

wwPDB EM Validation Summary Report (i)

Sep 28, 2024 – 02:10 PM EDT

PDB ID	:	9BLN
EMDB ID	:	EMD-44671
Title	:	The structure of human Pdcd4 bound to the 40S-eIF4A-eIF3-eIF1 complex
Authors	:	Brito Querido, J.; Sokabe, M.; Diaz-Lopez, I.; Gordiyenko, Y.; Zuber, P.; Yifei,
		D.; Albacete-Albacete, L.; Ramakrishnan, V.; S Fraser, C.
Deposited on	:	2024-04-30
Resolution	:	3.90 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
Mogul	:	2022.3.0, CSD as543be (2022)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	Х	325	99%		•
2	U	661	85%	•	15%
3	3	218	98%		
4	4	357	68%	28%	
5	5	564	56% 57% 43%	2	
6	6	374	92%		• 6%
7	8	352	85%		10%
8	9	25	88%		8% •

Mol	Chain	Length	Quality of chain	
9	А	1719	- 74%	22% ••
10	В	158	• 86%	• 9%
11	С	263	97%	
12	D	194	89%	• 9%
13	E	143	• 97%	
14	F	59	- 78%	12% 8%
15	C	10/	10%	
10	G	194	82%	/% 11%
16	H	84	92% 5%	5% •
17	Ι	151	97%	••
18	J	130	98%	••
19	Κ	83	93%	5% •
20	L	293	• 74%	• 25%
21	М	135	••• 91%	6% •
22	N	295	6 9%	30%
23	0	264	76%	20%
20	P	151	700/	70/ 120/
24	1	115	/3%	7% 13%
20	Q	110	83%	• 14%
26	R	208	92%	• 5%
27	S	249	86%	6% 8%
28	Т	133	89%	5% 7%
29	V	204		5% 10%
30	W	113	67%	• 26%
31	Y	146	95%	• •
32	Z	243	<mark>6%</mark> 93%	• 5%
33	a	165	 56% •	40%

Continued from previous page...

Mol	Chain	Length	Quality of chain	
34	b	145	8% 74% 6% •	19%
35	с	317	94%	5% •
36	d	145	• 95%	
37	е	125	15% • 45%	
38	f	152	87%	6%•7%
39	h	119	9%	• 13%
40	i	56	95%	
41	k	156	12% 26% 7% 67%	
42	l	388	85%	• 11%
43	m	132	38%	6% 8%
44	n	69	90%	• 9%
45	0	320	27% 73%	
46	р	469	52% 68% 6%	26%
47	u	1382	24% 40% • 59%	
48	V	445	75% 84%	• 14%
49	х	548	72%	22%
50	У	913	21% 57% • 41%	

Continued from previous page...

2 Entry composition (i)

There are 55 unique types of molecules in this entry. The entry contains 104352 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Eukaryotic translation initiation factor 3 subunit I.

Mol	Chain	Residues	Atoms			AltConf	Trace	
1	Х	325	Total 1598	С 947	N 325	O 326	0	0

• Molecule 2 is a protein called Eukaryotic translation initiation factor 3 subunit B.

Mol	Chain	Residues	Atoms				AltConf	Trace
2	U	560	Total 2770	C 1650	N 560	O 560	0	0

• Molecule 3 is a protein called Eukaryotic translation initiation factor 3 subunit K.

Mol	Chain	Residues	Atoms				AltConf	Trace
3	3	213	Total 1057	C 631	N 213	O 213	0	0

• Molecule 4 is a protein called Eukaryotic translation initiation factor 3 subunit F.

Mol	Chain	Residues	Atoms				AltConf	Trace
4	4	257	Total 1272	C 757	N 257	O 258	0	0

• Molecule 5 is a protein called Eukaryotic translation initiation factor 3 subunit L.

Mol	Chain	Residues	Atoms				AltConf	Trace
F	н	210	Total	С	Ν	Ο	0	0
5	5	519	1581	943	319	319	0	0

• Molecule 6 is a protein called Eukaryotic translation initiation factor 3 subunit M.

Mol	Chain	Residues	Atoms				AltConf	Trace	
6	6	350	Total 1917	C 1159	N 376	O 380	${S \over 2}$	0	0

• Molecule 7 is a protein called Eukaryotic translation initiation factor 3 subunit H.

Mol	Chain	Residues		Ato	\mathbf{ms}		AltConf	Trace
7	8	317	Total 1571	C 936	N 317	O 318	0	0

• Molecule 8 is a protein called Small ribosomal subunit protein eS32.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
8	9	24	Total	С	Ν	0	\mathbf{S}	0	0
0	0	21	230	139	62	26	3	0	0

• Molecule 9 is a RNA chain called rRNA.

Mol	Chain	Residues		I	Atoms						
9	А	1672	Total 35720	C 15962	N 6403	0 11683	Р 1672	0	0		

• Molecule 10 is a protein called Small ribosomal subunit protein uS17.

Mol	Chain	Residues		At	oms	AltConf	Trace		
10	В	143	Total 1177	C 749	N 222	O 200	S 6	0	0

• Molecule 11 is a protein called Small ribosomal subunit protein eS4, X isoform.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	С	256	Total 2035	C 1302	N 378	0 347	S 8	0	0

• Molecule 12 is a protein called Small ribosomal subunit protein uS4.

Mol	Chain	Residues		At	oms	AltConf	Trace		
12	D	177	Total 1477	C 941	N 295	O 239	${S \over 2}$	0	0

• Molecule 13 is a protein called Small ribosomal subunit protein uS12.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	Е	140	Total 1087	C 687	N 215	0 182	${ m S} { m 3}$	0	0

• Molecule 14 is a protein called Small ribosomal subunit protein eS30.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
14	F	54	Total 424	C 262	N 92	O 69	S 1	0	0

• Molecule 15 is a protein called Small ribosomal subunit protein eS7.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	G	173	Total 1399	C 895	N 255	0 248	S 1	0	0

• Molecule 16 is a protein called Small ribosomal subunit protein eS27.

Mol	Chain	Residues		At	oms			AltConf	Trace
16	Н	81	Total 631	C 397	N 116	0 111	${f S}{7}$	0	0

• Molecule 17 is a protein called Small ribosomal subunit protein uS15.

Mol	Chain	Residues		At	oms			AltConf	Trace
17	Ι	150	Total 1208	C 773	N 229	O 205	S 1	0	0

• Molecule 18 is a protein called Small ribosomal subunit protein uS8.

Mol	Chain	Residues		At	oms	AltConf	Trace		
18	J	129	Total 1034	C 659	N 193	O 176	S 6	0	0

• Molecule 19 is a protein called Small ribosomal subunit protein eS21.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	K	81	Total 617	C 380	N 114	0 118	${ m S}{ m 5}$	0	0

• Molecule 20 is a protein called Small ribosomal subunit protein uS5.

Mol	Chain	Residues		At	AltConf	Trace			
20	L	220	Total 1707	C 1104	N 292	O 301	S 10	0	0

• Molecule 21 is a protein called Small ribosomal subunit protein eS17.

Mol	Chain	Residues		At	oms		AltConf	Trace	
21	М	131	Total 1064	C 668	N 198	O 194	$\frac{S}{4}$	0	0

• Molecule 22 is a protein called Small ribosomal subunit protein uS2.

Mol	Chain	Residues		Ate		AltConf	Trace		
22	Ν	207	Total 1633	C 1040	N 288	O 297	S 8	0	0

• Molecule 23 is a protein called Small ribosomal subunit protein eS1.

Mol	Chain	Residues		At	AltConf	Trace			
23	0	211	Total 1715	C 1088	N 307	O 306	S 14	0	0

• Molecule 24 is a protein called 40S ribosomal protein S14.

Mol	Chain	Residues		At	oms			AltConf	Trace
24	Р	131	Total 981	C 600	N 193	0 182	S 6	0	0

• Molecule 25 is a protein called Small ribosomal subunit protein eS26.

Mol	Chain	Residues		At	oms	AltConf	Trace		
25	Q	99	Total 792	C 492	N 165	O 130	${ m S}{ m 5}$	0	0

• Molecule 26 is a protein called Small ribosomal subunit protein eS8.

Mol	Chain	Residues		At		AltConf	Trace		
26	R	198	Total 1627	C 1021	N 322	O 279	${ m S}{ m 5}$	0	0

• Molecule 27 is a protein called Small ribosomal subunit protein eS6.

Mol	Chain	Residues	Atoms					AltConf	Trace
27	S	230	Total 1862	C 1164	N 371	O 320	S 7	0	0

• Molecule 28 is a protein called Small ribosomal subunit protein eS24.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	Т	124	Total 1011	C 640	N 198	O 168	${ m S}{ m 5}$	0	0

• Molecule 29 is a protein called Small ribosomal subunit protein uS7.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	V	184	Total 1461	C 914	N 276	0 264	${ m S} 7$	0	0

• Molecule 30 is a protein called Eukaryotic translation initiation factor 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
30	W	84	Total 683	C 434	N 124	0 123	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 31 is a protein called Small ribosomal subunit protein uS9.

Mol	Chain	Residues		At	oms	AltConf	Trace		
31	Y	141	Total 1124	C 715	N 212	0 194	${ m S} { m 3}$	0	0

• Molecule 32 is a protein called Small ribosomal subunit protein uS3.

Mol	Chain	Residues		At	oms			AltConf	Trace
32	Z	231	Total 1783	C 1135	N 321	0 319	S 8	0	0

• Molecule 33 is a protein called Small ribosomal subunit protein eS10.

Mol	Chain	Residues		At	oms	AltConf	Trace		
33	a	99	Total 834	С 544	N 149	0 135	S 6	0	0

• Molecule 34 is a protein called Small ribosomal subunit protein uS19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
34	b	118	Total 972	C 617	N 182	0 166	S 7	0	0

• Molecule 35 is a protein called Receptor of activated protein C kinase 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	с	313	Total 2436	C 1535	N 424	O 465	S 12	0	0

• Molecule 36 is a protein called Small ribosomal subunit protein eS19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
36	d	142	Total 1105	C 692	N 213	0 197	${ m S} { m 3}$	0	0

• Molecule 37 is a protein called Small ribosomal subunit protein eS25.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
37	е	69	Total 551	C 356	N 100	0 94	S 1	0	0

• Molecule 38 is a protein called Small ribosomal subunit protein uS13.

Mol	Chain	Residues		At	oms			AltConf	Trace
38	f	142	Total 1176	C 737	N 239	O 199	S 1	0	0

• Molecule 39 is a protein called Small ribosomal subunit protein uS10.

Mol	Chain	Residues		At	oms			AltConf	Trace
39	h	103	Total 817	C 511	N 155	0 147	S 4	0	0

• Molecule 40 is a protein called Small ribosomal subunit protein uS14.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
40	i	55	Total	С	Ν	Ο	\mathbf{S}	0	0
40			459	286	94	74	5	0	U

• Molecule 41 is a protein called Ubiquitin-40S ribosomal protein S27a.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
41	k	52	Total 429	С 271	N 82	O 69	${f S}{7}$	0	0

• Molecule 42 is a protein called Eukaryotic initiation factor 4A-I.

Mol	Chain	Residues		Ator	AltConf	Trace		
42	1	345	Total 1706	C 1016	N 345	O 345	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
1	19	MET	-	initiating methionine	UNP P60842

• Molecule 43 is a protein called Small ribosomal subunit protein eS12.

Mol	Chain	Residues	Atoms			AltConf	Trace		
43	m	122	Total 950	C 596	N 168	0 177	S 9	0	0

• Molecule 44 is a protein called Small ribosomal subunit protein eS28.

Mol	Chain	Residues	Atoms			AltConf	Trace		
44	n	63	Total 498	C 302	N 101	O 93	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 45 is a protein called Eukaryotic translation initiation factor 3 subunit G.

Mol	Chain	Residues	Atoms			AltConf	Trace	
45	О	85	Total 420	C 249	N 85	O 86	0	0

• Molecule 46 is a protein called Programmed cell death protein 4.

Mol	Chain	Residues	Atoms			AltConf	Trace	
46	р	346	Total 1839	C 1100	N 367	O 372	0	0

• Molecule 47 is a protein called Eukaryotic translation initiation factor 3 subunit A.

Mol	Chain	Residues	Atoms				AltConf	Trace	
47	u	572	Total 4708	C 2975	N 847	O 863	S 23	1	0

• Molecule 48 is a protein called Eukaryotic translation initiation factor 3 subunit E.

Mol	Chain	Residues	Atoms				AltConf	Trace	
48	V	384	Total 2635	C 1657	N 477	0 489	S 12	0	0

• Molecule 49 is a protein called Eukaryotic translation initiation factor 3 subunit D.

Mol	Chain	Residues	Atoms			AltConf	Trace	
49	х	428	Total 2121	C 1265	N 428	O 428	0	0

• Molecule 50 is a protein called Eukaryotic translation initiation factor 3 subunit C.

Mol	Chain	Residues	Atoms				AltConf	Trace	
50	У	535	Total 4325	C 2723	N 768	0 801	S 33	0	0

• Molecule 51 is MAGNESIUM ION (three-letter code: MG) (formula: Mg) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
51	А	87	Total Mg 87 87	0
51	f	1	Total Mg 1 1	0

• Molecule 52 is POTASSIUM ION (three-letter code: K) (formula: K) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
52	А	18	Total K 18 18	0
52	i	1	Total K 1 1	0

• Molecule 53 is SPERMIDINE (three-letter code: SPD) (formula: $C_7H_{19}N_3$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
53	А	1	Total C N 10 7 3	0

• Molecule 54 is ZINC ION (three-letter code: ZN) (formula: Zn) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
54	Q	1	Total Zn 1 1	0
54	i	1	Total Zn 1 1	0
54	k	1	Total Zn 1 1	0

• Molecule 55 is ACETIC ACID (three-letter code: ACY) (formula: $C_2H_4O_2$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
55	1	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 3 & 1 & 2 \end{array}$	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Eukaryotic translation initiation factor 3 subunit I

 \bullet Molecule 14: Small ribosomal subunit protein eS30

98%

93%

• Molecule 18: Small ribosomal subunit protein uS8

Chain J:

• Molecule 19: Small ribosomal subunit protein eS21

Chain K:

. .

5% •

• Molecule 20: Small ribosomal subunit protein uS5

Chain L:	74%	• 25%
MET ALA ASP ASP ALA ALA ALA ALA GLY GLY PPD	GLY GLY GLY GLY GLY GLY GLY ARG GLY ARG GLY ARG GLY ARG GLY ARG GLY ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	act arc arc arc arc arc arc arc arc arc arc
D104	VAL SER VAL CLIN CLIN ARG CLIN ALA ALA ALA ALA ALA ALA THR THR	
• Molecule 21:	Small ribosomal subunit protein $eS17$	
Chain M:	91%	6% ·
MET G2 843 943 M68 M68 M63	S70 S70 171 171 K72 894 B94 9 B101 10 B105 813 B132 9 R132 8 R132 9 PL0 10 VAL VAL	
• Molecule 22:	Small ribosomal subunit protein $uS2$	
Chain N:	69% .	30%
MET 82 16 168 8191 8191 8191	E208 1112 1112 1112 1112 112 112 112 112 11	THR THR GLN CLN CLN CLN CLN CLU CLU CLU CLU CLU CLU CLU CLU CLN SER SER SER SER
VAL PRO ILLE GLN GLN PHE PRO GLU ASP ASP	SERV GLIN CALA CALA CALA CALA CALA CALA ALA ALA A	
• Molecule 23:	Small ribosomal subunit protein eS1	
Chain O:	76%	• 20%
MET ALA VAL CLYS CLYS LYS LYS ASN LYS ARG ARG ARG ARG THR	GLY GLY CLY CLY CLY CLY CLY CLY CLY CLY CLY C	M113 K128 K167 L207 L207 G23 G233 G233 G17 G17 G17 SER SER SER SER SER SER SER SER
LYS ALA ALA THR GLY GLU GLU GLY GLY ALA VAL	ARG ARF ASP ASP ASP ASP ASP CLU PRO PRO CLU PRO CLU VAL	
• Molecule 24:	40S ribosomal protein S14	
Chain P:	79%	7% 13%
MET ALA ALA PRO ARG GLY CLYS CLYS CLYS CLU CLYS CLU CLYS	GLU GLU GLU CLU CLU CLU GLU GLU GLU GLU GLU GLU GLU GLU GLU G	R1 17 R1 21 D1 31 D1 31 D1 31 D1 31 D1 31 D1 33 D1 33 D1 33 D1 33 D1 33 D1 33 D1 31
• Molecule 25:	Small ribosomal subunit protein $eS26$	

D W I D E DATA BANK

• Molecule 31: Small ribosomal subunit protein uS9

Chain Y:	95% •••	
MET PRO SER LYS GLY P6 N29	E43 P44 R131 R146 R146	
• Molecule 3	2: Small ribosomal subunit protein uS3	
Chain Z:	9 3% • 5%	ı
M1 A2 E38 T44 K75	E81 E81 E89 R106 R106 R106 P215 P216 P216 P216 P216 P216 P216 P218 P219 P231 P219 P200 P200 P200 P200 P219 P218 P21	
• Molecule 3	3: Small ribosomal subunit protein eS10	
Chain a:	56% · 40%	1
M1 K6 N33 N39 M46	K63 K63 K65 K65 K65 K65 K65 K65 K65 K65 K65 K65	TYR ARG ARG SER ALA VAL PRO
PRO GLY ASP ASP LYS LYS ALA GLU ALA	ALA ALA ALA ALA ALA CLU PHE CLU PHE GLY ARG GLY ARG GLY PHE ARG GLY PHE CLN PRO GLN PRO GLN	
• Molecule 3	4: Small ribosomal subunit protein uS19	
Chain b:	74% 6% • 19%	
MET ALA GLU VAL CLU CLU CLU CLN CLN CLN CLYS	HRG PHE PHE PHE PHE PHE PHE PHE PHE PHE PHE	HIIN SIER SIER SIER ARG PHE PHE PLE LEU
LYS		
• Molecule 3	5: Receptor of activated protein C kinase 1	
Chain c:	13% 94% 5% •	1
MET T2 E3 R8 M30	P48 E48 E48 F15 P14 P14 F17 F13 F13 F13 F13 F13 F13 F13 F13	E223 6224 7228 1239 1239 1239 1238
L261	E273 V274 S276 S276 S278 S279 S279 K280 R294 A293 P294 A293 T303 T314 A1303 C17 T314 ARG	
• Molecule 3	6: Small ribosomal subunit protein eS19	
Chain d:	95%	1

• Molecule 45: Eukaryotic translation initiation factor 3 subunit G

• Molecule 47: Eukaryotic translation initiation factor 3 subunit A

Chain u:	24%		F	50%			
	40%	• •• •	· • • • •	• • • • • •	*** * * *	** *	
M1 P2 A3 Y4 D33 D33 H40	W43 Q44 K45 P49 R62	E69 G70 L71 Q80 V81 K84 K84 K81 B91	K95 K95 E102 A103 A104 E106 E106	E107 S108 0109 1114 1115 E115 D117 L118 D119 D119	N120 1121 0122 7123 P124 A131 V132 S133	D139 R140 E155	
				24 29 29 29 29 29 29 20 20 20 20 20 20 20 20 20 20 20 20 20	a a a a a a a a a a a a a a a a a a a		
		R2 H2 N2 N2 N2 N2 N2 N2 N2 N2 N2 N2 N2 N2 N2	72 72 72 72 72 72 72 72 72 72 72 72 72 7		M2 622 621 621 122 122 122	522 522 522 522 522 522 522 522 522 522	
K264 K265 P265 P267 K268 P269 Q270 L271 L271 L271	Y276 N277 K278 K278 F283 W284	A289 A289 L290 A293 S294 T295	L296 H297 R298 L299 Y300 H301 L302 S303	R304 E305 M306 R307 K307 K308 N309 L310 L310 C312 Q312	D313 E314 M315 Q316 R315 R317 M318 S319 S319 R321 R321	V322 L323 L324 A325 A325 L327 S328 L327 S328 T329 P330	
•••••	•••••	••••	••• ••••	• •••• ••	•••••	•• •• ••••	•
I 331 T 322 P 333 E 334 E 334 R 335 T 336 D 337	R340 L341 L342 D343 M344 D345 G346 G346 I347	1348 V349 E350 E350 Q352 R353 R354 R354 L355	A356 T357 L358 L358 C350 C360 C361 C362 A363	P364 P365 T366 R367 1368 G369 C369 L370 L371 N372	D373 M374 V375 R376 F377 V378 V378 V378 V379 V379 V379 V379	Y382 V383 V384 V384 P385 P385 V387 V387 V382 L390 Y391	
392 393 396 396 397 397 399	400 402 403 405 406 406 406		416 417 418 419 421 421	423 1225 1226 121 121 121 131 131	1334 1355 137 133 139 141 141 141	443 444 445 449 450 451 451	154
		>+ 2 > 1 2 > 2 2 > 2		à à ở ở ở ở à ở à			R
L455 T456 S457 L458 V459 P460 F461 V462	D463 A464 F465 Q466 L467 E468 R469 A470	1471 V472 D473 A475 A475 R475 H477 L480	0481 0481 8483 1484 0485 1485 1485 7487	7400 7490 1491 1491 5492 6494 6495 5495 1495	N498 Y499 A500 T501 R502 E503 E503 A505	P506 1507 6508 P509 H510 L511 0512 S513 M514	Lato
•••••	******	•••••	•••••	******		•••••	
S516 E517 E517 Q518 1519 1519 R520 R520 N521 L523 L523	4525 4525 M526 M526 S527 S527 S528 V529 V529 L530 A531	K532 A533 L534 E535 E535 V536 K538 K538 K539	A540 H541 1542 1542 L543 Q544 E545 K547	E548 (5549 (5549 (5551 (5551 (5551 (5553) (5554) (5	A556 Y557 L558 L558 K559 N560 S561 R562 R562 K563 E564	H565 Q566 R567 L568 L569 A570 R571 R571 R571 R572 CLN	ILE
GLU GLU ARG LYS GLU GLU GLU SER LEU SER SER	LEU GLU GLU GLU GLU GLU GLU GLU	GLN ARG GLU GLU GLU CLEU GLN CLEU CLEU CLEU CLEU CLEU CLEU CLEU	ATA ALA GLU GLU ARG CLN GLN	ALA LYS GLU GLU GLU GLU ILE ILEU GLN	HIS GLU CLVS LYS LYS LYS THR		
VAL ARG GLU ARG LLU GLU GLU GLU CLE LVS LVS LVS THR	GLU GLV GLY ALA LYS ALA ALA LYS LYS ASP	ILE ASP ILE GLU GLU GLU GLU LEU ASP	PRU ASP PHE ILE MET ALA CLN GLN GLU	GLU GLU GLU GLU GLU GLU GLU GLU GLU GLU	LEU LYS ASN GLN CLN LYS LYS LYS LYS ILE		
ASP TYR PHE GLU ARG ALA ALA ARG CLU GLU	LLE PRO LLEU LYS SER ALA TYR GLU	GLU GLN CLN ARG ILE LYS ASP ASP ASP LEU LEU TRP	GLN GLN GLU GLU GLU ARG ARG THR THR	MET ALN GLN GLU GLU CLYS GLU LLY ALA LLEU HIS HIS	ALL ARG MET SER MET ARG MET LEU GLU		
ASP ARG ASP LEU PHE PHE VAL ARG ARG ALA	ALA ARG GLN SER VAL TYR GLU GLU LYS	LEU LYS GLN GLU GLU GLU ARG ALA ALA	GLU ARG ASN ARG GLU GLU ARG	ARG GLN GLU GLU GLU ARG TTRR TTR TTR	A RRG GLU CYS GLU GLU GLU GLU GLU		
ARG ARG GLU GLU GLU MET MET LEU LLEU CLU ARG	GLU GLU GLU GLU ARG GLU ALA ARG ALA	LYS ARG GLU GLU GLU GLU LLEU ARG GLU GLU	GLU VAL LYS LYS GLU GLU GLU GLU GLU	ARG LYS ARG GLN ARG GLU LEU TILE TILE	ARG GLU ARG ARG GLU GLU GLU GLU		
LRG LRG JLLY SER SER KRG YS XRG	ASP ASP ASP ASP ASP ASP SER SER	HLU HLY THR THR TRP TRP TRP TRP TRP TRD TRD TLLY TLLY TLLY TLLY TLLY TLLY TLLY TLL	ASP SER TRP TRP TRC TRC TRC TRC TRC TRC TRC TRC TRC TRC	AS HILU RRP ALLU ALLU ALLU ALLU ALLU ALLU ALLU ALL	LRG LRG LRG LRG LRG LRG LLU		
	A P A F S A F S A S A S A S A S A S A S A S	A A A A A A A A A A A A A A A A A A A		A A G A A G A A A A A A A A A A A A A A			
ARC PRC PRC PRC ARC ARC ARC ARC ARC ARC ARC	ALA ARG ARG ARG ALA ALA ASP ASP ASP	ARG PRC PRC ARG GLY ASP GLY ASP	ALLA SEF TRF ARC ARC ARC ACP GLU	ARG PRC ARG ARG ARG ASP ASP ASP ASP	PRC ARC GLY GLY ALA ALA ASP ASP		
GLU ARG SER SER TRP ARG ASP ASP ASP	ACC GLY PRO ARG ARG GLY LEU ASP ASP	ASP ARG GLY PRO ARG ARG GLY MET ASP ASP	ASP ARG GLY ARG ARG GLY MET ASP ASP	ASP ARG GLY PRO ARG GLY MET ASP ASP	ARG GLY ARG ARG GLY LEU ASP ASP		

[•] Molecule 49: Eukaryotic translation initiation factor 3 subunit D

GLN GLN SER GLN THR ALA TYR

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	8515	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	25	Depositor
Minimum defocus (nm)	1200	Depositor
Maximum defocus (nm)	3000	Depositor
Magnification	Not provided	
Image detector	GATAN K3 BIOCONTINUUM (6k x 4k)	Depositor
Maximum map value	0.074	Depositor
Minimum map value	-0.022	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.003	Depositor
Recommended contour level	0.015	Depositor
Map size (Å)	410.0, 410.0, 410.0	wwPDB
Map dimensions	400, 400, 400	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.025, 1.025, 1.025	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: 6MZ, ZN, MA6, UR3, OMU, MG, K, OMC, 4AC, JMH, 5MC, SPD, PSU, OMG, A2M, 5MU, ACY

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
1	Х	0.37	0/1597	0.76	0/2216	
2	U	0.39	0/2768	0.71	0/3854	
3	3	0.23	0/1055	0.39	0/1469	
4	4	0.24	0/1269	0.45	0/1762	
5	5	0.23	0/1575	0.38	0/2187	
6	6	0.26	0/1926	0.51	0/2669	
7	8	0.24	0/1569	0.43	0/2183	
8	9	0.36	0/231	1.14	2/294~(0.7%)	
9	А	0.53	0/39097	0.91	55/60929~(0.1%)	
10	В	0.36	0/1197	0.67	0/1599	
11	С	0.34	0/2077	0.66	0/2796	
12	D	0.36	0/1502	0.78	1/2008~(0.0%)	
13	Ε	0.32	0/1105	0.65	0/1476	
14	F	0.42	0/429	0.76	0/566	
15	G	0.33	0/1420	0.72	1/1901~(0.1%)	
16	Н	0.36	0/644	0.64	0/864	
17	Ι	0.32	0/1232	0.65	0/1656	
18	J	0.31	0/1051	0.63	0/1406	
19	Κ	0.35	0/623	0.73	1/833~(0.1%)	
20	L	0.36	0/1743	0.68	2/2354~(0.1%)	
21	М	0.33	0/1078	0.76	2/1447~(0.1%)	
22	Ν	0.31	0/1670	0.63	0/2271	
23	0	0.34	0/1742	0.68	0/2330	
24	Р	0.36	0/993	0.80	1/1330~(0.1%)	
25	Q	0.32	0/805	0.73	0/1079	
26	R	0.33	0/1654	0.68	0/2203	
27	S	0.32	0/1885	0.75	2/2510~(0.1%)	
28	Т	0.34	0/1028	0.74	0/1366	
29	V	0.34	0/1481	0.72	$\overline{1/1988}~(0.1\%)$	
30	W	0.33	0/693	0.69	0/925	
31	Y	0.32	0/1142	0.70	0/1528	

Mol Chain		Bond lengths		Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
32	Ζ	0.33	0/1811	0.66	0/2438	
33	a	0.43	0/859	0.80	0/1159	
34	b	0.39	0/991	0.86	3/1325~(0.2%)	
35	с	0.32	0/2493	0.68	0/3394	
36	d	0.31	0/1123	0.66	0/1504	
37	е	0.38	0/557	0.83	0/748	
38	f	0.33	0/1194	0.76	0/1599	
39	h	0.31	0/827	0.74	0/1110	
40	i	0.37	0/470	0.80	1/623~(0.2%)	
41	k	0.38	0/438	0.70	0/580	
42	1	0.64	0/1700	0.77	1/2359~(0.0%)	
43	m	0.34	0/960	0.81	1/1286~(0.1%)	
44	n	0.34	0/500	0.84	0/669	
45	0	0.38	0/419	0.71	0/580	
46	р	0.59	0/1834	0.70	0/2517	
47	u	0.33	0/4800	0.70	3/6488~(0.0%)	
48	V	0.32	0/2672	0.64	0/3647	
49	X	0.25	0/2118	0.53	0/2949	
50	У	0.32	0/4400	0.70	3/5939~(0.1%)	
All	All	0.42	0/108447	0.78	80/154913~(0.1%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
16	Н	0	1
24	Р	0	1
46	р	0	2
All	All	0	4

There are no bond length outliers.

The worst 5 of 80 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	А	550	С	O3'-P-O5'	-19.93	66.12	104.00
9	А	550	С	OP1-P-O3'	12.09	131.80	105.20
9	А	549	С	P-O3'-C3'	-11.43	105.98	119.70
9	А	545	А	P-O3'-C3'	-10.28	107.36	119.70
9	А	536	А	P-O3'-C3'	-10.10	107.59	119.70

There are no chirality outliers.

All (4) planarity outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Group
16	Н	72	ARG	Sidechain
24	Р	137	SER	Peptide
46	р	286	VAL	Peptide
46	р	316	GLY	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	Х	323/325~(99%)	311~(96%)	9(3%)	3~(1%)	14	48
2	U	556/661~(84%)	519~(93%)	25~(4%)	12 (2%)	5	32
3	3	209/218~(96%)	203~(97%)	6 (3%)	0	100	100
4	4	251/357~(70%)	231~(92%)	20 (8%)	0	100	100
5	5	307/564~(54%)	294 (96%)	13 (4%)	0	100	100
6	6	348/374~(93%)	303 (87%)	45 (13%)	0	100	100
7	8	313/352~(89%)	285~(91%)	28 (9%)	0	100	100
8	9	22/25~(88%)	22 (100%)	0	0	100	100
10	В	139/158~(88%)	136~(98%)	3 (2%)	0	100	100
11	С	254/263~(97%)	250~(98%)	4 (2%)	0	100	100
12	D	175/194~(90%)	172 (98%)	3 (2%)	0	100	100
13	Е	138/143~(96%)	134 (97%)	4 (3%)	0	100	100
14	F	52/59~(88%)	45 (86%)	3 (6%)	4 (8%)	1	12

$\alpha \cdot \cdot \cdot$	C		
Continued	trom	previous	page
• • • • • • • • • • • •	J	<i>r</i> · · · · · · · · · · · · · · · · · · ·	r -g

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
15	G	169/194~(87%)	166 (98%)	3 (2%)	0	100	100
16	Н	79/84~(94%)	75 (95%)	4(5%)	0	100	100
17	Ι	148/151~(98%)	146 (99%)	2(1%)	0	100	100
18	J	127/130~(98%)	121 (95%)	6 (5%)	0	100	100
19	K	79/83~(95%)	78~(99%)	1 (1%)	0	100	100
20	L	218/293~(74%)	214 (98%)	4 (2%)	0	100	100
21	М	129/135~(96%)	124 (96%)	5 (4%)	0	100	100
22	Ν	205/295~(70%)	203 (99%)	2 (1%)	0	100	100
23	Ο	209/264~(79%)	205~(98%)	4 (2%)	0	100	100
24	Р	129/151~(85%)	126 (98%)	3(2%)	0	100	100
25	Q	97/115~(84%)	96 (99%)	1 (1%)	0	100	100
26	R	194/208~(93%)	191 (98%)	3 (2%)	0	100	100
27	S	228/249~(92%)	223 (98%)	5 (2%)	0	100	100
28	Т	122/133~(92%)	120 (98%)	2 (2%)	0	100	100
29	V	180/204~(88%)	169 (94%)	11 (6%)	0	100	100
30	W	82/113~(73%)	78 (95%)	4 (5%)	0	100	100
31	Y	139/146~(95%)	132 (95%)	7 (5%)	0	100	100
32	Ζ	229/243~(94%)	218 (95%)	9 (4%)	2(1%)	14	48
33	a	97/165~(59%)	94 (97%)	3~(3%)	0	100	100
34	b	116/145~(80%)	113 (97%)	3~(3%)	0	100	100
35	с	311/317~(98%)	288~(93%)	23~(7%)	0	100	100
36	d	140/145~(97%)	134 (96%)	6 (4%)	0	100	100
37	е	67/125~(54%)	65 (97%)	2(3%)	0	100	100
38	f	140/152~(92%)	131 (94%)	8 (6%)	1 (1%)	19	54
39	h	101/119~(85%)	93~(92%)	8 (8%)	0	100	100
40	i	53/56~(95%)	52 (98%)	1 (2%)	0	100	100
41	k	48/156~(31%)	43 (90%)	5 (10%)	0	100	100
42	1	$333/388~(\overline{86\%})$	$288 \ (86\%)$	32 (10%)	13 (4%)	2	22
43	m	120/132~(91%)	110 (92%)	10 (8%)	0	100	100
44	n	$61/69~(8\overline{8\%})$	60 (98%)	1 (2%)	0	100	100
45	О	83/320~(26%)	80 (96%)	3 (4%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
46	р	340/469~(72%)	258~(76%)	64 (19%)	18~(5%)	1	18
47	u	571/1382~(41%)	529~(93%)	42~(7%)	0	100	100
48	v	380/445~(85%)	338~(89%)	42 (11%)	0	100	100
49	х	422/548~(77%)	401 (95%)	21 (5%)	0	100	100
50	У	531/913~(58%)	507~(96%)	24~(4%)	0	100	100
All	All	9764/12930 (76%)	9174 (94%)	537 (6%)	53(0%)	27	60

Continued from previous page...

5 of 53 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
2	U	380	THR
42	l	27	TRP
46	р	155	VAL
46	р	158	PRO
2	U	395	ARG

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
6	6	49/335~(15%)	47 (96%)	2(4%)	26 50		
8	9	23/24~(96%)	22~(96%)	1 (4%)	25 49		
10	В	130/142~(92%)	123~(95%)	7 (5%)	18 44		
11	С	220/225~(98%)	218 (99%)	2(1%)	75 83		
12	D	158/168~(94%)	154 (98%)	4 (2%)	42 62		
13	Ε	112/115~(97%)	110 (98%)	2(2%)	54 71		
14	F	42/48~(88%)	37~(88%)	5(12%)	4 20		
15	G	155/174~(89%)	142 (92%)	13 (8%)	9 32		
16	Η	73/76~(96%)	70~(96%)	3(4%)	26 50		
17	Ι	130/131~(99%)	127 (98%)	3 (2%)	45 64		
18	J	112/113~(99%)	110 (98%)	2(2%)	54 71		

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
19	Κ	65/67~(97%)	62~(95%)	3~(5%)	23	47
20	L	186/225~(83%)	185 (100%)	1 (0%)	86	90
21	М	119/122~(98%)	113 (95%)	6 (5%)	20	45
22	Ν	173/243 (71%)	169 (98%)	4 (2%)	45	64
23	Ο	192/231~(83%)	182 (95%)	10 (5%)	19	45
24	Р	102/119~(86%)	93 (91%)	9 (9%)	8	29
25	Q	86/98~(88%)	82 (95%)	4 (5%)	22	47
26	R	172/180~(96%)	166 (96%)	6 (4%)	31	54
27	S	200/218~(92%)	186 (93%)	14 (7%)	12	36
28	Т	107/115~(93%)	101 (94%)	6 (6%)	17	43
29	V	156/170~(92%)	147 (94%)	9 (6%)	17	42
30	W	73/96~(76%)	69 (94%)	4 (6%)	18	44
31	Y	117/121~(97%)	115 (98%)	2(2%)	56	72
32	Ζ	190/202~(94%)	186 (98%)	4 (2%)	48	67
33	a	90/136~(66%)	84 (93%)	6~(7%)	13	38
34	b	106/130~(82%)	96 (91%)	10 (9%)	7	26
35	с	272/275~(99%)	257 (94%)	15 (6%)	18	44
36	d	112/115~(97%)	108 (96%)	4 (4%)	30	54
37	е	61/103~(59%)	57~(93%)	4 (7%)	14	38
38	f	123/132~(93%)	113 (92%)	10 (8%)	9	33
39	h	94/107~(88%)	90~(96%)	4 (4%)	25	49
40	i	48/49~(98%)	47 (98%)	1 (2%)	48	67
41	k	46/140 (33%)	35 (76%)	11 (24%)	0	4
43	m	104/108~(96%)	97~(93%)	7 (7%)	13	38
44	n	56/62~(90%)	55 (98%)	1 (2%)	54	71
46	р	38/395~(10%)	29 (76%)	9 (24%)	0	4
47	u	526/1259~(42%)	509~(97%)	17 (3%)	34	56
48	V	$\overline{206/406}~(51\%)$	194 (94%)	12 (6%)	17	42
50	У	473/811 (58%)	464 (98%)	9 (2%)	52	70
All	All	5497/7986~(69%)	5251 (96%)	246 (4%)	26	48

 $5~{\rm of}~246$ residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
29	V	193	LYS
47	u	377	PHE
35	с	60	ARG
47	u	351	LYS
48	V	393	MET

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 6 such sidechains are listed below:

Mol	Chain	Res	Type
46	р	142	ASN
48	V	241	GLN
50	у	415	ASN
44	n	7	GLN
23	0	202	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
9	A	1660/1719~(96%)	357~(21%)	19 (1%)

5 of 357 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
9	А	17	С
9	А	33	G
9	А	46	А
9	А	53	С
9	А	56	G

5 of 19 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
9	А	1114	U
9	А	1751	С
9	А	1781	А
9	А	1605	G
9	А	535	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

34 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Link	B	Bond lengths		Bond angles		
MOI	туре	Ullalli	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
9	OMG	А	601	9	19,26,27	2.44	8 (42%)	21,38,41	1.62	5 (23%)
9	PSU	А	612	9,51	18,21,22	4.46	8 (44%)	21,30,33	2.04	6 (28%)
9	4AC	А	1842	9	21,24,25	3.11	10 (47%)	28,34,37	1.14	4 (14%)
9	PSU	А	1081	9	18,21,22	4.49	8 (44%)	21,30,33	2.12	5 (23%)
9	OMG	А	1328	52,9	19,26,27	2.46	8 (42%)	21,38,41	1.58	5 (23%)
9	JMH	А	1219	9,51	18,22,23	2.71	6 (33%)	23,32,35	0.95	2 (8%)
9	PSU	А	822	9	18,21,22	4.48	8 (44%)	21,30,33	2.04	6 (28%)
9	4AC	А	1337	9	21,24,25	3.15	10 (47%)	28,34,37	1.92	6 (21%)
9	OMG	А	1490	9,51	$19,\!26,\!27$	2.43	8 (42%)	21,38,41	1.45	4 (19%)
9	A2M	А	27	9,51	$18,\!25,\!26$	4.40	6 (33%)	20,36,39	2.34	6 (30%)
9	PSU	А	1243	9	18,21,22	4.44	7 (38%)	21,30,33	2.00	5 (23%)
9	5MC	А	1374	9	19,22,23	3.91	8 (42%)	26,32,35	1.02	2 (7%)
9	OMU	А	121	9	$19,\!22,\!23$	3.23	8 (42%)	25,31,34	1.81	5 (20%)
9	OMC	А	1703	9	$19,\!22,\!23$	3.06	8 (42%)	25,31,34	0.73	0
9	OMG	А	683	9	$19,\!26,\!27$	2.45	8 (42%)	21,38,41	1.57	4 (19%)
9	OMU	А	116	9	$19,\!22,\!23$	3.22	8 (42%)	25,31,34	1.74	5 (20%)
9	OMC	А	517	9	$19,\!22,\!23$	3.03	8 (42%)	$25,\!31,\!34$	0.78	0
9	OMC	А	174	9,51	$19,\!22,\!23$	3.10	8 (42%)	25,31,34	0.78	0
9	UR3	А	1830	9	$19,\!22,\!23$	3.05	8 (42%)	26,32,35	1.69	3 (11%)
9	PSU	А	119	9	18,21,22	4.53	7 (38%)	21,30,33	1.90	4 (19%)
9	6MZ	А	1832	$52,\!9,\!51$	$17,\!25,\!26$	1.49	3 (17%)	$15,\!36,\!39$	2.67	3 (20%)
9	A2M	А	484	9	18,25,26	4.31	7 (38%)	20,36,39	2.28	5(25%)
9	PSU	А	823	9	18,21,22	4.46	7 (38%)	21,30,33	1.92	5 (23%)
9	A2M	А	166	9	18,25,26	4.56	7 (38%)	20,36,39	2.71	7(35%)
9	OMG	А	509	9,51	$19,\!26,\!27$	2.42	8 (42%)	21,38,41	1.53	4 (19%)
9	5MU	А	814	9	$19,\!22,\!23$	0.51	0	27,32,35	0.82	1 (3%)

Mal	Turne	Chain	Dec	Tink	B	ond leng	gths	B	ond ang	gles
WIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
9	A2M	А	99	9,51	18,25,26	4.42	6 (33%)	20,36,39	2.38	6 (30%)
9	A2M	А	159	9	18,25,26	4.46	7 (38%)	20,36,39	2.35	4 (20%)
9	OMG	А	644	9	19,26,27	2.41	8 (42%)	21,38,41	1.62	5 (23%)
9	A2M	А	1678	9	18,25,26	4.45	7 (38%)	20,36,39	2.40	5 (25%)
9	A2M	А	1031	9	18,25,26	4.43	7 (38%)	20,36,39	2.39	<mark>6 (30%)</mark>
9	MA6	А	1850	9	19,26,27	1.54	2 (10%)	18,38,41	4.19	4 (22%)
9	A2M	А	668	9,51	18,25,26	4.30	6 (33%)	20,36,39	2.44	7 (35%)
9	MA6	А	1851	9	19,26,27	1.62	3 (15%)	18,38,41	4.11	5 (27%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	\mathbf{Res}	Link	Chirals	Torsions	Rings
9	OMG	А	601	9	-	0/5/27/28	0/3/3/3
9	PSU	А	612	9,51	-	0/7/25/26	0/2/2/2
9	4AC	А	1842	9	-	0/11/29/30	0/2/2/2
9	PSU	А	1081	9	-	1/7/25/26	0/2/2/2
9	OMG	А	1328	52,9	-	0/5/27/28	0/3/3/3
9	JMH	А	1219	9,51	-	2/7/25/26	0/2/2/2
9	PSU	А	822	9	-	2/7/25/26	0/2/2/2
9	4AC	А	1337	9	-	2/11/29/30	0/2/2/2
9	OMG	А	1490	9,51	-	1/5/27/28	0/3/3/3
9	A2M	А	27	9,51	-	0/5/27/28	0/3/3/3
9	PSU	А	1243	9	-	0/7/25/26	0/2/2/2
9	5MC	А	1374	9	-	0/7/25/26	0/2/2/2
9	OMU	А	121	9	-	0/9/27/28	0/2/2/2
9	OMC	А	1703	9	-	1/9/27/28	0/2/2/2
9	OMG	А	683	9	-	2/5/27/28	0/3/3/3
9	OMU	А	116	9	-	0/9/27/28	0/2/2/2
9	OMC	А	517	9	-	0/9/27/28	0/2/2/2
9	OMC	А	174	9,51	-	3/9/27/28	0/2/2/2
9	UR3	А	1830	9	-	0/7/25/26	0/2/2/2
9	PSU	А	119	9	-	0/7/25/26	0/2/2/2
9	6MZ	А	1832	52,9,51	-	2/5/27/28	0/3/3/3
9	A2M	A	484	9	-	0/5/27/28	0/3/3/3
9	PSU	А	823	9	-	2/7/25/26	0/2/2/2
9	A2M	А	166	9	-	2/5/27/28	0/3/3/3

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
9	OMG	А	509	9,51	-	0/5/27/28	0/3/3/3
9	5MU	А	814	9	-	0/7/25/26	0/2/2/2
9	A2M	А	99	9,51	-	2/5/27/28	0/3/3/3
9	A2M	А	159	9	-	2/5/27/28	0/3/3/3
9	OMG	А	644	9	-	1/5/27/28	0/3/3/3
9	A2M	А	1678	9	-	0/5/27/28	0/3/3/3
9	A2M	А	1031	9	-	0/5/27/28	0/3/3/3
9	MA6	А	1850	9	-	1/7/29/30	0/3/3/3
9	A2M	А	668	9,51	-	2/5/27/28	0/3/3/3
9	MA6	А	1851	9	-	3/7/29/30	0/3/3/3

Continued from previous page...

The worst 5 of 236 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
9	А	166	A2M	O4'-C1'	16.80	1.62	1.40
9	А	159	A2M	O4'-C1'	16.29	1.62	1.40
9	А	1031	A2M	O4'-C1'	16.24	1.62	1.40
9	А	99	A2M	O4'-C1'	16.23	1.62	1.40
9	А	1678	A2M	O4'-C1'	16.19	1.62	1.40

The worst 5 of 144 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	А	1851	MA6	N1-C6-N6	-11.90	103.08	116.83
9	А	1850	MA6	N1-C6-N6	-11.23	103.86	116.83
9	А	1850	MA6	C1'-N9-C4	10.82	145.66	126.64
9	А	1851	MA6	C1'-N9-C4	10.08	144.35	126.64
9	А	1337	4AC	CM7-C7-N4	6.93	126.46	115.27

There are no chirality outliers.

5 of 31 torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
9	А	166	A2M	O4'-C4'-C5'-O5'
9	А	683	OMG	O4'-C4'-C5'-O5'
9	А	823	PSU	O4'-C1'-C5-C4
9	А	823	PSU	O4'-C1'-C5-C6
9	А	1219	JMH	O4'-C4'-C5'-O5'

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 112 ligands modelled in this entry, 110 are monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Tuno	Chain	Dec	Tink	Bond lengths			Bond angles		
INIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
53	SPD	А	2005	-	9,9,9	0.33	0	8,8,8	0.52	0
55	ACY	1	501	-	2,2,3	0.67	0	$1,\!1,\!3$	0.14	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
53	SPD	А	2005	-	-	2/7/7/7	-

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (2) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
53	А	2005	SPD	N6-C7-C8-C9
53	А	2005	SPD	C8-C7-N6-C5

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
9	А	2
46	р	2

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	А	225:G	O3'	287:U	Р	8.10
1	А	1219:JMH	O3'	1220:A	Р	3.00
1	р	185:ALA	С	186:GLU	Ν	2.09
1	р	195:GLU	С	196:MSE	Ν	1.86

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-44671. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 200

Y Index: 200

Z Index: 200

6.2.2 Raw map

X Index: 200

Y Index: 200

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 190

Z Index: 219

6.3.2 Raw map

X Index: 203

Y Index: 188

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.015. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

emd_44671_msk_1.map (i) 6.6.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 809 nm^3 ; this corresponds to an approximate mass of 730 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.256 ${\rm \AA}^{-1}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.256 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estim	Estimation criterion (FSC cut-off)				
Resolution estimate (A)	0.143	0.5	Half-bit			
Reported by author	3.90	-	-			
Author-provided FSC curve	-	-	-			
Unmasked-calculated*	6.78	11.82	7.58			

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 6.78 differs from the reported value 3.9 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-44671 and PDB model 9BLN. Per-residue inclusion information can be found in section 3 on page 15.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.015 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.015).

9.4 Atom inclusion (i)

At the recommended contour level, 63% of all backbone atoms, 66% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.015) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.6640	0.3280
3	0.0170	0.0040
4	0.1080	0.0320
5	0.0510	0.0200
6	0.0770	0.0210
8	0.1150	0.0260
9	0.7890	0.4180
А	0.9350	0.4560
В	0.8560	0.4670
\mathbf{C}	0.8700	0.4920
D	0.8550	0.4980
E	0.8740	0.4990
F	0.7800	0.4310
G	0.6990	0.3600
Н	0.7880	0.4350
Ι	0.8200	0.4460
J	0.8770	0.5070
Κ	0.8560	0.4770
L	0.8500	0.4980
М	0.7580	0.4070
Ν	0.8510	0.4890
О	0.7610	0.4050
Р	0.7870	0.4320
Q	0.8620	0.4760
R	0.7950	0.3880
S	0.7460	0.3510
Т	0.8400	0.4630
U	0.0170	0.0290
V	0.7400	0.3540
W	0.1070	0.1470
Х	0.0020	-0.0050
Y	0.8060	0.4210
Z	0.7900	0.4320
a	0.7720	0.3970
b	0.6680	0.3400

Chain	Atom inclusion	Q-score
С	0.6590	0.2950
d	0.7930	0.3910
е	0.5540	0.2740
f	0.6440	0.3040
h	0.7310	0.3730
i	0.8870	0.4900
k	0.5380	0.2230
1	0.1420	0.0080
m	0.4130	0.1710
n	0.6380	0.3120
0	0.7290	0.2790
р	0.3250	0.1470
u	0.3650	0.1420
V	0.1870	0.0450
X	0.0710	0.0040
y	0.4950	0.1860

Continued from previous page...

