Full wwPDB/EMDataBank EM Map/Model Validation Report

PDB ID : 6BUA
EMDB ID: EMD-7291
Title : Drosophila Dicer-2 apo homology model (helicase, Platform-PAZ, RNaseIII domains)
Authors : Shen, P.S.; Sinha, N.K.; Bass, B.L.
Deposited on : 2017-12-09
Resolution : 7.10 Å (reported)

MolProbity : 4.02b-467
Percentile statistics : 20171227.v01 (using entries in the PDB archive December 27th 2017)
Ideal geometry (proteins) : Engh & Huber (2001)
Ideal geometry (DNA, RNA) : Parkinson et. al. (1996)
Validation Pipeline (wwPDB-VP) : 2.4
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

ELECTRON MICROSCOPY

The reported resolution of this entry is 7.10 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>EM structures (#Entries)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clashscore</td>
<td>136327</td>
<td>1886</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>132723</td>
<td>1663</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains. The red, orange, yellow and green segments on the bar indicate the fraction of residues that contain outliers for ≥ 3, 2, 1 and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq 5\%$

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>1724</td>
<td>54%</td>
</tr>
</tbody>
</table>
2 Entry composition

There is only 1 type of molecule in this entry. The entry contains 4670 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called Dicer-2, isoform A.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>942</td>
<td>Total C N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4670 2786 942 942</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are 4 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-1</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A1ZAW0</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>PRO</td>
<td>-</td>
<td>expression tag</td>
<td>UNP A1ZAW0</td>
</tr>
<tr>
<td>A</td>
<td>1217</td>
<td>ALA</td>
<td>ASP</td>
<td>conflict</td>
<td>UNP A1ZAW0</td>
</tr>
<tr>
<td>A</td>
<td>1476</td>
<td>ALA</td>
<td>ASP</td>
<td>conflict</td>
<td>UNP A1ZAW0</td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: Dicer-2, isoform A

Chain A:
THR
ASN
VAL
ASP
VAL
PRO
LYS
ALA
LEU
GLY
ASP
VAL
LEU
GLU
ALA
LEU
ILE
ALA
ALA
VAL
TYR
LEU
ASP
CYS
ARG
ASP
LEU
GLN
ARG
THR
TRP
GLU
VAL
ILE
PHE
ASN
LEU
PHE
GLU
PRO
GLU
LEU
GLN
GLU
PHE
THR
ARG
LYS
VAL
PRO
ILE
ASN
HIS
ILE
ARG
GLN
LEU
VAL
GLU
HIS
LYS
HIS
ALA
LYS
PRO
VAL
PHE
SER
SER
PRO
ILE
VAL
GLU
GLY
GLU
THR
VAL
MET
VAL
SER
CYS
GLN
PHE
THR
CYS
MET
GLU
LYS
THR
ILE
LYS
VAL
TYR
GLY
PHE
GLY
SER
ASN
LYS
ASP
GLN
ALA
LYS
LEU
SER
ALA
ALA
LYS
HIS
ALA
LEU
GLN
GLN
LEU
SER
LYS
CYS
ASP
ALA
Experimental information

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reconstruction method</td>
<td>SINGLE PARTICLE</td>
<td>Depositor</td>
</tr>
<tr>
<td>Imposed symmetry</td>
<td>POINT, Not provided</td>
<td>Depositor</td>
</tr>
<tr>
<td>Number of particles used</td>
<td>85119</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution determination method</td>
<td>FSC 0.143 CUT-OFF</td>
<td>Depositor</td>
</tr>
<tr>
<td>CTF correction method</td>
<td>PHASE FLIPPING AND AMPLITUDE CORRECTION</td>
<td>Depositor</td>
</tr>
<tr>
<td>Microscope</td>
<td>FEI TECNAI F20</td>
<td>Depositor</td>
</tr>
<tr>
<td>Voltage (kV)</td>
<td>200</td>
<td>Depositor</td>
</tr>
<tr>
<td>Electron dose (e^-/\text{Å}^2)</td>
<td>1.2</td>
<td>Depositor</td>
</tr>
<tr>
<td>Minimum defocus (nm)</td>
<td>Not provided</td>
<td>Depositor</td>
</tr>
<tr>
<td>Maximum defocus (nm)</td>
<td>Not provided</td>
<td>Depositor</td>
</tr>
<tr>
<td>Magnification</td>
<td>Not provided</td>
<td>Depositor</td>
</tr>
<tr>
<td>Image detector</td>
<td>GATAN K2 SUMMIT (4k x 4k)</td>
<td>Depositor</td>
</tr>
</tbody>
</table>
5 Model quality

5.1 Standard geometry

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0.24</td>
<td>1/4659 (0.0%)</td>
</tr>
</tbody>
</table>

All (1) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>1459</td>
<td>TYR</td>
<td>C-N</td>
<td>5.76</td>
<td>1.45</td>
<td>1.34</td>
</tr>
</tbody>
</table>

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>4670</td>
<td>0</td>
<td>2025</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>4670</td>
<td>0</td>
<td>2025</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 1.

All (4) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:939:MET:HA</td>
<td>1:A:972:ILE:HA</td>
<td>1.92</td>
<td>0.51</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:728:GLU:N</td>
<td>1:A:782:ALA:O</td>
<td>2.53</td>
<td>0.41</td>
</tr>
</tbody>
</table>

There are no symmetry-related clashes.

5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>920/1724 (53%)</td>
<td>829 (90%)</td>
<td>88 (10%)</td>
<td>3 (0%)</td>
<td>43 81</td>
</tr>
</tbody>
</table>

All (3) Ramachandran outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>933</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>231</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>476</td>
<td>VAL</td>
</tr>
</tbody>
</table>

5.3.2 Protein sidechains

There are no protein residues with a non-rotameric sidechain to report in this entry.

5.3.3 RNA

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.
5.5 Carbohydrates

There are no carbohydrates in this entry.

5.6 Ligand geometry

There are no ligands in this entry.

5.7 Other polymers

There are no such residues in this entry.

5.8 Polymer linkage issues

There are no chain breaks in this entry.