

May 17, 2023 – 05:39 pm BST

PDB ID	:	8CAH
EMDB ID	:	EMD-16525
Title	:	Cryo-EM structure of native Otu2-bound ubiquitinated 43S pre-initiation com-
		plex
Authors	:	Ikeuchi, K.; Buschauer, R.; Cheng, J.; Berninghausen, O.; Becker, T.; Beck-
		mann, R.
Deposited on	:	2023-01-24
Resolution	:	3.00 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev50
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.32.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Qualit	y of chain
1	1	347	95° 95'	% % 5%
2	r	274	19% 19%	81%
3	О	964	5% 55%	45%
4	р	763	19%	• 15%
5	q	812		22%
6	i	153	• 63%	• 37%
7	m	108	6% 81%	• 17%
8	j	77	81%	.00%

Conti	nued fron	n previous	page	
Mol	Chain	Length	Quality of chain	
9	2	1800	67% 27%	•••
10	Р	252	79% •	18%
11	Q	255	85%	• 11%
12	R	254	83% •	15%
13	S	261	97%	••
14	Т	236	94%	••
15	V	200	93%	6%
16	W	197	90%	• 7%
17	Х	156	90%	• 9%
18	Y	151	97%	••
19	Z	137	91%	•• 7%
20	a	87	98%	•
21	b	130	98%	••
22	с	145	• 97%	••
23	d	135	99%	
24	е	119	80% •	18%
25	f	82	95%	• •
26	g	63	94%	• 5%
27	Е	142	75% 7%	18%
28	А	240	● 88%	5% 8%
29	В	225	89%	• 8%
30	С	105	83% 5	% 12%
31	D	143	6% 83%	15%
32	F	143	94%	5% •
33	Н	136	85%	• 11%

Mol	Chain	Length	Quality of chain	
34	Ι	146	• 95%	• ••
35	J	144	98%	
36	Κ	121	81%	17%
37	L	108	8% 74% ···	24%
38	М	56	93%	• 5%
39	Ν	76	91%	5% •
40	О	319	• 96%	
41	h	67	• 90%	• 6%
42	у	265	• 29% • 70%	
42	Z	265	43% • 55%	
43	x	608	93%	
44	k	76	50%	
45	n	25	72%	28%
46	G	307	• 84%	16%
47	U	190	93%	• •

Continued from previous page...

2 Entry composition (i)

There are 51 unique types of molecules in this entry. The entry contains 95563 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Eukaryotic translation initiation factor 3 subunit I.

Mol	Chain	Residues	Atoms				AltConf	Trace
1	1	330	Total 1624	C 964	N 330	O 330	0	0

• Molecule 2 is a protein called Eukaryotic translation initiation factor 3 subunit G.

Mol	Chain	Residues	Atoms				AltConf	Trace
2	r	53	Total 261	C 155	N 53	O 53	0	0

• Molecule 3 is a protein called Eukaryotic translation initiation factor 3 subunit A.

Mol	Chain	Residues	Atoms				AltConf	Trace
3	О	529	Total 2631	C 1573	N 529	O 529	0	0

• Molecule 4 is a protein called Eukaryotic translation initiation factor 3 subunit B.

Mol	Chain	Residues	Atoms				AltConf	Trace
4	р	646	Total 3201	C 1909	N 646	O 646	0	0

• Molecule 5 is a protein called Eukaryotic translation initiation factor 3 subunit C.

Mol	Chain	Residues	Atoms				AltConf	Trace
5	q	636	Total 3169	C 1897	N 636	O 636	0	0

• Molecule 6 is a protein called Eukaryotic translation initiation factor 4C.

Mol	Chain	Residues	Atoms				AltConf	Trace
6	i	97	Total 476	C 282	N 97	O 97	0	0

• Molecule 7 is a protein called SUI1 isoform 1.

Mol	Chain	Residues		Aton	ns	AltConf	Trace	
7	m	90	Total 443	C 263	N 90	O 90	0	0

• Molecule 8 is a protein called RNA recognition motif (unknown).

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
8	j	77	Total 385	C 231	N 77	O 77	0	0

• Molecule 9 is a RNA chain called 18S ribosomal RNA.

Mol	Chain	Residues		I	Atoms			AltConf	Trace
9	2	1745	Total 37189	C 16626	N 6587	O 12231	Р 1745	0	0

• Molecule 10 is a protein called 40S ribosomal protein S0-A.

Mol	Chain	Residues		Ate	AltConf	Trace			
10	Р	206	Total 1603	C 1030	N 284	0 287	$\frac{S}{2}$	0	0

• Molecule 11 is a protein called 40S ribosomal protein S1-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	Q	226	Total 1798	C 1139	N 330	O 325	$\frac{S}{4}$	0	0

• Molecule 12 is a protein called 40S ribosomal protein S2.

Mol	Chain	Residues		Ate		AltConf	Trace		
12	R	216	Total 1626	C 1042	N 287	O 295	${ m S} { m 2}$	0	0

• Molecule 13 is a protein called 40S ribosomal protein S4-B.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	S	258	Total 2056	C 1308	N 387	O 358	${ m S} { m 3}$	0	0

• Molecule 14 is a protein called 40S ribosomal protein S6-B.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	Т	228	Total 1815	C 1138	N 351	O 323	${ m S} { m 3}$	0	0

• Molecule 15 is a protein called 40S ribosomal protein S8-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	V	187	Total 1476	C 916	N 295	O 263	${S \over 2}$	0	0

• Molecule 16 is a protein called 40S ribosomal protein S9-A.

Mol	Chain	Residues		Atoms					Trace
16	W	184	Total 1479	C 935	N 285	0 258	S 1	0	0

• Molecule 17 is a protein called 40S ribosomal protein S11-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
17	Х	142	Total 1142	C 733	N 217	0 189	${ m S} { m 3}$	0	0

• Molecule 18 is a protein called 40S ribosomal protein S13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
18	Y	150	Total 1192	C 759	N 224	O 207	S 2	0	0

• Molecule 19 is a protein called 40S ribosomal protein S14-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	Z	127	Total 923	C 568	N 185	0 167	${ m S} { m 3}$	0	0

• Molecule 20 is a protein called 40S ribosomal protein S21-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	a	87	Total 673	C 415	N 125	0 131	${S \over 2}$	0	0

• Molecule 21 is a protein called 40S ribosomal protein S22-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
21	b	129	Total 1021	$\begin{array}{c} \mathrm{C} \\ 650 \end{array}$	N 188	O 180	${ m S} { m 3}$	0	0

• Molecule 22 is a protein called 40S ribosomal protein S23-A.

Mol	Chain	Residues		Atoms					Trace
22	С	144	Total 1121	C 708	N 220	0 191	${S \over 2}$	0	0

• Molecule 23 is a protein called 40S ribosomal protein S24-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
23	d	134	Total 1073	C 676	N 208	O 189	0	0

• Molecule 24 is a protein called 40S ribosomal protein S26-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
24	е	97	Total 765	C 473	N 160	0 127	${ m S}{ m 5}$	0	0

• Molecule 25 is a protein called 40S ribosomal protein S27-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
25	f	81	Total 610	C 382	N 110	0 113	${ m S}{ m 5}$	0	0

• Molecule 26 is a protein called 40S ribosomal protein S30-A.

	f Trace	AltConf			\mathbf{ms}	Atc		Residues	Chain	Mol
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	0	0	S 1	0 76	N 97	C 208	Total 472	60	g	26

• Molecule 27 is a protein called RPS15 isoform 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	Е	117	Total 916	C 583	N 171	0 155	${f S}{7}$	0	0

• Molecule 28 is a protein called 40S ribosomal protein S3.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	А	222	Total 1729	C 1098	N 312	O 313	S 6	0	0

• Molecule 29 is a protein called 40S ribosomal protein S5.

Mol	Chain	Residues		Ate	AltConf	Trace			
29	В	206	Total 1605	C 1005	N 299	O 298	${ m S} { m 3}$	0	0

• Molecule 30 is a protein called 40S ribosomal protein S10-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
30	С	92	Total 754	C 489	N 122	0 141	${S \atop 2}$	0	0

• Molecule 31 is a protein called 40S ribosomal protein S12.

Mol	Chain	Residues		At	AltConf	Trace			
31	D	121	Total 875	C 551	N 153	O 169	${ m S} { m 2}$	0	0

• Molecule 32 is a protein called 40S ribosomal protein S16-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
32	F	141	Total 1105	C 708	N 203	O 194	0	0

• Molecule 33 is a protein called 40S ribosomal protein S17-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
33	Н	121	Total 948	C 596	N 179	0 171	${ m S} { m 2}$	0	0

• Molecule 34 is a protein called 40S ribosomal protein S18-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
34	Ι	145	Total 1188	С 741	N 237	O 208	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 35 is a protein called 40S ribosomal protein S19-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
35	J	143	Total 1112	C 694	N 208	O 208	${ m S} { m 2}$	0	0

• Molecule 36 is a protein called 40S ribosomal protein S20.

Mol	Chain	Residues		At	AltConf	Trace			
36	K	100	Total 797	C 506	N 144	0 146	S 1	0	0

• Molecule 37 is a protein called 40S ribosomal protein S25-A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
37	L	82	Total 651	C 416	N 123	O 112	0	0

• Molecule 38 is a protein called RPS29A isoform 1.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
38	М	53	Total	С	Ν	Ο	S	0	0
00	IVI		442	274	92	72	4	0	0

• Molecule 39 is a protein called 40S ribosomal protein S31.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
39	Ν	73	Total 560	C 355	N 106	O 95	S 4	0	0

• Molecule 40 is a protein called Guanine nucleotide-binding protein subunit beta-like protein.

Mol	Chain	Residues		Ate	AltConf	Trace			
40	Ο	312	Total 2383	C 1514	N 409	0 452	S 8	0	0

• Molecule 41 is a protein called 40S ribosomal protein S28-A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
41	h	63	Total 491	C 303	N 96	0 91	S 1	0	0

• Molecule 42 is a protein called Eukaryotic translation initiation factor 3 subunit J.

Mol	Chain	Residues		At	oms		AltConf	Trace	
42	Z	120	Total	C	N 170	0	S	0	0
			890	550	172	100	2		
12	v	70	Total	С	Ν	Ο	\mathbf{S}	0	0
72	У	13	624	389	113	120	2		

• Molecule 43 is a protein called RLI1 isoform 1.

Mol	Chain	Residues	Atoms				AltConf	Trace	
43	х	582	Total 4607	C 2951	N 795	O 838	S 23	0	0

• Molecule 44 is a protein called 60S ribosomal protein L40-A.

Mol	Chain	Residues	Atoms			AltConf	Trace	
44	k	76	Total 374	C 222	N 76	O 76	0	0

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
k	19	PRO	SER	conflict	UNP P0CH08
k	24	GLU	ASP	conflict	UNP P0CH08
k	28	ALA	SER	conflict	UNP P0CH08

• Molecule 45 is a protein called 60S ribosomal protein L41-A.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
45	n	18	Total 175	C 107	N 48	O 19	S 1	0	0

• Molecule 46 is a protein called OTU domain-containing protein 2.

Mol	Chain	Residues	Atoms			AltConf	Trace		
46	G	259	Total 1509	C 917	N 298	O 292	${ m S} { m 2}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
G	178	SER	CYS	conflict	UNP P38747

• Molecule 47 is a protein called 40S ribosomal protein S7-A.

Mol	Chain	Residues	Atoms			AltConf	Trace	
47	U	184	Total 1473	C 946	N 263	O 264	0	0

• Molecule 48 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
48	2	77	Total Mg 77 77	0
48	S	1	Total Mg 1 1	0
48	В	1	Total Mg 1 1	0
48	х	1	Total Mg 1 1	0

 $\bullet\,$ Molecule 49 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
49	М	1	Total Zn 1 1	0
49	Ν	1	Total Zn 1 1	0

Mol	Chain	Residues	Atoms	AltConf
50	х	1	Total Fe S 8 4 4	0
50	х	1	Total Fe S 8 4 4	0

• Molecule 51 is ADENOSINE-5'-DIPHOSPHATE (three-letter code: ADP) (formula: $C_{10}H_{15}N_5O_{10}P_2$).

Mol	Chain	Residues		Ate	oms			AltConf
51		1	Total	С	Ν	Ο	Р	0
	X	1	27	10	5	10	2	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Eukaryotic translation initiation factor 3 subunit I

• Molecule 3: Eukaryotic translation initiation factor 3 subunit A

 \bullet Molecule 9: 18S ribosomal RNA

Chain 2:	67%	27% • •
U1 A2 U5 C4 U5 C14 C14 C17 C18 C14 C18 C34 C34 C34 C34 C34 C34 C34 C34 C34 C34	445 446 446 446 446 467 468 468 468 468 468 467 476 476 476	A78 0689 0689 0689 0689 0689 0111 0111 01114 01114 01115 01126 01120 0128 0128 0128
с с с с с 1 1 4 1 4 4 1 4 4 1 4 4 5 1 1 4 6 1 4 5 1 1 4 6 1 4 5 1 1 4 6 1 4 5 1 1 4 6 1 4 1 4 6 1 1 4 1 6 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8	C149 C158 U158 U158 M161 M179 M178 M179 M178 C176 C176 C176 C176 C184 C184 C184	A188 (199 (199 (1993) (1993) (1993) (1995) (196 (196 (196 (196 (196) (197) (19
U227 U228 U228 U239 U231 U232 U233 C234 C235 C237 C237 C237 C237 U240 U241 U241 U241	C258 U255 U255 U2561 U2561 A265 A265 U2567 U257 C273 C273 C279 C281 C281 C281 C281 C281 C281 C281 C281	0332 0302 0303 0314 0314 0314 0314 0314 0314 0321 0321 0321 0323 0333 0333 0333 0337 0338 0337
A363 C394 A369 A360 C361 C361 C361 C381 C388 C388 C388 C388	A399 A401 A401 C402 C403 C404 C419 C419 C419 C428 C428 C428 C428 C428 C428 C428 C428	04.39 04.39 04.42 04.43 04.45 04.45 04.65 04.65 04.65 04.65 04.65 04.65 04.73 04.73 04.73 04.73
C484 A485 G487 G487 G487 C489 C495 C495 C495 G496 G496 G496 G496 G496	C500 C500 U501 U502 0503 0503 A506 C510 A511 A511 C519 C519 C519 C519 A527 U528	C530 A534 A534 A534 A533 C533 C543 A555 A555 A555 C543 C543 C543 C543 C543 C543 C543 C
C572 U578 A580 A580 U581 U582 U582 C583 A594 A594 A594 A596 C583 C583 U596 0600 U608 U608 U611	U617 U618 A619 A619 A620 A621 A622 A623 A623 A623 A623 A623 G641 C646 C646 C646 C646 C647 G647 G647 G647	U649 6655 6655 665555 6655555 6655555 6655555 6655555 6655555 6655555 6655555 66555555 66555555 665555555 665555555 665555555 6655555555
A C C G 6677 G 6676 C 6831 C 6832 C 6837 C 6837 C 6837 C 6837 C 6837 C 6837 C 6837 C 6837 C 6837 C 6837 C C 6676 C C C C C C C C C C C C C C C	C700 C703 C704 V705 A705 A705 A705 C708 C7113 C7113 C7113 C7113 C7113 C7113 C7113 C7113 C7113 C7113 C7113 C7113 C7114 C7113 C7114 C700 C700 C700 C700 C700 C700 C700 C70	U G G C C C C C C C C C C C C C C C C C
UT 59 CT 65 CT 65 UT 66 UT 67 CT 68 CT 75 CT 75	A807 A812 A812 A814 C815 C815 C815 C819 U820 U822 C823 C823 C823 C823 C823 C823 C823 C	U832 0833 0834 0835 0835 0845 0845 0845 0845 0845 0861 0861 0861 0861 0861 0861 0863 0863 0863 0864 0864 0873 0876
U886 0999 0901 0901 0921 0928 0928 0928 0928 0928 0928 0928	C 333 C 334 C 334 C 334 C 342 C 342 C 342 C 342 C 342 C 342 C 365 C 365 C 365 C 365 C 365 C 365 C 367 C 371 C 371	C975 G977 G977 G977 G977 C987 A988 A988 A988 A993 A993 A993 A1001 G1002 C1021 C1022 A1003 C1022 A1023 A1025 A1025
A1 026 A1 027 C1 028 U1 031 U1 032 U1 053 U1 053 U1 053 U1 053 U1 053 U1 053 U1 063	C1 066 C1 072 C1 072 C1 072 U1 080 U1 080 C1 082 C1 082 C1 082 C1 082 C1 082 U1 095 U1 095 U1 095 U1 095	U1 106 U1 106 G1 108 G1 108 G1 109 A1 113 U1 129 U1 145 U1 145 U1 145 C1 150 C1 156 C1
C1161 C1162 C1162 C1167 A1171 U1167 U1185 U1185 A11394 C1199 C1199 G1201 G1201	A1202 C1207 A1208 A1208 A1214 C1218 C1218 C1220 C1220 C1220 C1228 C124 C124 C124 C124 C124 C124 C124 C124	C1245 C1246 C1246 U1251 C1252 C1255 U1257 U1258 C1264 C1264 U1285 U1285 U1285 C1284 C1284 C1284 C1284 C1284 C1284 C1284 C1284 C1284 C1286 C1284 C1286 C1284 C1286
U1314 U1315 G1317 G1316 G1316 G1316 A1326 G1324 A1326 G1324 A1326 G1324 C1325 C1327 C1328 C13328 C13328 C13328 C13328	A1344 A1345 A1346 A1346 01360 01360 01363 01364 01363 01371 01370 01370	C1373 U1378 U1378 A1382 C1383 C1388 C1388 C1388 C1388 C1388 C1389 C1389 U1414 U1414 U1414 U1414 C1425 C1425 C1425

G1428 U1432 G1433 G1446 C1447 C1447 C1458 C1458 C1458 C1458	A1471 C1472 C1472 A1447 01488 U1489 U1497 U1497 C1499 C1499 U1497 C1499 C1499 C1499 C1499 C1499 C1499 C1499 C1499 C1522 A1550 C1527 C1527 C1527 C1527 C1527 C1527 C1527 C1527 C1527 C1527 C1527 C1527 C1527 C1527 C1527 C1527 C1527 C1527 C1527 C1528 C1528 C1528 C1528 C1528 C1528 C1528 C15588 C1558 C1558 C1558 C1558 C1558 C1558 C1558 C1558 C1558 C1558	A1573 A1583 G1584
d1590 C1596 A1597 A1597 G1601 G1607 A1611	01 61 01 61 01 61 01 61 01 61 01 61 01 61 01 61 01 61 01 61 01 61 01 63 01 63 01 63 01 65 01 <	00000
А А А С С С С С С С С С С С С С С С С С	C1716 A1747 A1756 A1756 A1756 A1756 A1756 A1755 A1755 C1756 C1756 C1756 C1769 C1769 C1769 C1789 C1789 C1789 C1799 C1799 C1799 C1798 C1799 C1799 C1798 C17888 C17888 C1788 C1788 C1788 C1788 C1788 C1788 C1788 C1788 C1788 C178	
• Molecule 10: 4	40S ribosomal protein S0-A	
Chain P:	79% • 18%	
MET 82 108 1432 1432 143 1043 1043	D206 020 0206 0207 0207 0207 0207 0207 02	ASN ASN VAL GLU TRP
• Molecule 11: 4	40S ribosomal protein S1-A	
Chain Q:	85% · 11%	
MET A2 R8 K13 LYS GLY CLY CLY ARC	V20 V55 K55 K55 K94 V46 V148 V148 V148 C23 C23 C19 C19 C19 C19 C19 C19 C19 C19 C19 C19	
• Molecule 12: 4	40S ribosomal protein S2	
Chain R:	83% • 15%	
MET SER ALA PRO GLU GLN GLN CLN CLN CLN CLN CLN CLN	GLY GLY GLY GLY ARG ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	
• Molecule 13: 4	40S ribosomal protein S4-B	
Chain S:	97%	
MET A2 L38 L38 Y182 Y182 H197		
• Molecule 14: 4	10S ribosomal protein S6-B	
Chain T:	94%	
M1 D20 E21 H22 R23 R23 R25 D29 D29 D29	D105 K228 ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	
• Molecule 15: 4	40S ribosomal protein S8-A	
Chain V:	93% 6%	

• Molecule 16: 40S ribosomal protein S9-A

Chain W:	90%	• 7%
MET P2 K37 F67 F67 F67 F67 D04 B151 D103 B151 E153 A167 A167		
• Molecule 17: 40S rib	osomal protein S11-A	
Chain X:	90%	• 9%
MET SER THR F B B A C C C C C C C C C C C C C C C C C	5HE FILS	
• Molecule 18: 40S rib	osomal protein S13	
Chain Y:	97%	
MET 62 62 62 62 62 62 62 62 62 63 63 63 63 63 63 64 64 64 64 64 64 64 64 64 64 64 64 64		
• Molecule 19: 40S rib	osomal protein S14-A	
Chain Z:	91%	•• 7%
MET SER SER SER VAL VAL CVAL CVAL CVAL ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP		
• Molecule 20: 40S rib	osomal protein S21-A	
Chain a:	98%	.
M1 L11 R87		
• Molecule 21: 40S rib	osomal protein S22-A	
Chain b:	98%	
MET 12 154 130		
• Molecule 22: 40S rib	osomal protein S23-A	
Chain c:	97%	••

• Molecule 23: 40S ribosomal protein S24-A

Chain d:	99%		
MET S2 N34 D135			
• Molecule 24	: 40S ribosomal protein S26-A		
Chain e:	80% .	18%	_
MET P2 K19 D52 D52 GLN ARG	PRO PHE ARG ASN ASN CUU CVS VAL ASP ALA ALA ALA ALA ALA ALA ALA ALA ALA AL		
• Molecule 25	: 40S ribosomal protein S27-A		
Chain f:	95%		
MET V2 D34 C56 S78 S78 K82			
• Molecule 26	: 40S ribosomal protein S30-A		
Chain g:	94%		• 5%
MET A2 L38 F48 S61 VAL VAL GVAL			
• Molecule 27	: RPS15 isoform 1		
Chain E:	75% 7%	18%	_
MET MET GLN GLN VAL VAL ASN ASN LYS LYS LYS ARG	VAL PHE K13 K24 L25 L25 M49 M40 M40 K59 M40 K71 K71 K71 K72 K72 K72 K72 K72 K72 K72 K72 K72 K72		
• Molecule 28	8: 40S ribosomal protein S3		
Chain A:	88%	5%	8%
MET VAL ALA L4 C5 D57 R76 R76	P33 F107 F107 F107 F106 C115 F156 F156 F156 F156 F156 F156 F156 F		

• Molecule 29: 40S ribosomal protein S5

Chain B:	89%	• 8%
MET SER SER SER SER SER CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	GLU F20 F23 K54 D145 R156 R156 R225	
• Molecule 30: 40S ribo	somal protein S10-A	
Chain C:	83%	5% 12%
MI L2 L68 L68 L82 ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	ARG ARG ARG ARG TYR	
• Molecule 31: 40S ribo	somal protein S12	
Chain D:	83%	• 15%
MET ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	THR THR CLU VAL T23 CLU VAL T23 E68 869 869 869 869 869 869 869 869 869 8	<mark>0143 </mark>
• Molecule 32: 40S ribo	somal protein S16-A	
Chain F:	94%	5%•
MET SER A 3 8 4 3 4 4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	2	
• Molecule 33: 40S ribo	somal protein S17-A	
Chain H:	85%	• 11%
MET C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2 C2	GLY VAL L100 A126 GLN A126 GLN A126 A126 A126 A126 A126 A126 A126 A126	
• Molecule 34: 40S ribo	somal protein S18-A	
Chain I:	95%	
MET 82 1.3 1.3 1.3 1.3 1.3 1.3 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4 1.4		
• Molecule 35: 40S ribo	somal protein S19-A	
Chain J:	98%	
MET P2 M45 L140 E144 E144		

 \bullet Molecule 36: 40S ribosomal protein S20

Chain K:	81%	٠	17%
MET SER ASP ASP PHE GLN LYS CLN CLN CLV CLV CLV	GLU GLU GLN GLN GLN GLN GLN GLN GLN GLN M49 M49 SER SER A119 SER		
• Molecule 37	: 40S ribosomal protein S25-A		
Chain L:	74%	•• 249	%
MET PRO PRO LYS GLN GLN CLN SER LYS ALA	ALA ALA ALA ALA ALA ALA ALA ALA ALA ALA	D34 L65 B86 B86 ALA ALA CLU	
• Molecule 38	: RPS29A isoform 1		
Chain M:	93%		• 5%
MET ALA HIS E4 E3 L36 R56			
• Molecule 39	: 40S ribosomal protein S31		
Chain N:	91%		5% •
GLY LYS LYS R80 R80 K92 V108 D109	Allo GII2 KII3 KII6 LI17 SI22 DI37 VI50		
• Molecule 40:	: Guanine nucleotide-binding pro	tein subunit beta-like	e protein
Chain O:	96%		• •
MET ALA SER ASN ASN E5 K161 K161	M181 L225 M231 M231 M231 M231 M231 ALA ALA ALA		
• Molecule 41:	: 40S ribosomal protein S28-A		
Chain h:	90%		• 6%
MET ASP ASP ASS LYS L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3 L3			
• Molecule 42:	: Eukaryotic translation initiation	n factor 3 subunit J	
Chain z:	43% ·	55%	
MET SER TRP ASP ASP GLU ALA ALA ALA ASN GLY	MER MER ASP ASP ASP ASP ALA MET ALA ASP CLU ASP ASP CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	S GLM TRP ASP ALA ALA GLU GLU GLU GLU CYS LYS PRO PRO LYS	LYS LYS GLU GLU GLU FRO LYS LYS VAL LYS LYS LYS
GLY LYS CLU SER SER ALA ALA ALA ALA ALA LEU	ALEU ALEU TILEU TILEU TILEU ALEU ALEU TILEU TILEU TILEU TILEU TILEU TILEU ALEU ALEU ALEU ALEU ALEU	ASN ALA ALA ALA ALA ALA ALA CLU CLU CLU CLU CLU CLU CLU CLU CLU	PRO ARG ALA ALA ALA ALA CLU CLU CLU CLN
	VOR PROTEI	L D W I D E	

• Molecule 45: 60S ribosomal protein L41-A

Chain n:	72%	28%
M1 LYS LYS ARG ARG ARG SER LYS		
• Molecule 46: OT	TU domain-containing protein 2	
Chain G:	84%	16%
MET THR GLY GLY GLY GLU ASN CLU LEU CLU ASN ASN	M72 ASN ALU ALA ALA ALA ALA ALA ALA ALA ALA ALA	VAL VAL GLN GLN GLN GLN GLN GLN CLYS GLY CLYS CLYS CLYS CLYS CLYS CLYS CLY CLOS CLY CLUS CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN
q198 D199 M200 E228 S307		
• Molecule 47: 409	S ribosomal protein S7-A	
Chain U:	93%	

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	18826	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	46.4	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	3000	Depositor
Magnification	Not provided	
Image detector	GATAN K2 SUMMIT $(4k \ge 4k)$	Depositor
Maximum map value	4.970	Depositor
Minimum map value	-1.905	Depositor
Average map value	0.016	Depositor
Map value standard deviation	0.110	Depositor
Recommended contour level	0.25	Depositor
Map size (Å)	438.9, 438.9, 438.9	wwPDB
Map dimensions	420, 420, 420	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.045, 1.045, 1.045	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, ADP, ZN, SF4

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bo	ond lengths	Bond angles	
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
1	1	0.25	0/1622	0.49	0/2252
2	r	0.23	0/260	0.40	0/360
3	0	0.23	0/2626	0.33	0/3660
4	р	0.26	0/3197	0.46	0/4452
5	q	0.23	0/3165	0.35	0/4418
6	i	0.32	0/475	0.59	1/658~(0.2%)
7	m	0.25	0/442	0.45	0/613
9	2	0.83	2/41595~(0.0%)	1.15	291/64809~(0.4%)
10	Р	0.43	0/1644	0.70	3/2249~(0.1%)
11	Q	0.39	0/1823	0.74	5/2447~(0.2%)
12	R	0.46	0/1656	0.70	3/2251~(0.1%)
13	S	0.47	0/2097	0.71	2/2823~(0.1%)
14	Т	0.40	0/1839	0.74	3/2460~(0.1%)
15	V	0.47	0/1501	0.66	0/2006
16	W	0.44	0/1504	0.73	1/2016~(0.0%)
17	Х	0.50	0/1168	0.63	0/1575
18	Y	0.47	0/1215	0.74	2/1638~(0.1%)
19	Ζ	0.42	0/934	0.77	2/1257~(0.2%)
20	а	0.47	0/682	0.76	0/921
21	b	0.47	0/1038	0.67	0/1395
22	с	0.48	0/1139	0.67	1/1518~(0.1%)
23	d	0.47	0/1087	0.67	0/1449
24	е	0.44	0/778	0.68	0/1042
25	f	0.45	0/620	0.80	1/838~(0.1%)
26	g	0.40	0/480	0.74	1/639~(0.2%)
27	Е	0.33	0/936	0.89	7/1259~(0.6%)
28	А	0.44	1/1754~(0.1%)	0.79	5/2361~(0.2%)
29	В	0.30	0/1625	0.66	1/2197~(0.0%)
30	С	0.39	0/772	0.81	3/1044~(0.3%)
31	D	0.32	0/883	0.79	2/1199~(0.2%)
32	F	0.35	0/1125	0.65	1/1510~(0.1%)
33	Н	0.35	0/957	0.75	0/1283

Mal	Chain	Bo	ond lengths	Bond angles		
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5	
34	Ι	0.30	0/1207	0.70	2/1623~(0.1%)	
35	J	0.30	0/1130	0.63	1/1517~(0.1%)	
36	K	0.34	0/807	0.65	0/1091	
37	L	0.28	0/661	0.72	1/888~(0.1%)	
38	М	0.33	0/452	0.69	0/600	
39	Ν	0.30	0/571	0.75	1/768~(0.1%)	
40	0	0.28	0/2436	0.65	2/3318~(0.1%)	
41	h	0.36	0/493	0.82	1/663~(0.2%)	
42	У	0.48	0/631	1.00	2/851~(0.2%)	
42	Z	0.41	0/905	0.94	5/1213~(0.4%)	
43	X	0.29	0/4694	0.63	5/6334~(0.1%)	
44	k	0.24	0/373	0.48	0/517	
45	n	0.34	0/176	0.78	0/225	
46	G	0.26	0/1514	0.43	0/2075	
47	U	0.39	0/1498	0.77	5/2019~(0.2%)	
All	All	0.60	3/100187~(0.0%)	0.91	360/144301~(0.2%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
4	р	0	1
21	b	0	1
42	Z	0	1
All	All	0	3

All (3) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
28	А	211	PRO	CG-CD	-10.23	1.16	1.50
9	2	555	А	N7-C5	-5.27	1.36	1.39
9	2	142	G	C2-N3	-5.04	1.28	1.32

All (360) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	2	1756	A	O5'-P-OP2	-16.64	90.72	105.70
9	2	453	U	N1-C2-O2	13.03	131.92	122.80
9	2	1756	А	O5'-P-OP1	13.02	126.32	110.70
9	2	555	А	N7-C8-N9	12.72	120.16	113.80

Continued	from	previous	page
contentaca	<i>J</i> · <i>O</i> · · · <i>O</i>	proceed ac	pagom

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	2	453	U	C2-N1-C1'	12.53	132.74	117.70
28	А	211	PRO	N-CD-CG	-12.04	85.13	103.20
9	2	453	U	N3-C2-O2	-11.23	114.34	122.20
28	А	211	PRO	CA-N-CD	-11.03	96.05	111.50
42	Z	180	LEU	CA-CB-CG	10.42	139.27	115.30
9	2	555	А	C8-N9-C4	-10.32	101.67	105.80
16	W	151	ASP	CB-CG-OD1	10.27	127.54	118.30
9	2	555	А	C5-N7-C8	-10.11	98.85	103.90
11	Q	59	ASP	CB-CG-OD2	10.09	127.38	118.30
9	2	767	U	N3-C2-O2	-10.05	115.16	122.20
9	2	1758	U	N3-C2-O2	-10.05	115.16	122.20
25	f	34	ASP	CB-CG-OD2	9.48	126.83	118.30
9	2	1639	С	C2-N1-C1'	9.41	129.16	118.80
9	2	1145	U	N3-C2-O2	-9.19	115.77	122.20
42	у	163	PRO	CA-N-CD	-9.11	98.74	111.50
9	2	1639	С	N1-C2-O2	9.10	124.36	118.90
9	2	453	U	C6-N1-C1'	-9.09	108.47	121.20
9	2	1389	С	C2-N1-C1'	9.07	128.78	118.80
9	2	1639	С	N3-C2-O2	-8.94	115.64	121.90
10	Р	206	ASP	CB-CG-OD1	8.94	126.34	118.30
43	Х	565	LEU	CA-CB-CG	8.79	135.52	115.30
40	0	266	ASP	CB-CG-OD1	8.76	126.18	118.30
14	Т	20	ASP	CB-CG-OD1	8.75	126.17	118.30
34	Ι	73	MET	CA-CB-CG	8.72	128.12	113.30
9	2	1082	С	C2-N1-C1'	8.69	128.36	118.80
47	U	155	ASP	CB-CG-OD1	8.67	126.11	118.30
9	2	1162	С	N1-C2-O2	8.64	124.08	118.90
9	2	539	G	N3-C4-C5	-8.62	124.29	128.60
9	2	864	U	N3-C2-O2	-8.61	116.17	122.20
10	Р	43	ASP	CB-CG-OD2	8.55	126.00	118.30
9	2	1258	U	N3-C2-O2	-8.53	116.23	122.20
9	2	736	С	N3-C2-O2	-8.53	115.93	121.90
9	2	1758	U	N1-C2-O2	8.49	128.74	122.80
9	2	144	U	C2-N1-C1'	8.26	127.62	117.70
9	2	864	U	C2-N1-C1'	8.26	127.61	117.70
9	2	1458	G	C4-N9-C1'	8.26	137.23	126.50
9	2	1560	U	C2-N1-C1'	8.21	127.55	117.70
9	2	142	G	N3-C2-N2	-8.18	114.17	119.90
9	2	1258	U	N1-C2-O2	8.14	128.50	122.80
9	2	864	U	N1-C2-O2	8.11	128.47	122.80
9	2	539	G	C8-N9-C4	-8.04	103.19	106.40
9	2	965	U	C2-N1-C1'	7.89	127.17	117.70

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	2	1286	U	N1-C2-O2	7.89	128.32	122.80
9	2	959	U	N3-C2-O2	-7.88	116.68	122.20
12	R	78	ASP	CB-CG-OD1	7.80	125.32	118.30
9	2	555	А	C2-N3-C4	-7.72	106.74	110.60
14	Т	29	ASP	CB-CG-OD1	7.69	125.22	118.30
12	R	38	VAL	CG1-CB-CG2	-7.65	98.67	110.90
9	2	736	С	N1-C2-O2	7.62	123.47	118.90
9	2	1527	С	C2-N1-C1'	7.61	127.17	118.80
9	2	959	U	C5-C6-N1	7.58	126.49	122.70
9	2	1286	U	N3-C2-O2	-7.49	116.96	122.20
9	2	583	С	C6-N1-C2	-7.46	117.31	120.30
43	X	482	LEU	CA-CB-CG	7.41	132.35	115.30
9	2	1350	U	N1-C2-O2	7.34	127.94	122.80
9	2	767	U	N1-C2-O2	7.29	127.90	122.80
9	2	959	U	N1-C2-O2	7.29	127.90	122.80
9	2	1063	U	N1-C2-O2	7.29	127.90	122.80
9	2	610	G	C4-N9-C1'	7.27	135.95	126.50
9	2	224	С	N1-C2-O2	7.26	123.26	118.90
9	2	1258	U	C2-N1-C1'	7.26	126.41	117.70
9	2	959	U	C2-N1-C1'	7.23	126.37	117.70
9	2	1791	А	P-O3'-C3'	7.23	128.37	119.70
9	2	1755	А	P-O3'-C3'	7.21	128.36	119.70
9	2	1162	С	N3-C2-O2	-7.17	116.88	121.90
26	g	38	LEU	CA-CB-CG	7.14	131.73	115.30
9	2	1161	С	C5-C6-N1	7.13	124.56	121.00
47	U	158	ASP	CB-CG-OD2	7.11	124.70	118.30
9	2	832	U	N1-C2-O2	7.08	127.76	122.80
9	2	583	С	C2-N1-C1'	7.07	126.58	118.80
9	2	1145	U	C2-N1-C1'	7.07	126.19	117.70
13	S	38	LEU	CA-CB-CG	7.05	131.52	115.30
9	2	1458	G	C8-N9-C1'	-7.04	117.85	127.00
9	2	1129	U	N3-C2-O2	-7.03	117.28	122.20
9	2	1332	С	C2-N1-C1'	7.02	126.52	118.80
9	2	1458	G	N3-C4-N9	7.00	130.20	126.00
28	A	216	PRO	CA-N-CD	-7.00	101.69	111.50
9	2	1072	С	C6-N1-C2	-6.98	117.51	120.30
9	2	758	U	N3-C2-O2	-6.97	117.32	122.20
9	2	1024	U	N3-C2-O2	-6.97	117.32	122.20
9	2	1082	С	C6-N1-C2	-6.97	117.51	120.30
9	2	1758	U	C2-N1-C1'	6.97	126.06	117.70
9	2	144	U	N3-C2-O2	-6.96	117.33	122.20
39	N	137	ASP	CB-CG-OD1	6.96	124.57	118.30

Continued	from	nrevious	naae
Continucu	JIOIN	pretious	puye

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	2	77	U	P-O3'-C3'	6.96	128.05	119.70
9	2	1063	U	C2-N1-C1'	6.95	126.04	117.70
9	2	1286	U	C2-N1-C1'	6.91	126.00	117.70
9	2	1560	U	N3-C2-O2	-6.91	117.36	122.20
9	2	1350	U	N3-C2-O2	-6.90	117.37	122.20
9	2	1560	U	N1-C2-O2	6.90	127.63	122.80
30	С	2	LEU	CA-CB-CG	6.86	131.09	115.30
9	2	1639	С	C6-N1-C1'	-6.85	112.58	120.80
9	2	1063	U	N3-C2-O2	-6.84	117.41	122.20
9	2	1350	U	C2-N1-C1'	6.84	125.91	117.70
9	2	224	С	C2-N1-C1'	6.84	126.32	118.80
9	2	59	С	P-O3'-C3'	6.83	127.90	119.70
28	А	211	PRO	CA-CB-CG	-6.81	91.06	104.00
9	2	608	U	C2-N1-C1'	6.77	125.82	117.70
9	2	583	С	C5-C6-N1	6.76	124.38	121.00
9	2	18	С	C6-N1-C2	-6.72	117.61	120.30
9	2	190	С	C2-N1-C1'	6.72	126.19	118.80
9	2	1252	С	C5-C6-N1	6.72	124.36	121.00
9	2	230	С	N1-C2-O2	6.71	122.92	118.90
9	2	1596	С	C2-N1-C1'	6.68	126.15	118.80
9	2	1252	С	C2-N1-C1'	6.68	126.15	118.80
9	2	767	U	C2-N1-C1'	6.68	125.71	117.70
9	2	959	U	C6-N1-C2	-6.67	117.00	121.00
9	2	1162	С	C2-N1-C1'	6.65	126.11	118.80
27	Ε	26	LEU	CA-CB-CG	6.64	130.58	115.30
9	2	18	С	C5-C6-N1	6.64	124.32	121.00
9	2	861	U	C2-N1-C1'	6.64	125.67	117.70
9	2	1458	G	N3-C4-C5	-6.62	125.29	128.60
9	2	1620	С	N1-C2-O2	6.57	122.84	118.90
9	2	1274	С	P-O3'-C3'	6.56	127.57	119.70
9	2	142	G	N1-C2-N2	6.54	122.09	116.20
43	Х	37	LEU	CA-CB-CG	6.54	130.35	115.30
9	2	711	U	P-O3'-C3'	6.53	127.53	119.70
6	i	45	GLY	N-CA-C	6.53	129.41	113.10
27	Е	49	MET	CA-CB-CG	6.52	124.39	113.30
9	2	832	U	N3-C2-O2	-6.52	117.64	122.20
9	2	120	U	N3-C2-O2	-6.51	117.64	122.20
9	2	1674	С	C6-N1-C2	-6.50	117.70	120.30
9	2	1535	U	N1-C2-O2	6.49	127.34	122.80
30	С	10	LYS	CA-CB-CG	6.48	127.65	113.40
19	Z	118	VAL	$CA-CB-\overline{CG1}$	$6.4\overline{5}$	$120.5\overline{8}$	110.90
9	2	639	U	P-O3'-C3'	6.45	127.44	119.70

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	2	530	С	N1-C2-O2	6.44	122.76	118.90
9	2	361	С	C6-N1-C2	-6.43	117.73	120.30
9	2	928	U	P-O3'-C3'	6.43	127.42	119.70
9	2	237	C	C2-N1-C1'	6.43	125.87	118.80
9	2	1317	С	C2-N1-C1'	6.43	125.87	118.80
9	2	184	C	C2-N1-C1'	6.43	125.87	118.80
9	2	1161	С	C6-N1-C2	-6.42	117.73	120.30
9	2	1066	C	C6-N1-C2	-6.40	117.74	120.30
9	2	1535	U	C2-N1-C1'	6.39	125.36	117.70
9	2	1759	C	C6-N1-C2	-6.37	117.75	120.30
9	2	237	C	N1-C2-O2	6.36	122.72	118.90
9	2	1327	С	C6-N1-C2	-6.36	117.76	120.30
27	Е	25	LEU	CA-CB-CG	6.35	129.91	115.30
9	2	758	U	N1-C2-O2	6.34	127.24	122.80
9	2	1389	C	C6-N1-C1'	-6.34	113.19	120.80
31	D	88	LEU	CA-CB-CG	6.32	129.83	115.30
9	2	1382	A	P-O3'-C3'	6.31	127.28	119.70
9	2	258	С	N1-C2-O2	6.30	122.68	118.90
9	2	144	U	C5-C4-O4	-6.29	122.13	125.90
9	2	639	U	N3-C2-O2	-6.26	117.81	122.20
9	2	1021	С	C6-N1-C2	-6.24	117.80	120.30
9	2	1527	C	C6-N1-C2	-6.24	117.80	120.30
9	2	1755	А	N7-C8-N9	6.19	116.89	113.80
9	2	1214	U	N1-C2-O2	6.16	127.11	122.80
19	Z	105	LEU	CA-CB-CG	6.16	129.47	115.30
9	2	934	С	C2-N1-C1'	6.15	125.57	118.80
9	2	1082	C	O4'-C1'-N1	6.15	113.12	108.20
9	2	1129	U	N1-C2-O2	6.15	127.10	122.80
14	Т	105	ASP	CB-CG-OD1	6.14	123.82	118.30
32	F	28	LEU	CA-CB-CG	6.14	129.41	115.30
9	2	1066	С	C2-N1-C1'	6.13	125.54	118.80
9	2	1145	U	N1-C2-O2	6.11	127.08	122.80
9	2	610	G	C8-N9-C1'	-6.11	119.06	127.00
34	Ι	73	MET	CB-CG-SD	6.08	130.64	112.40
9	2	1082	С	N1-C2-O2	6.08	122.55	118.90
9	2	965	U	N1-C2-O2	6.07	127.05	122.80
9	2	559	C	C2-N1-C1'	6.06	125.47	118.80
27	E	65	LEU	CA-CB-CG	6.05	129.21	115.30
9	2	768	C	C6-N1-C2	-6.04	117.89	120.30
9	2	1560	U	O4'-C1'-N1	6.03	113.02	108.20
9	2	1024	U	N1-C2-O2	6.02	127.02	122.80
40	0	225	LEU	CA-CB-CG	6.01	129.13	115.30

α \cdot \cdot \cdot	C	•	
Continued	trom	premous	naae
contentaca	<i>J</i> · <i>O</i> · · · <i>O</i>	proceeduo	pago

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
42	У	147	LYS	CA-CB-CG	6.01	126.63	113.40
18	Y	137	PRO	C-N-CA	6.00	136.71	121.70
9	2	1636	С	P-O3'-C3'	6.00	126.90	119.70
9	2	1799	U	N3-C2-O2	-5.99	118.00	122.20
9	2	144	U	C6-N1-C1'	-5.98	112.83	121.20
9	2	558	U	C2-N1-C1'	5.97	124.86	117.70
9	2	258	С	N3-C2-O2	-5.96	117.73	121.90
9	2	354	С	N1-C2-O2	5.94	122.47	118.90
9	2	1106	U	N3-C2-O2	-5.94	118.04	122.20
9	2	302	U	N3-C2-O2	-5.93	118.05	122.20
9	2	539	G	C4-N9-C1'	5.93	134.21	126.50
9	2	835	U	C2-N1-C1'	5.92	124.80	117.70
9	2	90	С	C6-N1-C2	-5.90	117.94	120.30
31	D	39	ASP	CB-CG-OD2	5.90	123.61	118.30
9	2	424	С	C5-C6-N1	5.90	123.95	121.00
9	2	1382	А	OP1-P-O3'	5.89	118.16	105.20
9	2	1535	U	N3-C2-O2	-5.89	118.08	122.20
9	2	1596	С	N1-C2-O2	5.88	122.43	118.90
9	2	489	С	C5-C6-N1	5.87	123.94	121.00
9	2	794	U	N1-C2-O2	5.87	126.91	122.80
9	2	1491	U	C2-N1-C1'	5.86	124.73	117.70
9	2	555	А	C5-C6-N1	-5.86	114.77	117.70
9	2	1214	U	C2-N1-C1'	5.86	124.73	117.70
9	2	1632	С	C2-N1-C1'	5.84	125.22	118.80
9	2	144	U	N3-C4-O4	5.82	123.48	119.40
37	L	65	LEU	CA-CB-CG	5.82	128.69	115.30
9	2	539	G	N3-C4-N9	5.82	129.49	126.00
9	2	1661	U	C2-N1-C1'	5.81	124.67	117.70
9	2	494	U	C2-N1-C1'	5.81	124.67	117.70
9	2	1162	С	C6-N1-C2	-5.81	117.98	120.30
9	2	442	С	C6-N1-C2	-5.80	117.98	120.30
9	2	1252	С	C6-N1-C2	-5.78	117.99	120.30
9	2	280	U	P-O3'-C3'	5.78	126.63	119.70
42	Z	210	GLU	CA-CB-CG	5.77	126.09	113.40
9	2	1661	U	N1-C2-O2	5.76	126.83	122.80
9	2	530	С	N3-C2-O2	-5.76	117.87	121.90
9	2	828	U	C2-N1-C1'	5.76	124.61	117.70
9	2	230	С	C2-N1-C1'	5.75	125.13	118.80
9	2	267	U	N3-C2-O2	-5.74	118.18	122.20
43	X	215	LEU	CA-CB-CG	5.73	128.48	115.30
41	h	33	LEU	CA-CB-CG	5.73	128.47	115.30
9	2	120	U	N1-C2-O2	5.72	126.80	122.80

α \cdot \cdot \cdot	C		
Continued	trom	previous	page
	J	1	1

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
9	2	1489	U	C2-N1-C1'	5.71	124.56	117.70
9	2	1082	С	N3-C2-O2	-5.71	117.90	121.90
9	2	1389	С	C6-N1-C2	-5.71	118.02	120.30
9	2	794	U	N3-C2-O2	-5.71	118.20	122.20
9	2	144	U	N1-C2-O2	5.69	126.78	122.80
30	С	82	LEU	CA-CB-CG	5.69	128.39	115.30
18	Y	27	LYS	CB-CG-CD	5.68	126.36	111.60
9	2	1332	С	C6-N1-C2	-5.67	118.03	120.30
9	2	1082	С	C6-N1-C1'	-5.67	114.00	120.80
9	2	1527	С	C5-C6-N1	5.67	123.83	121.00
9	2	314	С	C6-N1-C2	-5.66	118.04	120.30
9	2	1799	U	N1-C2-O2	5.66	126.76	122.80
9	2	139	С	P-O3'-C3'	5.65	126.48	119.70
9	2	1214	U	N3-C2-O2	-5.63	118.26	122.20
13	S	212	ASP	CB-CG-OD2	5.63	123.36	118.30
9	2	539	G	N7-C8-N9	5.60	115.90	113.10
47	U	34	LEU	CA-CB-CG	5.60	128.18	115.30
9	2	224	С	N3-C2-O2	-5.59	117.98	121.90
22	с	133	LEU	CA-CB-CG	5.59	128.16	115.30
9	2	558	U	N1-C2-O2	5.58	126.71	122.80
42	Z	170	LEU	CA-CB-CG	5.58	128.14	115.30
9	2	1596	С	N3-C2-O2	-5.58	118.00	121.90
9	2	400	А	P-O3'-C3'	5.57	126.39	119.70
9	2	361	С	C5-C6-N1	5.57	123.78	121.00
9	2	190	С	C6-N1-C2	-5.56	118.08	120.30
11	Q	184	LEU	CA-CB-CG	5.55	128.07	115.30
27	Е	72	LYS	CA-CB-CG	5.55	125.61	113.40
9	2	1755	А	C8-N9-C4	-5.55	103.58	105.80
9	2	224	С	C6-N1-C2	-5.54	118.08	120.30
9	2	1389	С	C5-C6-N1	5.54	123.77	121.00
9	2	1664	С	C2-N1-C1'	5.52	124.87	118.80
9	2	354	С	C2-N3-C4	5.51	122.65	119.90
9	2	559	С	C6-N1-C2	-5.51	118.10	120.30
9	2	489	С	C6-N1-C2	-5.50	118.10	120.30
9	2	1527	С	N1-C2-O2	5.50	122.20	118.90
9	2	960	U	N1-C2-O2	5.50	126.65	122.80
9	2	768	С	N3-C2-O2	-5.49	118.06	121.90
9	2	142	G	N3-C4-N9	-5.49	122.70	126.00
47	U	18	LEU	CA-CB-CG	5.49	127.93	115.30
9	2	965	U	C6-N1-C1'	-5.48	113.53	121.20
9	2	149	С	C6-N1-C2	-5.48	118.11	120.30
9	2	1661	U	N3-C2-O2	-5.47	118.37	122.20

α \cdot \cdot \cdot	C	•	
Continued	from	previous	page
		1	1 0

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	2	1756	А	N1-C6-N6	-5.47	115.32	118.60
9	2	794	U	C2-N1-C1'	5.47	124.26	117.70
12	R	76	LEU	CA-CB-CG	5.46	127.85	115.30
9	2	965	U	N3-C2-O2	-5.44	118.39	122.20
9	2	1491	U	N1-C2-O2	5.43	126.60	122.80
9	2	117	U	N3-C2-O2	-5.43	118.40	122.20
9	2	1108	G	O4'-C1'-N9	5.42	112.53	108.20
9	2	1389	С	N1-C2-O2	5.41	122.14	118.90
9	2	1161	С	C2-N1-C1'	5.40	124.74	118.80
10	Р	206	ASP	C-N-CD	5.38	139.71	128.40
9	2	387	А	P-O3'-C3'	5.38	126.15	119.70
9	2	4	С	C6-N1-C2	-5.38	118.15	120.30
9	2	140	А	O5'-P-OP2	5.38	117.15	110.70
42	Z	180	LEU	CB-CG-CD2	5.37	120.13	111.00
9	2	1491	U	N3-C2-O2	-5.37	118.44	122.20
9	2	224	С	C5-C6-N1	5.35	123.68	121.00
9	2	840	U	C2-N1-C1'	5.35	124.11	117.70
9	2	1756	А	C4-C5-C6	-5.35	114.33	117.00
9	2	1761	U	N3-C2-O2	-5.34	118.46	122.20
9	2	1633	А	C6-N1-C2	5.34	121.80	118.60
9	2	1	U	C5-C6-N1	5.34	125.37	122.70
9	2	302	U	N1-C2-O2	5.33	126.53	122.80
35	J	140	LEU	CA-CB-CG	5.33	127.57	115.30
9	2	864	U	C6-N1-C1'	-5.33	113.74	121.20
9	2	1632	С	C6-N1-C2	-5.33	118.17	120.30
9	2	1021	С	C2-N1-C1'	5.33	124.66	118.80
9	2	1246	С	N1-C2-O2	5.33	122.09	118.90
9	2	1656	U	N3-C2-O2	-5.33	118.47	122.20
9	2	992	A	O4'-C1'-N9	5.32	112.46	108.20
11	Q	59	ASP	CB-CG-OD1	-5.32	113.51	118.30
9	2	1066	С	C5-C6-N1	5.31	123.66	121.00
9	2	4	С	C2-N1-C1'	5.29	124.62	118.80
9	2	840	U	N1-C2-O2	5.29	126.50	122.80
9	2	1257	U	C2-N1-C1'	5.29	124.05	117.70
9	2	1274	С	N1-C2-O2	5.29	122.07	118.90
42	Z	186	LYS	CB-CG-CD	5.29	125.34	111.60
9	2	935	U	N1-C2-O2	5.27	126.49	122.80
9	2	1497	U	N1-C2-O2	5.26	126.48	122.80
9	2	572	С	O5'-P-OP1	-5.24	100.98	105.70
9	2	14	С	C6-N1-C2	-5.23	118.21	120.30
9	2	640	U	P-O3'-C3'	5.23	125.98	119.70
11	Q	229	MET	CA-CB-CG	5.22	122.18	113.30

$\alpha \cdot \cdot \cdot \cdot$	ſ		
Continued	from	previous	page

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	2	1	U	N1-C2-O2	5.22	126.45	122.80
9	2	825	U	N3-C2-O2	-5.22	118.55	122.20
9	2	1684	U	N1-C2-O2	5.22	126.45	122.80
9	2	1560	U	C6-N1-C1'	-5.22	113.90	121.20
9	2	1220	С	C6-N1-C2	-5.21	118.21	120.30
9	2	765	G	C4-N9-C1'	5.21	133.27	126.50
9	2	656	G	C4-N9-C1'	5.21	133.27	126.50
9	2	354	С	C5-C6-N1	5.20	123.60	121.00
9	2	88	U	N3-C2-O2	-5.20	118.56	122.20
9	2	645	С	C2-N1-C1'	5.20	124.51	118.80
47	U	9	LEU	CA-CB-CG	5.20	127.25	115.30
9	2	1716	С	N3-C2-O2	-5.19	118.27	121.90
9	2	558	U	N3-C2-O2	-5.18	118.57	122.20
9	2	617	U	C2-N1-C1'	5.18	123.92	117.70
9	2	189	С	C2-N1-C1'	5.17	124.49	118.80
9	2	494	U	N1-C2-O2	5.17	126.42	122.80
9	2	608	U	N3-C2-O2	-5.17	118.58	122.20
9	2	1619	С	N1-C2-O2	5.17	122.00	118.90
9	2	237	С	C6-N1-C2	-5.16	118.23	120.30
9	2	1220	С	C5-C6-N1	5.15	123.58	121.00
9	2	1497	U	N3-C2-O2	-5.15	118.59	122.20
9	2	1185	U	C2-N1-C1'	5.15	123.88	117.70
11	Q	55	LYS	CA-CB-CG	5.14	124.71	113.40
9	2	1669	U	N3-C2-O2	-5.14	118.60	122.20
9	2	184	С	C5-C6-N1	5.13	123.57	121.00
9	2	400	А	C8-N9-C4	-5.13	103.75	105.80
9	2	5	U	N3-C2-O2	-5.12	118.61	122.20
9	2	354	С	C6-N1-C2	-5.12	118.25	120.30
9	2	528	U	N3-C2-O2	-5.12	118.61	122.20
28	А	218	LEU	CA-CB-CG	5.12	127.08	115.30
9	2	1639	С	C6-N1-C2	-5.12	118.25	120.30
9	2	977	А	N1-C6-N6	-5.11	115.54	118.60
27	Ε	83	MET	CG-SD-CE	5.11	108.37	100.20
9	2	1063	U	C5-C6-N1	5.11	125.25	122.70
9	2	1226	А	P-O3'-C3'	5.10	125.82	119.70
9	2	687	G	N3-C2-N2	-5.10	116.33	119.90
9	2	1332	С	C5-C6-N1	5.10	123.55	121.00
9	2	149	С	C2-N1-C1'	5.10	124.41	118.80
9	2	759	U	N3-C2-O2	-5.09	118.64	122.20
9	2	235	G	N3-C2-N2	5.08	123.46	119.90
9	2	1145	U	C6-N1-C2	-5.07	117.96	121.00
9	2	1344	A	P-O3'-C3'	5.07	$1\overline{25.78}$	119.70

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	2	207	U	N3-C2-O2	-5.07	118.65	122.20
9	2	1664	С	N1-C2-O2	5.06	121.94	118.90
9	2	184	С	C6-N1-C2	-5.05	118.28	120.30
29	В	145	ASP	CB-CG-OD2	5.05	122.85	118.30
9	2	765	G	C4-C5-N7	5.05	112.82	110.80
9	2	1274	С	N3-C2-O2	-5.05	118.37	121.90
9	2	499	U	C5-C6-N1	5.04	125.22	122.70
9	2	1684	U	N3-C2-O2	-5.04	118.67	122.20
9	2	111	U	N1-C2-O2	5.04	126.33	122.80
27	Е	83	MET	CB-CG-SD	5.04	127.50	112.40
9	2	765	G	N7-C8-N9	5.03	115.61	113.10
9	2	1656	U	N1-C2-O2	5.03	126.32	122.80
9	2	996	U	N1-C2-O2	5.02	126.31	122.80
9	2	975	С	C6-N1-C2	-5.02	118.29	120.30
9	2	1082	С	C5-C6-N1	5.02	123.51	121.00
9	2	381	С	C6-N1-C2	-5.02	118.29	120.30
43	Х	443	LEU	CA-CB-CG	5.01	126.82	115.30
9	2	934	С	N1-C2-O2	5.01	121.90	118.90
9	2	1799	U	C2-N1-C1'	5.00	123.70	117.70
9	2	1202	A	C2-N3-C4	5.00	113.10	110.60

Continued from previous page...

There are no chirality outliers.

All (3) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
21	b	54	ASP	Peptide
4	р	336	TRP	Peptide
42	Z	154	ARG	Sidechain

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percei	ntiles
1	1	326/347~(94%)	321~(98%)	5 (2%)	0	100	100
2	r	51/274~(19%)	49 (96%)	2(4%)	0	100	100
3	О	519/964~(54%)	509~(98%)	10 (2%)	0	100	100
4	р	638/763~(84%)	604 (95%)	31 (5%)	3(0%)	29	68
5	q	628/812~(77%)	601 (96%)	26 (4%)	1 (0%)	47	82
6	i	95/153~(62%)	87 (92%)	8 (8%)	0	100	100
7	m	88/108~(82%)	81 (92%)	5 (6%)	2(2%)	6	30
10	Р	204/252~(81%)	190 (93%)	14 (7%)	0	100	100
11	Q	222/255~(87%)	201 (90%)	21 (10%)	0	100	100
12	R	214/254~(84%)	202 (94%)	12 (6%)	0	100	100
13	S	256/261~(98%)	238 (93%)	18 (7%)	0	100	100
14	Т	226/236~(96%)	217 (96%)	9 (4%)	0	100	100
15	V	183/200~(92%)	176 (96%)	7 (4%)	0	100	100
16	W	182/197~(92%)	172 (94%)	9 (5%)	1 (0%)	29	68
17	Х	140/156~(90%)	134 (96%)	6 (4%)	0	100	100
18	Y	148/151~(98%)	143 (97%)	5 (3%)	0	100	100
19	Z	125/137~(91%)	111 (89%)	14 (11%)	0	100	100
20	a	85/87~(98%)	75 (88%)	10 (12%)	0	100	100
21	b	127/130~(98%)	120 (94%)	7 (6%)	0	100	100
22	с	142/145~(98%)	135 (95%)	6 (4%)	1 (1%)	22	60
23	d	132/135~(98%)	126 (96%)	6 (4%)	0	100	100
24	е	95/119~(80%)	88 (93%)	7 (7%)	0	100	100
25	f	79/82~(96%)	71 (90%)	8 (10%)	0	100	100
26	g	58/63~(92%)	55~(95%)	3 (5%)	0	100	100
27	Е	115/142~(81%)	110 (96%)	5 (4%)	0	100	100
28	А	220/240~(92%)	208 (94%)	12 (6%)	0	100	100
29	В	204/225~(91%)	194 (95%)	10 (5%)	0	100	100
30	С	90/105~(86%)	81 (90%)	9 (10%)	0	100	100
31	D	119/143~(83%)	103 (87%)	16 (13%)	0	100	100
32	F	139/143~(97%)	133 (96%)	6 (4%)	0	100	100

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
33	Н	117/136~(86%)	111 (95%)	6 (5%)	0	100	100
34	Ι	143/146~(98%)	137~(96%)	5 (4%)	1 (1%)	22	60
35	J	141/144~(98%)	136~(96%)	5(4%)	0	100	100
36	Κ	98/121~(81%)	93~(95%)	5 (5%)	0	100	100
37	L	80/108~(74%)	76~(95%)	4(5%)	0	100	100
38	М	51/56~(91%)	51 (100%)	0	0	100	100
39	Ν	71/76~(93%)	60 (84%)	11 (16%)	0	100	100
40	Ο	310/319~(97%)	293~(94%)	17 (6%)	0	100	100
41	h	61/67~(91%)	57~(93%)	4 (7%)	0	100	100
42	У	77/265~(29%)	71 (92%)	6 (8%)	0	100	100
42	Z	118/265~(44%)	109~(92%)	9~(8%)	0	100	100
43	х	578/608~(95%)	549~(95%)	29~(5%)	0	100	100
44	k	74/76~(97%)	72 (97%)	2(3%)	0	100	100
45	n	16/25~(64%)	16 (100%)	0	0	100	100
46	G	253/307~(82%)	251~(99%)	2(1%)	0	100	100
47	U	182/190~(96%)	$1\overline{71} (94\%)$	11 (6%)	0	100	100
All	All	8220/10188 (81%)	7788~(95%)	423 (5%)	9 (0%)	54	85

All (9) Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
4	р	392	PRO
7	m	85	ARG
34	Ι	102	ALA
4	р	536	LYS
22	с	88	PRO
7	m	73	GLU
16	W	169	PRO
4	р	198	VAL
5	q	351	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
10	Р	170/210~(81%)	166~(98%)	4 (2%)	49	79
11	Q	200/224~(89%)	194~(97%)	6 (3%)	41	75
12	R	175/205~(85%)	173~(99%)	2(1%)	73	90
13	S	220/222 (99%)	216 (98%)	4 (2%)	59	85
14	Т	189/201 (94%)	185 (98%)	4 (2%)	53	82
15	V	148/161 (92%)	147 (99%)	1 (1%)	84	94
16	W	156/166~(94%)	151 (97%)	5 (3%)	39	74
17	Х	126/137~(92%)	125 (99%)	1 (1%)	81	93
18	Y	127/128~(99%)	125 (98%)	2 (2%)	62	86
19	Z	90/105~(86%)	88 (98%)	2 (2%)	52	81
20	a	71/74~(96%)	69 (97%)	2(3%)	43	77
21	b	110/111 (99%)	110 (100%)	0	100	100
22	с	119/120 (99%)	118 (99%)	1 (1%)	81	93
23	d	112/113~(99%)	111 (99%)	1 (1%)	78	92
24	е	82/101 (81%)	80 (98%)	2 (2%)	49	79
25	f	70/71~(99%)	68~(97%)	2(3%)	42	76
26	g	50/54~(93%)	50 (100%)	0	100	100
27	Е	95/118 (80%)	91 (96%)	4 (4%)	30	66
28	А	182/195~(93%)	174 (96%)	8 (4%)	28	65
29	В	172/191~(90%)	168 (98%)	4 (2%)	50	80
30	С	78/98~(80%)	76 (97%)	2(3%)	46	78
31	D	88/119 (74%)	87 (99%)	1 (1%)	73	90
32	F	117/119~(98%)	111 (95%)	6 (5%)	24	60
33	Н	101/124 (82%)	96 (95%)	5 (5%)	24	60
34	Ι	127/129~(98%)	122 (96%)	5 (4%)	32	69
35	J	115/116 (99%)	114 (99%)	1 (1%)	78	92
36	Κ	93/114 (82%)	91 (98%)	2 (2%)	52	81
37	L	67/89~(75%)	65~(97%)	2(3%)	41	75
38	М	47/49~(96%)	46 (98%)	1 (2%)	53	82
39	Ν	57/66~(86%)	54 (95%)	3(5%)	22	58

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
40	Ο	250/262~(95%)	247~(99%)	3~(1%)	71	90
41	h	55/60~(92%)	53~(96%)	2(4%)	35	70
42	У	69/221~(31%)	68~(99%)	1 (1%)	67	88
42	Z	90/221~(41%)	87~(97%)	3~(3%)	38	73
43	х	516/537~(96%)	506~(98%)	10 (2%)	57	84
45	n	17/23~(74%)	17~(100%)	0	100	100
46	G	62/282~(22%)	62~(100%)	0	100	100
47	U	163/170~(96%)	160 (98%)	3 (2%)	59	85
All	All	4776/5706 (84%)	4671 (98%)	105 (2%)	54	81

All (105) residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
10	Р	8	ASP
10	Р	32	HIS
10	Р	41	ARG
10	Р	191	ARG
11	Q	8	ARG
11	Q	59	ASP
11	Q	94	LYS
11	Q	108	ASP
11	Q	148	ASN
11	Q	205	PHE
12	R	195	ASP
12	R	222	TYR
13	S	11	ARG
13	S	77	ARG
13	S	182	TYR
13	S	197	HIS
14	Т	22	HIS
14	Т	23	ARG
14	Т	25	ARG
14	Т	37	ASP
15	V	123	LYS
16	W	37	LYS
16	W	67	PRO
16	W	94	ASP
16	W	103	ASP
16	W	153	GLU

Mol	Chain	Res	Type
17	Х	67	ARG
18	Y	93	LYS
18	Y	140	LYS
19	Ζ	66	ASP
19	Ζ	105	LEU
20	a	5	LYS
20	a	11	LEU
22	с	107	PHE
23	d	34	ASN
24	е	19	LYS
24	е	52	ASP
25	f	56	CYS
25	f	78	SER
27	Е	24	LYS
27	Е	28	MET
27	Е	59	LYS
27	Е	86	VAL
28	А	56	GLN
28	А	57	ASP
28	А	76	ARG
28	А	93	ASP
28	А	107	PHE
28	А	154	ASP
28	А	156	PHE
28	А	225	TYR
29	В	43	PHE
29	В	54	LYS
29	В	156	ARG
29	В	161	ASP
30	С	68	LEU
30	С	81	ASN
31	D	83	GLU
32	F	6	SER
32	F	26	LYS
32	F	52	LEU
32	F	53	LEU
32	F	64	ASP
32	F	99	GLU
33	Н	24	LEU
33	Н	62	GLN
33	Н	63	LYS
33	Н	72	LYS

Mol	Chain	Res	Type
33	Н	84	TYR
34	Ι	40	ARG
34	Ι	73	MET
34	Ι	79	TYR
34	Ι	144	ARG
34	Ι	145	ARG
35	J	45	MET
36	К	48	HIS
36	K	49	ASN
37	L	65	LEU
37	L	86	GLU
38	М	36	LEU
39	N	92	LYS
39	N	116	LYS
39	N	117	LEU
40	0	181	TRP
40	0	231	MET
40	0	316	MET
41	h	9	LEU
41	h	58	GLU
42	Z	167	LYS
42	Z	186	LYS
42	Z	206	ASP
42	у	209	ARG
43	X	205	TYR
43	X	216	LYS
43	X	383	MET
43	X	447	PHE
43	x	528	PHE
43	x	547	LYS
43	x	550	HIS
43	X	557	LEU
43	x	572	PHE
43	x	599	ASN
47	U	87	ASP
47	U	107	ARG
47	U	116	ARG

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (6) such side chains are listed below:

11101	Ullaill	nes	Type
11	Q	92	GLN

Continued from previous page...

Mol	Chain	Res	Type
11	Q	95	ASN
28	А	111	ASN
36	Κ	36	ASN
42	Z	165	ASN
43	Х	315	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
9	2	1740/1800~(96%)	456~(26%)	16 (0%)

All (456) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
9	2	2	А
9	2	4	С
9	2	17	С
9	2	25	С
9	2	26	А
9	2	34	G
9	2	42	G
9	2	45	U
9	2	46	А
9	2	47	А
9	2	56	U
9	2	57	G
9	2	60	U
9	2	66	U
9	2	68	А
9	2	73	U
9	2	74	U
9	2	75	U
9	2	76	А
9	2	77	U
9	2	78	А
9	2	100	А
9	2	104	А
9	2	111	U
9	2	114	С
9	2	115	G
9	2	117	U

Mol	Chain	Res	Type
9	2	126	А
9	2	127	G
9	2	129	U
9	2	140	А
9	2	141	U
9	2	142	G
9	2	143	G
9	2	144	U
9	2	145	А
9	2	146	U
9	2	153	G
9	2	158	U
9	2	161	U
9	2	168	А
9	2	176	С
9	2	178	U
9	2	179	А
9	2	180	А
9	2	187	G
9	2	188	А
9	2	191	С
9	2	192	U
9	2	193	U
9	2	194	U
9	2	195	G
9	2	197	A
9	2	215	А
9	2	217	А
9	2	218	A
9	2	222	А
9	2	223	U
9	2	224	С
9	2	225	A
9	2	227	U
9	2	228	G
9	2	230	С
9	2	232	U
9	2	233	С
9	2	234	G
9	2	235	G
9	2	239	С
9	2	240	U

Mol	Chain	Res	Type
9	2	241	U
9	2	249	U
9	2	259	U
9	2	260	U
9	2	261	U
9	2	265	A
9	2	266	A
9	2	272	U
9	2	273	G
9	2	277	U
9	2	278	U
9	2	279	G
9	2	280	U
9	2	281	G
9	2	287	G
9	2	302	U
9	2	304	U
9	2	312	А
9	2	313	U
9	2	314	С
9	2	316	А
9	2	321	С
9	2	322	G
9	2	328	A
9	2	333	A
9	2	334	G
9	2	337	G
9	2	338	С
9	2	352	А
9	2	353	A
9	2	359	A
9	2	361	С
9	2	365	G
9	2	370	A
9	2	388	G
9	2	393	С
9	2	399	A
9	2	400	A
9	2	401	A
9	2	402	С
9	2	403	G
9	2	404	G

Mol	Chain	Res	Type
9	2	417	А
9	2	419	G
9	2	423	G
9	2	424	С
9	2	425	А
9	2	426	G
9	2	434	G
9	2	435	С
9	2	436	А
9	2	439	U
9	2	444	С
9	2	445	А
9	2	448	С
9	2	454	U
9	2	460	A
9	2	468	A
9	2	469	С
9	2	473	A
9	2	477	A
9	2	483	A
9	2	484	С
9	2	485	A
9	2	487	G
9	2	490	С
9	2	491	С
9	2	492	А
9	2	493	U
9	2	494	U
9	2	495	С
9	2	496	G
9	2	498	G
9	2	499	U
9	2	500	С
9	2	501	U
9	2	502	U
9	2	504	U
9	2	506	A
9	2	507	U
9	2	510	G
9	2	511	A
9	2	514	G
9	2	519	С

Mol	Chain	Res	Type
9	2	527	А
9	2	534	А
9	2	538	А
9	2	539	G
9	2	540	G
9	2	541	А
9	2	542	А
9	2	548	G
9	2	549	G
9	2	557	G
9	2	559	С
9	2	565	С
9	2	566	С
9	2	568	G
9	2	571	G
9	2	578	U
9	2	579	А
9	2	580	А
9	2	582	U
9	2	594	А
9	2	595	G
9	2	606	А
9	2	610	G
9	2	611	U
9	2	619	А
9	2	620	А
9	2	621	А
9	2	622	А
9	2	623	А
9	2	624	G
9	2	638	U
9	2	639	U
9	2	640	U
9	2	641	G
9	2	645	С
9	2	647	G
9	2	649	U
9	2	651	G
9	2	654	С
9	2	655	G
9	2	656	G
9	2	677	G

Mol	Chain	Res	Type
9	2	681	U
9	2	682	С
9	2	683	С
9	2	694	U
9	2	696	С
9	2	698	U
9	2	700	С
9	2	703	G
9	2	704	С
9	2	705	U
9	2	706	A
9	2	707	A
9	2	708	С
9	2	711	U
9	2	712	G
9	2	713	A
9	2	714	G
9	2	730	G
9	2	731	С
9	2	732	G
9	2	733	А
9	2	734	A
9	2	736	С
9	2	737	А
9	2	739	G
9	2	741	С
9	2	742	U
9	2	743	U
9	2	765	G
9	2	766	U
9	2	767	U
9	2	774	А
9	2	775	G
9	2	778	G
9	2	779	U
9	2	780	A
9	2	781	U
9	2	782	U
9	2	783	G
9	2	807	A
9	2	812	A
9	2	813	U

Mol	Chain	Res	Type
9	2	814	А
9	2	815	G
9	2	816	G
9	2	819	G
9	2	820	U
9	2	821	U
9	2	823	G
9	2	824	G
9	2	825	U
9	2	833	U
9	2	834	G
9	2	840	U
9	2	845	G
9	2	846	G
9	2	850	A
9	2	855	A
9	2	856	А
9	2	863	А
9	2	873	U
9	2	876	G
9	2	886	U
9	2	899	G
9	2	901	G
9	2	902	G
9	2	914	G
9	2	921	U
9	2	926	А
9	2	929	А
9	2	932	U
9	2	933	А
9	2	935	U
9	2	942	G
9	2	945	U
9	2	951	A
9	2	960	U
9	2	966	А
9	2	969	С
9	2	970	A
9	2	971	A
9	2	987	G
9	2	988	A
9	2	992	А

Mol	Chain	Res	Type
9	2	993	А
9	2	1001	А
9	2	1003	А
9	2	1004	U
9	2	1023	А
9	2	1026	А
9	2	1028	С
9	2	1031	U
9	2	1032	G
9	2	1039	А
9	2	1052	U
9	2	1053	G
9	2	1054	U
9	2	1059	U
9	2	1060	U
9	2	1061	А
9	2	1076	А
9	2	1080	U
9	2	1082	С
9	2	1083	G
9	2	1092	А
9	2	1096	С
9	2	1098	U
9	2	1100	G
9	2	1109	G
9	2	1113	А
9	2	1116	А
9	2	1138	А
9	2	1150	G
9	2	1156	С
9	2	1158	С
9	2	1159	С
9	2	1167	G
9	2	1171	A
9	2	1185	U
9	2	1191	U
9	2	1194	A
9	2	1196	A
9	2	1199	G
9	2	1200	G
9	2	1202	A
9	2	1207	С

Mol	Chain	Res	Type
9	2	1208	А
9	2	1214	U
9	2	1217	А
9	2	1218	G
9	2	1227	А
9	2	1228	G
9	2	1229	G
9	2	1230	А
9	2	1244	А
9	2	1245	G
9	2	1246	С
9	2	1251	U
9	2	1256	А
9	2	1263	G
9	2	1274	С
9	2	1275	А
9	2	1284	С
9	2	1285	U
9	2	1291	G
9	2	1306	С
9	2	1314	U
9	2	1315	U
9	2	1316	G
9	2	1319	А
9	2	1321	А
9	2	1322	А
9	2	1323	С
9	2	1325	А
9	2	1338	С
9	2	1344	А
9	2	1345	А
9	2	1346	А
9	2	1350	U
9	2	1354	G
9	2	1360	A
9	2	1363	U
9	2	1364	G
9	2	1367	G
9	2	1370	U
9	2	1371	A
9	2	1372	U
9	2	1373	С

Mol	Chain	Res	Type
9	2	1378	U
9	2	1383	G
9	2	1388	А
9	2	1389	С
9	2	1390	U
9	2	1398	U
9	2	1399	С
9	2	1400	А
9	2	1410	А
9	2	1414	U
9	2	1415	U
9	2	1425	А
9	2	1426	С
9	2	1427	A
9	2	1428	G
9	2	1432	U
9	2	1433	G
9	2	1446	А
9	2	1447	С
9	2	1458	G
9	2	1459	С
9	2	1460	А
9	2	1471	А
9	2	1472	С
9	2	1487	А
9	2	1491	U
9	2	1492	А
9	2	1494	C
9	2	1496	U
9	2	1506	G
9	2	1514	U
9	2	1516	А
9	2	1520	U
9	2	1521	G
9	2	1523	G
9	2	1524	A
9	2	1534	G
9	2	1535	U
9	2	1537	С
9	2	1540	G
9	2	1542	G
9	2	1543	А

Mol	Chain	Res	Type
9	2	1557	U
9	2	1558	U
9	2	1559	А
9	2	1573	А
9	2	1583	А
9	2	1584	G
9	2	1590	G
9	2	1597	А
9	2	1601	G
9	2	1607	G
9	2	1611	А
9	2	1616	G
9	2	1619	С
9	2	1631	А
9	2	1634	С
9	2	1635	А
9	2	1637	С
9	2	1651	А
9	2	1654	G
9	2	1656	U
9	2	1657	U
9	2	1658	G
9	2	1680	G
9	2	1682	U
9	2	1684	U
9	2	1690	G
9	2	1715	G
9	2	1716	С
9	2	1746	А
9	2	1747	G
9	2	1748	G
9	2	1750	А
9	2	1754	А
9	2	1756	А
9	2	1757	G
9	2	1760	G
9	2	1762	A
9	2	1766	А
9	2	1767	G
9	2	1769	U
9	2	1780	G
9	2	1782	А

Contr	Continueu from pretious page			
\mathbf{Mol}	Chain	\mathbf{Res}	Type	
9	2	1783	С	
9	2	1791	А	
9	2	1792	G	
9	2	1793	G	
9	2	1794	А	
9	2	1795	U	
9	2	1796	С	
9	2	1798	U	
9	2	1799	U	

All (16) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
9	2	59	С
9	2	77	U
9	2	139	С
9	2	280	U
9	2	387	А
9	2	400	А
9	2	639	U
9	2	640	U
9	2	711	U
9	2	928	U
9	2	1226	А
9	2	1274	С
9	2	1344	А
9	2	1382	А
9	2	1636	С
9	2	1791	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 85 ligands modelled in this entry, 82 are monoatomic - leaving 3 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tink	Bond lengths			Bond angles		
INIOI	туре	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ # Z > 2	
50	SF4	Х	702	43	0,12,12	-	-	-		
50	SF4	Х	701	43	0,12,12	-	-	-		
51	ADP	х	703	43,48	24,29,29	0.93	1 (4%)	$29,\!45,\!45$	1.37 $4 (13\%)$	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
50	SF4	Х	702	43	-	-	0/6/5/5
50	SF4	Х	701	43	-	-	0/6/5/5
51	ADP	х	703	43,48	_	2/12/32/32	0/3/3/3

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
51	Х	703	ADP	C5-C4	2.44	1.47	1.40

All (4) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
51	Х	703	ADP	C3'-C2'-C1'	3.36	106.04	100.98
51	Х	703	ADP	N3-C2-N1	-3.12	123.80	128.68
51	Х	703	ADP	C4-C5-N7	-2.55	106.75	109.40
51	Х	703	ADP	PA-O3A-PB	-2.09	125.67	132.83

There are no chirality outliers.

All (2) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
51	Х	703	ADP	O4'-C4'-C5'-O5'
51	Х	703	ADP	C3'-C4'-C5'-O5'

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient the outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-16525. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 210

Z Index: 210

6.2.2 Raw map

X Index: 210

Y Index: 210

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 247

Y Index: 189

Z Index: 222

6.3.2 Raw map

X Index: 205

Y Index: 189

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.25. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1650 $\rm nm^3;$ this corresponds to an approximate mass of 1491 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.333 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.333 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)			
Resolution estimate (A)	0.143	0.5	Half-bit	
Reported by author	3.00	-	-	
Author-provided FSC curve	2.99	3.60	3.02	
Unmasked-calculated*	4.50	9.97	5.94	

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 4.50 differs from the reported value 3.0 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-16525 and PDB model 8CAH. Per-residue inclusion information can be found in section 3 on page 14.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.25 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.25).

9.4 Atom inclusion (i)

At the recommended contour level, 91% of all backbone atoms, 92% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.25) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.9210	0.4300
2	0.9910	0.5070
А	0.9450	0.4170
В	0.9610	0.3310
С	0.9780	0.3710
D	0.8090	0.1960
Е	0.9480	0.2660
F	0.9930	0.3680
G	0.9480	0.3100
H	0.9640	0.4310
Ι	0.9520	0.2390
J	0.9790	0.2800
K	0.9460	0.3820
L	0.8700	0.1940
М	1.0000	0.4810
N	0.8070	0.1840
0	0.9360	0.2810
Р	0.9930	0.5580
Q	0.9810	0.5110
R	0.9940	0.5820
S	0.9960	0.5850
T	0.9830	0.5030
U	0.9770	0.4820
V	0.9940	0.5700
W	0.9820	0.5760
X	0.9870	0.5920
Y	0.9890	0.5620
Z	0.9870	0.5350
a	0.9890	0.5720
b	0.9990	0.6120
С	0.9930	0.5910
d	0.9880	0.5540
e	0.9910	0.5710
f	0.9780	0.5400
g	0.9360	0.4980

Chain	Atom inclusion	Q-score
h	0.9370	0.3410
i	0.9500	0.4380
j	0.1950	0.0630
k	0.4920	0.1840
1	0.0110	0.0720
m	0.9320	0.3930
n	1.0000	0.5870
0	0.8920	0.1950
р	0.7640	0.2750
q	0.9420	0.2330
r	0.0000	0.1080
X	0.5460	0.2130
У	0.8360	0.3210
Z	0.8890	0.3550

