR THR SER ARG THR THR THR CLU CLU	ALC ALC ASN ASN ASN ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	ASP PASP SER THR ALA VAL THR CLY CLY CLY CLY CLY CLY SER SER
PRO THR ILE ASP PHE LEU ASP ASP PRO PRO	PR0 LEEU PR0 6LN 6LN ALA ALA ALA ALA ALA ALA ALA ALA ALA A	ARG ARG	
• Molecule 2:	Dye-decolorizing peroxidase		
Chain g: •		98%	
MET ALA VAL PRO ALA VAL SER PRO GLN	LLEU LEU LEU PRO LEU LEU TLEU PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	ALA THR VIS ASP ALA ASP ALA ALA CVS CLY CLS CVAL CLSU VAL	LLE GLY ARG ASP ASP ASP PRO THR LYS LYS LEU VAL VAL
VAL SER ILE GLY SER ASP ASP ASP ASP	LEU ALA ALA ALA CLY PRO PRO PRO PRO PRO PLU LEU CLU CLU CLU CLU CLU CLU CLU CLU ALS PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	THR ALA ALA ALA ALA ALA ALA GLY GLY CHEU PHE HIS ALC ALU ALU	THR MET ASP VAL CYS CYS CYS CYS GLU GLU GLU ALEU ARG CLY LEU LEU

ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP
LUNS LUNS LUNS LUNS LUNS LUNS LUNS LUNS
HIS HIS HIS PRO CUU VAL VAL VAL CUV VAL CUV CUV CUV CUV CUV CUV CUV CUV CUV CUV
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
PROPERTING AND
• Molecule 2: Dye-decolorizing peroxidase
Chain h: • 97%
MET ALL VAL VAL VAL VAL VAL PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO
VAL VAL SER SER ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP
LYS SUR ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
LEU VAL VAL VAL VAL ASP ASP ASP CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU
AISN ASN ASN ASN ASN ASN ASN ASN ASN ASN A
THRO THRO ARE PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO
• Molecule 2: Dye-decolorizing peroxidase ^{3%}
Chain i: • 96%
NET ALA VAL PRO VAL PRO ALA PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO
VAL VAL SER SER SER ALA ALA ARG ALA ARG ALA ARG PRO ARG PRO ARG ALA ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
LYSS BER MET ALA ALA ALA ALA ALA ALA VAL VAL VAL ALA ALA
CLIN CLIN LYPE TTRP VAL ASP ASP CLUU ASP CLUU SER ASP CLUU CLUU CLUU CLUU CLUU CLUU CLUU CLU
AHIS MHIS MHIS MHIS MHIE MHIE MHIE MHIE MHIE MHIE MHIE MHIE
PR0 PF0 PF1 PF1 PF1 PF1 PF1 PF1 PF1 PF1 PF1 PF1

• Molecule 2: Dye-decolorizing peroxidase					
Chain p:	98%				
MET ALA VAL PRO ALA VAL SER PRO GLN PRO	LILE LILE ALA ALA ALA ALA ALA ALA ALA ALA ALA A				
VAL SER ILE GLY SER ASP ASP ASP ASP	LEU ALA ALA ALA ALA ALA ALA ALA ALA CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU				
LYS SER MET GLY ASP ASP ASP ALA VAL VAL VAL	ASP VAL VAL PHE PHE PHE PHE PHE ASP ASP ASP ASP ASP CLU ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP				
GLN LYS LYR VAL HIS ASP MET ALA SER TRP	SEU SER VAL THR THR GLU GLU GLU GLU GLU GLU GLU ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG				
HIS ASN MET PRC PHC PHC CLY GLU CAL CLY CLY	GLY TYR TYR TYR TYR TYR TYR TYR TYR THR THR THR THR THR THR THR THR THR TH				
PRO THR ILE ASP PHE LEU ASP HIS PRO	PRO LEEU PRO ALA ALA ALA ALA ALA ALA ALA ALA CLY SEC CLY SEC CLY SEC CLY SEC CLY SEC CLY SEC CLY ALA ALA ALA ALA ALA ALA ALA ALA ALA A				
• Molecule 2:	Dye-decolorizing peroxidase				
Chain q:	98%				
MET ALA VAL PRO ALA VAL SER PRO GLN PRO	LILE LILE ALA ALA ALA ALA ALA ALA ALA ALA ALA A				
VAL SER ILE GLY SER ASP ASP ASP ASP ARG	LEU ALR ALR ALR ALR ALR ALR ARG ARG CLU CLEU CLEU ARG ALA ALA ARG ALA ALA ARG ALA ARG ALA ALA ARG ALA ALA ARG ALA ALA ARG ARG ALA ARG ARG ARG ARG ARG ARG ARG ARG ARG AR				
LYS SER MET GLY GLY ASP ASP ASP ALA VAL VAL VAL	ASP VAL VAL VAL VAL PHE PHE PHE PHE PHE ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP				
GLN LYS LYR VAL HIS ASP ASP AEA SER TRP	SEU SER VAL THR THR THR GLU GLU GLU GLU GLU GLU GLU ARG ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP				
HIS ASN MET PRO PRO GLY GLV GLV GLV GLY CXL	GLY CLY TYR TYR TYR TYR TYR TYR TYR CLY CLY CLY CLY CLU CLU CLU CLU CLU CLU CLU CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY				
PRO THR ASP ASP PHE LEU ASP HIS PRO PRO	LEU PRO ALA ALA ALA ALA ALA ALA ALA ALA ALA AL				
• Molecule 2:	Dye-decolorizing peroxidase				
Chain r:	98%				
MET ALA VAL PRO ALA ALA VAL SER PRO GLN PRO	TLE LEU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL				
VAL SER ILE GLY SER ASP ALA ALA ASP ARG	LEU ALA ALA ALA ALA ALA ALA PRO PRO CLEU THR PRO CLEU THR ALA ALA ALA ALA ALA ALA ALA ALA ALA AL				
LYS SER MET GLY ASP ALA VAL THR VAL VAL	ASP CIU VAL PHE PHE PHE ASP ASP ASP ASP ASP CIU CIU CIU CIU CIU CIU AIA ASP CIU CIU AIA ASP CIU CIU AIA ASP CIU CIU CIU CIU ASP CIU CIU CIU CIU CIU CIU CIU CIU CIU CIU				

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 3	Depositor
Cell constants	313.45Å 313.45Å 313.45Å	Deperitor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	49.56 - 3.15	Depositor
Resolution (A)	49.56 - 3.15	EDS
% Data completeness	99.4 (49.56-3.15)	Depositor
(in resolution range)	99.3 (49.56 - 3.15)	EDS
R _{merge}	0.20	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.74 (at 3.12 \text{\AA})$	Xtriage
Refinement program	PHENIX 1.21_5207	Depositor
D D.	0.201 , 0.233	Depositor
Π, Π_{free}	0.201 , 0.233	DCC
R_{free} test set	8619 reflections $(4.89%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	52.5	Xtriage
Anisotropy	0.000	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.37, 51.3	EDS
L-test for $twinning^2$	$< L > = 0.48, < L^2 > = 0.31$	Xtriage
Estimated twinning fraction	0.019 for l,-k,h	Xtriage
F_o, F_c correlation	0.91	EDS
Total number of atoms	42837	wwPDB-VP
Average B, all atoms $(Å^2)$	42.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 1.84% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: GOL, 12P, NI, 1PE, 2PE

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles	
IVIOI	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.24	0/2083	0.52	0/2842
1	В	0.24	0/2070	0.52	0/2823
1	С	0.25	0/2099	0.52	0/2863
1	D	0.25	0/2085	0.51	0/2843
1	Е	0.25	0/2115	0.53	0/2885
1	F	0.25	0/2075	0.51	0/2830
1	G	0.24	0/2075	0.50	0/2830
1	Н	0.25	0/2084	0.51	0/2842
1	Ι	0.25	0/2084	0.53	0/2842
1	J	0.24	0/2080	0.52	0/2837
1	Κ	0.24	0/2079	0.51	0/2835
1	L	0.25	0/2085	0.51	0/2844
1	М	0.24	0/2071	0.51	0/2825
1	Ν	0.25	0/2075	0.52	0/2831
1	0	0.24	0/2075	0.51	0/2830
1	Р	0.24	0/2067	0.51	0/2821
1	Q	0.24	0/2063	0.51	0/2815
1	R	0.25	0/2075	0.51	0/2831
1	S	0.25	0/2115	0.52	0/2883
1	Т	0.25	0/2079	0.52	0/2835
2	d	0.30	0/53	0.64	0/70
2	g	0.24	0/34	0.41	0/45
2	h	0.25	0/49	0.69	0/65
2	i	0.24	0/73	0.51	0/98
2	р	0.23	0/43	0.48	0/57
2	q	0.20	0/42	0.48	0/55
2	r	0.21	0/47	0.39	0/62
2	S	0.29	0/59	0.70	0/77
2	t	0.23	0/49	0.55	0/65
All	All	0.25	0/42083	0.51	0/57381

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2040	0	2011	26	0
1	В	2030	0	2009	31	0
1	С	2055	0	2034	38	0
1	D	2042	0	2019	20	0
1	Е	2075	0	2057	22	0
1	F	2035	0	2011	36	0
1	G	2035	0	2009	21	0
1	Н	2044	0	2017	27	0
1	Ι	2044	0	2017	19	0
1	J	2040	0	2013	24	0
1	K	2039	0	2015	30	0
1	L	2039	0	2015	28	0
1	М	2031	0	2007	19	0
1	N	2035	0	2004	25	0
1	0	2035	0	2011	35	0
1	Р	2027	0	1996	23	0
1	Q	2023	0	1996	18	0
1	R	2035	0	2004	25	0
1	S	2065	0	2050	22	0
1	Т	2039	0	2015	20	0
2	d	54	0	43	0	0
2	g	35	0	30	0	0
2	h	50	0	40	0	0
2	i	74	0	78	0	0
2	р	44	0	35	0	0
2	q	43	0	32	0	0
2	r	48	0	47	0	0
2	S	60	0	60	0	0
2	t	50	0	49	0	0
3	А	20	0	26	5	0

	Chain	Non-H	H(model)	(habbe)H	Clashes	Symm-Clashes
2	B	36		11(auueu) 18	6	0
3	D C	58	0	70	0	0
3	E	26	0	35	0	0
3	E F	20 74	0	100	6	0
3	G	10	0	13	0	0
3	н	46	0	61	5	0
3	I	36	0	48	3	0
3	I	26	0	35	0	0
3	K	23	0	30	0	0
3	L	61	0	83	8	0
3	N	33	0	43	1	0
3	0	10	0	13	1	0
3	P	26	0	34	1	0
3	0	26	0	35	2	0
3	R R	30	0	39	2	0
3	T	26	0	35	2	0
4	A	10	0	13	1	0
4	Н	47	0	62	2	0
4	J	16	0	21	1	0
4	L	25	0	33	7	0
5	A	30	0	40	5	0
5	B	30	0	40	2	0
5	C	12	0	16	1	0
5	D	30	0	40	2	0
5	Е	24	0	32	2	0
5	F	18	0	24	1	0
5	G	6	0	8	0	0
5	Н	30	0	40	2	0
5	Ι	36	0	48	3	0
5	J	24	0	32	1	0
5	K	36	0	48	5	0
5	L	24	0	32	3	0
5	М	18	0	24	0	0
5	N	12	0	16	0	0
5	0	36	0	48	1	0
5	Q	18	0	24	0	0
5	R	24	0	32	0	0
5	S	36	0	48	3	0
5	Т	24	0	32	3	0
6	В	1	0	0	0	0
6	С	4	0	0	0	0
6	D	2	0	0	0	0
	1	1	1	1	Continu	ued on next page

Continued from previous page...

PROTEIN DATA BANK

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
6	Е	2	0	0	0	0
6	F	2	0	0	0	0
6	Н	2	0	0	0	0
6	Ι	2	0	0	0	0
6	J	2	0	0	0	0
6	Κ	1	0	0	0	0
6	L	2	0	0	0	0
6	М	1	0	0	0	0
6	N	1	0	0	0	0
6	0	3	0	0	0	0
6	Р	2	0	0	0	0
6	Q	2	0	0	0	0
6	R	1	0	0	0	0
6	S	3	0	0	0	0
7	Т	13	0	16	1	0
8	А	25	0	0	0	0
8	В	14	0	0	0	0
8	С	15	0	0	0	0
8	D	16	0	0	0	0
8	Е	14	0	0	1	0
8	F	24	0	0	0	0
8	G	12	0	0	0	0
8	Н	23	0	0	0	0
8	Ι	29	0	0	0	0
8	J	30	0	0	1	0
8	Κ	24	0	0	0	0
8	L	28	0	0	0	0
8	М	18	0	0	0	0
8	Ν	17	0	0	0	0
8	0	16	0	0	0	0
8	Р	14	0	0	0	0
8	Q	18	0	0	0	0
8	R	19	0	0	0	0
8	S	24	0	0	0	0
8	Т	12	0	0	0	0
All	All	42837	0	42250	472	0

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

All (472) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:C:171:VAL:HG22	1:C:214:VAL:HG22	1.63	0.79
1:J:171:VAL:HG22	1:J:214:VAL:HG22	1.67	0.76
1:L:171:VAL:HG22	1:L:214:VAL:HG22	1.67	0.76
1:O:147:ARG:HD2	1:O:186:ASP:HA	1.67	0.75
1:B:171:VAL:HG22	1:B:214:VAL:HG22	1.69	0.74
1:I:171:VAL:HG22	1:I:214:VAL:HG22	1.69	0.74
1:N:224:LEU:HD11	1:N:250:LEU:HD12	1.70	0.73
1:S:171:VAL:HG22	1:S:214:VAL:HG22	1.71	0.73
1:S:28:LYS:O	1:S:35:ARG:NH2	2.21	0.73
1:M:171:VAL:HG22	1:M:214:VAL:HG22	1.70	0.73
1:T:34:ARG:NH2	1:T:248:GLU:OE2	2.21	0.73
1:E:171:VAL:HG22	1:E:214:VAL:HG22	1.69	0.73
1:C:224:LEU:HD11	1:C:250:LEU:HD12	1.71	0.72
1:H:171:VAL:HG22	1:H:214:VAL:HG22	1.70	0.72
1:F:171:VAL:HG22	1:F:214:VAL:HG22	1.70	0.72
1:N:171:VAL:HG22	1:N:214:VAL:HG22	1.71	0.72
1:A:171:VAL:HG22	1:A:214:VAL:HG22	1.70	0.72
1:G:171:VAL:HG22	1:G:214:VAL:HG22	1.70	0.71
1:D:34:ARG:NH2	1:D:248:GLU:OE2	2.23	0.71
1:K:171:VAL:HG22	1:K:214:VAL:HG22	1.73	0.71
1:D:143:PRO:HD3	1:D:152:VAL:HG21	1.73	0.71
1:M:167:GLY:HA3	1:M:218:ARG:HB3	1.72	0.71
1:Q:171:VAL:HG22	1:Q:214:VAL:HG22	1.73	0.70
1:J:29:ARG:HH22	5:J:305:GOL:H2	1.54	0.70
1:E:224:LEU:HD11	1:E:250:LEU:HD12	1.73	0.70
1:R:171:VAL:HG22	1:R:214:VAL:HG22	1.73	0.69
1:L:29:ARG:HH22	5:L:306:GOL:H31	1.56	0.69
1:T:77:ARG:NH1	1:T:247:GLN:OE1	2.25	0.69
1:N:167:GLY:HA3	1:N:218:ARG:HB3	1.74	0.69
1:B:167:GLY:HA3	1:B:218:ARG:HB3	1.73	0.69
1:O:171:VAL:HG22	1:O:214:VAL:HG22	1.74	0.69
1:S:224:LEU:HD11	1:S:250:LEU:HD12	1.74	0.68
1:C:28:LYS:O	1:C:35:ARG:NH2	2.26	0.68
1:E:29:ARG:HH22	5:E:304:GOL:H2	1.58	0.68
1:P:171:VAL:HG22	1:P:214:VAL:HG22	1.74	0.68
1:N:28:LYS:O	1:N:35:ARG:NH2	2.27	0.68
1:O:181:VAL:HA	1:O:191:ILE:HD11	1.75	0.68
1:D:167:GLY:HA3	1:D:218:ARG:HB3	1.75	0.67
1:P:31:ILE:O	1:P:35:ARG:NH1	2.27	0.67
1:B:6:ARG:NH2	1:B:20:GLU:OE2	2.27	0.67
1:F:224:LEU:HD11	1:F:250:LEU:HD12	1.76	0.67
1:F:143:PRO:HD3	1:F:152:VAL:HG21	1.77	0.67

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:S:29:ARG:HH22	5:S:301:GOL:H32	1.60	0.67	
1:C:220:GLY:HA3	3:F:304[B]:1PE:H152	1.77	0.66	
1:K:6:ARG:NH2	1:K:20:GLU:OE2	2.28	0.66	
1:D:171:VAL:HG22	1:D:214:VAL:HG22	1.76	0.66	
1:I:6:ARG:NH2	1:I:20:GLU:OE2	2.27	0.66	
1:K:28:LYS:O	1:K:35:ARG:NH2	2.28	0.66	
1:R:6:ARG:NH2	1:R:20:GLU:OE2	2.26	0.66	
1:F:34:ARG:NH2	1:F:248:GLU:OE2	2.29	0.65	
1:L:6:ARG:NH2	1:L:20:GLU:OE2	2.30	0.65	
1:H:167:GLY:HA3	1:H:218:ARG:HB3	1.77	0.65	
1:H:143:PRO:HD3	1:H:152:VAL:HG21	1.79	0.65	
1:J:167:GLY:HA3	1:J:218:ARG:HB3	1.78	0.65	
1:N:62:THR:HG22	1:N:63:ASN:H	1.62	0.64	
1:P:167:GLY:HA3	1:P:218:ARG:HB3	1.80	0.64	
1:C:167:GLY:HA3	1:C:218:ARG:HB3	1.79	0.64	
1:B:224:LEU:HD11	1:B:250:LEU:HD12	1.79	0.64	
1:M:28:LYS:O	1:M:35:ARG:NH2	2.30	0.64	
1:C:6:ARG:NH2	1:C:20:GLU:OE2	2.28	0.64	
1:C:185:SER:H	5:C:305:GOL:H2	1.63	0.63	
1:B:29:ARG:HH22	3:B:303:1PE:H251	1.61	0.63	
1:A:167:GLY:HA3	1:A:218:ARG:HB3	1.81	0.63	
1:L:35:ARG:NH1	5:L:306:GOL:O1	2.31	0.63	
1:T:167:GLY:HA3	1:T:218:ARG:HB3	1.79	0.63	
1:A:82:PHE:HA	5:A:305:GOL:H32	1.81	0.62	
1:D:6:ARG:NH2	1:D:20:GLU:OE2	2.32	0.62	
3:I:301:1PE:H132	1:J:161:ARG:HD3	1.81	0.62	
1:E:167:GLY:HA3	1:E:218:ARG:HB3	1.80	0.62	
1:I:167:GLY:HA3	1:I:218:ARG:HB3	1.80	0.62	
1:R:167:GLY:HA3	1:R:218:ARG:HB3	1.80	0.62	
1:I:113:PHE:HB3	5:I:307:GOL:H32	1.81	0.62	
1:F:167:GLY:HA3	1:F:218:ARG:HB3	1.81	0.62	
1:H:6:ARG:NH2	1:H:20:GLU:OE2	2.32	0.62	
1:B:7:ASP:HB3	3:B:305:1PE:H141	1.82	0.62	
1:O:167:GLY:HA3	1:O:218:ARG:HB3	1.82	0.61	
1:G:181:VAL:HA	1:G:191:ILE:HD11	1.81	0.61	
1:P:6:ARG:NH2	1:P:20:GLU:OE2	2.33	0.61	
1:J:6:ARG:NH2	1:J:20:GLU:OE2	2.32	0.61	
1:L:196:ASN:HB3	3:L:305[A]:1PE:H252	1.83	0.61	
1:L:167:GLY:HA3	1:L:218:ARG:HB3	1.82	0.60	
1:K:34:ARG:NH2	1:K:248:GLU:OE2	2.34	0.60	
1:K:167:GLY:HA3	1:K:218:ARG:HB3	1.84	0.60	

A + 1	A + a	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:K:143:PRO:HD3	1:K:152:VAL:HG21	1.83	0.60	
1:I:77:ARG:HH12	1:I:79:ARG:HD2	1.67	0.60	
1:L:34:ARG:NH2	1:L:248:GLU:OE2	2.34	0.59	
1:O:6:ARG:NH2	1:O:20:GLU:OE2	2.33	0.59	
1:Q:167:GLY:HA3	1:Q:218:ARG:HB3	1.83	0.59	
1:T:22:GLU:OE1	1:T:25:ARG:NH2	2.35	0.59	
1:L:181:VAL:HA	1:L:191:ILE:HD11	1.84	0.59	
1:L:192:ARG:HG2	1:L:196:ASN:HD21	1.68	0.59	
1:D:101:TRP:O	1:D:104:VAL:HG12	2.03	0.59	
1:L:36:VAL:HG11	1:L:172:LEU:HD11	1.83	0.59	
1:T:166:ASP:HB2	5:T:304:GOL:H32	1.85	0.59	
1:M:28:LYS:HD3	1:M:35:ARG:HH22	1.68	0.59	
1:E:161:ARG:NH2	8:E:401:HOH:O	2.33	0.59	
1:E:6:ARG:NH2	1:E:20:GLU:OE2	2.34	0.58	
1:K:181:VAL:HA	1:K:191:ILE:HD11	1.86	0.58	
1:S:167:GLY:HA3	1:S:218:ARG:HB3	1.84	0.58	
1:B:248:GLU:HG2	1:B:250:LEU:HD22	1.86	0.58	
1:G:167:GLY:HA3	1:G:218:ARG:HB3	1.85	0.58	
1:J:58:VAL:HG22	1:R:125:ALA:HB1	1.85	0.58	
1:K:36:VAL:HG11	1:K:172:LEU:HD11	1.85	0.58	
1:B:205:TRP:H	3:B:303:1PE:H161	1.68	0.58	
1:N:36:VAL:HG11	1:N:172:LEU:HD11	1.85	0.58	
1:L:52:THR:HG23	1:L:72:SER:HA	1.86	0.57	
1:F:181:VAL:HA	1:F:191:ILE:HD11	1.86	0.57	
1:P:79:ARG:NH2	1:P:247:GLN:OE1	2.30	0.57	
1:J:125:ALA:HB1	1:R:58:VAL:HG22	1.87	0.57	
1:Q:181:VAL:HA	1:Q:191:ILE:HD11	1.85	0.57	
1:T:6:ARG:NH2	1:T:20:GLU:OE2	2.38	0.57	
1:B:181:VAL:HA	1:B:191:ILE:HD11	1.86	0.56	
1:G:6:ARG:NH2	1:G:20:GLU:OE2	2.36	0.56	
1:H:117:ARG:HB3	5:H:309:GOL:H32	1.87	0.56	
1:B:31:ILE:HG23	1:B:35:ARG:HH12	1.71	0.56	
1:B:101:TRP:H	3:B:304:1PE:H141	1.70	0.56	
1:N:181:VAL:HA	1:N:191:ILE:HD11	1.86	0.56	
1:O:101:TRP:HB2	3:O:301:1PE:H141	1.87	0.56	
3:B:305:1PE:H232	1:O:7:ASP:HB3	1.86	0.56	
1:D:181:VAL:HA	1:D:191:ILE:HD11	1.85	0.56	
1:G:28:LYS:O	1:G:35:ARG:NH2	2.38	0.56	
1:C:181:VAL:HA	1:C:191:ILE:HD11	1.88	0.56	
1:M:28:LYS:HE2	1:M:35:ARG:HH12	1.70	0.56	
1:0:192:ARG:0	1:O:196:ASN:ND2	2.39	0.56	

A + 1	A + a	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:S:6:ARG:NH2	1:S:20:GLU:OE2	2.39	0.56	
3:P:301:1PE:H241	1:Q:166:ASP:HB2	1.88	0.56	
1:K:97:LYS:HG3	4:L:302:2PE:H61	1.86	0.56	
1:L:192:ARG:HG2	1:L:196:ASN:ND2	2.20	0.56	
1:J:143:PRO:HD3	1:J:152:VAL:HG21	1.87	0.56	
1:H:192:ARG:O	1:H:196:ASN:ND2	2.39	0.55	
1:A:34:ARG:NH2	1:A:248:GLU:OE2	2.39	0.55	
1:R:84:LEU:HD23	1:R:103:PRO:HG2	1.88	0.55	
1:E:248:GLU:HG2	1:E:250:LEU:HD22	1.89	0.55	
1:F:192:ARG:HH11	1:F:196:ASN:HD21	1.54	0.55	
1:B:114:VAL:HG21	1:P:65:VAL:HG21	1.89	0.55	
1:N:62:THR:HG22	1:N:63:ASN:N	2.21	0.55	
1:N:58:VAL:HG21	1:N:69:LEU:HG	1.88	0.54	
1:B:125:ALA:HB1	1:P:58:VAL:HG22	1.89	0.54	
1:F:248:GLU:HG2	1:F:250:LEU:HD22	1.87	0.54	
1:B:143:PRO:HD3	1:B:152:VAL:HG21	1.90	0.54	
1:C:84:LEU:HD23	1:C:103:PRO:HG2	1.89	0.54	
1:C:142:LEU:HD12	1:C:266:LYS:HA	1.88	0.54	
1:J:117:ARG:NH1	8:J:401:HOH:O	2.40	0.54	
1:M:181:VAL:HA	1:M:191:ILE:HD11	1.90	0.54	
1:D:84:LEU:HD23	1:D:103:PRO:HG2	1.90	0.54	
1:F:84:LEU:HD23	1:F:103:PRO:HG2	1.90	0.54	
1:G:34:ARG:NH2	1:G:248:GLU:OE2	2.41	0.54	
1:H:28:LYS:O	1:H:35:ARG:NH2	2.41	0.54	
1:R:34:ARG:NH2	1:R:248:GLU:OE2	2.41	0.54	
1:B:157:LEU:HD12	1:B:214:VAL:HG11	1.90	0.53	
1:Q:84:LEU:HD21	1:Q:104:VAL:HG23	1.91	0.53	
1:Q:82:PHE:CE2	1:Q:104:VAL:HG22	2.43	0.53	
1:S:248:GLU:HG2	1:S:250:LEU:HD22	1.89	0.53	
1:N:6:ARG:NH2	1:N:20:GLU:OE2	2.40	0.53	
1:O:62:THR:HG22	1:O:63:ASN:H	1.73	0.53	
1:H:200:ASP:HB3	3:H:301:1PE:H221	1.91	0.53	
1:O:157:LEU:HD12	1:O:214:VAL:HG11	1.91	0.53	
1:A:181:VAL:HA	1:A:191:ILE:HD11	1.90	0.53	
1:H:228:THR:HG21	3:H:305:1PE:H242	1.90	0.53	
1:F:210:ASP:OD1	1:F:210:ASP:N	2.42	0.53	
1:A:28:LYS:O	1:A:35:ARG:NH2	2.42	0.52	
1:S:86:ARG:NH2	5:S:303:GOL:H11	2.24	0.52	
1:F:114:VAL:HG21	1:K:65:VAL:HG21	1.91	0.52	
1:F:58:VAL:HG22	1:K:125:ALA:HB1	1.90	0.52	
1:L:50:VAL:HG13	4:L:302:2PE:H111	1.90	0.52	

Atom 1	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:H:98:ASP:OD1	1:I:54:ARG:NH1	2.42	0.52	
1:F:6:ARG:NH2	1:F:20:GLU:OE2	2.41	0.52	
1:F:192:ARG:O	1:F:196:ASN:ND2	2.43	0.52	
1:E:86:ARG:HG2	1:E:242:VAL:HG23	1.92	0.52	
1:R:181:VAL:HA	1:R:191:ILE:HD11	1.92	0.52	
1:A:58:VAL:HG22	1:C:125:ALA:HB1	1.91	0.51	
1:P:84:LEU:HD23	1:P:103:PRO:HG2	1.93	0.51	
1:T:31:ILE:O	1:T:35:ARG:NH1	2.41	0.51	
1:Q:157:LEU:HD12	1:Q:214:VAL:HG11	1.92	0.51	
1:Q:86:ARG:HG2	1:Q:242:VAL:HG23	1.92	0.51	
1:I:82:PHE:HA	3:I:302:1PE:H242	1.91	0.51	
1:Q:6:ARG:NH1	1:Q:20:GLU:OE2	2.32	0.51	
1:L:200:ASP:HA	3:L:305[A]:1PE:H232	1.91	0.51	
1:L:7:ASP:HB3	3:L:304:1PE:H141	1.92	0.51	
1:C:176:ASP:HB3	1:C:268:ALA:HB3	1.93	0.51	
1:H:239:THR:HG23	4:H:303:2PE:H52	1.92	0.51	
1:R:210:ASP:OD1	1:R:210:ASP:N	2.44	0.50	
1:A:86:ARG:HG2	1:A:242:VAL:HG23	1.92	0.50	
1:A:203:ILE:H	3:A:303:1PE:H121	1.76	0.50	
1:L:52:THR:HB	4:L:302:2PE:H22	1.93	0.50	
1:M:58:VAL:HG21	1:M:69:LEU:HG	1.93	0.50	
5:A:306:GOL:H12	1:R:166:ASP:HB2	1.93	0.50	
5:H:311:GOL:H32	1:I:50:VAL:HG13	1.93	0.50	
1:A:196:ASN:ND2	3:A:303:1PE:OH3	2.45	0.50	
1:B:123:TYR:CZ	1:P:61:PRO:HG3	2.47	0.50	
1:C:36:VAL:HG11	1:C:172:LEU:HD11	1.94	0.50	
1:A:202:ASP:HA	3:A:303:1PE:H222	1.92	0.50	
5:A:304:GOL:H31	1:R:161:ARG:HD3	1.94	0.50	
1:G:58:VAL:HG22	1:O:125:ALA:HB1	1.93	0.50	
1:M:224:LEU:HD11	1:M:250:LEU:HD22	1.94	0.50	
1:P:34:ARG:NH2	1:P:248:GLU:OE2	2.45	0.50	
1:F:202:ASP:HA	3:F:303:1PE:H252	1.94	0.50	
1:C:86:ARG:HG2	1:C:242:VAL:HG23	1.93	0.49	
1:S:73[B]:LYS:HD3	1:S:253:LEU:HG	1.94	0.49	
1:P:84:LEU:HD21	1:P:104:VAL:HG23	1.93	0.49	
1:P:117:ARG:HD3	1:P:121:GLU:HG3	1.94	0.49	
3:A:301:1PE:H152	1:R:220:GLY:HA3	1.95	0.49	
1:B:195:LEU:O	1:B:199:VAL:HG23	2.12	0.49	
1:C:129:GLU:HG2	1:C:133:SER:HB3	1.93	0.49	
1:O:86:ARG:HG2	1:O:242:VAL:HG23	1.94	0.49	
1:P:181:VAL:HA	1:P:191:ILE:HD11	1.93	0.49	

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:I:117:ARG:HB3	5:I:306:GOL:H32	1.94	0.49	
1:N:248:GLU:HG2	1:N:250:LEU:HD22	1.94	0.49	
1:R:86:ARG:HG2	1:R:242:VAL:HG23	1.93	0.49	
1:H:86:ARG:HG2	1:H:242:VAL:HG23	1.93	0.49	
1:P:129:GLU:HG2	1:P:133:SER:HB3	1.95	0.49	
1:B:86:ARG:HG2	1:B:242:VAL:HG23	1.95	0.49	
1:F:123:TYR:CZ	1:K:61:PRO:HG3	2.47	0.49	
1:D:183:GLU:HB2	1:E:151:ASP:HA	1.93	0.49	
1:K:205:TRP:CD1	1:K:207:PRO:HD3	2.48	0.49	
1:F:125:ALA:HB1	1:K:58:VAL:HG22	1.94	0.49	
1:R:91:ASP:OD1	1:R:94:ARG:NH1	2.45	0.49	
1:S:33:GLY:HA2	1:S:36:VAL:HG22	1.95	0.49	
1:I:195:LEU:O	1:I:199:VAL:HG23	2.13	0.48	
1:E:29:ARG:HH21	1:F:161:ARG:HD3	1.78	0.48	
1:A:114:VAL:HG21	1:C:65:VAL:HG21	1.95	0.48	
1:J:86:ARG:HG2	1:J:242:VAL:HG23	1.94	0.48	
1:J:123:TYR:CZ	1:R:61:PRO:HG3	2.49	0.48	
1:M:36:VAL:HG11	1:M:172:LEU:HD11	1.96	0.48	
1:C:84:LEU:HD21	1:C:104:VAL:HG23	1.95	0.48	
1:G:123:TYR:CZ	1:O:61:PRO:HG3	2.48	0.48	
1:L:202:ASP:HA	3:L:305[B]:1PE:H262	1.95	0.48	
1:A:6:ARG:NH2	1:A:20:GLU:OE2	2.46	0.48	
1:C:248:GLU:HG2	1:C:250:LEU:HD22	1.95	0.48	
1:K:167:GLY:N	Y:N 5:K:303:GOL:O2		0.48	
1:I:181:VAL:HA	1:I:191:ILE:HD11	1.94	0.48	
1:L:46:VAL:HG12	4:L:302:2PE:H231	1.96	0.48	
1:E:181:VAL:HA	1:E:191:ILE:HD11	1.96	0.47	
5:E:306:GOL:O3	1:F:51:SER:O	2.31	0.47	
1:A:65:VAL:HG21	1:C:114:VAL:HG21	1.95	0.47	
1:H:192:ARG:HH11	1:H:196:ASN:HD21	1.62	0.47	
1:N:86:ARG:HG2	1:N:242:VAL:HG23	1.94	0.47	
1:N:205:TRP:CD1	1:N:207:PRO:HD3	2.50	0.47	
1:O:153:ILE:O	1:O:157:LEU:HD13	2.14	0.47	
1:Q:36:VAL:HG11	1:Q:172:LEU:HD11	1.95	0.47	
1:E:143:PRO:HD3	1:E:152:VAL:HG21	1.95	0.47	
1:S:205:TRP:CD1	1:S:207:PRO:HD3	2.50	0.47	
1:B:58:VAL:HG22	1:P:125:ALA:HB1	1.97	0.47	
1:Q:205:TRP:CD1	1:Q:207:PRO:HD3	2.50	0.47	
1:S:210:ASP:OD1	1:S:210:ASP:N	2.46	0.47	
1:I:77:ARG:NH1	1:I:79:ARG:HD2	2.29	0.47	
1:L:49:ALA:O	4:L:302:2PE:H182	2.14	0.47	

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
3:L:305[B]:1PE:H152	3:L:305[B]:1PE:H161	1.65	0.47	
1:J:114:VAL:HG21	1:R:65:VAL:HG21	1.97	0.47	
1:C:51:SER:HB2	3:C:301:1PE:H141	1.97	0.46	
1:E:82:PHE:CE2	1:E:104:VAL:HG22	2.50	0.46	
1:L:129:GLU:HG2	1:L:133:SER:HB3	1.97	0.46	
1:N:99:SER:HB2	1:N:101:TRP:CH2	2.50	0.46	
1:H:247:GLN:HE22	3:H:305:1PE:H231	1.79	0.46	
1:J:29:ARG:HH21	1:K:161:ARG:HD3	1.80	0.46	
1:O:192:ARG:HE	1:O:203:ILE:HD12	1.79	0.46	
1:H:12:THR:HG22	1:H:14:ALA:H	1.80	0.46	
4:H:303:2PE:H81	4:H:303:2PE:H112	1.73	0.46	
1:R:75:LEU:HA	1:R:251:THR:OG1	2.15	0.46	
1:T:205:TRP:CD1	1:T:207:PRO:HD3	2.50	0.46	
1:E:28:LYS:O	1:E:35:ARG:NH2	2.49	0.46	
1:K:29:ARG:NH1	5:K:308:GOL:H11	2.29	0.46	
1:K:86:ARG:HG2	1:K:242:VAL:HG23	1.96	0.46	
1:Q:230:VAL:HA	1:Q:247:GLN:O	2.15	0.46	
1:A:151:ASP:HA	1:B:183:GLU:HB2	1.97	0.46	
1:C:62:THR:HG22	1:C:63:ASN:N	2.31	0.46	
1:F:75:LEU:HA	1:F:251:THR:OG1	2.15	0.46	
3:Q:301:1PE:H221	3:Q:301:1PE:H132	1.64	0.46	
1:B:2:ASN:HA	1:O:12:THR:HG23	1.97	0.46	
1:E:193:GLU:OE2	1:F:189:TYR:OH	2.31	0.46	
1:A:129:GLU:HG2	1:A:133:SER:HB3	1.97	0.46	
1:H:84:LEU:HD23	1:H:103:PRO:HG2	1.97	0.46	
1:K:129:GLU:HG2	1:K:133:SER:HB3	1.98	0.46	
1:N:101:TRP:HZ3	3:N:303:1PE:H122	1.80	0.46	
1:Q:143:PRO:HD2	1:Q:149:ILE:HD13	1.97	0.46	
1:C:169:TYR:O	1:C:199:VAL:HG13	2.16	0.46	
1:M:193:GLU:O	1:M:197:ARG:HG3	2.16	0.46	
1:O:84:LEU:HD21	1:O:104:VAL:HG23	1.98	0.46	
1:O:205:TRP:CD1	1:O:207:PRO:HD3	2.51	0.46	
1:S:86:ARG:HG2	1:S:242:VAL:HG23	1.98	0.46	
1:A:210:ASP:OD1	1:A:210:ASP:N	2.46	0.46	
1:B:34:ARG:NH2	1:B:226:LEU:HD11	2.30	0.45	
1:F:28:LYS:HE3	1:F:28:LYS:HB2	1.81	0.45	
1:G:86:ARG:HG2	1:G:242:VAL:HG23	1.98	0.45	
1:K:210:ASP:OD1	1:K:210:ASP:N	2.46	0.45	
5:K:308:GOL:H12	1:L:166:ASP:HB2	1.98	0.45	
1:C:205:TRP:CD1	1:C:207:PRO:HD3	2.52	0.45	
1:C:210:ASP:OD1	1:C:210:ASP:N	2.48	0.45	

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:H:123:TYR:CE1	1:H:125:ALA:HB3	2.51	0.45
1:L:192:ARG:O	1:L:196:ASN:ND2	2.49	0.45
1:M:195:LEU:O	1:M:199:VAL:HG22	2.16	0.45
1:M:151:ASP:HA	1:Q:183:GLU:HB2	1.98	0.45
1:T:36:VAL:HG11	1:T:172:LEU:HD11	1.99	0.45
1:I:75:LEU:HA	1:I:251:THR:OG1	2.16	0.45
1:M:99:SER:HB2	1:M:101:TRP:CZ2	2.52	0.45
1:S:97:LYS:HE3	5:T:305:GOL:H32	1.98	0.45
3:B:305:1PE:H152	1:C:1:MET:HG3	1.97	0.45
1:C:141:THR:HG23	1:C:265[A]:HIS:HB3	1.99	0.45
1:M:205:TRP:CD1	1:M:207:PRO:HD3	2.52	0.45
1:P:224:LEU:HD11	1:P:250:LEU:HD22	1.99	0.45
1:H:233:GLY:HA3	1:H:245:TYR:CZ	2.52	0.45
1:J:153:ILE:O	1:J:157:LEU:HD23	2.16	0.45
1:B:117:ARG:NH2	1:B:210:ASP:OD2	2.47	0.45
1:C:166:ASP:HB2	3:F:302:1PE:H262	1.98	0.45
1:D:224:LEU:HD11	1:D:250:LEU:HD22	1.98	0.45
1:M:34:ARG:NH2	1:M:226:LEU:HD11	2.32	0.45
1:I:77:ARG:HH12	1:I:79:ARG:CD	2.30	0.45
4:J:302:2PE:H81	1:R:49:ALA:H	1.81	0.45
1:S:75:LEU:HA	1:S:251:THR:OG1	2.17	0.45
1:N:165:VAL:HG13	1:N:218:ARG:HE	1.82	0.44
1:P:205:TRP:CD1	1:P:207:PRO:HD3	2.52	0.44
1:T:167:GLY:N	5:T:304:GOL:O2	2.50	0.44
1:F:205:TRP:CD1	1:F:207:PRO:HD3	2.52	0.44
1:G:195:LEU:O	1:G:199:VAL:HG22	2.16	0.44
1:C:12:THR:HG23	1:O:2:ASN:HA	2.00	0.44
1:E:129:GLU:HG2	1:E:133:SER:HB3	1.98	0.44
1:G:234:TYR:OH	1:G:237:HIS:ND1	2.33	0.44
1:Q:153:ILE:O	1:Q:157:LEU:HD13	2.17	0.44
1:S:181:VAL:HA	1:S:191:ILE:HD11	1.98	0.44
1:A:7:ASP:HA	4:A:302:2PE:H61	1.99	0.44
1:G:65:VAL:HG21	1:O:114:VAL:HG21	1.99	0.44
1:0:193:GLU:HG3	1:P:197:ARG:NH2	2.32	0.44
3:Q:301:1PE:H251	3:Q:301:1PE:H241	1.77	0.44
1:T:181:VAL:HA	1:T:191:ILE:HD11	1.98	0.44
1:Q:195:LEU:O	1:Q:199:VAL:HG22	2.18	0.44
1:H:117:ARG:HD3	1:H:121:GLU:HG3	2.00	0.44
1:J:84:LEU:HD21	1:J:104:VAL:HG23	2.00	0.44
1:K:98:ASP:OD1	4:L:302:2PE:O1	2.36	0.44
3:L:304:1PE:H231	3:L:304:1PE:H242	1.74	0.44

	A + 0	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:P:86:ARG:HG2	1:P:242:VAL:HG23	2.00	0.44	
1:B:95:GLY:HA3	1:C:46:VAL:HG13	1.99	0.44	
1:F:25:ARG:NH1	3:F:304[A]:1PE:H162	2.33	0.44	
1:N:192:ARG:O	1:N:196:ASN:ND2	2.51	0.44	
1:J:205:TRP:CD1	1:J:207:PRO:HD3	2.52	0.44	
1:K:224:LEU:HD11	1:K:250:LEU:HD22	2.00	0.44	
1:L:200:ASP:HB3	3:L:305[A]:1PE:H221	2.00	0.44	
1:O:192:ARG:HG3	1:O:196:ASN:HD21	1.82	0.44	
1:A:45:PRO:O	1:C:70:ARG:NH2	2.49	0.43	
1:F:2:ASN:HA	1:J:12:THR:HG23	1.99	0.43	
1:M:238:ASP:CG	1:M:239:THR:H	2.21	0.43	
1:P:69:LEU:HD23	1:P:69:LEU:HA	1.91	0.43	
3:T:302:1PE:H141	3:T:302:1PE:H131	1.75	0.43	
1:H:101:TRP:HB2	3:H:302[B]:1PE:H242	1.99	0.43	
1:M:86:ARG:HG2	1:M:242:VAL:HG23	2.00	0.43	
1:M:210:ASP:OD1	1:M:210:ASP:N	2.49	0.43	
1:N:33:GLY:O	1:N:37:VAL:HG22	2.18	0.43	
1:S:29:ARG:HA	1:S:29:ARG:HD2	1.84	0.43	
3:A:301:1PE:H151	3:A:301:1PE:H142	1.68	0.43	
1:D:177:VAL:HG22	5:D:304:GOL:H31	2.00	0.43	
1:D:189:TYR:OH	1:G:193:GLU:OE2	2.32	0.43	
1:P:210:ASP:OD1	1:P:210:ASP:N	2.49	0.43	
1:I:224:LEU:HD11	1:I:250:LEU:HD22	2.01	0.43	
3:I:302:1PE:H241	3:I:302:1PE:H232	1.69	0.43	
1:J:33:GLY:HA2	1:J:36:VAL:HG22	2.01	0.43	
1:D:195:LEU:O	1:D:199:VAL:HG22	2.18	0.43	
1:E:205:TRP:CD1	1:E:207:PRO:HD3	2.54	0.43	
1:N:29:ARG:HH21	1:O:161:ARG:CD	2.31	0.43	
1:N:84:LEU:HD21	1:N:104:VAL:HG23	1.99	0.43	
1:J:61:PRO:HG3	1:R:123:TYR:CZ	2.54	0.43	
5:B:308:GOL:H2	1:T:25:ARG:HB3	2.01	0.43	
1:F:73:LYS:HE3	1:F:127:SER:O	2.18	0.43	
1:I:210:ASP:OD1	1:I:210:ASP:N	2.50	0.43	
1:G:205:TRP:CD1	1:G:207:PRO:HD3	2.54	0.43	
1:H:51:SER:O	5:L:301:GOL:O1	2.37	0.43	
1:D:62:THR:HG22	1:D:63:ASN:H	1.84	0.42	
1:F:86:ARG:HG2	1:F:242:VAL:HG23	2.01	0.42	
1:L:52:THR:HA	4:L:302:2PE:H52	2.00	0.42	
3:L:305[A]:1PE:H232	3:L:305[A]:1PE:H241	1.88	0.42	
1:T:75:LEU:HA	1:T:251:THR:OG1	2.19	0.42	
1:T:210:ASP:OD1	1:T:210:ASP:N	2.50	0.42	

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
7:T:301:12P:H241	7:T:301:12P:H212	1.81	0.42	
1:A:205:TRP:CD1	1:A:207:PRO:HD3	2.53	0.42	
1:J:157:LEU:HD22	1:J:214:VAL:HG11	2.01	0.42	
1:K:58:VAL:O	5:K:305:GOL:O1	2.35	0.42	
1:N:132:ARG:NH2	1:N:210:ASP:O	2.52	0.42	
1:C:143:PRO:HG2	1:C:267:LEU:HD11	2.01	0.42	
1:F:117:ARG:HD3	1:F:208:ALA:O	2.20	0.42	
1:K:247:GLN:NE2	5:K:306:GOL:H2	2.34	0.42	
1:R:83:THR:O	3:R:303:1PE:H251	2.20	0.42	
1:B:175:ALA:HB3	5:B:306:GOL:H2	2.01	0.42	
1:B:161:ARG:CD	1:T:29:ARG:HH21	2.32	0.42	
1:C:82:PHE:CZ	1:C:244:LEU:HB2	2.55	0.42	
1:G:69:LEU:HD23	1:G:69:LEU:HA	1.92	0.42	
1:G:114:VAL:HG21	1:O:65:VAL:HG21	2.00	0.42	
1:0:123:TYR:CE1	1:O:125:ALA:HB3	2.55	0.42	
1:A:233:GLY:HA3	1:A:245:TYR:CZ	2.55	0.42	
1:D:29:ARG:NH2	5:D:302:GOL:O2	2.49	0.42	
1:R:224:LEU:HD11	1:R:250:LEU:HD22	2.02	0.42	
1:A:29:ARG:NH2	5:A:304:GOL:O2	2.47	0.42	
1:A:73:LYS:HA	1:A:73:LYS:HD2	1.84	0.42	
1:B:52:THR:HG23	1:B:72:SER:HA	2.02	0.42	
1:S:28:LYS:HA	1:S:31:ILE:HG22	2.01	0.42	
3:T:302:1PE:H222	3:T:302:1PE:H132	1.76	0.42	
1:B:123:TYR:CE1	1:B:125:ALA:HB3	2.54	0.42	
3:F:304[B]:1PE:H151	3:F:304[B]:1PE:H142	1.77	0.42	
1:N:75:LEU:HA	1:N:251:THR:OG1	2.20	0.42	
1:F:58:VAL:CG2	1:K:125:ALA:HB1	2.49	0.41	
1:F:149:ILE:N	1:F:150:PRO:HD2	2.35	0.41	
1:L:224:LEU:HD11	1:L:250:LEU:HD22	2.02	0.41	
1:R:75:LEU:HD23	1:R:249:THR:HG22	2.02	0.41	
1:T:86:ARG:HG2	1:T:242:VAL:HG23	2.02	0.41	
1:B:46:VAL:HG13	1:O:95:GLY:HA3	2.03	0.41	
1:F:65:VAL:HG21	1:K:114:VAL:HG21	2.01	0.41	
1:H:224:LEU:HD11	1:H:250:LEU:HD22	2.02	0.41	
1:T:224:LEU:HD11	1:T:250:LEU:HD22	2.01	0.41	
1:A:29:ARG:NH1	5:A:306:GOL:H11	2.36	0.41	
1:N:31:ILE:HD12	1:N:31:ILE:HA	1.93	0.41	
1:A:58:VAL:CG2	1:C:125:ALA:HB1	2.50	0.41	
1:E:29:ARG:NH2	1:F:161:ARG:HD3	2.35	0.41	
1:G:61:PRO:HG3	1:0:123:TYR:CZ	2.56	0.41	
1:J:181:VAL:HA	1:J:191:ILE:HD11	2.02	0.41	

A + a 1	A + amo 0	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:O:224:LEU:HD11	1:O:250:LEU:HD22	2.01	0.41
1:H:205:TRP:CD1	1:H:207:PRO:HD3	2.55	0.41
1:K:52:THR:HG23	1:K:72:SER:HA	2.03	0.41
1:K:91:ASP:HB3	1:K:96:SER:CB	2.50	0.41
1:D:31:ILE:HD12	1:D:31:ILE:HA	1.97	0.41
1:H:181:VAL:HA	1:H:191:ILE:HD11	2.01	0.41
1:J:123:TYR:CE1	1:J:125:ALA:HB3	2.56	0.41
1:L:233:GLY:HA3	1:L:245:TYR:CZ	2.56	0.41
1:M:52:THR:HG23	1:M:72:SER:HA	2.03	0.41
1:D:86:ARG:HG2	1:D:242:VAL:HG23	2.02	0.41
1:F:1:MET:H2	1:J:13:GLU:HG2	1.86	0.41
1:S:178:TYR:OH	5:S:301:GOL:O2	2.23	0.41
1:A:110:LYS:HE3	1:A:110:LYS:HB2	1.92	0.41
1:B:205:TRP:CD1	1:B:207:PRO:HD3	2.55	0.41
1:D:192:ARG:NH1	1:D:196:ASN:OD1	2.54	0.41
1:E:123:TYR:CE1	1:E:125:ALA:HB3	2.56	0.41
1:0:210:ASP:OD1	1:O:210:ASP:N	2.52	0.41
1:C:149:ILE:N	1:C:150:PRO:HD2	2.36	0.41
1:G:125:ALA:HB1	1:O:58:VAL:HG22	2.03	0.41
1:G:191:ILE:O	1:G:195:LEU:HD13	2.21	0.41
1:G:210:ASP:OD1	1:G:210:ASP:N	2.53	0.41
1:N:123:TYR:CE1	1:N:125:ALA:HB3	2.56	0.41
1:N:143:PRO:HD3	1:N:152:VAL:HG11	2.03	0.41
1:B:151:ASP:HA	1:T:183:GLU:HB2	2.03	0.41
1:C:123:TYR:CE1	1:C:125:ALA:HB3	2.55	0.41
1:0:201:GLY:0	5:O:305:GOL:H2	2.20	0.41
1:R:84:LEU:HD21	1:R:104:VAL:HG23	2.03	0.41
1:R:188:GLY:HA3	1:S:186:ASP:O	2.21	0.41
1:T:69:LEU:HD23	1:T:69:LEU:HA	1.96	0.41
1:F:233:GLY:HA3	1:F:245:TYR:CZ	2.56	0.40
1:H:84:LEU:HD21	1:H:104:VAL:HG23	2.03	0.40
1:I:198:LEU:HD23	1:I:198:LEU:HA	1.91	0.40
1:O:52:THR:HG23	1:0:72:SER:HA	2.03	0.40
1:P:1:MET:H2	1:T:13:GLU:HG2	1.86	0.40
1:S:169:TYR:O	1:S:199:VAL:HG13	2.21	0.40
1:H:202:ASP:HA	3:H:301:1PE:H262	2.03	0.40
1:K:7:ASP:N	1:K:7:ASP:OD1	2.54	0.40
1:O:59:LYS:HD3	1:O:60:ALA:O	2.20	0.40
1:P:36:VAL:HG11	1:P:172:LEU:HD11	2.02	0.40
1:Q:123:TYR:CE1	1:Q:125:ALA:HB3	2.56	0.40
1:E:146:PRO:HG3	1:E:180:LYS:NZ	2.36	0.40

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-1 Atom-2		overlap (Å)
1:E:188:GLY:HA3	1:F:186:ASP:O	2.21	0.40
3:F:304[A]:1PE:H121	3:F:304[A]:1PE:H232	1.88	0.40
1:I:86:ARG:HG2	1:I:242:VAL:HG23	2.02	0.40
1:O:31:ILE:HD12	1:O:31:ILE:HA	1.94	0.40
1:D:36:VAL:HG11	1:D:172:LEU:HD11	2.02	0.40
1:J:82:PHE:CE2	1:J:104:VAL:HG22	2.56	0.40
1:O:62:THR:HG22	1:O:63:ASN:N	2.37	0.40
1:Q:11:VAL:HB	1:Q:16:TRP:NE1	2.37	0.40
1:S:28:LYS:HE2	1:S:28:LYS:HB3	1.90	0.40
1:C:243:ARG:HH12	3:C:302:1PE:H141	1.86	0.40
1:D:161:ARG:CD	1:G:29:ARG:HH21	2.35	0.40
1:E:185:SER:OG	5:F:306:GOL:H12	2.22	0.40
1:F:61:PRO:HG3	1:K:123:TYR:CZ	2.56	0.40
1:H:210:ASP:OD1	1:H:210:ASP:N	2.54	0.40
1:I:243:ARG:HB2	5:I:309:GOL:H11	2.02	0.40
1:R:83:THR:H	3:R:303:1PE:H141	1.86	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	266/279~(95%)	258~(97%)	8 (3%)	0	100	100
1	В	263/279~(94%)	256~(97%)	7 (3%)	0	100	100
1	С	267/279~(96%)	258~(97%)	9 (3%)	0	100	100
1	D	265/279~(95%)	257 (97%)	7 (3%)	1 (0%)	30	61
1	Ε	270/279~(97%)	261 (97%)	9 (3%)	0	100	100
1	F	264/279~(95%)	258 (98%)	6 (2%)	0	100	100
1	G	264/279~(95%)	255~(97%)	9 (3%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed Outlie		Percentiles	
1	Н	265/279~(95%)	257~(97%)	8 (3%)	0	100	100
1	Ι	265/279~(95%)	256~(97%)	9(3%)	0	100	100
1	J	265/279~(95%)	257 (97%)	8 (3%)	0	100	100
1	К	264/279~(95%)	256 (97%)	8 (3%)	0	100	100
1	L	265/279~(95%)	258~(97%)	7(3%)	0	100	100
1	М	264/279~(95%)	256~(97%)	8 (3%)	0	100	100
1	Ν	264/279~(95%)	257 (97%)	7(3%)	0	100	100
1	Ο	264/279~(95%)	257~(97%)	7 (3%)	0	100	100
1	Р	264/279~(95%)	256~(97%)	8 (3%)	0	100	100
1	Q	263/279~(94%)	255~(97%)	8 (3%)	0	100	100
1	R	264/279~(95%)	258~(98%)	6 (2%)	0	100	100
1	S	268/279~(96%)	260 (97%)	8 (3%)	0	100	100
1	Т	264/279~(95%)	257 (97%)	7(3%)	0	100	100
2	d	8/335~(2%)	6 (75%)	2(25%)	0	100	100
2	g	4/335~(1%)	4 (100%)	0	0	100	100
2	h	7/335~(2%)	4 (57%)	2(29%)	1 (14%)	0	1
2	i	10/335~(3%)	7 (70%)	2 (20%)	1 (10%)	0	2
2	р	6/335~(2%)	4 (67%)	0	2(33%)	0	0
2	q	6/335~(2%)	3~(50%)	1 (17%)	2(33%)	0	0
2	r	6/335~(2%)	5 (83%)	0	1 (17%)	0	0
2	S	8/335~(2%)	3 (38%)	3 (38%)	2(25%)	0	0
2	t	6/335~(2%)	6 (100%)	0	0	100	100
All	All	5359/8595~(62%)	5185 (97%)	164 (3%)	10 (0%)	44	72

All (10) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
2	i	322	ALA
2	q	327	ILE
2	h	325	LEU
2	q	331	LYS
2	s	329	SER
2	р	326	SER
2	р	331	LYS

Continued from previous page...

Mol	Chain	Res	Type
2	r	327	ILE
2	s	331	LYS
1	D	33	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers Percent		\mathbf{n} tiles
1	А	216/228~(95%)	216 (100%)	0	100	100
1	В	217/228~(95%)	216 (100%)	1 (0%)	86	92
1	С	219/228~(96%)	219 (100%)	0	100	100
1	D	218/228~(96%)	215 (99%)	3 (1%)	62	80
1	Е	220/228~(96%)	220 (100%)	0	100	100
1	F	217/228~(95%)	217 (100%)	0	100	100
1	G	217/228~(95%)	217 (100%)	0	100	100
1	Н	218/228~(96%)	217 (100%)	1 (0%)	86	92
1	Ι	218/228~(96%)	218 (100%)	0	100	100
1	J	217/228~(95%)	216 (100%)	1 (0%)	86	92
1	К	218/228~(96%)	216 (99%)	2 (1%)	75	87
1	L	218/228~(96%)	216 (99%)	2 (1%)	75	87
1	М	216/228~(95%)	216 (100%)	0	100	100
1	Ν	217/228~(95%)	217 (100%)	0	100	100
1	Ο	217/228~(95%)	217 (100%)	0	100	100
1	Р	215/228~(94%)	215 (100%)	0	100	100
1	Q	215/228~(94%)	215 (100%)	0	100	100
1	R	217/228~(95%)	217 (100%)	0	100	100
1	S	221/228~(97%)	218 (99%)	3 (1%)	62	80
1	Т	218/228~(96%)	217 (100%)	1 (0%)	86	92
2	d	3/275~(1%)	3 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
2	g	2/275~(1%)	2(100%)	0	100	100
2	h	3/275~(1%)	3~(100%)	0	100	100
2	i	7/275~(2%)	7~(100%)	0	100	100
2	р	2/275~(1%)	2(100%)	0	100	100
2	q	3/275~(1%)	3~(100%)	0	100	100
2	r	4/275~(2%)	4 (100%)	0	100	100
2	\mathbf{S}	4/275~(2%)	4 (100%)	0	100	100
2	t	5/275~(2%)	5 (100%)	0	100	100
All	All	4382/7035~(62%)	4368 (100%)	14 (0%)	91	95

All (14) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	В	7	ASP
1	D	7	ASP
1	D	155[A]	GLN
1	D	155[B]	GLN
1	Н	7	ASP
1	J	7	ASP
1	Κ	7	ASP
1	Κ	54	ARG
1	L	210[A]	ASP
1	L	210[B]	ASP
1	S	35	ARG
1	S	265[A]	HIS
1	S	265[B]	HIS
1	Т	7	ASP

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. There are no such side chains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 162 ligands modelled in this entry, 33 are monoatomic - leaving 129 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mol Turne Chain		Res Link	Bo	ond leng	$_{\rm sths}$	Bond angles			
IVIOI	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
5	GOL	J	304	-	$5,\!5,\!5$	0.33	0	$5,\!5,\!5$	0.44	0
5	GOL	Q	304	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.44	0
5	GOL	J	306	-	$5,\!5,\!5$	0.35	0	$5,\!5,\!5$	0.47	0
5	GOL	D	301	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.35	0
5	GOL	S	306	-	$5,\!5,\!5$	0.33	0	$5,\!5,\!5$	0.35	0
5	GOL	М	303	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.38	0
3	1PE	С	301	-	$9,\!9,\!15$	0.28	0	8,8,14	0.17	0
3	1PE	Ι	302	-	$9,\!9,\!15$	0.28	0	8,8,14	0.21	0
5	GOL	Е	304	-	$5,\!5,\!5$	0.32	0	$5,\!5,\!5$	0.41	0
5	GOL	С	305	-	$5,\!5,\!5$	0.33	0	$5,\!5,\!5$	0.41	0
3	1PE	Т	303	-	$9,\!9,\!15$	0.29	0	8,8,14	0.20	0
5	GOL	L	301	-	$5,\!5,\!5$	0.33	0	$5,\!5,\!5$	0.50	0
3	1PE	L	303	-	$15,\!15,\!15$	0.30	0	$14,\!14,\!14$	0.19	0
5	GOL	Н	310	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.33	0
5	GOL	В	307	-	$5,\!5,\!5$	0.32	0	$5,\!5,\!5$	0.41	0
3	1PE	Ε	302	-	$9,\!9,\!15$	0.28	0	8,8,14	0.30	0
5	GOL	K	304	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.40	0
3	1PE	Т	302	-	$15,\!15,\!15$	0.30	0	$14,\!14,\!14$	0.22	0
5	GOL	Ι	307	-	$5,\!5,\!5$	0.33	0	$5,\!5,\!5$	0.40	0
3	1PE	А	301	-	$12,\!12,\!15$	0.29	0	11,11,14	0.21	0
5	GOL	S	305	-	$5,\!5,\!5$	0.33	0	$5,\!5,\!5$	0.41	0
3	1PE	В	305	-	$15,\!15,\!15$	0.30	0	$14,\!14,\!14$	0.19	0
5	GOL	В	308	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.40	0
5	GOL	Т	306	-	$5,\!5,\!5$	0.33	0	$5,\!5,\!5$	0.38	0
3	1PE	K	302	-	$12,\!12,\!15$	0.31	0	11,11,14	0.24	0
5	GOL	Κ	303	-	5, 5, 5	0.34	0	$5,\!5,\!5$	0.37	0
3	1PE	Q	301	-	$1\overline{5,}15,\!15$	0.30	0	$1\overline{4,}14,\overline{14}$	0.20	0

7.7.1	т	<u> </u>	Ъ	τ・1	Bo	ond leng	ths	В	ond ang	les
NIOI	Type	Chain	Res	Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
5	GOL	D	305	-	$5,\!5,\!5$	0.33	0	$5,\!5,\!5$	0.37	0
3	1PE	Ι	303	-	9,9,15	0.28	0	8,8,14	0.26	0
3	1PE	L	304	-	12,12,15	0.29	0	11,11,14	0.19	0
4	2PE	А	302	-	9,9,27	0.28	0	8,8,26	0.22	0
3	1PE	Н	302[A]	-	9,9,15	0.28	0	8,8,14	0.19	0
5	GOL	Ι	309	-	$5,\!5,\!5$	0.36	0	$5,\!5,\!5$	0.39	0
3	1PE	N	303	-	12,12,15	0.29	0	11,11,14	0.18	0
4	2PE	Н	303	-	24,24,27	0.30	0	$23,\!23,\!26$	0.15	0
3	1PE	F	304[A]	-	$15,\!15,\!15$	0.29	0	14,14,14	0.25	0
3	1PE	Р	301	-	12,12,15	0.29	0	11,11,14	0.18	0
5	GOL	Н	311	-	$5,\!5,\!5$	0.33	0	$5,\!5,\!5$	0.41	0
3	1PE	N	301	-	9,9,15	0.29	0	8,8,14	0.18	0
3	1PE	N	302	-	9,9,15	0.29	0	8,8,14	0.19	0
5	GOL	S	301	-	$5,\!5,\!5$	0.36	0	$5,\!5,\!5$	0.41	0
5	GOL	А	305	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.37	0
3	1PE	L	305[A]	-	$15,\!15,\!15$	0.30	0	14,14,14	0.19	0
5	GOL	S	302	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.34	0
5	GOL	А	304	-	$5,\!5,\!5$	0.35	0	$5,\!5,\!5$	0.33	0
3	1PE	В	303	-	9,9,15	0.29	0	8,8,14	0.26	0
3	1PE	G	301	-	9,9,15	0.28	0	8,8,14	0.26	0
3	1PE	Ι	301	-	$15,\!15,\!15$	0.29	0	14,14,14	0.16	0
5	GOL	D	303	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.31	0
3	1PE	F	301	-	12,12,15	0.30	0	11,11,14	0.16	0
5	GOL	0	305	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.37	0
3	1PE	С	302	-	15,15,15	0.30	0	14,14,14	0.17	0
5	GOL	0	304	-	$5,\!5,\!5$	0.34	0	5, 5, 5	0.39	0
5	GOL	Т	307	-	$5,\!5,\!5$	0.34	0	5, 5, 5	0.38	0
5	GOL	F	305	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.34	0
3	1PE	С	303[A]	-	$15,\!15,\!15$	0.30	0	14,14,14	0.18	0
4	2PE	J	302	-	$15,\!15,\!27$	0.30	0	14,14,26	0.18	0
5	GOL	0	303	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.37	0
5	GOL	А	308	-	$5,\!5,\!5$	0.33	0	$5,\!5,\!5$	0.40	0
3	1PE	Н	302[B]	-	9,9,15	0.28	0	8,8,14	0.20	0
5	GOL	Ι	308	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.40	0
3	1PE	Р	302	-	12,12,15	0.29	0	11,11,14	0.20	0
3	1PE	J	301	-	9,9,15	0.28	0	8,8,14	0.24	0
5	GOL	D	304	-	$5,\!5,\!5$	0.33	0	$5,\!5,\!5$	0.39	0
3	1PE	А	303	-	6,6,15	0.27	0	5,5,14	0.23	0
5	GOL	K	308	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.33	0
5	GOL	Q	305	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.36	0
5	GOL	G	302	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.36	0
3	1PE	R	302	-	$6,\!6,\!15$	0.27	0	$5,\!5,\!14$	0.21	0
5	GOL	В	302	-	$5,\!5,\!5$	0.34	0	5, 5, 5	0.39	0

	т	<u> </u>	Б	τ・1	Bo	ond leng	$_{\rm sths}$	В	ond ang	les
IVI01	Type	Chain	Res	Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
3	1PE	F	302	-	$15,\!15,\!15$	0.30	0	14,14,14	0.21	0
3	1PE	L	305[B]	-	$15,\!15,\!15$	0.30	0	14,14,14	0.17	0
5	GOL	L	307	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.39	0
5	GOL	В	301	-	$5,\!5,\!5$	0.35	0	$5,\!5,\!5$	0.30	0
4	2PE	L	302	-	24,24,27	0.31	0	23,23,26	0.35	0
5	GOL	Е	305	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.38	0
5	GOL	R	304	-	$5,\!5,\!5$	0.33	0	$5,\!5,\!5$	0.42	0
5	GOL	R	307	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.39	0
5	GOL	L	308	-	$5,\!5,\!5$	0.33	0	$5,\!5,\!5$	0.44	0
3	1PE	R	301	-	$9,\!9,\!15$	0.29	0	8,8,14	0.19	0
5	GOL	Н	307	-	$5,\!5,\!5$	0.35	0	$5,\!5,\!5$	0.39	0
3	1PE	K	301	-	$9,\!9,\!15$	0.28	0	8,8,14	0.20	0
5	GOL	K	307	-	$5,\!5,\!5$	0.35	0	$5,\!5,\!5$	0.33	0
5	GOL	В	306	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.37	0
5	GOL	Ι	310	-	$5,\!5,\!5$	0.33	0	$5,\!5,\!5$	0.37	0
5	GOL	Q	303	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.36	0
5	GOL	J	305	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.38	0
5	GOL	F	307	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.37	0
5	GOL	J	307	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.40	0
5	GOL	Ι	306	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.40	0
5	GOL	М	301	-	$5,\!5,\!5$	0.39	0	$5,\!5,\!5$	0.34	0
5	GOL	S	303	-	$5,\!5,\!5$	0.33	0	$5,\!5,\!5$	0.41	0
5	GOL	Н	308	-	$5,\!5,\!5$	0.35	0	$5,\!5,\!5$	0.42	0
5	GOL	S	304	-	$5,\!5,\!5$	0.33	0	$5,\!5,\!5$	0.39	0
3	1PE	В	304	-	$9,\!9,\!15$	0.29	0	8,8,14	0.18	0
5	GOL	А	306	-	$5,\!5,\!5$	0.33	0	$5,\!5,\!5$	0.37	0
5	GOL	Ε	306	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.43	0
3	1PE	R	303	-	$12,\!12,\!15$	0.29	0	$11,\!11,\!14$	0.16	0
5	GOL	K	305	-	$5,\!5,\!5$	0.35	0	$5,\!5,\!5$	0.49	0
5	GOL	0	306	-	$5,\!5,\!5$	0.33	0	$5,\!5,\!5$	0.33	0
3	1PE	F	304[B]	-	$15,\!15,\!15$	0.29	0	14,14,14	0.23	0
5	GOL	Ι	305	-	$5,\!5,\!5$	0.36	0	$5,\!5,\!5$	0.30	0
5	GOL	Т	304	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.36	0
5	GOL	Ν	305	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.39	0
5	GOL	Ν	304	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.39	0
3	1PE	Ε	301	-	$15,\!15,\!15$	0.30	0	$14,\!14,\!14$	0.16	0
3	1PE	F	303	-	12,12,15	0.30	0	11,11,14	0.20	0
5	GOL	A	307	-	$5,\!5,\!5$	0.33	0	$5,\!5,\!5$	0.39	0
5	GOL	R	305	-	$5,\!5,\!5$	0.36	0	$5,\!5,\!5$	0.39	0
4	2 PE	H	304	-	21,21,27	0.30	0	20,20,26	0.17	0
5	GOL	0	302	-	5, 5, 5	0.33	0	5, 5, 5	0.38	0
3	$1\overline{\text{PE}}$	Н	305	-	$9,\!9,\!15$	0.30	0	8,8,14	0.35	0
3	1PE	Q	302	-	9,9,15	0.28	0	8,8,14	0.23	0

Mal	Type	Chain	Dog	Link	Bo	ond leng	$_{\rm sths}$	Bond angles		
WIOI	туре	Ullalli	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
3	1PE	С	303[B]	-	$15,\!15,\!15$	0.30	0	14,14,14	0.18	0
3	1PE	0	301	-	9,9,15	0.28	0	8,8,14	0.19	0
5	GOL	М	302	-	$5,\!5,\!5$	0.35	0	$5,\!5,\!5$	0.36	0
5	GOL	0	307	-	$5,\!5,\!5$	0.33	0	$5,\!5,\!5$	0.36	0
5	GOL	F	306	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.46	0
5	GOL	L	306	-	$5,\!5,\!5$	0.35	0	$5,\!5,\!5$	0.43	0
5	GOL	D	302	-	$5,\!5,\!5$	0.35	0	$5,\!5,\!5$	0.32	0
5	GOL	Н	309	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.41	0
3	1PE	J	303	-	$15,\!15,\!15$	0.30	0	$14,\!14,\!14$	0.18	0
7	12P	Т	301	-	$12,\!12,\!36$	0.30	0	$11,\!11,\!35$	0.15	0
5	GOL	R	306	-	$5,\!5,\!5$	0.34	0	$5,\!5,\!5$	0.40	0
3	1PE	Н	301	-	$15,\!15,\!15$	0.30	0	14,14,14	0.19	0
5	GOL	K	306	-	$5,\!5,\!5$	0.33	0	$5,\!5,\!5$	0.35	0
5	GOL	Е	303	-	5, 5, 5	0.34	0	5, 5, 5	0.36	0
5	GOL	С	306	-	5, 5, 5	0.36	0	5, 5, 5	0.37	0
5	GOL	Т	305	-	$5,\!5,\!5$	0.33	0	$5,\!5,\!5$	0.39	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	GOL	J	304	-	-	0/4/4/4	-
5	GOL	Q	304	-	-	0/4/4/4	-
5	GOL	J	306	-	-	0/4/4/4	-
5	GOL	D	301	-	-	0/4/4/4	-
5	GOL	S	306	-	-	2/4/4/4	-
5	GOL	М	303	-	-	0/4/4/4	-
3	1PE	С	301	-	-	2/7/7/13	-
3	1PE	Ι	302	-	-	3/7/7/13	-
5	GOL	Ε	304	-	-	0/4/4/4	-
5	GOL	С	305	-	-	1/4/4/4	-
3	1PE	Т	303	-	-	1/7/7/13	-
5	GOL	L	301	-	-	0/4/4/4	-
3	1PE	L	303	-	-	5/13/13/13	-
5	GOL	Н	310	-	-	0/4/4/4	-
5	GOL	В	307	-	-	0/4/4/4	-
3	1PE	Е	302	-	-	1/7/7/13	-
5	GOL	K	304	-	-	0/4/4/4	_
3	1PE	Т	302	-	-	10/13/13/13	_

Conti	nuea jro	m previoi	is page				
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	GOL	Ι	307	-	-	0/4/4/4	-
3	1PE	А	301	-	-	5/10/10/13	-
5	GOL	S	305	-	-	0/4/4/4	-
3	1PE	В	305	-	-	6/13/13/13	-
5	GOL	В	308	-	-	0/4/4/4	-
5	GOL	Т	306	-	-	0/4/4/4	-
3	1PE	K	302	-	-	8/10/10/13	-
5	GOL	K	303	-	-	0/4/4/4	-
3	1PE	Q	301	-	-	8/13/13/13	-
5	GOL	D	305	-	-	0/4/4/4	-
3	1PE	Ι	303	-	-	2/7/7/13	-
3	1PE	L	304	-	-	3/10/10/13	-
4	2PE	А	302	-	-	1/7/7/25	-
3	1PE	Н	302[A]	-	-	4/7/7/13	-
5	GOL	Ι	309	-	-	0/4/4/4	-
3	1PE	N	303	-	-	6/10/10/13	-
4	$2 \mathrm{PE}$	Н	303	-	-	11/22/22/25	-
3	1PE	F	304[A]	-	-	6/13/13/13	-
3	1PE	Р	301	-	-	5/10/10/13	-
5	GOL	Н	311	-	-	0/4/4/4	-
3	1PE	Ν	301	-	-	3/7/7/13	-
3	1PE	Ν	302	-	-	2/7/7/13	-
5	GOL	S	301	-	-	2/4/4/4	-
5	GOL	А	305	-	-	0/4/4/4	-
3	1PE	L	305[A]	-	-	4/13/13/13	-
5	GOL	S	302	-	-	0/4/4/4	-
5	GOL	А	304	-	-	2/4/4/4	-
3	1PE	В	303	-	-	3/7/7/13	-
3	1PE	G	301	-	-	1/7/7/13	-
3	1PE	Ι	301	-	-	5/13/13/13	-
5	GOL	D	303	-	-	2/4/4/4	-
3	1PE	F	301	-	-	2/10/10/13	-
5	GOL	Ο	305	-	-	2/4/4/4	-
3	1PE	С	302	-	-	4/13/13/13	-
5	GOL	0	304	-	-	0/4/4/4	-
5	GOL	Т	307	-	-	0/4/4/4	-
5	GOL	F	305	-	-	2/4/4/4	

 α tia 1 [.

9BKX

			is puye				
Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	1PE	С	303[A]	-	-	6/13/13/13	-
4	2PE	J	302	-	-	4/13/13/25	-
5	GOL	0	303	-	-	0/4/4/4	-
5	GOL	А	308	-	-	0/4/4/4	-
3	1PE	Н	302[B]	-	-	3/7/7/13	-
5	GOL	Ι	308	-	-	0/4/4/4	-
3	1PE	Р	302	-	-	3/10/10/13	-
3	1PE	J	301	-	-	3/7/7/13	-
5	GOL	D	304	-	-	0/4/4/4	-
3	1PE	А	303	-	-	0/4/4/13	-
5	GOL	K	308	-	-	0/4/4/4	-
5	GOL	Q	305	-	-	0/4/4/4	-
5	GOL	G	302	-	-	0/4/4/4	-
3	1PE	R	302	-	-	1/4/4/13	-
5	GOL	В	302	-	-	0/4/4/4	-
3	1PE	F	302	-	-	3/13/13/13	-
3	1PE	L	305[B]	-	-	4/13/13/13	-
5	GOL	L	307	-	-	0/4/4/4	-
5	GOL	В	301	-	-	0/4/4/4	-
4	2PE	L	302	-	-	12/22/22/25	-
5	GOL	Е	305	-	-	0/4/4/4	-
5	GOL	R	304	-	-	0/4/4/4	-
5	GOL	R	307	-	-	0/4/4/4	-
5	GOL	L	308	-	-	0/4/4/4	-
3	1PE	R	301	-	-	4/7/7/13	-
5	GOL	Н	307	-	-	0/4/4/4	-
3	1PE	K	301	-	-	4/7/7/13	-
5	GOL	K	307	-	-	1/4/4/4	-
5	GOL	В	306	-	-	0/4/4/4	-
5	GOL	Ι	310	-	-	0/4/4/4	-
5	GOL	Q	303	-	-	2/4/4/4	-
5	GOL	J	305	-	-	0/4/4/4	-
5	GOL	F	307	-	-	0/4/4/4	-
5	GOL	J	307	-	-	0/4/4/4	-
5	GOL	Ι	306	-	-	0/4/4/4	-
5	GOL	М	301	-	-	0/4/4/4	-
5	GOL	S	303	-	-	2/4/4/4	-
5	GOL	Н	308	-	-	0/4/4/4	-
5	GOL	S	304	-	-	0/4/4/4	-

9BKX

Conti	nued fro	m previoi	ls page	Link	Chirals	Torsions	Bings
2	1 JDE		204	LIIIK	Unitals		Tungs
3 5	IFE COL		304	-	-	$\frac{1/1/1}{0/4/4/4}$	-
5	GOL	A E	306	-	-	$\frac{0/4/4/4}{0/4/4/4}$	-
3	1PE	B	303	_	_	0/4/4/4	-
5	GOL	K	305	_	_	0/4/4/4	_
5	GOL	0	306	_	_	$\frac{0/4}{4/4}$	_
3	1PE	F	304[B]	-	_	5/13/13/13	-
5	GOL	Ι	305	-	-	2/4/4/4	-
5	GOL	Т	304	-	-	2/4/4/4	-
5	GOL	N	305	-	-	0/4/4/4	-
5	GOL	Ν	304	-	_	0/4/4/4	-
3	1PE	Е	301	-	-	5/13/13/13	-
3	1PE	F	303	-	-	2/10/10/13	-
5	GOL	А	307	-	-	0/4/4/4	-
5	GOL	R	305	-	-	0/4/4/4	-
4	2PE	Н	304	-	-	4/19/19/25	-
5	GOL	0	302	-	-	0/4/4/4	-
3	1PE	Н	305	-	-	5/7/7/13	-
3	1PE	Q	302	-	-	5/7/7/13	-
3	1PE	С	303[B]	-	-	6/13/13/13	-
3	1PE	0	301	-	-	1/7/7/13	-
5	GOL	М	302	-	-	0/4/4/4	-
5	GOL	0	307	-	-	0/4/4/4	-
5	GOL	F	306	-	-	0/4/4/4	-
5	GOL	L	306	-	-	0/4/4/4	-
5	GOL	D	302	-	-	0/4/4/4	-
5	GOL	Н	309	-	-	0/4/4/4	-
3	1PE	J	303	-	-	6/13/13/13	-
7	12P	Т	301	-	-	3/10/10/34	-
5	GOL	R	306	-	-	0/4/4/4	-
3	1PE	Н	301	-	-	4/13/13/13	-
5	GOL	K	306	-	-	0/4/4/4	-
5	GOL	Е	303	-	-	0/4/4/4	-
5	GOL	C	306	-	-	0/4/4/4	-
5	GOL	T	305	-	-	2/4/4/4	-

 \sim

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

JDIAA

Mol	Chain	Res	Type	Atoms
5	Ι	305	GOL	C1-C2-C3-O3
5	Q	303	GOL	O1-C1-C2-C3
5	S	301	GOL	C1-C2-C3-O3
3	K	302	1PE	OH4-C13-C23-OH3
3	L	303	1PE	OH5-C14-C24-OH4
3	L	303	1PE	OH6-C15-C25-OH5
3	С	302	1PE	OH6-C15-C25-OH5
3	F	302	1PE	OH4-C13-C23-OH3
3	С	303[A]	1PE	OH4-C13-C23-OH3
3	С	302	1PE	OH4-C13-C23-OH3
3	Е	302	1PE	OH7-C16-C26-OH6
3	F	301	1PE	OH6-C15-C25-OH5
3	R	301	1PE	OH5-C14-C24-OH4
3	А	301	1PE	OH5-C14-C24-OH4
3	В	305	1PE	OH5-C14-C24-OH4
3	Ι	303	1PE	OH6-C15-C25-OH5
3	В	303	1PE	C15-C25-OH5-C14
3	С	303[A]	1PE	OH5-C14-C24-OH4
3	В	305	1PE	OH4-C13-C23-OH3
3	J	303	1PE	OH4-C13-C23-OH3
3	Е	301	1PE	OH5-C14-C24-OH4
3	J	303	1PE	OH5-C14-C24-OH4
3	L	305[B]	1PE	OH6-C15-C25-OH5
5	Q	303	GOL	O1-C1-C2-O2
5	Т	304	GOL	O2-C2-C3-O3
3	F	304[B]	1PE	OH5-C14-C24-OH4
3	В	305	1PE	C15-C25-OH5-C14
3	Κ	302	1PE	OH6-C15-C25-OH5
3	R	301	1PE	OH7-C16-C26-OH6
4	L	302	2PE	O7-C8-C9-O10
3	Т	302	1PE	OH6-C15-C25-OH5
3	H	305	1PE	OH4-C13-C23-OH3
3	N	303	1PE	OH5-C14-C24-OH4
3	Ι	302	1PE	C23-C13-OH4-C24
3	E	301	1PE	OH6-C15-C25-OH5
3	Ι	302	1PE	OH4-C13-C23-OH3
3	Р	302	1PE	OH4-C13-C23-OH3
4	Н	303	$2\overline{\text{PE}}$	O4-C5-C6-O7
3	Т	302	1PE	C14-C24-OH4-C13
3	А	301	1PE	OH4-C13-C23-OH3
3	В	303	1PE	OH5-C14-C24-OH4
3	В	305	1PE	OH7-C16-C26-OH6

All (229) torsion outliers are listed below:

JDIAA

Mol	Chain	Res	Type	Atoms
3	Н	301	1PE	OH7-C16-C26-OH6
3	Ι	303	1PE	OH5-C14-C24-OH4
3	J	301	1PE	OH5-C14-C24-OH4
3	J	303	1PE	OH7-C16-C26-OH6
3	L	305[A]	1PE	OH7-C16-C26-OH6
3	Р	301	1PE	OH4-C13-C23-OH3
3	Ι	301	1PE	OH6-C15-C25-OH5
3	L	304	1PE	OH5-C14-C24-OH4
3	Т	302	1PE	OH4-C13-C23-OH3
3	F	304[A]	1PE	OH5-C14-C24-OH4
3	Р	302	1PE	OH5-C14-C24-OH4
4	L	302	2PE	O16-C17-C18-O19
3	В	305	1PE	C25-C15-OH6-C26
3	Р	301	1PE	OH5-C14-C24-OH4
3	F	301	1PE	OH4-C13-C23-OH3
5	А	304	GOL	C1-C2-C3-O3
5	D	303	GOL	C1-C2-C3-O3
5	F	305	GOL	C1-C2-C3-O3
5	0	305	GOL	C1-C2-C3-O3
5	S	303	GOL	C1-C2-C3-O3
5	S	306	GOL	C1-C2-C3-O3
5	Т	304	GOL	C1-C2-C3-O3
5	Т	305	GOL	C1-C2-C3-O3
3	С	301	1PE	OH5-C14-C24-OH4
3	Ε	301	1PE	OH7-C16-C26-OH6
3	G	301	1PE	OH5-C14-C24-OH4
3	Н	302[A]	1PE	OH7-C16-C26-OH6
3	Н	305	1PE	OH5-C14-C24-OH4
3	Ι	302	1PE	OH5-C14-C24-OH4
3	Q	301	1PE	OH7-C16-C26-OH6
3	Т	302	1PE	OH7-C16-C26-OH6
4	Н	303	$2 \mathrm{PE}$	O19-C20-C21-O22
3	С	301	1PE	OH4-C13-C23-OH3
3	L	303	1PE	OH4-C13-C23-OH3
3	F	303	1PE	OH6-C15-C25-OH5
3	H	302[A]	1PE	OH5-C14-C24-OH4
3	K	301	1PE	OH7-C16-C26-OH6
3	L	303	1PE	OH7-C16-C26-OH6
3	J	303	1PE	OH6-C15-C25-OH5
3	C	303[B]	1PE	OH4-C13-C23-OH3
3	A	301	1PE	OH6-C15-C25-OH5
3	С	303[B]	1PE	OH5-C14-C24-OH4

Continued from previous page...

9BKX

Mol	Chain	Res	Type	Atoms
3	0	302	1PE	OH4-C13-C23-OH3
3	L	305[B]	1PE	C16-C26-OH6-C15
3	B	303	1PE	OH7-C16-C26-OH6
3	K	301	1PE	OH5-C14-C24-OH4
3	N	303	1PE	OH6-C15-C25-OH5
3	Q	302	1PE	OH2-C12-C22-OH3
5	F	305	GOL	O2-C2-C3-O3
5	Ι	305	GOL	O2-C2-C3-O3
5	S	301	GOL	O2-C2-C3-O3
3	N	301	1PE	OH4-C13-C23-OH3
3	L	304	1PE	C23-C13-OH4-C24
3	N	303	1PE	OH4-C13-C23-OH3
4	L	302	2PE	O4-C5-C6-O7
5	D	303	GOL	O2-C2-C3-O3
3	С	303[A]	1PE	C23-C13-OH4-C24
3	Ι	301	1PE	OH4-C13-C23-OH3
3	С	302	1PE	OH5-C14-C24-OH4
3	R	301	1PE	OH6-C15-C25-OH5
3	А	301	1PE	C15-C25-OH5-C14
3	N	301	1PE	OH2-C12-C22-OH3
3	A	301	1PE	C23-C13-OH4-C24
3	Н	305	1PE	С12-С22-ОН3-С23
3	К	302	1PE	C14-C24-OH4-C13
3	Q	301	1PE	C13-C23-OH3-C22
3	С	303[A]	1PE	С16-С26-ОН6-С15
5	С	305	GOL	O1-C1-C2-C3
3	N	303	1PE	C24-C14-OH5-C25
3	K	302	1PE	C15-C25-OH5-C14
3	Е	301	1PE	C15-C25-OH5-C14
3	В	305	1PE	С12-С22-ОН3-С23
4	J	302	2PE	C6-C5-O4-C3
4	L	302	2PE	C9-C8-O7-C6
3	N	302	1PE	OH7-C16-C26-OH6
3	P	302	1PE	OH6-C15-C25-OH5
3	Q	301	$1\overline{\text{PE}}$	OH6-C15-C25-OH5
4	L	302	$2\overline{\text{PE}}$	O19-C20-C21-O22
5	Т	305	GOL	O2-C2-C3-O3
3	Р	301	1PE	C23-C13-OH4-C24
3	F	302	1PE	OH7-C16-C26-OH6
3	H	301	1PE	OH2-C12-C22-OH3
4	H	303	$2\overline{\text{PE}}$	C11-C12-O13-C14
3	Е	301	1PE	C23-C13-OH4-C24

Mol	Chain	Res	Type	Atoms
3	Ι	301	1PE	C25-C15-OH6-C26
3	С	303[B]	1PE	C24-C14-OH5-C25
3	F	303	1PE	OH5-C14-C24-OH4
7	Т	301	12P	C24-C23-O22-C21
3	Т	303	1PE	OH4-C13-C23-OH3
4	Н	303	2PE	C20-C21-O22-C23
3	С	303[B]	1PE	OH7-C16-C26-OH6
3	Н	305	1PE	OH2-C12-C22-OH3
4	Н	303	2PE	O7-C8-C9-O10
3	Ι	301	1PE	C15-C25-OH5-C14
3	Q	301	1PE	C14-C24-OH4-C13
5	A	304	GOL	O2-C2-C3-O3
5	0	305	GOL	O2-C2-C3-O3
5	K	307	GOL	C1-C2-C3-O3
3	K	302	1PE	C23-C13-OH4-C24
3	F	304[B]	1PE	С12-С22-ОН3-С23
3	F	304[B]	1PE	C15-C25-OH5-C14
3	L	305[A]	1PE	C24-C14-OH5-C25
3	L	304	1PE	С12-С22-ОН3-С23
3	Н	302[B]	1PE	OH6-C15-C25-OH5
3	L	305[B]	1PE	C23-C13-OH4-C24
3	Q	302	1PE	OH5-C14-C24-OH4
3	Q	301	1PE	C24-C14-OH5-C25
4	Н	303	2PE	C9-C8-O7-C6
3	С	303[A]	1PE	OH7-C16-C26-OH6
3	Н	302[B]	1PE	OH7-C16-C26-OH6
3	С	303[B]	1PE	C23-C13-OH4-C24
3	F	302	1PE	С12-С22-ОН3-С23
3	Т	302	1PE	С13-С23-ОН3-С22
3	Q	301	1PE	OH5-C14-C24-OH4
3	Т	302	1PE	OH5-C14-C24-OH4
3	Н	301	1PE	С16-С26-ОН6-С15
3	Q	301	1PE	OH4-C13-C23-OH3
3	Н	301	1PE	OH4-C13-C23-OH3
3	Р	301	1PE	C15-C25-OH5-C14
3	F	304[A]	1PE	C15-C25-OH5-C14
3	Ν	302	1PE	C25-C15-OH6-C26
3	Р	301	1PE	OH6-C15-C25-OH5
3	F	304[B]	$1\overline{\text{PE}}$	OH4-C13-C23-OH3
3	L	303	1PE	С13-С23-ОН3-С22
3	J	301	1PE	С25-С15-ОН6-С26
3	F	304[A]	1PE	С12-С22-ОН3-С23

9BKX

Mol	Chain	Res	Type	Atoms
3	0	301	1PE	C15-C25-OH5-C14
3	C	303[B]	1PE	C25-C15-OH6-C26
3	H	305	1PE	C14-C24-OH4-C13
4	Н	303	2PE	C8-C9-O10-C11
4	J	302	2PE	C9-C8-O7-C6
3	N	303	1PE	C15-C25-OH5-C14
4	L	302	2PE	C8-C9-O10-C11
3	J	303	1PE	С16-С26-ОН6-С15
3	F	304[A]	1PE	OH4-C13-C23-OH3
4	Н	303	2PE	O16-C17-C18-O19
7	Т	301	12P	C30-C29-O28-C27
4	J	302	2PE	C11-C12-O13-C14
4	A	302	2PE	C2-C3-O4-C5
4	J	302	2PE	O4-C5-C6-O7
5	S	303	GOL	O2-C2-C3-O3
5	S	306	GOL	O2-C2-C3-O3
4	Н	303	2PE	C15-C14-O13-C12
3	L	305[B]	1PE	OH7-C16-C26-OH6
3	Н	302[A]	1PE	C16-C26-OH6-C15
3	Q	302	1PE	C12-C22-OH3-C23
3	Q	301	1PE	C15-C25-OH5-C14
3	Н	302[A]	1PE	C24-C14-OH5-C25
3	Т	302	1PE	C23-C13-OH4-C24
3	В	304	1PE	C23-C13-OH4-C24
3	С	302	1PE	C13-C23-OH3-C22
3	J	303	1PE	C23-C13-OH4-C24
3	H	302[B]	1PE	C24-C14-OH5-C25
4		302	2PE	C14-C15-O16-C17
3	N	301	IPE 1DD	C13-C23-OH3-C22
3	K	302	IPE	OH5-C14-C24-OH4
4		302	2PE	C18-C17-O16-C15
3	F'	304[A]	IPE 1DD	OH6-C15-C25-OH5
3	Γ'	304[B]	1PE	OH6-C15-C25-OH5
<u>う</u>		303[A]	1PE	$\bigcirc U14-U24-UH4-U13 \\ \bigcirc U12-U22-UH2-U22 \\ \bigcirc U12-U22 \\ $
<u>う</u>	K	302	1PE	$\bigcirc U12 - U22 - UH3 - U23 \\ \bigcirc U12 - U12 - U12 - U12 \\ \bigcirc U12 - U12 \\ \odot U12 - U1$
<u>う</u>		303	1PE	$\bigcirc OHZ\text{-}OIZ\text{-}OIZ\text{-}OIZ\text{-}OIZ$
<u>う</u>	Q П	302	1PE	$\bigcirc 023 - 013 - 0H4 - 024$
<u>う</u>	K I	301	1PE	$\bigcirc 120 - \bigcirc 120 -] 00 - 00 -] 00 - 00 -] 00 - 00 -$
ა 		201		$\bigcirc 12 - \bigcirc 22 - \bigcirc \Pi \mathfrak{I} \mathfrak{I} \mathfrak{I} \mathfrak{I} \mathfrak{I} \mathfrak{I} \mathfrak{I} \mathfrak{I}$
2 2		302		$\begin{array}{c} 0 \\ 12 \\ 0 \\ 14 \\ 0 \\ 14 \\ 0 \\ 15 \\ 0 \\ 1$
় ২	I K	302		$\begin{array}{c} 0.24 + 0.14 + 0.110 + 0.23 \\ \hline 0.24 + 0.14 + 0.145 \\ \hline 0.25 \\ \hline 0.25 \\ \hline 0.24 + 0.14 \\ \hline 0.14 \\ \hline 0.14 \\ \hline 0.15 \\ \hline 0.25 \\$
່ວ	17	1001		024 014 0110 020

Mol	Chain	Res	Type	Atoms
4	Н	304	2PE	O16-C17-C18-O19
3	Т	302	1PE	С12-С22-ОН3-С23
3	Κ	301	1PE	С16-С26-ОН6-С15
3	L	305[A]	1PE	C23-C13-OH4-C24
4	L	302	2PE	C5-C6-O7-C8
3	Κ	302	1PE	C13-C23-OH3-C22
3	F	304[A]	1PE	С14-С24-ОН4-С13
4	Н	304	2PE	O7-C8-C9-O10
4	L	302	2PE	O13-C14-C15-O16
7	Т	301	12P	O25-C26-C27-O28
4	L	302	2PE	C17-C18-O19-C20
4	L	302	2PE	O10-C11-C12-O13
3	Т	302	1PE	С16-С26-ОН6-С15
4	Н	303	2PE	C17-C18-O19-C20
4	Н	304	2PE	C14-C15-O16-C17
4	Н	303	2PE	C18-C17-O16-C15
4	Н	304	2PE	O4-C5-C6-O7
3	J	301	1PE	OH6-C15-C25-OH5
3	Κ	302	1PE	С12-С22-ОН3-С23

There are no ring outliers.

58 monomers are involved in 90 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	С	301	1PE	1	0
3	Ι	302	1PE	2	0
5	Е	304	GOL	1	0
5	С	305	GOL	1	0
5	L	301	GOL	1	0
3	Т	302	1PE	2	0
5	Ι	307	GOL	1	0
3	А	301	1PE	2	0
3	В	305	1PE	3	0
5	В	308	GOL	1	0
5	Κ	303	GOL	1	0
3	Q	301	1PE	2	0
3	L	304	1PE	2	0
4	А	302	$2 \mathrm{PE}$	1	0
5	Ι	309	GOL	1	0
3	Ν	303	1PE	1	0
4	Н	303	2PE	2	0
3	F	304[A]	1PE	2	0

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	Р	301	1PE	1	0
5	Н	311	GOL	1	0
5	S	301	GOL	2	0
5	А	305	GOL	1	0
3	L	305[A]	1PE	4	0
5	А	304	GOL	2	0
3	В	303	1PE	2	0
3	Ι	301	1PE	1	0
5	0	305	GOL	1	0
3	С	302	1PE	1	0
4	J	302	2PE	1	0
3	Н	302[B]	1PE	1	0
5	D	304	GOL	1	0
3	А	303	1PE	3	0
5	Κ	308	GOL	2	0
3	F	302	1PE	1	0
3	L	305[B]	1PE	2	0
4	L	302	2PE	7	0
5	В	306	GOL	1	0
5	J	305	GOL	1	0
5	Ι	306	GOL	1	0
5	S	303	GOL	1	0
3	В	304	1PE	1	0
5	А	306	GOL	2	0
5	Ε	306	GOL	1	0
3	R	303	1PE	2	0
5	Κ	305	GOL	1	0
3	\mathbf{F}	304[B]	1PE	2	0
5	Т	304	GOL	2	0
3	F	303	1PE	1	0
3	Н	305	1PE	2	0
3	0	301	1PE	1	0
5	\mathbf{F}	306	GOL	1	0
5	L	306	GOL	2	0
5	D	302	GOL	1	0
5	Н	309	GOL	1	0
7	Т	301	12P	1	0
3	Н	301	$1\overline{\text{PE}}$	2	0
5	Κ	306	GOL	1	0
5	Т	305	GOL	1	0

Continued from previous page...

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In

addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	$Q{<}0.9$
1	А	267/279~(95%)	-0.41	1 (0%) 89 80	22, 38, 53, 64	1 (0%)
1	В	265/279~(94%)	-0.40	1 (0%) 89 80	26, 41, 55, 70	0
1	С	268/279~(96%)	-0.34	4 (1%) 71 57	26, 40, 57, 95	1 (0%)
1	D	266/279~(95%)	-0.32	2 (0%) 82 69	27, 43, 56, 69	1 (0%)
1	Е	272/279~(97%)	-0.39	1 (0%) 89 80	22, 38, 56, 63	0
1	F	266/279~(95%)	-0.42	1 (0%) 89 80	24, 38, 53, 63	0
1	G	266/279~(95%)	-0.31	0 100 100	27, 44, 57, 74	0
1	Η	267/279~(95%)	-0.55	1 (0%) 89 80	21, 33, 49, 65	0
1	Ι	267/279~(95%)	-0.53	1 (0%) 89 80	24, 33, 50, 74	0
1	J	267/279~(95%)	-0.49	3 (1%) 77 62	22, 35, 50, 75	0
1	Κ	266/279~(95%)	-0.51	0 100 100	23, 36, 51, 68	0
1	L	265/279~(94%)	-0.54	0 100 100	21,35,51,63	2 (0%)
1	М	266/279~(95%)	-0.15	1 (0%) 89 80	36, 50, 65, 75	0
1	Ν	266/279~(95%)	-0.11	1 (0%) 89 80	34, 49, 61, 79	0
1	Ο	266/279~(95%)	-0.24	0 100 100	30, 44, 59, 74	0
1	Р	266/279~(95%)	-0.34	1 (0%) 89 80	30, 43, 58, 64	0
1	Q	265/279~(94%)	-0.24	1 (0%) 89 80	32, 46, 61, 84	0
1	R	266/279~(95%)	-0.48	1 (0%) 89 80	23, 36, 53, 68	0
1	S	267/279~(95%)	-0.44	2 (0%) 84 72	22, 37, 52, 78	3~(1%)
1	Т	266/279~(95%)	-0.37	1 (0%) 89 80	28, 39, 54, 75	0
2	d	10/335~(2%)	4.76	9 (90%) 0 0	48, 57, 73, 74	10 (100%)
2	g	6/335~(1%)	4.33	5 (83%) 0 0	49, 50, 52, 65	6 (100%)
2	h	9/335~(2%)	3.49	8 (88%) 0 0	40, 47, 53, 55	9 (100%)
2	i	12/335~(3%)	4.14	11 (91%) 0 0	47, 52, 60, 61	12 (100%)

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$OWAB(Å^2)$	$\mathbf{Q}{<}0.9$
2	р	8/335~(2%)	4.07	8 (100%) 0 0	43, 57, 60, 60	8 (100%)
2	q	8/335~(2%)	3.18	6 (75%) 0 0	44, 56, 59, 60	8 (100%)
2	r	8/335~(2%)	3.86	8 (100%) 0 0	48, 50, 57, 70	8 (100%)
2	S	10/335~(2%)	3.78	8 (80%) 0 0	39, 52, 58, 64	10 (100%)
2	t	8/335~(2%)	3.78	8 (100%) 0 0	49, 58, 60, 67	8 (100%)
All	All	5409/8595~(62%)	-0.32	94 (1%) 69 53	21, 40, 58, 95	87 (1%)

Continued from previous page...

All (94) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
2	d	325	LEU	9.0
2	g	326	SER	8.9
2	r	326	SER	8.6
2	d	326	SER	8.2
2	р	326	SER	8.2
2	i	322	ALA	7.9
1	С	265[A]	HIS	7.2
2	S	326	SER	6.8
2	i	321	ALA	6.4
2	q	329	SER	5.9
2	h	324	SER	5.6
2	s	329	SER	5.5
2	r	329	SER	5.3
2	h	327	ILE	5.3
2	S	328	GLY	5.2
2	S	324	SER	5.1
2	t	331	LYS	5.1
2	i	319	THR	5.1
2	i	326	SER	5.1
2	р	331	LYS	5.0
2	h	329	SER	5.0
2	d	331	LYS	4.8
2	t	326	SER	4.8
2	d	332	GLY	4.7
2	i	324	SER	4.7
2	g	325	LEU	4.5
2	d	330	LEU	4.5
2	q	326	SER	4.4
1	N	266	LYS	4.2
2	d	328	GLY	4.1

Mol	Chain	Res	Type	RSRZ
2	g	329	SER	4.1
1	С	266	LYS	4.0
2	q	325	LEU	4.0
2	р	325	LEU	3.9
2	t	328	GLY	3.8
2	s	331	LYS	3.8
2	d	324	SER	3.7
2	t	329	SER	3.7
2	r	323	GLY	3.6
2	S	327	ILE	3.6
2	р	329	SER	3.6
2	t	330	LEU	3.6
2	i	323	GLY	3.5
2	h	326	SER	3.5
2	d	327	ILE	3.5
2	q	328	GLY	3.5
2	i	328	GLY	3.4
2	g	327	ILE	3.3
2	g	330	LEU	3.3
2	i	325	LEU	3.2
2	d	329	SER	3.2
2	t	324	SER	3.2
2	р	327	ILE	3.2
2	i	320	LEU	3.1
2	t	327	ILE	3.1
2	р	332	GLY	3.1
2	i	327	ILE	3.1
2	r	328	GLY	3.1
2	р	328	GLY	3.1
2	S	323	GLY	3.0
1	D	32	ALA	3.0
2	t	325	LEU	3.0
2	h	330	LEU	3.0
2	s	325	LEU	2.9
1	Т	266	LYS	2.9
2	i	330	LEU	2.9
1	С	268	ALA	2.8
1	D	266	LYS	2.8
2	r	327	ILE	2.7
2	r	330	LEU	2.7
2	h	328	GLY	2.7

 α J fa . . :

HIS Continued on next page...

2.6

265

Q

1

Mol	Chain	Res	Type	RSRZ
1	R	266	LYS	2.5
2	р	330	LEU	2.5
2	r	324	SER	2.5
1	А	267	LEU	2.4
1	J	267	LEU	2.4
2	r	325	LEU	2.4
1	S	265[A]	HIS	2.4
2	q	332	GLY	2.4
2	h	331	LYS	2.4
1	J	32	ALA	2.3
1	Ι	267	LEU	2.3
1	Р	167	GLY	2.3
1	В	32	ALA	2.3
1	М	266	LYS	2.3
1	S	267	LEU	2.3
2	h	325	LEU	2.3
1	С	267	LEU	2.2
1	F	266	LYS	2.2
1	Н	266	LYS	2.1
1	J	176	ASP	2.1
2	q	331	LYS	2.1
1	Е	269	ALA	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q < 0.9
6	NI	С	309	1/1	0.62	0.27	191,191,191,191	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	B -factors($Å^2$)	Q<0.9
5	GOL	М	303	6/6	0.66	0.21	61,65,68,73	0
5	GOL	A	308	6/6	0.68	0.20	60,71,77,85	0
5	GOL	М	301	6/6	0.71	0.27	32,68,75,78	0
5	GOL	G	302	6/6	0.72	0.19	51,52,55,64	0
3	1PE	Р	302	13/16	0.72	0.30	63,77,87,88	0
5	GOL	F	306	6/6	0.73	0.22	63,67,74,78	0
3	1PE	Е	302	10/16	0.73	0.27	54,68,72,84	0
5	GOL	Н	307	6/6	0.73	0.21	37,52,57,60	0
4	2PE	Н	304	22/28	0.74	0.26	58,73,76,79	22
5	GOL	S	304	6/6	0.74	0.16	55,71,77,78	0
5	GOL	S	306	6/6	0.74	0.22	46,62,77,78	0
5	GOL	В	302	6/6	0.74	0.20	47,58,71,76	0
3	1PE	Р	301	13/16	0.76	0.24	38,62,80,81	0
5	GOL	D	305	6/6	0.76	0.23	43,58,70,72	0
5	GOL	Q	303	6/6	0.76	0.19	41,65,69,87	0
5	GOL	А	305	6/6	0.76	0.22	43,56,65,66	0
5	GOL	А	307	6/6	0.76	0.19	43,52,57,70	0
3	1PE	F	301	13/16	0.76	0.25	$60,\!68,\!78,\!93$	0
3	1PE	0	301	10/16	0.77	0.25	$54,\!65,\!76,\!78$	0
5	GOL	L	306	6/6	0.77	0.19	39,50,57,61	0
5	GOL	0	302	6/6	0.77	0.22	46,66,73,79	0
5	GOL	0	305	6/6	0.77	0.17	52,63,65,69	0
3	1PE	В	305	16/16	0.78	0.26	62,73,79,90	0
5	GOL	D	303	6/6	0.79	0.22	33,54,69,75	0
3	1PE	Q	301	16/16	0.79	0.24	47,77,86,87	0
3	1PE	F	304[B]	16/16	0.80	0.30	33,62,72,73	16
5	GOL	N	304	6/6	0.80	0.18	63,66,72,77	0
3	1PE	N	301	10/16	0.80	0.22	59,70,85,86	0
3	1PE	F	304[A]	16/16	0.80	0.30	38,62,73,73	16
5	GOL	0	303	6/6	0.81	0.20	39,67,74,77	0
3	1PE	B	304	10/16	0.81	0.22	45,56,74,77	0
3	1PE	C	302	16/16	0.81	0.22	62,74,86,86	0
3	1PE	J	303	16/16	0.81	0.24	41,67,84,92	0
3	1PE	F	302	16/16	0.81	0.22	46,58,78,87	0
3	1PE	R	301	10/16	0.81	0.21	47,62,69,72	0
3	1PE	H	301	16/16	0.82	0.21	52,63,76,78	0
3	1PE	L	305[A]	$\frac{16}{16}$	0.82	0.46	55,73,85,87	16
4	2PE	L	302	$\frac{25/28}{25/28}$	0.82	0.21	36,46,57,60	25
5	GOL	Q	304	6/6	0.82	0.13	57,61,65,68	
5	GOL	S	303	6/6	0.82	0.23	47,56,61,63	
3	1PE		305[B]	16/16	0.82	0.46	48,72,84,93	16
5	GOL	A	306	6/6	0.82	0.17	37,46,52,58	6

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
3	1PE	Ι	301	16/16	0.82	0.19	26,50,66,67	0
5	GOL	Е	303	6/6	0.83	0.20	44,60,65,73	0
5	GOL	Е	305	6/6	0.83	0.15	52,59,68,82	0
4	2PE	Н	303	25/28	0.83	0.27	44,51,62,65	25
3	1PE	J	301	10/16	0.83	0.24	51,60,70,77	0
5	GOL	0	307	6/6	0.83	0.19	53,63,66,73	0
5	GOL	В	301	6/6	0.83	0.19	26,51,57,58	0
5	GOL	Ι	308	6/6	0.83	0.19	38,46,54,54	6
5	GOL	R	306	6/6	0.83	0.20	45,52,64,82	6
5	GOL	K	304	6/6	0.83	0.18	52,64,69,70	0
3	1PE	Е	301	16/16	0.83	0.20	44,60,79,80	0
5	GOL	S	305	6/6	0.83	0.20	41,61,63,69	0
3	1PE	R	302	7/16	0.83	0.24	29,34,49,55	7
5	GOL	Т	305	6/6	0.83	0.22	44,52,56,68	0
3	1PE	R	303	13/16	0.83	0.20	57,65,80,82	0
6	NI	0	308	1/1	0.83	0.19	120,120,120,120	0
3	1PE	Ι	303	10/16	0.84	0.21	54,65,74,74	0
3	1PE	Ν	302	10/16	0.84	0.20	$61,\!74,\!78,\!78$	0
3	1PE	Т	302	16/16	0.84	0.22	58,73,82,84	0
5	GOL	J	304	6/6	0.84	0.18	59,60,72,74	0
5	GOL	J	307	6/6	0.84	0.12	48,57,62,64	0
4	2PE	А	302	10/28	0.84	0.18	53,64,74,84	0
5	GOL	В	308	6/6	0.84	0.17	45,57,68,75	0
3	1PE	С	301	10/16	0.84	0.22	38,48,58,62	0
3	1PE	Н	302[A]	10/16	0.84	0.20	38,51,58,58	10
3	1PE	L	304	13/16	0.84	0.21	51,68,79,83	0
3	1PE	Н	302[B]	10/16	0.84	0.20	39,48,55,57	10
6	NI	F	309	1/1	0.84	0.24	150,150,150,150	0
3	1PE	G	301	10/16	0.84	0.24	50,61,76,80	0
3	1PE	С	303[B]	16/16	0.85	0.30	36,67,79,80	16
5	GOL	С	306	6/6	0.85	0.16	41,59,63,63	0
3	1PE	Т	303	10/16	0.85	0.21	54,61,72,72	0
5	GOL	Т	304	6/6	0.85	0.17	44,45,60,61	0
3	1PE	A	301	13/16	0.85	0.22	51,64,76,78	0
5	GOL	R	307	6/6	0.85	0.16	56,58,69,73	0
5	GOL	S	301	6/6	0.85	0.17	39,55,64,79	0
3	1PE	C	303[A]	16/16	0.85	0.30	27,64,79,80	16
5	GOL	C	305	6/6	0.86	0.16	65,70,75,76	0
5	GOL	I	310	6/6	0.86	0.18	43,54,57,58	0
5	GOL	F	307	6/6	0.86	0.15	58,62,68,74	0
3	1PE	K	302	13/16	0.86	0.22	26,53,68,69	0
3	1PE	A	303	7/16	0.86	0.18	51,54,73,75	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
5	GOL	R	304	6/6	0.86	0.15	50,65,67,71	0
5	GOL	Q	305	6/6	0.87	0.18	36,45,51,53	6
5	GOL	I	306	6/6	0.87	0.17	50,53,64,65	0
5	GOL	K	308	6/6	0.87	0.20	35,46,74,85	0
5	GOL	В	306	6/6	0.87	0.15	44,56,62,65	0
5	GOL	Т	307	6/6	0.87	0.14	42,57,62,63	0
6	NI	В	309	1/1	0.87	0.21	130,130,130,130	0
3	1PE	Q	302	10/16	0.87	0.20	62,73,80,85	0
3	1PE	F	303	13/16	0.87	0.17	57,68,79,80	0
6	NI	J	309	1/1	0.87	0.30	135,135,135,135	0
5	GOL	Н	310	6/6	0.87	0.16	38,42,52,62	0
7	12P	Т	301	13/37	0.87	0.17	45,51,58,67	0
5	GOL	Т	306	6/6	0.88	0.14	37,49,54,59	0
5	GOL	J	306	6/6	0.88	0.21	22,40,48,50	6
3	1PE	В	303	10/16	0.88	0.17	41,59,68,69	0
6	NI	С	304	1/1	0.88	0.11	95,95,95,95	0
5	GOL	K	303	6/6	0.88	0.18	40,49,56,69	0
3	1PE	L	303	16/16	0.88	0.19	49,61,77,78	0
5	GOL	Н	311	6/6	0.88	0.15	32,50,53,63	0
5	GOL	0	304	6/6	0.88	0.16	48,59,64,67	0
5	GOL	Ι	305	6/6	0.88	0.20	39,46,58,63	0
5	GOL	А	304	6/6	0.89	0.11	23,42,50,54	0
3	1PE	Ι	302	10/16	0.89	0.18	40,57,70,71	0
5	GOL	K	305	6/6	0.89	0.15	$50,\!57,\!67,\!73$	0
5	GOL	K	307	6/6	0.89	0.14	41,47,51,53	0
5	GOL	S	302	6/6	0.89	0.18	47,66,77,86	0
3	1PE	N	303	13/16	0.89	0.17	49,64,82,83	0
5	GOL	L	301	6/6	0.89	0.15	32,45,48,49	6
6	NI	I	311	1/1	0.89	0.11	86,86,86,86	0
5	GOL	J	305	6/6	0.89	0.14	34,46,55,57	0
5	GOL	F	305	6/6	0.89	0.19	34,39,54,62	6
6	NI	Р	304	1/1	0.89	0.12	106,106,106,106	0
5	GOL	I	307	6/6	0.89	0.20	47,52,56,66	0
4	2PE	J	302	16/28	0.90	0.18	32,42,51,52	16
3	1PE	Н	305	10/16	0.90	0.17	33,44,54,54	0
5	GOL	В	307	6/6	0.90	0.19	47,52,61,62	0
5	GOL	L	307	6/6	0.90	0.17	41,50,58,69	0
5	GOL	E	304	6/6	0.90	0.12	37,43,51,56	0
6	NI	М	304	1/1	0.90	0.12	102,102,102,102	0
5	GOL	0	306	6/6	0.90	0.14	46,50,56,59	0
5	GOL	М	302	6/6	0.90	0.12	46,50,51,53	0
5	GOL	D	302	6/6	0.90	0.11	33,47,54,56	0

Continued from previous page...

Continued on next page...

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
6	NI	L	310	1/1	0.91	0.16	99,99,99,99	0
5	GOL	L	308	6/6	0.91	0.16	47,50,56,60	0
6	NI	Н	312	1/1	0.91	0.11	87,87,87,87	0
5	GOL	Н	309	6/6	0.91	0.15	40,49,53,57	0
6	NI	R	308	1/1	0.91	0.17	108,108,108,108	0
6	NI	Е	308	1/1	0.91	0.14	94,94,94,94	1
6	NI	J	308	1/1	0.92	0.10	94,94,94,94	0
5	GOL	D	304	6/6	0.92	0.15	51,53,66,70	0
5	GOL	R	305	6/6	0.92	0.13	37,50,52,58	0
5	GOL	K	306	6/6	0.92	0.18	35,47,52,56	0
5	GOL	N	305	6/6	0.92	0.10	44,55,64,70	0
5	GOL	Н	308	6/6	0.92	0.16	32,49,50,65	0
3	1PE	K	301	10/16	0.92	0.15	42,56,59,60	0
5	GOL	D	301	6/6	0.92	0.13	32,49,58,66	0
5	GOL	Ι	309	6/6	0.93	0.12	33,35,41,42	6
6	NI	L	309	1/1	0.93	0.12	90,90,90,90	0
6	NI	D	307	1/1	0.94	0.11	99,99,99,99	0
6	NI	0	310	1/1	0.94	0.10	101,101,101,101	0
6	NI	Е	307	1/1	0.94	0.13	81,81,81,81	0
5	GOL	Е	306	6/6	0.94	0.11	39,51,57,62	0
6	NI	S	307	1/1	0.94	0.09	106,106,106,106	0
6	NI	F	308	1/1	0.94	0.10	104,104,104,104	0
6	NI	S	308	1/1	0.95	0.07	95,95,95,95	0
6	NI	0	309	1/1	0.96	0.08	110,110,110,110	0
6	NI	С	308	1/1	0.96	0.07	98,98,98,98	0
6	NI	Н	306	1/1	0.96	0.09	92,92,92,92	0
6	NI	Q	306	1/1	0.96	0.10	96,96,96,96	0
6	NI	Р	303	1/1	0.97	0.08	84,84,84,84	1
6	NI	N	306	1/1	0.97	0.06	89,89,89,89	0
6	NI	Ι	304	1/1	0.97	0.06	88,88,88,88	0
6	NI	Q	307	1/1	0.97	0.10	74,74,74,74	1
6	NI	D	306	1/1	0.98	0.06	77,77,77,77	0
6	NI	C	307	1/1	0.98	0.09	88,88,88,88	0
6	NI	S	309	1/1	0.98	0.06	109,109,109,109	0
6	NI	K	309	1/1	0.98	0.08	86,86,86,86	0

Continued from previous page...

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

