

Mar 20, 2024 - 08:29 am GMT

PDB ID	:	8CD1
EMDB ID	:	EMD-16566
Title	:	70S-PHIKZ014
Authors	:	Gerovac, M.; Vogel, J.
Deposited on	:	2023-01-29
Resolution	:	3.00 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev92
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.00 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	2	60	87%	•	12%
2	4	44	98%		•
3	5	64	<u>8%</u> 97%		••
4	6	38	97%		•
5	А	2888	74%	25%	
6	В	120	76%	24%	
7	С	273	99%		
8	D	211	97%		••

Conti	nued fron	n previous	page	
Mol	Chain	Length	Quality of chain	
9	Dt	76	87% 62% 33%	5%
10	Е	200	99%	
11	F	179	95%	••
12	G	177	97%	••
13	Н	148	53% 47%	
14	J	142	96%	•••
15	K	122	98%	••
16	L	144	99%	
17	Le	71	92%	• •
18	М	137	99%	·
19	Ν	129	91%	• 9%
20	0	116	99%	·
21	Р	116	97%	•
22	Q	118	98%	
23	R	103	98%	
24	S	110	99%	
25	Т	99	89%	• 7%
26	U	104	94%	5%•
27	V	204	89%	• 8%
28	W	85	87%	• 11%
29	Х	78	97%	••
30	Y	63	81%	13% 6%
31	Ζ	58	98%	•
32	a	1526	80%	20%
33	b	246	94%	• 5%

Mol	Chain	Length	Quality of chain	
34	С	228	90%	10%
35	d	206	• 98%	
36	е	166	• 92%	• 6%
37	f	139	- 75%	• 24%
38	g	156	6% 97%	••
39	h	130	99%	·
40	i	130	93%	5% •
41	j	103	32%	• 7%
42	k	129	• 89%	11%
43	1	123	96%	••
44	m	118	• 87%	6% 7%
45	n	101	97%	·
46	О	89	9 7%	·
47	р	83	94%	6%
48	q	88	83%	• 14%
49	r	76	88%	•• 7%
50	s	91		• 12%
51	t	91	93%	7%
52	u	71	35% 85%	• 13%
53	v	370	12% 69% ·	27%

2 Entry composition (i)

There are 54 unique types of molecules in this entry. The entry contains 144789 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 50S ribosomal protein L32.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
1	2	53	Total 423	C 254	N 90	0 78	S 1	0	0

• Molecule 2 is a protein called 50S ribosomal protein L34.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	4	44	Total	С	N	0	S	1	0
	_		376	228	91	55	2	_	, in the second s

• Molecule 3 is a protein called 50S ribosomal protein L35.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	5	63	Total	С	Ν	0	S	0	0
			506	314	108	81	3		

• Molecule 4 is a protein called 50S ribosomal protein L36.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	6	38	Total 303	C 184	N 69	O 46	$\begin{array}{c} \mathrm{S} \\ \mathrm{4} \end{array}$	0	0

• Molecule 5 is a RNA chain called 23S rRNA.

Mol	Chain	Residues			AltConf	Trace			
5	А	2883	Total 61859	C 27600	N 11347	O 20030	Р 2882	0	0

• Molecule 6 is a RNA chain called 5S rRNA.

Mol	Chain	Residues		At	AltConf	Trace			
6	В	120	Total 2555	C 1141	N 455	O 839	Р 120	0	0

• Molecule 7 is a protein called 50S ribosomal protein L2.

Mol	Chain	Residues		Ate	AltConf	Trace			
7	С	271	Total 2048	C 1258	N 422	O 362	S 6	0	0

• Molecule 8 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues		At	oms	AltConf	Trace		
8	D	207	Total 1549	C 960	N 297	0 287	${S \atop 5}$	0	0

• Molecule 9 is a RNA chain called tRNA.

Mol	Chain	Residues		\mathbf{A}	AltConf	Trace			
9	Dt	76	Total 1623	C 723	N 290	0 534	Р 76	0	0

• Molecule 10 is a protein called 50S ribosomal protein L4.

Mol	Chain	Residues		At	oms	AltConf	Trace		
10	Е	199	Total 1509	C 948	N 281	0 278	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 11 is a protein called 50S ribosomal protein L5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
11	F	174	Total 1288	C 811	N 228	0 246	${ m S} { m 3}$	0	0

• Molecule 12 is a protein called 50S ribosomal protein L6.

Mol	Chain	Residues	Atoms					AltConf	Trace
12	G	173	Total 1294	C 815	N 238	O 239	${ m S} { m 2}$	0	0

• Molecule 13 is a protein called 50S ribosomal protein L9.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
13	Н	78	Total 577	C 363	N 104	O 110	0	0

• Molecule 14 is a protein called 50S ribosomal protein L13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	J	141	Total 1122	C 713	N 205	O 201	${ m S} { m 3}$	0	0

• Molecule 15 is a protein called 50S ribosomal protein L14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	K	120	Total 922	C 576	N 178	0 162	S 6	0	0

• Molecule 16 is a protein called 50S ribosomal protein L15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	L	143	Total 1055	C 648	N 213	0 192	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 17 is a protein called 50S ribosomal protein L31.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
17	Lρ	68	Total	С	N	Ō	S	0	0
11	ЦС	00	531	334	95	96	6	0	0

• Molecule 18 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
18	М	135	Total 1069	C 679	N 209	0 178	${ m S} { m 3}$	0	0

• Molecule 19 is a protein called 50S ribosomal protein L17.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	Ν	118	Total 945	$\begin{array}{c} \mathrm{C} \\ 590 \end{array}$	N 190	O 160	${ m S}{ m 5}$	0	0

• Molecule 20 is a protein called 50S ribosomal protein L18.

Mol	Chain	Residues		At	oms		AltConf	Trace	
20	О	115	Total 881	С 544	N 174	0 161	${S \over 2}$	0	0

• Molecule 21 is a protein called 50S ribosomal protein L19.

Mol	Chain	Residues		At	oms			AltConf	Trace
21	Р	113	Total 891	$\begin{array}{c} \mathrm{C} \\ 563 \end{array}$	N 168	O 159	S 1	0	0

• Molecule 22 is a protein called 50S ribosomal protein L20.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
22	Q	117	Total 936	C 592	N 196	0 148	0	0

• Molecule 23 is a protein called 50S ribosomal protein L21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
23	R	102	Total 801	$\begin{array}{c} \mathrm{C} \\ 509 \end{array}$	N 154	0 136	${ m S} { m 2}$	0	0

• Molecule 24 is a protein called Large ribosomal subunit protein uL22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
24	S	109	Total 825	C 510	N 160	0 152	${ m S} { m 3}$	0	0

• Molecule 25 is a protein called 50S ribosomal protein L23.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
25	Т	92	Total 701	C 449	N 124	O 128	0	0

• Molecule 26 is a protein called 50S ribosomal protein L24.

Mol	Chain	Residues		At	oms	AltConf	Trace		
26	U	103	Total 800	C 503	N 152	0 143	${S \over 2}$	0	0

• Molecule 27 is a protein called 50S ribosomal protein L25.

Mol	Chain	Residues		At	oms	AltConf	Trace		
27	V	188	Total 1396	C 887	N 254	O 253	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 28 is a protein called 50S ribosomal protein L27.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
28	W	76	Total 575	C 364	N 111	O 100	0	0

• Molecule 29 is a protein called 50S ribosomal protein L28.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	Х	77	Total 626	C 389	N 134	0 101	${ m S} { m 2}$	0	0

• Molecule 30 is a protein called 50S ribosomal protein L29.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
30	Y	59	Total 473	C 291	N 94	O 87	S 1	0	0

• Molecule 31 is a protein called 50S ribosomal protein L30.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
31	Ζ	57	Total 445	C 277	N 87	0 79	${ m S} 2$	0	0

• Molecule 32 is a RNA chain called 16S rRNA.

Mol	Chain	Residues		1	Atoms			AltConf	Trace
32	a	1526	Total 32744	C 14606	N 6011	O 10602	Р 1525	0	0

• Molecule 33 is a protein called 30S ribosomal protein S2.

Mol	Chain	Residues		At	oms			AltConf	Trace
33	b	234	Total 1821	C 1145	N 329	0 337	S 10	0	0

• Molecule 34 is a protein called 30S ribosomal protein S3.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
34	С	205	Total 1627	C 1028	N 307	0 287	${f S}{5}$	0	0

• Molecule 35 is a protein called 30S ribosomal protein S4.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	d	205	Total 1603	C 991	N 311	O 296	${ m S}{ m 5}$	0	0

• Molecule 36 is a protein called 30S ribosomal protein S5.

Mol	Chain	Residues		At	oms			AltConf	Trace
36	е	156	Total 1145	C 720	N 209	0 210	S 6	0	0

• Molecule 37 is a protein called 30S ribosomal protein S6.

Mol	Chain	Residues		At	oms			AltConf	Trace
37	f	105	Total 853	C 531	N 158	0 159	${ m S}{ m 5}$	0	0

• Molecule 38 is a protein called 30S ribosomal protein S7.

Mol	Chain	Residues		At	oms			AltConf	Trace
38	g	154	Total 1190	С 747	N 227	0 211	${f S}{5}$	0	0

• Molecule 39 is a protein called 30S ribosomal protein S8.

Mol	Chain	Residues		At	AltConf	Trace			
39	h	129	Total 982	C 618	N 173	0 185	S 6	0	0

• Molecule 40 is a protein called 30S ribosomal protein S9.

Mol	Chain	Residues		At	oms			AltConf	Trace
40	i	127	Total 1010	C 625	N 203	0 181	S 1	0	0

• Molecule 41 is a protein called 30S ribosomal protein S10.

Mol	Chain	Residues		At	oms			AltConf	Trace
41	j	96	Total 765	C 479	N 143	0 142	S 1	0	0

• Molecule 42 is a protein called 30S ribosomal protein S11.

Mol	Chain	Residues		At	oms			AltConf	Trace
42	k	115	Total 838	C 517	N 163	O 156	${ m S} { m 2}$	0	0

• Molecule 43 is a protein called 30S ribosomal protein S12.

Mol	Chain	Residues	Atoms					AltConf	Trace
43	1	121	Total 949	C 582	N 196	0 167	$\frac{S}{4}$	0	0

• Molecule 44 is a protein called 30S ribosomal protein S13.

Mol	Chain	Residues	Atoms					AltConf	Trace
44	m	110	Total 859	C 524	N 174	0 157	$\begin{array}{c} \mathrm{S} \\ \mathrm{4} \end{array}$	0	0

• Molecule 45 is a protein called 30S ribosomal protein S14.

Mol	Chain	Residues	Atoms					AltConf	Trace
45	n	98	Total 777	C 479	N 163	0 132	${ m S} { m 3}$	0	0

• Molecule 46 is a protein called 30S ribosomal protein S15.

Mol	Chain	Residues	Atoms					AltConf	Trace
46	О	86	Total 686	C 425	N 134	0 126	S 1	0	0

• Molecule 47 is a protein called 30S ribosomal protein S16.

		residues		Ato	\mathbf{ms}	AltConf	Trace	
47	р	78	Total 610	C 201	N 191	0	0	0

• Molecule 48 is a protein called 30S ribosomal protein S17.

Mol	Chain	Residues	Atoms					AltConf	Trace
48	q	76	Total 619	C 387	N 120	0 110	${S \over 2}$	0	0

• Molecule 49 is a protein called 30S ribosomal protein S18.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
49	r	71	Total 566	C 361	N 107	O 97	S 1	0	0

• Molecule 50 is a protein called 30S ribosomal protein S19.

Mol	Chain	Residues	Atoms					AltConf	Trace
50	s	80	Total 635	C 405	N 121	0 106	${ m S} { m 3}$	0	0

• Molecule 51 is a protein called 30S ribosomal protein S20.

Mol	Chain	Residues	Atoms					AltConf	Trace
51	t	85	Total 654	C 404	N 135	0 113	${S \over 2}$	0	0

• Molecule 52 is a protein called 30S ribosomal protein S21.

Mol	Chain	Residues	Atoms					AltConf	Trace
52	11	62	Total	С	Ν	Ο	\mathbf{S}	0	0
52	u	02	519	320	112	86	1	0	0

• Molecule 53 is a protein called PHIKZ014.

Mol	Chain	Residues	Atoms					AltConf	Trace
53	v	271	Total 2262	C 1436	N 410	O 409	S 7	0	0

• Molecule 54 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
54	А	150	Total Mg 150 150	0
54	С	1	TotalMg11	0
54	D	1	Total Mg 1 1	0
54	Р	1	Total Mg 1 1	0
54	U	1	Total Mg 1 1	0
54	a	17	Total Mg 17 17	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 50S ribosomal protein L32

A141 C142	C143 U144	A145 G146 G147	01-10 U148 A149	U150	A160 A161 11162	C164 C164	A165 U166	C172	A173	A181	G194 A195	A196	A199	U202	G205	6215 4216		A221 A221	A227	C228 C229	G230	A233	U240 A241	G242 U243	A244	G248 C249	<mark>G252</mark>	A255
A265	G266 C267	U271 4979	A273	U281	U285	A294	C299	A305	A314	U315 A316	G317 U318	G321	U322 G323	A324 U325	A334	C335	C337 C337	A339	G342	U347 U348	U349 G350	A351 A352	G353	A358 U359	C360 A361	C374	A313 C376 G377	-
A380 A381	1385 U385	U386 G387	U390 G391	A395	0396 0397 0398	G399 G400	A403	A406	U407 C408	A414	U428	C431	4434	C435	A438	4444 4445	C446 C446	A448	A461	G464 G465	C466	A471 G472	A481	G485	A496	A499	(200	-
A519 A520	G521 C522	A523	C535 U536	U537 G538	U539 U540		A553	U557	U558	A562 U563	A564 A565	A576	AF 86		G594	A599	C600 C601	ueoa	A604	U610 A611	G618	A622	A627	U635 A636		n	A645 G646	0647
G659 A660	G671	G672 C673	U676	G687	A708	A720	<mark>1737</mark>	G738	G743	G747	A754 C755	G765	G766 A767	G768 U769	A772	A773 C774	<u>6775</u>	A783 G784	A792	U793 A794	G795	C802	U817 U818	G824	C827	<mark>6833</mark>	U836	<mark>U840</mark>
<mark>C841</mark> U842	G843 G844 G844	6845 6846 6847	<mark>6848</mark> 1849	A850	A855			A875	U8/6 C877	<mark>C878</mark> C879	G880	C882	U883 U884	A885	<mark>4889</mark>	A899	<mark>C904</mark>	<mark>1908</mark>	C910		C921 6922	A931	A935	C936	<mark>A949</mark> A950	<mark>C951</mark> G952	U953 C954	A963 A964
C972 4973	A980	A 986	A999	U1002 U1003	A1011 21012	U1013	U1016 A1017	U1023	31031	A1036	31037	31048 31049	<mark>U1050</mark> U1051	31052	A1057 31058	A1059	31061	A1063 31064	C1065 C1066	A1067 C1068	A1076	31077 A1078	A1079 A1080	31081 31082	31083 U1084	A1085 A1086	41088	31097
	0.1	14	17 18	19 20	24 25		1 6	1 7	6	54		54 55	200	- 00 0			91	n c	000	14	8	23 24	25	88	33 33 33	34		2
G110	A110 G110	G113	A11 G11	111 U112	A112	A113	A114	611 ⁴	C114	G116	G116 U116	A116	G116	G116 G116	C117 C117				6115 6115	A12	U121	G12 A12	G12	A12	G120 A120	A123	C123 G123	
G1243 C1244	A1249	<mark>G1253</mark>	A1256 C1257	G1258 A1259	C1260 A1261 A1263	U1263	C1276	G1283	A1287 A1288	01300	C1301	G1311	U1316	G1321	U1339	C1349	A1352	A1354 A1355	C1363	G1364 A1365	U1366 G1367	A1370	C1373	U1378	A1379 A1380	U1381 A1382	A1390	U1402
G1403 C1404	G1408	A1414 C1415	G1422	<mark>G1423</mark> C1424	U1434	U1440 U1441	G1442	U1445 G1446	U1447 C1448	C1449	U1454	G1469	C1474	U1480	1041A	01484	A1496 G1497	G1508		A1512	G1516	<mark>U1522</mark> U	n	A1526 G1527	A1528	U1537	G1542	A1557
G1558 A1559	A1560	U1573 U1574	C1575 A1576	<mark>A15</mark> 80	C1597 A1598	A1599 A1600 C1601	C1602 G1603	A1606	C1607 A1608	G1609	U1614	A1627 C1628	C1629	C1634	C1636	01638	G1639	61653 A1654	G1663 61563		C1673	U1683 C1684	G1685 G1686	G1689	A1690	C1698	A1704 G1705	01708
709 710	711	714 715 716	717	720 721	724	731 732 732	735	741	742	745	749 750	751	756	760 761	TO /	772	773	/ (0	788	795 796	797	803	816 816	<mark>817</mark> 818	<mark>819</mark> 820	834	837 838 838	
G1 A1	A1		<u>в</u>		TD	01 01	E IN	A1	A1	1D	A1 G1	G1	1 1	A1		A1	A1	A C		A1 A1	A1 G1	G	A1	<mark>6</mark> 5	<mark>5</mark> 5	A1	61 11	2
G1844	G1850 U1851	U1852 A1853	C1857	C1861	U1873 C1874	61875	C1892 G1893	G1894 C1895	C1896 G1897	U1898 A1899	A1900 C1901	U1902	A1906	G1909	G1916	01918 01918	A1924	A1925		01950 01950	C1954	A1957	U1958 G1959	G1967	A1968 U1969	U1978	G1979	C1983
C1984	C1993	A2008 U2009 C2010	U2015	G2016 A2017	A2018 G2019 A2020	C2023	U2028	A2029 U2030	A2039	C2042	G2043	A2047 G2048	A2049	U2055 G2056	C2060	110063	A2064	G2067 112068	G2080	<mark>G2081</mark> A2082	C2083	C2094 U2095	U2096 G2097	U2098 G2099	U2100 A2101	G2102 G2103	A2106	A2113

G1 C2 C3 C4 C4 C4 C4 C4 C4 C4 C4 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 C1	CIT CIT CIS CIS CIS CIS CIS CIS CIS CIS CIS CIS	A31 A31 U33 A36 A36 A36 A37 A37 A38 A38 A38 C41 C41 C41 C41 C41 C43 C43	446 147 047 048 048 050 052 053 053 055 055 055 055 055 055
C62 663 663 665 665 665 667 669 671 671 672 672 673 673 673 673 673 675 675 676 677 677 675 676			
• Molecule 10: 50S ribosom	al protein L4		
Chain E:	99%		
MET 02 03 0138 038			
• Molecule 11: 50S ribosom	al protein L5		
Chain F:	95%		
MET ALA R3 R3 R3 R3 R3 R3 R1 R3 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1 R1	Y143 D144 K145 F149 P176 P176 P176 P176 ASN ASN		
• Molecule 12: 50S ribosom	al protein L6		
Chain G:	97%		
MET 32 413 413 413 413 413 417 417 417 417 118 LYS LYS LYS			
• Molecule 13: 50S ribosom	al protein L9		
Chain H: 53	%	47%	
MET E2 14 14 14 15 16 16 16 16 11 112 112 115 115 115 115	D17 K18 V19 N20 E31 P32 G34 G34 C34 C34 C34 C34 C34 C34 C34 C34 C34 C	T40 A41 E42 E42 N44 A45 F47 E48 A46 F47 E48 A49 R51 A52 A52	E53 L54 E55 E55 A57 A57 A55 A59 E50 A64 A64 A64 A65 A65 A65 A65 A67 A69
A70 971 172 173 175 175 175 175 177 178 017 178 017 178 017 017 017 017 017 017 017 017 017 017	LIZU LIZU PHE GIY GIY TILE GIU ARG ARG ALU VAL ALA ALA ALA ALA ALA ALA ALA ALA	ALA GLY TYR PRO CLY PRO CLU CLU CLU VAL ALA ALA ALA ALA ALA ALA ALA ALA ALA	ARG ASN THR GLY PPIE ASP ASP VAL
ALA VAL HIS HIS HIS HIR ASP ASP ASP ALA CLU THR CLU THR LEU LIY CLU THR LA AAA ALA CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU			
• Molecule 14: 50S ribosom	al protein L13		
Chain J:	96%	• •	
MET 745 146 1160 1142			

• Molecule 15: 50S ribosomal protein L14
Chain K: 98% ···
M1 189
\bullet Molecule 16: 50S ribosomal protein L15
Chain L:
\bullet Molecule 17: 50S ribosomal protein L31
Chain Le: 92% · ·
M1 L28 V50 L51 L52 L55 F67 F67 F67 F67 F67 V66 F67 F67 V66 F67 F67 V66 F67 F67 F67 F67 F67 F67 F67 F67 F67 F
• Molecule 18: 50S ribosomal protein L16
Chain M: 99%
MI TI35 VAL WET
• Molecule 19: 50S ribosomal protein L17
Chain N: 91% • 9%
M1 T37 T37 VAL VAL VAL VAL CLV GLV GLV GLU GLU
\bullet Molecule 20: 50S ribosomal protein L18
Chain O: 99%
MET 2 2 2 1 1 1 1 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1 6 1 1 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1
\bullet Molecule 21: 50S ribosomal protein L19
Chain P: 97% .

• Molecule 22: 50S ribosomal protein L20

Chain Q:	98%	
MET A2 A1 A118 A118		
• Molecule 23: 50S riboson	mal protein L21	
Chain R:	98%	
M D36 L51 D70 0102 ALA		
• Molecule 24: Large ribos	somal subunit protein uL22	
Chain S:	99%	
MET E2 R11 K110		
• Molecule 25: 50S riboso	mal protein L23	
Chain T:	89%	• 7%
MET M2 K8 K8 K8 K9 K1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1		
• Molecule 26: 50S riboso	mal protein L24	
Chain U:	94%	5%•
M1 R5 R6 R6 R6 R6 P141 P145 P49 M50 C52 Q53 Q53 Q53 Q53 Q53	V82 K91 Q103 ALA	
• Molecule 27: 50S riboso	mal protein L25	
Chain V:	89%	• 8%
MET ASP ASP 15 15 16 14 14 19 19 191 191 101 1101	L103 E115 E115 L143 VAL VAL VAL VAL VAL VAL CV CLU GLU GLU GLU GLU GLU GLU GLU GLU	
• Molecule 28: 50S riboson	mal protein L27	

Chain W:	•		87%			•	11%
MET ALA ALA HIS LYS LYS ALA GLY GLY	SER T10 040 R41 A85						
• Molecule	29: 50S rib	osomal prot	tein L28				
Chain X:			97%	,			
MET S2 R27 F78							
• Molecule	30: 50S rib	osomal prot	tein L29				
Chain Y:			81%			13%	6%
MET K1 S9 V10 E15 Q16	L17 L18 G19 T33 T33 G59	ALA GLY LYS					
• Molecule	31: 50S rib	osomal prot	tein L30				
Chain Z:			98%				·
MET A2 G58							
• Molecule	32: 16S rR	NA					
Chain a:			80%			20%	
A2 A3 66 68 69 69 69 69	G22 U29 G31 A32 G42 G42	C47 C48 A51 C52 A60 G61	A65 G66 V71	677 677 181 182 683	495 495 495 495 495 495 495 495 495 495	C104 U115 C114	G121 G122 A123 A124 U125 C130
(133 (138 (138 (138 (157	C176 C177 U178 C179 C179 C182 C182	0193 0203 0204 6205 6205 0239 1239	G241 A244 A256	C261 C266 G275	A283 C284 G287 U288 A292	6299 A315 A321	6326 13326 1334 1334 141
(3345 (3346 (3348 (3348 (3348 (3363 (3363)	G364 A365 A375 A375 A377 A377 C378	0385 C385 C386 A391 G400 A405	A406 G407 A408 G417	0423 0443 0444 0445 0447 0447	0457 0461 0461 0475	6478 4490 1491 A492 A493 A493	4502 4503 4504 4506 1506 1506 1506
6509 U510 6511 6511 6513 6513 A514 6515	6518 C519 C520 G521 A526 A527	6540 4541 4541 1556 4557 6557 6558 4566	4567 4568 6569 6570 6571 C572	6552 6582 0584 0584 0585 0585	A590 G627 A647 G648	A659 A681 G682 G687 A688	A710 A710 A711 A712 A712 U717
G718 G727 C733 A749	G754 G755 U756 G759 A760 A771	A788 6806 U807 A809 A809 C811	6812 6815 4822 4822		G840 1845 A854	A000 C862 A866 A866	C870 G884 C887 C887 A894 A895 G896

MET R2 R2 R2 F3 F105 F105 F105 F105 F105 F105 F105 F105	ALA ALA GLU GLY ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	
• Molecule 38: 30S ribosomal protein	n S7	
Chain g:	97%	.
MET PRO R3 R4 R5 R5 R5 R5 R5 R113 G81 G81 G81 G82 G81 G82 G82 G81 G82 G82 G81 G82 G82 G81 G82 G82 G82 G82 G82 G82 G83 G82 G83 G83 G83 G83 G83 G83 G83 G83 G83 G83		
• Molecule 39: 30S ribosomal protein	n S8	
Chain h:	99%	
MET 52 52 E54 F130		
• Molecule 40: 30S ribosomal protein	n S9	
Chain i:	93%	5% ·
MET SER ALLA ALLA ALLA MA RA RA RA RA RA RA RA RA RA RA RA RA RA		
• Molecule 41: 30S ribosomal protein	n S10	
Chain j:	89% .	7%
MET ASN ASN ASN GLN GLN ILE ARG L17 L17 L17 L17 L13 R31 R31 R31 R31 R31 R31 R31 R31 R31 R	R45 R45 K59 K59 K59 R62 R62 R62 C61 C7 C72 C67 C73 C67 C73 C67 C73 C67 C73 C67 C73 C67 C72 C72 C72 C72 C72 C72 C72 C72 C72 C7	T83 V84 D85 A86 K89 L90 L92 L92 C95 C95 C103
• Molecule 42: 30S ribosomal protein	n S11	
Chain k:	89%	11%
MET ALA ALA ALA ALA ALA ALA ALA ARG CYS LYS LYS LYS LYS LYS LYS LYS M128 M128 M128 VAL		
• Molecule 43: 30S ribosomal protein	n S12	
Chain l:	96%	
MET A2 A14 M15 D17 B17 B122 LYS LYS		

• Molecule 44: 30S ribosomal protein S13

Chain m:	87%	6%	7%
MET ALA R13 Y23 Y23 N27 N40	D50 → R71 R71 L83 H105 R105 R105 P1 12 ARG LYS PR0 TLE ARG LYS		
• Molecule 45	: 30S ribosomal protein S14		
Chain n:	97%		·
MET ALA K3 5100 TRP			
• Molecule 46	: 30S ribosomal protein S15		
Chain o:	97%		·
MET ALA L3 A18 A18 A18 A18 A18			
• Molecule 47	: 30S ribosomal protein S16		
Chain p:	94%		6%
M1 A78 ALA LYS ALA ASN ALA ALA			
• Molecule 48	: 30S ribosomal protein S17		
Chain q:	83%	• 14%)
MET ALA GLU GLU ALA GLN CLYS LYS VAL VAL R9	M54 R65 ALA ALLA VAL VAL		
• Molecule 49	: 30S ribosomal protein S18		
Chain r:	88%	••	7%
MET ALA ARG F4 F5 R7 R7 R8	F10 C11 R12 F13 G17 A16 A17 A16 A17 A16		
• Molecule 50	: 30S ribosomal protein S19		
Chain s:	87%	• 12%	/ 0
MET P2 D27 R28 R28 R28 L61	AR3 H.T.S A.T.A A.T.A A.T.A I.T.S I.T.S A.T.A A.T.G A.T.G		

• Molecule 51: 30S ribosomal protein S20

Chain t: 93% 7%

• Molecule 52: 30S ribosomal protein S21

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	169672	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	88.28	Depositor
Minimum defocus (nm)	1200	Depositor
Maximum defocus (nm)	5000	Depositor
Magnification	Not provided	
Image detector	FEI FALCON III $(4k \ge 4k)$	Depositor
Maximum map value	26.120	Depositor
Minimum map value	-7.773	Depositor
Average map value	-0.008	Depositor
Map value standard deviation	0.894	Depositor
Recommended contour level	3.46	Depositor
Map size (Å)	544.512, 544.512, 544.512	wwPDB
Map dimensions	512, 512, 512	wwPDB
Map angles $(^{\circ})$	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.0635, 1.0635, 1.0635	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angles		
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	2	0.24	0/429	0.62	0/572	
2	4	0.25	0/379	0.77	0/496	
3	5	0.24	0/511	0.66	0/668	
4	6	0.26	0/304	0.70	0/399	
5	А	0.25	4/69275~(0.0%)	0.84	62/108063~(0.1%)	
6	В	0.24	0/2855	0.85	3/4447~(0.1%)	
7	С	0.26	0/2084	0.64	0/2800	
8	D	0.26	0/1572	0.61	0/2118	
9	Dt	0.36	1/1813~(0.1%)	0.99	12/2823~(0.4%)	
10	Е	0.25	0/1529	0.56	0/2060	
11	F	0.27	0/1304	0.58	0/1766	
12	G	0.26	0/1311	0.58	0/1767	
13	Н	0.26	0/580	0.52	0/781	
14	J	0.26	0/1148	0.56	0/1549	
15	K	0.26	0/931	0.65	0/1247	
16	L	0.26	0/1067	0.63	0/1422	
17	Le	0.28	0/542	0.57	0/728	
18	М	0.26	0/1089	0.62	0/1456	
19	Ν	0.25	0/960	0.63	0/1282	
20	0	0.25	0/888	0.63	0/1183	
21	Р	0.25	0/900	0.61	0/1203	
22	Q	0.25	0/946	0.64	0/1257	
23	R	0.26	0/814	0.60	0/1091	
24	S	0.25	0/829	0.59	0/1104	
25	Т	0.26	0/710	0.52	0/953	
26	U	0.27	0/808	0.58	0/1079	
27	V	0.25	0/1419	0.56	0/1925	
28	W	0.27	0/583	0.64	0/774	
29	Х	0.24	0/637	0.68	0/849	
30	Y	0.34	0/474	0.60	0/632	
31	Z	0.24	0/449	0.61	0/602	
32	a	0.23	0/36667	0.81	12/57202~(0.0%)	

Mal	Chain	Bo	ond lengths	E	Bond angles
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
33	b	0.25	0/1849	0.55	0/2486
34	с	0.24	0/1656	0.60	0/2232
35	d	0.25	0/1622	0.60	0/2171
36	е	0.27	0/1159	0.62	1/1559~(0.1%)
37	f	0.25	0/867	0.57	0/1167
38	g	0.25	0/1207	0.59	0/1616
39	h	0.25	0/993	0.55	0/1332
40	i	0.26	0/1022	0.68	0/1365
41	j	0.26	0/775	0.60	0/1046
42	k	0.25	0/854	0.59	0/1159
43	1	0.27	0/963	0.68	0/1292
44	m	0.24	0/867	0.63	0/1165
45	n	0.25	0/787	0.64	0/1048
46	0	0.24	0/693	0.54	0/926
47	р	0.27	0/621	0.64	0/837
48	q	0.25	0/627	0.64	0/844
49	r	0.27	0/575	2.14	2/771~(0.3%)
50	s	0.23	0/649	0.58	0/874
51	t	0.25	0/661	0.54	0/881
52	u	0.25	0/524	0.66	0/689
53	V	0.26	0/2323	0.60	0/3138
All	All	0.25	$5/157101 \ (0.0\%)$	0.79	92/234896~(0.0%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
5	А	1	0
8	D	0	1
23	R	0	1
49	r	0	1
All	All	1	3

All (5) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
9	Dt	1	G	OP3-P	-10.53	1.48	1.61
5	А	1897	G	C8-N7	-9.41	1.25	1.30
5	А	1897	G	N7-C5	-6.26	1.35	1.39
5	А	1897	G	C6-N1	-5.93	1.35	1.39

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
5	А	1909	G	N1-C2	-5.50	1.33	1.37

All (92) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
49	r	12	ARG	O-C-N	-56.80	31.82	122.70
5	А	1897	G	N7-C8-N9	12.70	119.45	113.10
5	А	1897	G	C8-N9-C4	-10.79	102.08	106.40
5	А	1909	G	N1-C2-N2	-10.28	106.94	116.20
5	А	1896	С	C5-C6-N1	9.41	125.71	121.00
5	А	1897	G	C4-N9-C1'	9.13	138.37	126.50
5	А	877	С	C6-N1-C2	-9.06	116.67	120.30
5	А	2239	G	O4'-C1'-N9	8.76	115.21	108.20
5	А	1897	G	C6-C5-N7	-8.60	125.24	130.40
5	А	1909	G	N3-C2-N2	8.19	125.63	119.90
5	А	1909	G	C5-C6-N1	-7.75	107.63	111.50
5	А	1895	С	N3-C4-C5	7.68	124.97	121.90
5	А	1300	U	C2-N1-C1'	7.41	126.59	117.70
5	А	818	U	C2-N1-C1'	7.37	126.54	117.70
5	А	535	С	C6-N1-C2	-7.31	117.38	120.30
5	А	1897	G	N3-C4-N9	7.28	130.37	126.00
5	А	1897	G	N3-C4-C5	-7.15	125.02	128.60
5	А	2851	G	N3-C4-N9	7.08	130.25	126.00
5	А	1895	С	C2-N1-C1'	-7.07	111.03	118.80
9	Dt	8	U	C2-N1-C1'	7.05	126.16	117.70
5	А	1897	G	N1-C2-N2	-6.99	109.91	116.20
5	А	877	С	N1-C2-O2	6.99	123.09	118.90
5	А	1909	G	C8-N9-C4	-6.84	103.67	106.40
5	А	877	С	N3-C2-O2	-6.83	117.12	121.90
5	А	2812	U	N3-C2-O2	-6.69	117.52	122.20
49	r	12	ARG	C-N-CA	-6.69	104.98	121.70
5	А	1896	С	C2-N1-C1'	6.68	126.15	118.80
36	е	47	VAL	CG1-CB-CG2	6.68	121.58	110.90
5	А	1761	С	C6-N1-C2	-6.57	117.67	120.30
5	А	1909	G	C2-N3-C4	-6.57	108.62	111.90
5	А	1896	С	C6-N1-C2	-6.54	117.68	120.30
5	А	2100	U	C2-N1-C1'	6.54	125.54	117.70
5	А	1724	U	N3-C2-O2	-6.52	117.63	122.20
32	a	104	С	N1-C2-O2	6.42	122.75	118.90
9	Dt	32	U	C6-N1-C2	-6.30	117.22	121.00
5	A	1897	G	C4-C5-C6	6.28	122.56	118.80
5	A	2851	G	C4-N9-C1'	6.23	134.60	126.50

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
9	Dt	36	А	OP1-P-O3'	6.19	118.83	105.20
9	Dt	38	А	OP1-P-O3'	6.19	118.81	105.20
32	a	130	С	C6-N1-C2	-6.16	117.83	120.30
9	Dt	46	G	OP1-P-OP2	6.16	128.84	119.60
9	Dt	31	А	OP1-P-O3'	6.16	118.74	105.20
5	А	2851	G	C8-N9-C1'	-6.06	119.12	127.00
5	А	2812	U	N1-C2-O2	5.92	126.95	122.80
5	А	1897	G	C8-N9-C1'	-5.88	119.35	127.00
5	А	1909	G	N1-C2-N3	5.87	127.42	123.90
32	a	963	А	O4'-C1'-N9	5.87	112.89	108.20
32	a	104	С	C6-N1-C2	-5.83	117.97	120.30
32	a	104	С	N3-C2-O2	-5.74	117.88	121.90
9	Dt	32	U	N3-C2-O2	-5.73	118.19	122.20
32	a	1341	G	P-O3'-C3'	5.68	126.51	119.70
5	А	1896	С	N1-C2-O2	5.67	122.30	118.90
6	В	108	С	C6-N1-C2	-5.66	118.03	120.30
32	a	104	С	C2-N1-C1'	5.65	125.01	118.80
32	a	987	G	C4-N9-C1'	5.63	133.82	126.50
5	А	1724	U	C6-N1-C2	-5.60	117.64	121.00
5	А	1896	С	N3-C4-N4	5.58	121.91	118.00
5	А	1897	G	N1-C2-N3	5.58	127.25	123.90
6	В	119	U	N3-C2-O2	-5.56	118.31	122.20
9	Dt	16	U	OP1-P-OP2	5.55	127.93	119.60
5	А	836	U	N3-C2-O2	-5.50	118.35	122.20
5	А	535	С	C6-N1-C1'	5.45	127.34	120.80
5	А	1166	G	C4-N9-C1'	5.44	133.57	126.50
5	А	1724	U	N1-C2-O2	5.41	126.59	122.80
9	Dt	54	U	OP1-P-O3'	5.41	117.10	105.20
5	А	922	G	C4-N9-C1'	5.39	133.51	126.50
5	А	2023	С	C6-N1-C2	-5.38	118.15	120.30
5	А	1415	С	C6-N1-C2	-5.36	118.16	120.30
5	А	2812	U	C6-N1-C2	-5.36	117.79	121.00
5	А	1909	G	N1-C6-O6	5.33	123.10	119.90
5	А	1895	С	C4-C5-C6	-5.29	114.76	117.40
9	Dt	8	U	OP1-P-OP2	5.28	127.52	119.60
5	А	1897	G	C5-N7-C8	-5.27	101.66	104.30
5	А	1051	U	P-O3'-C3'	5.25	126.00	119.70
32	a	203	U	C2-N1-C1'	5.19	123.92	117.70
5	A	910	C	C6-N1-C2	-5.17	118.23	120.30
6	В	119	U	N1-C2-O2	5.10	126.37	122.80
32	a	322	С	P-O3'-C3'	5.09	125.81	119.70
5	A	360	C	P-O3'-C3'	5.09	125.81	119.70

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
5	А	2583	U	N3-C2-O2	-5.09	118.64	122.20
5	А	2030	U	C2-N1-C1'	5.08	123.80	117.70
9	Dt	32	U	C5-C6-N1	5.08	125.24	122.70
9	Dt	7	А	OP1-P-O3'	-5.08	94.03	105.20
5	А	836	U	N1-C2-O2	5.08	126.35	122.80
5	А	1724	U	C5-C6-N1	5.07	125.24	122.70
5	А	1898	U	O5'-P-OP1	-5.07	101.13	105.70
5	А	1896	С	C2-N3-C4	5.06	122.43	119.90
5	А	1301	С	C6-N1-C2	-5.05	118.28	120.30
32	a	987	G	C8-N9-C1'	-5.03	120.46	127.00
5	А	1818	G	N3-C4-N9	5.02	129.01	126.00
32	a	976	U	P-O3'-C3'	5.01	125.72	119.70
5	А	2200	U	P-O3'-C3'	5.01	125.71	119.70

All (1) chirality outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atom
5	А	1897	G	C1'

All (3) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
8	D	151	THR	Peptide
23	R	51	LEU	Peptide
49	r	12	ARG	Mainchain

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	2	51/60~(85%)	49 (96%)	2~(4%)	0	100	100
2	4	43/44~(98%)	42 (98%)	1 (2%)	0	100	100
3	5	61/64~(95%)	54 (88%)	7 (12%)	0	100	100
4	6	36/38~(95%)	35~(97%)	1 (3%)	0	100	100
7	С	269/273~(98%)	255~(95%)	14 (5%)	0	100	100
8	D	205/211~(97%)	184 (90%)	21 (10%)	0	100	100
10	Е	197/200~(98%)	190 (96%)	7 (4%)	0	100	100
11	F	172/179~(96%)	155 (90%)	17 (10%)	0	100	100
12	G	171/177~(97%)	164 (96%)	7 (4%)	0	100	100
13	Н	76/148~(51%)	76 (100%)	0	0	100	100
14	J	139/142~(98%)	134 (96%)	5 (4%)	0	100	100
15	K	118/122~(97%)	111 (94%)	7 (6%)	0	100	100
16	L	141/144 (98%)	130 (92%)	11 (8%)	0	100	100
17	Le	66/71~(93%)	59 (89%)	6 (9%)	1 (2%)	10	42
18	М	133/137~(97%)	132 (99%)	1 (1%)	0	100	100
19	Ν	116/129~(90%)	105 (90%)	11 (10%)	0	100	100
20	Ο	113/116~(97%)	108 (96%)	5 (4%)	0	100	100
21	Р	111/116 (96%)	104 (94%)	7 (6%)	0	100	100
22	Q	115/118 (98%)	109 (95%)	6 (5%)	0	100	100
23	R	100/103~(97%)	93 (93%)	7 (7%)	0	100	100
24	S	107/110~(97%)	107 (100%)	0	0	100	100
25	Т	90/99~(91%)	84 (93%)	5 (6%)	1 (1%)	14	50
26	U	101/104 (97%)	94 (93%)	7 (7%)	0	100	100
27	V	186/204 (91%)	173 (93%)	13 (7%)	0	100	100
28	W	74/85~(87%)	57 (77%)	17 (23%)	0	100	100
29	Х	75/78~(96%)	72 (96%)	3 (4%)	0	100	100
30	Y	57/63~(90%)	54 (95%)	2 (4%)	1 (2%)	8	37
31	Z	55/58~(95%)	54 (98%)	1 (2%)	0	100	100
33	b	230/246~(94%)	214 (93%)	16 (7%)	0	100	100
34	с	203/228~(89%)	188 (93%)	15 (7%)	0	100	100
35	d	203/206~(98%)	190 (94%)	13 (6%)	0	100	100
36	е	154/166~(93%)	141 (92%)	13 (8%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
37	f	103/139~(74%)	98~(95%)	5(5%)	0	100	100
38	g	152/156~(97%)	147 (97%)	5(3%)	0	100	100
39	h	127/130~(98%)	121 (95%)	6 (5%)	0	100	100
40	i	125/130~(96%)	110 (88%)	14 (11%)	1 (1%)	19	57
41	j	94/103~(91%)	88 (94%)	6 (6%)	0	100	100
42	k	113/129~(88%)	110 (97%)	3(3%)	0	100	100
43	1	119/123~(97%)	111 (93%)	8 (7%)	0	100	100
44	m	108/118~(92%)	103 (95%)	5(5%)	0	100	100
45	n	96/101~(95%)	91 (95%)	5 (5%)	0	100	100
46	О	84/89~(94%)	83 (99%)	1 (1%)	0	100	100
47	р	76/83~(92%)	73 (96%)	3 (4%)	0	100	100
48	q	74/88~(84%)	72 (97%)	2(3%)	0	100	100
49	r	67/76~(88%)	65~(97%)	1 (2%)	1 (2%)	10	42
50	S	78/91~(86%)	71 (91%)	7 (9%)	0	100	100
51	t	83/91~(91%)	83 (100%)	0	0	100	100
52	u	58/71~(82%)	56 (97%)	1 (2%)	1 (2%)	9	39
53	v	269/370~(73%)	264 (98%)	5 (2%)	0	100	100
All	All	5794/6327~(92%)	5463 (94%)	325 (6%)	6 (0%)	54	85

All (6) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
25	Т	71	ARG
30	Y	10	VAL
40	i	28	ILE
49	r	13	PHE
17	Le	66	VAL
52	u	28	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles	;
1	2	46/52~(88%)	45 (98%)	1 (2%)	52	81	
2	4	38/37~(103%)	37 (97%)	1 (3%)	46	78	
3	5	54/55~(98%)	53 (98%)	1 (2%)	57	84	
4	6	33/34~(97%)	32 (97%)	1 (3%)	41	75	
7	С	206/213~(97%)	204 (99%)	2 (1%)	76	91	
8	D	157/162~(97%)	155 (99%)	2 (1%)	69	89	
10	Е	155/158~(98%)	154 (99%)	1 (1%)	86	95	
11	F	124/153~(81%)	120 (97%)	4 (3%)	39	74	
12	G	133/141 (94%)	132 (99%)	1 (1%)	81	93	
13	Н	55/107~(51%)	55 (100%)	0	100	100	Γ
14	J	118/119~(99%)	114 (97%)	4 (3%)	37	72	
15	K	100/102~(98%)	99 (99%)	1 (1%)	76	91	
16	L	104/106~(98%)	103 (99%)	1 (1%)	76	91	
17	Le	59/61~(97%)	57 (97%)	2(3%)	37	72	
18	М	108/110~(98%)	108 (100%)	0	100	100	
19	Ν	97/104~(93%)	96 (99%)	1 (1%)	76	91	
20	Ο	86/87~(99%)	86 (100%)	0	100	100	
21	Р	94/98~(96%)	94 (100%)	0	100	100	
22	Q	87/88~(99%)	86 (99%)	1 (1%)	73	90	
23	R	82/86~(95%)	82 (100%)	0	100	100	
24	S	86/87~(99%)	86 (100%)	0	100	100	
25	Т	73/82~(89%)	70 (96%)	3 (4%)	30	67	
26	U	88/88~(100%)	83 (94%)	5 (6%)	20	56	
27	V	143/164~(87%)	136 (95%)	7 (5%)	25	61	
28	W	56/61~(92%)	54 (96%)	2 (4%)	35	70	
29	Х	65/67~(97%)	64 (98%)	1 (2%)	65	87	
30	Y	52/55~(94%)	45 (86%)	7 (14%)	4	17	
31	Ζ	48/49~(98%)	48 (100%)	0	100	100	
33	b	191/202~(95%)	189 (99%)	2 (1%)	76	91	-
34	с	165/187~(88%)	165 (100%)	0	100	100	
35	d	166/174~(95%)	163 (98%)	3 (2%)	59	85	-

analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
36	е	114/124~(92%)	112 (98%)	2 (2%)	59	85
37	f	88/119~(74%)	87~(99%)	1 (1%)	73	90
38	g	116/122~(95%)	113~(97%)	3 (3%)	46	78
39	h	108/109~(99%)	108 (100%)	0	100	100
40	i	104/106~(98%)	99~(95%)	5 (5%)	25	62
41	j	85/92~(92%)	81 (95%)	4 (5%)	26	63
42	k	84/98~(86%)	84 (100%)	0	100	100
43	1	105/107~(98%)	102 (97%)	3 (3%)	42	76
44	m	92/99~(93%)	85 (92%)	7 (8%)	13	43
45	n	78/82~(95%)	78 (100%)	0	100	100
46	О	73/75~(97%)	73 (100%)	0	100	100
47	р	61/65~(94%)	61 (100%)	0	100	100
48	q	70/79~(89%)	67~(96%)	3 (4%)	29	66
49	r	56/64~(88%)	54 (96%)	2 (4%)	35	70
50	S	69/78~(88%)	68~(99%)	1 (1%)	67	88
51	t	67/70~(96%)	67~(100%)	0	100	100
52	u	51/60~(85%)	50 (98%)	1 (2%)	55	83
53	V	242/335~(72%)	227 (94%)	15 (6%)	18	52
All	All	4732/5173 (92%)	4631 (98%)	101 (2%)	56	82

All (101) residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
1	2	10	ARG
2	4	42	LEU
3	5	13	ARG
4	6	37	GLN
7	С	79	GLU
7	С	258	THR
8	D	13	THR
8	D	34	ARG
10	Е	60	ARG
11	F	7	ILE
11	F	32	THR
11	F	102	ARG
11	F	162	THR

Mol	Chain	Res	Type
12	G	33	LEU
14	J	45	THR
14	J	50	THR
14	J	116	ARG
14	J	141	LYS
15	K	40	LYS
16	L	7	ARG
17	Le	28	LEU
17	Le	57	ILE
19	N	37	THR
22	Q	103	LYS
25	Т	5	ARG
25	Т	8	LYS
25	Т	40	LEU
26	U	5	ARG
26	U	41	ILE
26	U	45	THR
26	U	82	VAL
26	U	91	LYS
27	V	6	LEU
27	V	11	ARG
27	V	44	THR
27	V	91	HIS
27	V	94	PHE
27	V	101	HIS
27	V	103	LEU
28	W	40	GLN
28	W	41	ARG
29	Х	27	ARG
30	Y	9	SER
30	Y	15	GLU
30	Y	16	GLN
30	Y	17	LEU
30	Y	18	LEU
30	Y	20	LEU
30	Y	33	THR
33	b	23	TRP
33	b	86	ARG
35	d	9	CYS
35	d	26	ARG
35	d	62	ARG
36	е	27	LYS

Mol	Chain	Res	Type
36	е	158	ARG
37	f	9	LEU
38	g	5	ARG
38	g	12	VAL
38	g	148	ASN
40	i	5	GLN
40	i	12	ARG
40	i	41	ARG
40	i	46	MET
40	i	47	VAL
41	j	16	ARG
41	j	59	LYS
41	j	67	ILE
41	j	82	LYS
43	1	14	ARG
43	1	15	MET
43	1	114	ARG
44	m	27	ARG
44	m	40	ASN
44	m	71	ARG
44	m	83	LEU
44	m	102	THR
44	m	105	ASN
44	m	109	ARG
48	q	54	ASN
48	q	65	ARG
48	q	68	ARG
49	r	6	ARG
49	r	8	ARG
50	S	29	LYS
52	u	45	ARG
53	V	50	LEU
53	V	53	LEU
53	V	71	THR
53	V	89	MET
53	V	94	THR
53	V	97	ARG
53	V	138	LYS
53	V	143	ARG
53	V	158	TRP
53	V	164	TYR
53	V	166	ARG

Continued from previous page...

Mol	Chain	Res	Type
53	V	177	LYS
53	V	234	ARG
53	V	259	THR
53	V	268	ASP

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (23) such sidechains are listed below:

Mol	Chain	Res	Type
2	4	26	ASN
7	С	261	ASN
8	D	150	GLN
12	G	60	GLN
14	J	58	ASN
15	Κ	88	ASN
16	L	54	GLN
22	Q	37	GLN
22	Q	101	ASN
23	R	66	HIS
26	U	44	HIS
28	W	29	GLN
30	Y	12	GLN
30	Y	16	GLN
31	Ζ	43	ASN
33	b	3	GLN
33	b	24	ASN
36	е	147	ASN
38	g	153	HIS
40	i	75	GLN
46	0	61	ASN
53	v	102	ASN
53	V	116	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
32	a	1525/1526~(99%)	301~(19%)	0
5	А	2880/2888~(99%)	707 (24%)	49 (1%)
6	В	119/120~(99%)	26 (21%)	2(1%)
9	Dt	75/76~(98%)	23~(30%)	0
All	All	4599/4610 (99%)	1057~(22%)	51 (1%)

All (1057) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
5	А	10	А
5	А	33	U
5	А	34	U
5	А	35	G
5	А	44	А
5	А	45	G
5	А	46	G
5	А	51	G
5	А	54	А
5	А	59	U
5	А	61	G
5	А	63	А
5	A	74	A
5	A	75	G
5	A	79	C
5	А	82	G
5	А	85	G
5	А	91	А
5	А	92	А
5	А	97	А
5	А	100	U
5	А	102	G
5	А	104	U
5	А	114	U
5	А	115	С
5	А	118	А
5	А	120	U
5	А	125	G
5	А	131	А
5	A	137	G
5	A	138	А
5	A	139	U
5	A	141	A
5	A	142	C
5	A	144	U
5	A	146	G
5	A	147	G
5	A	149	A
5	A	150	U
5	A	160	А
5	A	162	U
5	A	163	С

Mol	Chain	Res	Type
5	А	164	С
5	А	165	A
5	А	166	U
5	А	172	С
5	А	173	А
5	А	181	A
5	А	194	G
5	А	196	А
5	А	199	А
5	А	202	U
5	А	205	G
5	А	215	G
5	А	216	A
5	А	220	G
5	А	222	А
5	А	227	A
5	А	228	С
5	А	230	G
5	А	233	A
5	А	240	U
5	А	241	A
5	А	242	G
5	А	243	U
5	А	244	А
5	А	248	G
5	А	249	С
5	А	252	G
5	А	255	A
5	А	265	A
5	А	266	G
5	A	267	C
5	А	271	U
5	A	273	A
5	А	281	U
5	А	285	U
5	A	289	G
5	А	294	A
5	A	299	С
5	А	305	A
5	А	315	U
5	А	316	А
5	А	317	G

5A318U5A321G5A322U5A323G5A324A5A325U5A335C5A337C5A338G5A339A5A339A5A342G5A347U5A348U5A350G5A353G5A353G5A358A5A360C5A361A5A374C5A380A5A381A5A381A5A387G5A387G5A380U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
5 A 374 C 5 A 376 C 5 A 377 G 5 A 380 A 5 A 381 A 5 A 385 U 5 A 387 G 5 A 390 U
5 A 376 C 5 A 377 G 5 A 380 A 5 A 381 A 5 A 385 U 5 A 387 G 5 A 390 U
5 A 377 G 5 A 380 A 5 A 381 A 5 A 385 U 5 A 387 G 5 A 390 U
5 A 380 A 5 A 381 A 5 A 385 U 5 A 387 G 5 A 390 U
5 A 381 A 5 A 385 U 5 A 387 G 5 A 390 U
5 A 385 U 5 A 387 G 5 A 390 U
5 A 387 G 5 A 390 U
5 A 390 U
5 A 391 G
5 A 395 A
5 A 396 U
5 A 397 G
5 A 398 G
5 A 399 G
5 A 400 G
5 A 403 A
5 A 406 A
5 A 407 U
5 A 408 C
5 A 414 A
5 A 428 U

Mol	Chain	Res	Type
5	А	431	С
5	А	435	С
5	А	438	А
5	А	445	A
5	А	447	С
5	А	448	А
5	А	461	А
5	А	464	G
5	А	466	С
5	А	471	А
5	А	472	G
5	А	481	А
5	А	485	G
5	А	496	A
5	А	499	А
5	А	500	С
5	А	509	G
5	А	519	А
5	А	521	G
5	А	522	С
5	А	523	A
5	А	534	А
5	А	535	С
5	А	536	U
5	А	537	U
5	А	538	G
5	А	539	U
5	А	540	U
5	А	541	А
5	А	550	C
5	A	553	A
5	А	557	U
5	A	558	U
5	A	562	A
5	А	563	U
5	A	564	A
5	A	565	A
5	А	576	A
5	A	586	A
5	A	593	A
5	A	594	G
5	А	599	А

Mol	Chain	Res	Type
5	А	601	С
5	А	603	U
5	А	604	А
5	А	610	U
5	А	611	А
5	А	618	G
5	А	622	А
5	А	627	А
5	А	635	U
5	А	636	А
5	А	647	U
5	А	659	G
5	Α	660	A
5	A	671	G
5	Α	672	G
5	А	673	С
5	А	676	U
5	А	687	G
5	А	708	А
5	А	716	G
5	А	720	А
5	А	737	U
5	А	738	G
5	А	743	G
5	А	747	G
5	А	754	А
5	А	755	С
5	А	765	G
5	А	766	G
5	А	767	А
5	A	769	U
5	А	772	A
5	A	774	G
5	А	775	G
5	A	783	A
5	А	784	G
5	А	793	U
5	A	795	G
5	А	802	С
5	A	817	U
5	A	824	G
5	А	827	С

Mol	Chain	Res	Type
5	А	833	G
5	А	836	U
5	А	841	С
5	А	843	G
5	А	844	G
5	А	846	G
5	А	848	G
5	А	850	А
5	А	855	А
5	А	866	U
5	А	870	G
5	А	875	А
5	А	877	С
5	A	878	С
5	А	880	G
5	A	881	A
5	А	889	А
5	А	899	А
5	А	904	С
5	А	908	U
5	А	911	С
5	А	921	С
5	А	922	G
5	А	931	А
5	А	935	А
5	А	936	С
5	А	949	А
5	А	951	С
5	А	952	G
5	А	954	С
5	A	963	A
5	A	964	A
5	A	972	С
5	A	973	A
5	A	980	A
5	A	986	A
5	A	999	A
5	A	1002	U
5	A	1003	U
5	A	1011	A
5	A	$101\overline{2}$	G
5	А	1013	U

Mol	Chain	Res	Type
5	А	1016	U
5	А	1017	А
5	А	1023	U
5	А	1031	G
5	А	1036	А
5	А	1037	G
5	А	1048	G
5	А	1050	U
5	А	1051	U
5	А	1052	G
5	А	1057	А
5	А	1058	G
5	А	1060	А
5	A	1061	G
5	А	1063	А
5	А	1064	G
5	А	1066	С
5	А	1068	С
5	А	1076	А
5	А	1077	G
5	А	1078	А
5	А	1079	А
5	А	1080	А
5	А	1082	С
5	А	1084	U
5	А	1085	А
5	А	1086	А
5	А	1088	А
5	А	1097	G
5	A	1100	G
5	А	1101	А
5	A	1102	G
5	А	1114	G
5	A	1117	A
5	A	1119	A
5	A	1120	U
5	A	1124	A
5	A	1125	C
5	A	1133	A
5	A	1146	А
5	A	1148	G
5	А	1149	С

Mol	Chain	Res	Type
5	А	1154	G
5	А	1162	G
5	А	1164	А
5	А	1167	U
5	А	1168	G
5	А	1170	С
5	А	1171	G
5	А	1191	А
5	А	1192	А
5	А	1193	G
5	А	1198	U
5	А	1199	G
5	А	1214	А
5	A	1218	U
5	A	1223	G
5	А	1225	G
5	А	1228	А
5	А	1232	G
5	А	1233	А
5	А	1234	А
5	А	1238	С
5	А	1240	А
5	А	1243	G
5	А	1244	С
5	А	1249	А
5	А	1253	G
5	А	1256	А
5	А	1258	G
5	А	1259	А
5	А	1261	А
5	A	1263	U
5	A	1276	С
5	A	1283	G
5	A	1287	A
5	A	1288	A
5	A	1301	С
5	A	1311	G
5	A	1316	U
5	A	1321	G
5	A	1339	U
5	A	1349	С
5	А	1352	А

Mol	Chain	Res	Type
5	А	1354	А
5	А	1355	А
5	А	1363	С
5	А	1365	А
5	А	1366	U
5	А	1367	G
5	А	1370	А
5	А	1373	С
5	А	1379	А
5	А	1380	А
5	А	1382	А
5	А	1390	А
5	А	1402	U
5	A	1403	G
5	A	1404	С
5	А	1408	G
5	А	1414	А
5	А	1415	С
5	А	1422	G
5	А	1424	C
5	А	1434	U
5	А	1440	U
5	А	1441	U
5	А	1442	G
5	А	1445	U
5	А	1447	U
5	А	1448	С
5	А	1449	С
5	А	1454	U
5	А	1469	G
5	А	1474	С
5	А	1480	U
5	А	1481	А
5	А	1484	U
5	A	1496	A
5	A	1497	G
5	А	1508	G
5	A	1509	A
5	А	1511	G
5	A	1512	A
5	А	1516	G
5	A	1528	А

Mol	Chain	Res	Type
5	А	1537	U
5	А	1542	G
5	А	1556	А
5	А	1558	G
5	А	1559	А
5	А	1560	А
5	А	1573	U
5	А	1574	U
5	А	1576	А
5	А	1580	А
5	А	1597	С
5	А	1598	А
5	А	1600	А
5	А	1602	С
5	А	1603	G
5	А	1606	А
5	А	1608	А
5	А	1609	G
5	А	1614	U
5	А	1628	С
5	А	1629	С
5	А	1634	С
5	А	1636	С
5	А	1637	U
5	А	1638	U
5	А	1639	G
5	А	1654	А
5	А	1663	G
5	А	1664	G
5	А	1673	С
5	A	1683	U
5	A	1685	G
5	A	1686	G
5	A	1689	G
5	A	1690	А
5	A	1698	С
5	A	1704	A
5	А	1705	G
5	A	1708	U
5	A	1711	A
5	A	1714	A
5	A	1716	U

5 A 1717 U 5 A 1720 U 5 A 1721 C 5 A 1724 U 5 A 1731 U 5 A 1732 G 5 A 1735 U 5 A 1741 A 5 A 1742 A 5 A 1745 U 5 A 1745 U 5 A 1745 U 5 A 1745 U 5 A 1750 G 5 A 1750 G 5 A 1756 U 5 A 1773 A 5 A 1773 A 5 A 1787 C 5 A 1787 A 5 A 1788 A 5 A 1795 A 5 A	Mol	Chain	Res	Type
5 A 1720 U 5 A 1724 U 5 A 1731 U 5 A 1732 G 5 A 1732 G 5 A 1735 U 5 A 1741 A 5 A 1742 A 5 A 1745 U 5 A 1747 A 5 A 1750 G 5 A 1750 G 5 A 1750 G 5 A 1751 G 5 A 1773 A 5 A 1773 A 5 A 1773 A 5 A 1787 C 5 A 1787 A 5 A 1797 A 5 A 1798 G 5 A 1803 C 5 A	5	А	1717	U
5 A 1721 C 5 A 1724 U 5 A 1731 U 5 A 1732 G 5 A 1735 U 5 A 1741 A 5 A 1742 A 5 A 1745 U 5 A 1745 U 5 A 1749 A 5 A 1750 G 5 A 1750 G 5 A 1750 G 5 A 1756 U 5 A 1760 A 5 A 1773 A 5 A 1787 C 5 A 1787 A 5 A 1788 A 5 A 1795 A 5 A 1797 A 5 A 1803 C 5 A	5	А	1720	U
5 A 1724 U 5 A 1731 U 5 A 1732 G 5 A 1735 U 5 A 1741 A 5 A 1742 A 5 A 1745 U 5 A 1749 A 5 A 1750 G 5 A 1750 G 5 A 1750 G 5 A 1750 G 5 A 1751 G 5 A 1771 A 5 A 1773 A 5 A 1778 A 5 A 1787 C 5 A 1787 A 5 A 1797 A 5 A 1798 G 5 A 1803 C 5 A 1834 A 5 A	5	А	1721	С
5 A 1731 U 5 A 1732 G 5 A 1735 U 5 A 1741 A 5 A 1742 A 5 A 1745 U 5 A 1749 A 5 A 1750 G 5 A 1750 G 5 A 1750 G 5 A 1750 G 5 A 1751 G 5 A 1760 A 5 A 1773 A 5 A 1773 A 5 A 1778 A 5 A 1787 C 5 A 1788 A 5 A 1795 A 5 A 1797 A 5 A 1803 C 5 A 1834 A 5 A	5	А	1724	U
5 A 1732 G 5 A 1741 A 5 A 1741 A 5 A 1742 A 5 A 1742 A 5 A 1745 U 5 A 1749 A 5 A 1749 A 5 A 1750 G 5 A 1750 G 5 A 1750 G 5 A 1771 A 5 A 1773 A 5 A 1773 A 5 A 1777 A 5 A 1787 C 5 A 1797 A 5 A 1797 A 5 A 1798 G 5 A 1833 C 5 A 1834 A 5 A 1837 G	5	А	1731	U
5 A 1735 U 5 A 1741 A 5 A 1742 A 5 A 1745 U 5 A 1745 U 5 A 1749 A 5 A 1750 G 5 A 1750 G 5 A 1750 G 5 A 1756 U 5 A 1770 A 5 A 1773 A 5 A 1773 A 5 A 1778 A 5 A 1777 A 5 A 1797 A 5 A 1798 G 5 A 1798 G 5 A 1820 C 5 A 1834 A 5 A 1837 G 5 A 1837 G	5	А	1732	G
5A1741A5A1742A5A1745U5A1749A5A1750G5A1751G5A1756U5A1760A5A1773A5A1773A5A1778A5A1787C5A1795A5A1797A5A1798G5A1798G5A1803C5A1834A5A1837G5A1834A5A1837G5A1837G5A1850G5A1853A5A1853A5A1873U5A1873U5A1893G5A1893G5A1893G5A1898U5A1899A5A1899A5A1899A5A1899A5A1899A5A1899A5A1899A5A1899A5	5	А	1735	U
5A 1742 A5A 1745 U5A 1749 A5A 1750 G5A 1751 G5A 1756 U5A 1760 A5A 1770 A5A 1771 A5A 1773 A5A 1773 A5A 1778 A5A 1787 C5A 1795 A5A 1797 A5A 1798 G5A 1803 C5A 1834 A5A 1834 A5A 1834 A5A 1837 G5A 1834 G5A 1850 G5A 1853 A5A 1853 A5A 1873 U5A 1892 C5A 1893 G5A 1897 G5A 1898 U5A 1899 A5A 1899	5	А	1741	А
5 A 1745 U 5 A 1749 A 5 A 1750 G 5 A 1751 G 5 A 1756 U 5 A 1760 A 5 A 1770 A 5 A 1771 A 5 A 1773 A 5 A 1778 A 5 A 1778 A 5 A 1787 C 5 A 1797 A 5 A 1797 A 5 A 1798 G 5 A 1803 C 5 A 1803 C 5 A 1834 A 5 A 1837 G 5 A 1837 G 5 A 1834 A 5 A 1851 U /	5	А	1742	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	А	1745	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	А	1749	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	А	1750	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	А	1751	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	А	1756	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	А	1760	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	А	1771	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	А	1773	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	А	1778	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	А	1787	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	А	1788	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	А	1795	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	А	1797	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	А	1798	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	А	1803	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	А	1816	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	А	1820	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	А	1834	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	А	1837	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	А	1838	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5	А	1844	G
5 A 1851 U 5 A 1853 A 5 A 1861 C 5 A 1861 C 5 A 1873 U 5 A 1875 G 5 A 1892 C 5 A 1893 G 5 A 1897 G 5 A 1898 U 5 A 1899 A 5 A 1899 A 5 A 1891 C	5	А	1850	G
5 A 1853 A 5 A 1861 C 5 A 1873 U 5 A 1873 U 5 A 1875 G 5 A 1892 C 5 A 1893 G 5 A 1893 G 5 A 1897 G 5 A 1898 U 5 A 1899 A 5 A 1891 C	5	А	1851	U
5 A 1861 C 5 A 1873 U 5 A 1875 G 5 A 1875 G 5 A 1892 C 5 A 1893 G 5 A 1893 G 5 A 1897 G 5 A 1897 G 5 A 1898 U 5 A 1899 A 5 A 1891 C	5	А	1853	A
5 A 1873 U 5 A 1875 G 5 A 1892 C 5 A 1893 G 5 A 1893 G 5 A 1893 G 5 A 1897 G 5 A 1898 U 5 A 1899 A 5 A 1891 C	5	А	1861	С
5 A 1875 G 5 A 1892 C 5 A 1893 G 5 A 1893 G 5 A 1893 G 5 A 1897 G 5 A 1898 U 5 A 1899 A 5 A 1891 C	5	А	1873	U
5 A 1892 C 5 A 1893 G 5 A 1897 G 5 A 1898 U 5 A 1899 A 5 A 1899 C	5	А	1875	G
5 A 1893 G 5 A 1897 G 5 A 1898 U 5 A 1899 A 5 A 1891 C	5	А	1892	С
5 A 1897 G 5 A 1898 U 5 A 1899 A 5 A 1899 A 5 A 1901 C	5	А	1893	G
5 A 1898 U 5 A 1899 A 5 A 1901 C	5	А	1897	G
5 A 1899 A 5 A 1901 C	5	А	1898	U
5 A 1901 C	5	А	1899	A
	5	А	1901	С

Mol	Chain	Res	Type
5	А	1902	U
5	А	1906	А
5	А	1916	G
5	А	1917	G
5	А	1918	U
5	А	1924	А
5	А	1925	А
5	А	1942	U
5	А	1949	С
5	А	1950	U
5	А	1951	G
5	А	1954	С
5	А	1957	A
5	А	1958	U
5	А	1959	G
5	А	1967	G
5	А	1968	A
5	А	1969	U
5	А	1978	U
5	А	1979	G
5	А	1982	U
5	А	1983	С
5	А	1984	С
5	А	1993	С
5	А	2008	А
5	А	2010	С
5	А	2015	U
5	А	2017	А
5	А	2018	А
5	А	2020	А
5	А	2028	U
5	А	2030	U
5	А	2039	A
5	А	2042	С
5	А	2043	G
5	А	2047	А
5	А	2048	G
5	А	2049	А
5	А	2055	U
5	А	2056	G
5	А	2060	С
5	А	2063	U

Mol	Chain	Res	Type
5	А	2064	А
5	А	2067	G
5	А	2068	U
5	А	2080	G
5	А	2082	А
5	А	2083	С
5	А	2094	С
5	А	2095	U
5	А	2097	G
5	А	2098	U
5	А	2099	G
5	А	2101	А
5	А	2103	G
5	А	2106	А
5	А	2113	А
5	А	2114	G
5	А	2115	G
5	А	2116	С
5	А	2117	U
5	А	2118	U
5	А	2119	U
5	А	2121	А
5	А	2122	А
5	А	2127	G
5	А	2129	А
5	А	2132	С
5	А	2133	С
5	А	2135	G
5	А	2140	С
5	А	2141	G
5	А	2144	G
5	А	2145	A
5	А	2146	G
5	А	2147	С
5	А	2148	С
5	А	2149	А
5	А	2150	U
5	А	2151	С
5	А	2156	А
5	А	2157	A
5	А	2158	А
5	А	2159	U

Mol	Chain	Res	Type
5	А	2160	А
5	А	2169	G
5	А	2173	G
5	А	2174	С
5	А	2175	U
5	А	2185	А
5	А	2186	А
5	А	2187	С
5	А	2191	G
5	А	2194	С
5	А	2199	А
5	А	2201	С
5	А	2212	А
5	А	2221	G
5	А	2225	G
5	А	2226	G
5	А	2229	G
5	А	2237	G
5	А	2239	G
5	А	2240	G
5	А	2253	А
5	А	2264	G
5	А	2265	А
5	А	2270	U
5	А	2271	А
5	А	2274	А
5	А	2275	А
5	А	2284	С
5	А	2292	U
5	А	2296	А
5	А	2297	А
5	А	2305	G
5	А	2306	С
5	А	2307	А
5	А	2308	G
5	А	2309	А
5	А	2312	А
5	А	2313	U
5	А	2314	А
5	А	2319	С
5	А	2321	А
5	A	2322	A

Mol	Chain	Res	Type
5	А	2323	А
5	А	2333	А
5	А	2334	С
5	А	2337	С
5	А	2357	G
5	А	2358	G
5	А	2361	С
5	А	2363	А
5	А	2370	G
5	А	2372	С
5	А	2382	С
5	А	2383	G
5	А	2386	G
5	А	2389	U
5	А	2390	С
5	А	2393	U
5	А	2407	С
5	А	2409	С
5	А	2410	U
5	А	2413	А
5	А	2414	С
5	А	2415	G
5	А	2416	G
5	А	2417	А
5	А	2421	А
5	А	2422	А
5	А	2428	U
5	А	2434	G
5	А	2435	А
5	А	2446	А
5	А	2451	G
5	А	2453	С
5	А	2454	С
5	А	2457	G
5	А	2459	G
5	А	2462	С
5	А	2466	U
5	А	2471	G
5	А	2478	U
5	А	2480	U
5	А	2481	G
5	А	2489	G

Mol	Chain	Res	Type
5	А	2492	G
5	А	2505	А
5	А	2506	U
5	А	2517	А
5	А	2521	С
5	А	2522	G
5	А	2537	G
5	А	2541	U
5	А	2553	А
5	А	2554	G
5	А	2559	А
5	А	2560	С
5	А	2563	G
5	А	2565	G
5	А	2573	U
5	А	2586	G
5	А	2590	G
5	А	2593	С
5	А	2600	U
5	А	2602	U
5	А	2616	U
5	А	2619	А
5	А	2633	С
5	А	2640	U
5	А	2641	А
5	А	2647	А
5	А	2651	G
5	А	2660	G
5	А	2669	U
5	А	2676	U
5	A	2677	U
5	A	2689	G
5	А	2690	С
5	A	2692	A
5	A	2701	G
5	A	2703	С
5	А	2704	G
5	A	2705	G
5	A	2713	U
5	A	$2\overline{714}$	G
5	A	2720	A
5	А	2726	U

Mol	Chain	Res	Type
5	А	2731	G
5	А	2733	U
5	А	2739	С
5	А	2743	U
5	А	2744	А
5	А	2751	А
5	А	2752	А
5	А	2763	А
5	А	2765	А
5	А	2766	U
5	А	2771	U
5	А	2784	U
5	А	2785	U
5	А	2786	G
5	А	2787	А
5	А	2794	U
5	А	2795	G
5	А	2805	С
5	А	2807	А
5	А	2811	С
5	А	2812	U
5	А	2818	G
5	А	2820	U
5	А	2821	G
5	А	2836	U
5	А	2842	U
5	А	2846	G
5	А	2851	G
5	А	2852	U
5	А	2854	G
5	А	2867	С
5	А	2870	А
5	А	2871	U
5	А	2884	U
5	А	2889	С
6	В	13	A
6	В	20	G
6	В	22	U
6	В	24	G
6	В	25	A
6	В	28	С
6	В	29	А

Mol	Chain	Res	Type
6	В	35	U
6	В	41	С
6	В	42	С
6	В	43	С
6	В	45	А
6	В	46	А
6	В	51	G
6	В	52	А
6	В	54	G
6	В	56	G
6	В	57	А
6	В	63	С
6	В	66	А
6	В	73	A
6	В	89	U
6	В	90	С
6	В	105	G
6	В	106	G
6	В	109	А
9	Dt	4	С
9	Dt	8	U
9	Dt	11	С
9	Dt	15	G
9	Dt	16	U
9	Dt	17	С
9	Dt	19	G
9	Dt	20	U
9	Dt	21	А
9	Dt	22	G
9	Dt	32	U
9	Dt	39	U
9	Dt	44	G
9	Dt	46	G
9	Dt	47	U
9	Dt	49	С
9	Dt	52	G
9	Dt	55	U
9	Dt	58	A
9	Dt	72	С
9	Dt	74	С
9	Dt	75	C
9	Dt	76	А

Mol	Chain	Res	Type
32	a	3	А
32	a	6	G
32	a	7	A
32	a	9	G
32	a	22	G
32	a	29	U
32	a	31	G
32	a	32	А
32	a	42	G
32	a	47	С
32	a	48	С
32	a	51	A
32	a	52	C
32	a	60	A
32	a	61	G
32	a	65	A
32	a	66	G
32	a	71	U
32	a	72	А
32	a	73	А
32	a	77	G
32	a	82	U
32	a	83	G
32	a	88	U
32	a	89	G
32	a	95	А
32	a	100	С
32	a	115	U
32	a	118	С
32	a	121	G
32	a	123	А
32	a	124	А
32	a	125	U
32	a	133	G
32	a	138	G
32	a	143	A
32	a	157	C
32	a	176	C
32	a	177	G
32	a	179	С
32	a	182	G
32	a	192	G

Mol	Chain	Res	Type
32	a	193	U
32	a	204	С
32	a	205	G
32	a	206	G
32	a	239	U
32	a	241	G
32	a	244	А
32	a	256	А
32	a	260	G
32	a	261	С
32	a	266	С
32	a	275	G
32	a	283	А
32	a	284	С
32	a	287	G
32	a	288	U
32	a	292	А
32	a	299	G
32	a	315	А
32	a	321	А
32	a	322	С
32	a	323	А
32	a	326	G
32	a	334	U
32	a	341	G
32	a	345	G
32	a	346	С
32	a	348	G
32	a	361	U
32	a	363	G
32	a	365	А
32	a	375	А
32	a	376	А
32	a	378	G
32	a	384	U
32	a	386	С
32	a	391	A
32	a	400	G
32	a	405	A
32	a	406	A
32	a	407	G
32	a	408	A

Mol	Chain	Res	Type
32	a	417	G
32	a	423	U
32	a	443	G
32	a	445	А
32	a	446	А
32	a	447	G
32	a	457	U
32	a	461	U
32	a	475	G
32	a	478	G
32	a	490	А
32	a	491	U
32	a	492	А
32	a	493	A
32	a	494	G
32	a	502	U
32	a	504	А
32	a	505	С
32	a	507	U
32	a	509	G
32	a	511	G
32	a	512	С
32	a	513	С
32	a	515	G
32	a	518	G
32	a	520	С
32	a	521	G
32	a	526	A
32	a	527	А
32	a	539	C
32	a	540	A
32	a	541	A
32	a	556	U
32	a	558	С
32	a	566	A
32	a	567	А
32	a	569	G
32	a	570	С
32	a	571	G
32	a	573	G
32	a	582	G
32	a	584	U

32a 585 C 32 a 590 A 32 a 627 G 32 a 647 A 32 a 647 A 32 a 659 A 32 a 681 A 32 a 681 A 32 a 682 G 32 a 687 G 32 a 687 G 32 a 696 A 32 a 710 A 32 a 712 A 32 a 717 U 32 a 727 G 32 a 727 G 32 a 754 G 32 a 756 U 32 a 756 U 32 a 770 A 32 a 759 G 32 a 788 A 32 a 806 G 32 a 806 G 32 a 810 A 32 a 810 A 32 a 810 A 32 a 812 G 32	Mol	Chain	Res	Type
32a 590 A 32 a 627 G 32 a 647 A 32 a 648 G 32 a 659 A 32 a 681 A 32 a 682 G 32 a 687 G 32 a 688 A 32 a 696 A 32 a 710 A 32 a 712 A 32 a 712 A 32 a 717 U 32 a 718 G 32 a 727 G 32 a 754 G 32 a 756 U 32 a 756 U 32 a 759 G 32 a 788 A 32 a 806 G 32 a 806 G 32 a 806 G 32 a 806 G 32 a 811 C 32 a 812 G 32 a 815 G 32 a 830 G 32 a 815 G 32 a 815 G 32 a 812 G 32	32	a	585	С
32a 627 G 32 a 647 A 32 a 659 A 32 a 659 A 32 a 681 A 32 a 682 G 32 a 687 G 32 a 687 G 32 a 696 A 32 a 696 A 32 a 710 A 32 a 717 U 32 a 717 U 32 a 727 G 32 a 727 G 32 a 754 G 32 a 756 U 32 a 756 U 32 a 788 A 32 a 806 G 32 a 807 U 32 a 809 A 32 a 806 G 32 a 810 A 32 a 810 A 32 a 810 A 32 a 812 G 32	32	a	590	A
32a 647 A 32 a 659 A 32 a 659 A 32 a 681 A 32 a 682 G 32 a 687 G 32 a 688 A 32 a 696 A 32 a 710 A 32 a 710 A 32 a 712 A 32 a 717 U 32 a 717 U 32 a 727 G 32 a 754 G 32 a 754 G 32 a 756 U 32 a 756 U 32 a 759 G 32 a 806 G 32 a 810 A 32 a 810 A 32 a 810 A 32 a 812 G 32 a 812 G 32 a 812 G 32 a 812 G 32 a 810 A 32 a 812 G 32 a 812 G 32 a 812 G 32 a 812 G 32	32	a	627	G
32a 648 G 32 a 659 A 32 a 681 A 32 a 682 G 32 a 687 G 32 a 696 A 32 a 696 A 32 a 710 A 32 a 710 A 32 a 717 U 32 a 717 U 32 a 727 G 32 a 727 G 32 a 754 G 32 a 756 U 32 a 759 G 32 a 759 G 32 a 760 A 32 a 806 G 32 a 806 G 32 a 806 G 32 a 807 U 32 a 806 G 32 a 809 A 32 a 810 A 32 a 810 A 32 a 810 A 32 a 812 G 32 a 822 A 32 a 835 C 32 a 838 G 32	32	a	647	A
32a 659 A 32 a 681 A 32 a 682 G 32 a 687 G 32 a 696 A 32 a 710 A 32 a 710 A 32 a 712 A 32 a 717 U 32 a 717 U 32 a 727 G 32 a 727 G 32 a 754 G 32 a 756 U 32 a 756 U 32 a 760 A 32 a 760 A 32 a 806 G 32 a 811 C 32 a 812 G 32 a 812 G 32 a 830 G 32 a 830 G 32 a 835 C 32 a 836 U 32	32	a	648	G
32a 681 A 32 a 682 G 32 a 687 G 32 a 696 A 32 a 710 A 32 a 710 A 32 a 712 A 32 a 712 A 32 a 717 U 32 a 717 U 32 a 727 G 32 a 727 G 32 a 754 G 32 a 756 U 32 a 756 U 32 a 759 G 32 a 760 A 32 a 806 G 32 a 806 G 32 a 806 G 32 a 807 U 32 a 811 C 32 a 812 G 32 a 812 G 32 a 812 G 32 a 812 G 32 a 830 G 32 a 830 G 32 a 830 G 32 a 830 G 32 a 835 C 32 a 835 C 32 a 835 C 32 a 836 G 32 a 835 C 32 a 835 C 32	32	a	659	A
32a 682 G 32 a 687 G 32 a 696 A 32 a 710 A 32 a 712 A 32 a 712 A 32 a 717 U 32 a 717 U 32 a 717 G 32 a 727 G 32 a 727 G 32 a 749 A 32 a 754 G 32 a 756 U 32 a 759 G 32 a 760 A 32 a 760 A 32 a 806 G 32 a 806 G 32 a 807 U 32 a 807 U 32 a 810 A 32 a 810 A 32 a 810 A 32 a 812 G 32 a 812 G 32 a 812 G 32 a 830 G 32 a 830 G 32 a 835 C 32 a 835 C 32 a 835 C 32 a 845 U 32 a 854 A 32 a 858 A 32 a 865 U 32	32	a	681	A
32a 687 G 32 a 696 A 32 a 710 A 32 a 712 A 32 a 712 A 32 a 717 U 32 a 717 U 32 a 717 U 32 a 717 G 32 a 727 G 32 a 727 G 32 a 754 G 32 a 754 G 32 a 756 U 32 a 759 G 32 a 760 A 32 a 760 A 32 a 806 G 32 a 807 U 32 a 807 U 32 a 809 A 32 a 811 C 32 a 812 G 32 a 812 G 32 a 812 G 32 a 830 G 32 a 833 G 32 a 833 G 32 a 834 A 32 a 840 G 32 a 838 G 32 a 838 G 32 a 835 C 32 a 845 U 32 a 858 A 32 a 858 A 32	32	a	682	G
32a 688 A 32 a 710 A 32 a 710 A 32 a 712 A 32 a 717 U 32 a 717 U 32 a 717 U 32 a 717 U 32 a 717 G 32 a 727 G 32 a 727 G 32 a 754 G 32 a 756 U 32 a 756 U 32 a 756 U 32 a 760 A 32 a 760 A 32 a 806 G 32 a 806 G 32 a 807 U 32 a 809 A 32 a 811 C 32 a 812 G 32 a 812 G 32 a 812 G 32 a 815 G 32 a 830 G 32 a 833 G 32 a 834 G 32 a 838 G 32 a 838 G 32 a 838 G 32 a 835 C 32 a 845 U 32 a 858 A 32 a 858 A 32	32	a	687	G
32a 696 A 32 a 710 A 32 a 712 A 32 a 717 U 32 a 717 G 32 a 727 G 32 a 727 G 32 a 754 G 32 a 754 G 32 a 756 U 32 a 756 U 32 a 760 A 32 a 760 A 32 a 806 G 32 a 806 G 32 a 807 U 32 a 807 U 32 a 810 A 32 a 811 C 32 a 812 G 32 a 812 G 32 a 835 C 32 a 835 C 32 a 838 G 32 a 846 U 32 a 845 U 32 a 858 A 32	32	a	688	A
32a 710 A 32 a 712 A 32 a 717 U 32 a 717 U 32 a 727 G 32 a 727 G 32 a 733 C 32 a 749 A 32 a 754 G 32 a 756 U 32 a 756 U 32 a 756 U 32 a 760 A 32 a 760 A 32 a 788 A 32 a 806 G 32 a 807 U 32 a 809 A 32 a 811 C 32 a 812 G 32 a 812 G 32 a 815 G 32 a 830 G 32 a 835 C 32 a 835 C 32 a 838 G 32 a 838 G 32 a 845 U 32 a 854 A 32 a 858 A 32 a 865 U 32 a 865 U 32 a 865 U	32	a	696	A
32a 712 A 32 a 717 U 32 a 717 U 32 a 718 G 32 a 727 G 32 a 733 C 32 a 749 A 32 a 754 G 32 a 756 U 32 a 756 U 32 a 750 G 32 a 760 A 32 a 760 A 32 a 788 A 32 a 806 G 32 a 806 G 32 a 809 A 32 a 810 A 32 a 810 A 32 a 810 G 32 a 812 G 32 a 812 G 32 a 815 G 32 a 830 G 32 a 830 G 32 a 835 C 32 a 838 G 32 a 840 G 32 a 854 A 32 a 858 A 32 a 865 U 32 a 865 U	32	a	710	А
32a 717 U 32 a 718 G 32 a 727 G 32 a 733 C 32 a 749 A 32 a 754 G 32 a 756 U 32 a 756 U 32 a 760 A 32 a 760 A 32 a 771 A 32 a 788 A 32 a 806 G 32 a 807 U 32 a 809 A 32 a 811 C 32 a 812 G 32 a 815 G 32 a 815 G 32 a 815 G 32 a 815 G 32 a 822 A 32 a 835 C 32 a 835 C 32 a 835 C 32 a 838 G 32 a 840 G 32 a 845 U 32 a 858 A 32 a 858 A 32 a 865 U 32 a 865 U 32 a 865 U	32	a	712	А
32a 718 G 32 a 727 G 32 a 733 C 32 a 749 A 32 a 754 G 32 a 756 U 32 a 756 U 32 a 750 G 32 a 760 A 32 a 760 A 32 a 771 A 32 a 788 A 32 a 806 G 32 a 806 G 32 a 809 A 32 a 810 A 32 a 811 C 32 a 812 G 32 a 815 G 32 a 815 G 32 a 822 A 32 a 835 C 32 a 835 C 32 a 835 C 32 a 840 G 32 a 845 U 32 a 854 A 32 a 858 A 32 a 865 U 32 a 865 U	32	a	717	U
32 a 727 G 32 a 733 C 32 a 749 A 32 a 754 G 32 a 754 G 32 a 756 U 32 a 759 G 32 a 760 A 32 a 760 A 32 a 771 A 32 a 788 A 32 a 806 G 32 a 807 U 32 a 809 A 32 a 810 A 32 a 811 C 32 a 815 G 32 a 830 G 32 a 835 C 32 a 835 C 32 a 845 U 32 a 84	32	a	718	G
32a 733 C 32 a 749 A 32 a 754 G 32 a 756 U 32 a 759 G 32 a 760 A 32 a 760 A 32 a 771 A 32 a 788 A 32 a 806 G 32 a 806 G 32 a 809 A 32 a 810 A 32 a 811 C 32 a 812 G 32 a 815 G 32 a 822 A 32 a 835 C 32 a 835 C 32 a 835 C 32 a 840 G 32 a 845 U 32 a 845 U 32 a 854 A 32 a 858 A 32 a 858 A 32 a 865 U 32 a 865 U 32 a 865 U	32	a	727	G
32a 749 A 32 a 754 G 32 a 756 U 32 a 759 G 32 a 760 A 32 a 760 A 32 a 771 A 32 a 788 A 32 a 806 G 32 a 807 U 32 a 809 A 32 a 810 A 32 a 811 C 32 a 812 G 32 a 815 G 32 a 835 C 32 a 835 C 32 a 835 C 32 a 840 G 32 a 845 U 32 a 845 U 32 a 854 A 32 a 858 A 32 a 855 L 32 a 855 L 32 a 865 U 32 a 865 U 32 a 865 U 32 a 865 U	32	a	733	С
32a 754 G 32 a 756 U 32 a 759 G 32 a 760 A 32 a 760 A 32 a 771 A 32 a 788 A 32 a 806 G 32 a 807 U 32 a 809 A 32 a 810 A 32 a 811 C 32 a 812 G 32 a 815 G 32 a 822 A 32 a 835 C 32 a 835 C 32 a 834 G 32 a 845 U 32 a 845 U 32 a 845 U 32 a 854 A 32 a 858 A 32 a 858 A 32 a 865 U 32 a 865 U 32 a 865 U	32	a	749	А
32 a 756 U 32 a 759 G 32 a 760 A 32 a 771 A 32 a 771 A 32 a 788 A 32 a 788 A 32 a 806 G 32 a 807 U 32 a 809 A 32 a 810 A 32 a 810 A 32 a 811 C 32 a 812 G 32 a 815 G 32 a 830 G 32 a 833 G 32 a 834 U 32 a 845 U 32 a 854 A 32 a 858 A 32 a 86	32	a	754	G
32 a 759 G 32 a 760 A 32 a 760 A 32 a 771 A 32 a 788 A 32 a 806 G 32 a 806 G 32 a 807 U 32 a 809 A 32 a 810 A 32 a 811 C 32 a 811 C 32 a 812 G 32 a 815 G 32 a 830 G 32 a 835 C 32 a 838 G 32 a 845 U 32 a 854 A 32 a 858 A 32 a 858 A 32 a 86	32	a	756	U
32 a 760 A 32 a 771 A 32 a 788 A 32 a 806 G 32 a 806 G 32 a 807 U 32 a 807 U 32 a 809 A 32 a 810 A 32 a 810 A 32 a 810 A 32 a 811 C 32 a 812 G 32 a 815 G 32 a 822 A 32 a 835 C 32 a 838 G 32 a 845 U 32 a 854 A 32 a 858 A 32 a 862 C 32 a 86	32	a	759	G
32 a 771 A 32 a 788 A 32 a 806 G 32 a 807 U 32 a 807 U 32 a 809 A 32 a 810 A 32 a 810 A 32 a 811 C 32 a 811 C 32 a 812 G 32 a 815 G 32 a 822 A 32 a 830 G 32 a 835 C 32 a 835 C 32 a 840 G 32 a 845 U 32 a 854 A 32 a 858 A 32 a 862 C 32 a 86	32	a	760	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	a	771	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	a	788	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	a	806	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	a	807	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	a	809	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	a	810	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	a	811	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	a	812	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	a	815	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	a	822	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	a	830	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	a	835	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	a	838	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	a	840	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	a	845	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	a	854	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	32	a	858	A
32 a 865 U	32	a	862	С
20 0.000 A	32	a	865	U
02 a 000 A	32	a	866	A

Mol	Chain	Res	Type
32	a	870	С
32	a	884	G
32	a	887	С
32	a	894	A
32	a	896	G
32	a	908	A
32	a	920	G
32	a	921	G
32	a	928	С
32	a	929	А
32	a	932	А
32	a	936	G
32	a	939	G
32	a	954	U
32	a	955	U
32	a	956	С
32	a	960	G
32	a	963	A
32	a	964	С
32	a	966	С
32	a	967	G
32	a	968	A
32	a	969	А
32	a	970	G
32	a	971	А
32	a	975	U
32	a	977	A
32	a	988	А
32	a	990	А
32	a	998	А
32	a	1004	C
32	a	1015	U
32	a	1017	G
32	a	1023	U
32	a	1025	C
32	a	1026	G
32	a	1027	G
32	a	1039	C
32	a	1044	G
32	a	1049	A
32	a	1059	U
32	a	1073	G

Mol	Chain	Res	Type
32	a	1075	G
32	a	1078	G
32	a	1079	U
32	a	1080	U
32	a	1086	А
32	a	1088	G
32	a	1089	U
32	a	1090	С
32	a	1095	А
32	a	1118	G
32	a	1119	U
32	a	1124	А
32	a	1127	А
32	a	1130	U
32	a	1133	G
32	a	1134	G
32	a	1149	А
32	a	1152	С
32	a	1153	U
32	a	1160	G
32	a	1162	С
32	a	1163	А
32	a	1164	А
32	a	1165	А
32	a	1175	G
32	a	1178	G
32	a	1184	G
32	a	1190	А
32	a	1191	А
32	a	1196	U
32	a	1207	А
32	a	1214	G
32	a	1219	А
32	a	1221	А
32	a	1222	С
32	a	1229	U
32	a	1230	А
32	a	1232	А
32	a	1234	U
32	a	1235	G
32	a	1248	G
32	a	1250	U

Mol	Chain	Res	Type
32	a	1251	U
32	a	1252	G
32	a	1254	С
32	a	1264	G
32	a	1266	U
32	a	1272	U
32	a	1273	А
32	a	1281	А
32	a	1293	А
32	a	1294	G
32	a	1297	С
32	a	1299	G
32	a	1314	С
32	a	1332	G
32	a	1334	А
32	a	1342	U
32	a	1347	G
32	a	1358	U
32	a	1362	А
32	a	1381	G
32	a	1388	А
32	a	1391	С
32	a	1397	С
32	a	1413	G
32	a	1414	U
32	a	1418	U
32	a	1419	U
32	a	1423	С
32	a	1424	С
32	a	1428	А
32	a	1440	A
32	a	1446	A
32	a	1448	G
32	a	1469	G
32	a	1470	А
32	a	1486	A
32	a	1487	А
32	a	1491	G
32	a	1497	А
32	a	1498	G
32	a	1499	G
32	a	1500	U

Continued from previous page...

Mol	Chain	Res	Type
32	а	1501	А
32	a	1502	G
32	a	1511	G
32	a	1514	С
32	а	1523	G
32	а	1525	А
32	a	1526	U

All (51) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
5	А	81	G
5	А	87	С
5	А	114	U
5	А	227	А
5	А	243	U
5	А	266	G
5	А	314	А
5	А	334	А
5	А	348	U
5	A	360	C
5	А	434	А
5	А	444	А
5	А	538	G
5	А	540	U
5	А	774	G
5	А	783	А
5	А	792	А
5	А	840	U
5	А	920	С
5	А	953	U
5	А	963	А
5	А	1003	U
5	А	1016	U
5	A	1051	U
5	А	1169	А
5	А	1232	G
5	А	1233	А
5	А	1378	U
5	А	1448	С
5	А	1627	А
5	A	1653	G

Mol	Chain	Res	Type	
5	А	1672	G	
5	А	1710	А	
5	А	1715	U	
5	А	1741	А	
5	А	1891	G	
5	А	1897	G	
5	А	1917	G	
5	А	2029	А	
5	А	2149	А	
5	А	2200	U	
5	А	2228	А	
5	А	2274	А	
5	А	2536	G	
5	А	2703	С	
5	А	2750	G	
5	А	2784	U	
5	А	2793	С	
5	А	2853	U	
6	В	34	А	
6	В	51	G	

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 171 ligands modelled in this entry, 171 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
49	r	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	r	11:CYS	С	12:ARG	N	3.53

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-16566. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 256

Y Index: 256

Z Index: 256

6.2.2 Raw map

X Index: 256

Y Index: 256

Z Index: 256

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 268

Y Index: 267

Z Index: 250

6.3.2 Raw map

X Index: 269

Y Index: 267

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 3.46. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1459 $\rm nm^3;$ this corresponds to an approximate mass of 1318 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.333 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.333 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.00	-	-
Author-provided FSC curve	2.97	3.19	2.99
Unmasked-calculated*	3.59	5.44	3.68

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.59 differs from the reported value 3.0 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-16566 and PDB model 8CD1. Per-residue inclusion information can be found in section 3 on page 13.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 3.46 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (3.46).

9.4 Atom inclusion (i)

At the recommended contour level, 93% of all backbone atoms, 90% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (3.46) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.8980	0.4610
2	0.8800	0.5090
4	0.9330	0.5560
5	0.6800	0.4950
6	0.8960	0.5200
А	0.9400	0.4550
В	0.9300	0.4200
С	0.9020	0.5320
D	0.8950	0.5120
Dt	0.1470	0.3840
Ε	0.8990	0.5220
F	0.7810	0.3700
G	0.8210	0.4400
Н	0.1530	0.2090
J	0.9060	0.5310
K	0.8330	0.4870
L	0.8800	0.4960
Le	0.7180	0.3440
М	0.8750	0.5400
Ν	0.9200	0.5360
0	0.8660	0.4610
Р	0.8550	0.4940
Q	0.9290	0.5520
R	0.8940	0.5230
S	0.8790	0.5210
Т	0.9020	0.5250
U	0.8180	0.4650
V	0.8200	0.4580
W	0.8750	0.5090
X	0.9000	0.5260
Y	0.8850	0.4640
Z	0.9140	0.5280
a	0.9630	0.4840
b	0.6390	0.3340
с	0.8060	0.4230

Continued on next page...

Continued from previous page...

Chain	Atom inclusion	Q-score
d	0.8360	0.4510
е	0.8150	0.4450
f	0.7900	0.4050
g	0.7650	0.3770
h	0.8740	0.4970
i	0.8530	0.4170
j	0.5110	0.1420
k	0.8480	0.4720
l	0.8320	0.4750
m	0.7860	0.3550
n	0.8650	0.4270
0	0.8730	0.4910
р	0.9250	0.5130
q	0.8600	0.4860
r	0.8000	0.4290
s	0.8260	0.3850
t	0.8990	0.5050
u	0.4290	0.3630
V	0.6920	0.4530

