

Full wwPDB X-ray Structure Validation Report (i)

Nov 20, 2023 – 01:48 AM JST

PDB ID	:	7CED
Title	:	Apo-methanol dehydrogenase (MDH) from Methylococcus capsulatus (Bath)
Authors	:	Chuankhayan, P.; Chan, S.I.; Nareddy, P.K.R.; Tsai, I.K.; Tsai, Y.F.; Chen,
		K.HC.; Yu, S.SF.; Chen, C.J.
Deposited on	:	2020-06-22
Resolution	:	1.90 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 1.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	130704	6207 (1.90-1.90)
Clashscore	141614	6847 (1.90-1.90)
Ramachandran outliers	138981	6760 (1.90-1.90)
Sidechain outliers	138945	6760 (1.90-1.90)
RSRZ outliers	127900	6082 (1.90-1.90)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	А	573	94%	6% •
1	В	573	94%	5%•
1	С	573	93%	6% •
1	D	573	% 94%	5%•
1	G	573	94%	6% •
1	Н	573	93%	6% •

			page	
Mol	Chain	Length	Quality of chain	
		_		
1	М	573	000/	70/
1	111	010	92%	7%
	3.7			
	N	573	92%	7% •
			. <mark>%</mark>	
2	E	72	90%	8% •
			4%	
2	F	79		1.40/
	Г	12	85%	14% •
_	-		1%	
2		72	88%	11% •
			3%	
2	J	72	92%	6% ••
			4%	
2	K	79		00/
	К	12	90%	8% •
_	-		3%	
2	L	72	90%	7% ••
			11%	
2	Ο	72	94%	
			7%	
1	D	79		
	P	(2	90%	7% ••

7CED

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 45177 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	579	Total	С	Ν	0	S	0	0	0
	A	575	4491	2871	765	832	23	0	0	0
1	р	572	Total	С	Ν	0	S	0	0	0
1	D	515	4490	2871	765	831	23	0	0	0
1	С	573	Total	С	Ν	0	S	0	0	0
1	U	515	4491	2871	765	832	23	0	0	0
1	Л	573	Total	С	Ν	0	S	0	0	0
1	D	515	4490	2871	765	831	23	0	0	0
1	С	573	Total	С	Ν	0	S	0	0	0
L	G	515	4491	2871	765	832	23	0	0	0
1	ц	573	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	11	515	4490	2871	765	831	23	0	0	0
1	М	573	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	111	515	4491	2871	765	832	23	0	0	0
1	N	573	Total	С	Ν	0	S	0	0	0
1	IN	515	4490	2871	765	831	23	U	0	

• Molecule 1 is a protein called Methanol dehydrogenase protein, large subunit.

• Molecule 2 is a protein called Methanol dehydrogenase [cytochrome c] subunit 2.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
9	F	71	Total	С	Ν	0	\mathbf{S}	0	0	Ο
	Ľ	11	568	356	100	109	3	0	0	0
9	F	71	Total	С	Ν	0	S	0	0	Ο
	T,	11	568	356	100	109	3	0	0	0
9	т	71	Total	С	Ν	0	S	0	0	0
	1	11	568	356	100	109	3	0	0	0
9	Т	71	Total	С	Ν	0	S	0	0	0
	J	11	568	356	100	109	3	0	0	0
9	K	71	Total	С	Ν	0	S	0	0	0
	Γ	11	568	356	100	109	3	0	0	0
0	т	71	Total	С	Ν	0	\mathbf{S}	0	0	0
		11	568	356	100	109	3	U	U	U

Continued from previous page...

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
0	0	71	Total	С	Ν	0	S	0	0	0
	2 0	11	568	356	100	109	3	0	0	0
0	D	71	Total	С	Ν	0	S	0	0	0
	1	11	568	356	100	109	3	0	0	0

• Molecule 3 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	548	Total O 548 548	0	0
3	В	491	Total O 491 491	0	0
3	С	500	Total O 500 500	0	0
3	D	511	Total O 511 511	0	0
3	Е	114	Total O 114 114	0	0
3	F	77	Total O 77 77	0	0
3	G	529	Total O 529 529	0	0
3	Н	481	Total O 481 481	0	0
3	Ι	84	Total O 84 84	0	0
3	J	79	Total O 79 79	0	0
3	К	81	Total O 81 81	0	0
3	L	97	Total O 97 97	0	0
3	М	453	Total O 453 453	0	0
3	Ν	505	Total O 505 505	0	0
3	О	61	Total O 61 61	0	0
3	Р	98	Total O 98 98	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Methanol dehydrogenase protein, large subunit

• Molecule 1: Methanol dehydrogenase protein, large subunit

• Molecule 1: Methanol dehydrogenase protein, large subunit

P447 A461 D514 I538 I538 G557 G557 R584 R584

• Molecule 1: Methanol dehydrogenase protein, large subunit

C	Ch	ai	n	G:	•												g	949	%												6%	ó•		
N29		D38	R56	T76		T97	M1 14	R127	R137	A144 C145	E146	H147	OFTP	V193	K194	R225	E233	02.07	K279	M282 1783	0071	R298	D312	R317	A333	Y337	D346	R358	D380	K387	D444	R520	R523	L533
	D572	R584	FOOT	0591	G594	1.601																												

• Molecule 1: Methanol dehydrogenase protein, large subunit

Chai	n H	I:												9	3%											69	6 •			
N29 830 E31	R34	D38	T76	H96 T07	131 198	D110	T111 R112	K113 M114	R127	R137	A144	G145	E146	6148 G148	D179	K194	L198	R209	1217	R225	K279	M282	Y337	G347	L353	T364	D380	D444	R453	
M472 R520	K528	G557	K571 D572	CEON		T091																								

• Molecule 1: Methanol dehydrogenase protein, large subunit

Chain M:										92	?%											-	7%	•		
N29 830 831 831 834 837	R56	L74	V106	M114 R127	V134	R137	A144	G145 F146	E140 H147	G148	E170	V193	K194	R225	D232	Y276	1283	D314	Y337	L353	T364	D380	E400	R404	K410	D444
P447 N472 G511	V537 W561	V564	D572 R584	<mark>q591</mark>	L601																					

• Molecule 1: Methanol dehydrogenase protein, large subunit

Chain N:							92%	6									7%	6•		
N29 830 831 831 834 840 840	W72 T76	D90 T97 D08	D110	M114 Q117	Y118 K119	R127 R137	A144	G145 E146	H147 G148	K196	L196 L198	V208 R209	D219	D232 E233	W271	128 <mark>3</mark>	K303 W304	D314	R317	Y337
D346 G347 R367 K391	K432 D444 M472	D514 D514 B520	D521 T522 R523	<mark>0530</mark>	D572 R584	H588	G594	V598	L601											
• Molecul	e 2: M	etha	nol d	ehyd	rog	enas	se [ø	cyt	och	nror	ne	c] sı	ıbu	init	2					
Chain E:	%						90%										8%	·		

• Molecule 2: Methanol dehydrogenase [cytochrome c] subunit 2 Chain F: 85% 14% • Molecule 2: Methanol dehydrogenase [cytochrome c] subunit 2 Chain I: 88% 11% • Molecule 2: Methanol dehydrogenase [cytochrome c] subunit 2 Chain J: 92% 6% •• • Molecule 2: Methanol dehydrogenase [cytochrome c] subunit 2 Chain K: 90% 8% . • Molecule 2: Methanol dehydrogenase [cytochrome c] subunit 2 Chain L: 90% 7% •• • Molecule 2: Methanol dehydrogenase [cytochrome c] subunit 2 11% Chain O: 94% . .

• Molecule 2: Methanol dehydrogenase [cytochrome c] subunit 2

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	128.70Å 211.85Å 223.69Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Bosolution (Å)	153.00 - 1.90	Depositor
Resolution (A)	29.88 - 1.90	EDS
% Data completeness	99.8 (153.00-1.90)	Depositor
(in resolution range)	99.9 (29.88-1.90)	EDS
R_{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$2.29 (at 1.89 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.8.0135	Depositor
D D .	0.140 , 0.180	Depositor
n, n_{free}	0.146 , 0.185	DCC
R_{free} test set	24064 reflections (5.03%)	wwPDB-VP
Wilson B-factor $(Å^2)$	18.8	Xtriage
Anisotropy	0.039	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.34 , 43.0	EDS
L-test for $twinning^2$	$ < L >=0.49, < L^2>=0.32$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.96	EDS
Total number of atoms	45177	wwPDB-VP
Average B, all atoms $(Å^2)$	21.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 1.74% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mol Chain		ond lengths	Bond angles			
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5		
1	А	0.95	4/4622~(0.1%)	1.01	22/6281~(0.4%)		
1	В	1.01	10/4621~(0.2%)	1.10	23/6281~(0.4%)		
1	С	0.97	6/4622~(0.1%)	0.98	15/6281~(0.2%)		
1	D	0.97	7/4621~(0.2%)	1.02	20/6281~(0.3%)		
1	G	0.97	4/4622~(0.1%)	1.03	28/6281~(0.4%)		
1	Н	0.93	3/4621~(0.1%)	1.05	28/6281~(0.4%)		
1	М	0.95	4/4622~(0.1%)	0.98	17/6281~(0.3%)		
1	N	1.00	6/4621~(0.1%)	1.07	30/6281~(0.5%)		
2	Е	0.95	0/583	0.91	2/785~(0.3%)		
2	F	0.89	0/583	0.96	2/785~(0.3%)		
2	Ι	0.92	0/583	0.98	3/785~(0.4%)		
2	J	0.88	0/583	0.85	0/785		
2	K	1.01	1/583~(0.2%)	0.95	4/785~(0.5%)		
2	L	1.03	1/583~(0.2%)	1.01	3/785~(0.4%)		
2	0	0.83	0/583	0.86	0/785		
2	Р	0.95	0/583	0.99	2/785~(0.3%)		
All	All	0.96	46/41636~(0.1%)	1.02	199/56528~(0.4%)		

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	2
1	В	0	1
1	D	0	1
1	G	0	2
1	Н	0	2
1	М	0	2
All	All	0	10

All (46) bond length outliers are listed below:

7CED

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
1	Η	112	ARG	CD-NE	-9.96	1.29	1.46
1	В	112	ARG	CD-NE	-9.93	1.29	1.46
1	Ν	148	GLY	N-CA	-9.61	1.31	1.46
1	D	145	GLY	N-CA	-9.49	1.31	1.46
1	А	148	GLY	N-CA	-9.34	1.32	1.46
1	Ν	145	GLY	N-CA	-9.10	1.32	1.46
1	G	148	GLY	N-CA	-8.87	1.32	1.46
1	G	145	GLY	N-CA	-8.82	1.32	1.46
1	А	145	GLY	N-CA	-8.45	1.33	1.46
1	В	223	GLU	CD-OE1	-8.24	1.16	1.25
1	В	148	GLY	N-CA	-8.19	1.33	1.46
1	С	148	GLY	N-CA	-7.86	1.34	1.46
1	Ν	145	GLY	C-O	-7.54	1.11	1.23
1	С	233	GLU	CG-CD	6.99	1.62	1.51
1	D	223	GLU	CD-OE2	6.97	1.33	1.25
1	В	104	TYR	CB-CG	-6.96	1.41	1.51
1	В	104	TYR	CE1-CZ	6.93	1.47	1.38
1	Ν	233	GLU	CD-OE1	6.85	1.33	1.25
1	Н	96	HIS	C-N	6.76	1.49	1.34
1	Н	148	GLY	N-CA	-6.76	1.35	1.46
1	А	104	TYR	CB-CG	-6.63	1.41	1.51
1	D	148	GLY	N-CA	-6.32	1.36	1.46
1	С	446	GLU	CD-OE2	6.21	1.32	1.25
1	С	104	TYR	CE1-CZ	6.17	1.46	1.38
1	М	148	GLY	N-CA	-6.11	1.36	1.46
1	D	30	SER	CB-OG	-5.99	1.34	1.42
1	Ν	584	ARG	CZ-NH1	5.91	1.40	1.33
1	Ν	271	TRP	CE3-CZ3	5.81	1.48	1.38
1	G	148	GLY	C-O	-5.78	1.14	1.23
1	D	116	TRP	CB-CG	5.78	1.60	1.50
2	Κ	80	TYR	CE1-CZ	5.73	1.46	1.38
2	L	26	THR	CB-CG2	-5.66	1.33	1.52
1	В	96	HIS	C-N	$5.\overline{66}$	$1.\overline{47}$	1.34
1	М	96	HIS	C-N	5.62	1.47	1.34
1	G	233	GLU	CG-CD	$5.5\overline{3}$	1.60	1.51
1	В	148	GLY	C-O	-5.50	1.14	1.23
1	D	205	GLU	CD-OE2	$5.3\overline{4}$	1.31	1.25
1	В	205	GLU	$CD-\overline{OE2}$	5.29	1.31	1.25
1	М	170	GLU	CD-OE1	5.25	1.31	1.25
1	В	145	GLY	N-CA	-5.22	1.38	1.46
1	D	104	TYR	CB-CG	-5.21	1.43	1.51
1	C	83	GLU	CD-OE1	$5.1\overline{6}$	1.31	1.25
1	\mathbf{C}	205	GLU	CD-OE2	$5.1\overline{1}$	1.31	1.25

		r r · · · · ·	r ng r				
Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(Å)
1	А	104	TYR	CE2-CZ	5.10	1.45	1.38
1	М	30	SER	CB-OG	-5.09	1.35	1.42
1	В	271	TRP	CE3-CZ3	5.07	1.47	1.38

All (199) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	112	ARG	NE-CZ-NH2	-24.88	107.86	120.30
1	Н	112	ARG	NE-CZ-NH2	-22.07	109.27	120.30
1	В	112	ARG	NE-CZ-NH1	18.30	129.45	120.30
1	Н	112	ARG	NE-CZ-NH1	17.21	128.91	120.30
1	N	584	ARG	NE-CZ-NH1	13.27	126.93	120.30
1	N	584	ARG	NE-CZ-NH2	-12.23	114.18	120.30
1	D	147	HIS	CA-C-N	11.93	140.07	116.20
1	N	147	HIS	CA-C-N	11.73	139.66	116.20
1	С	147	HIS	CA-C-N	11.55	139.31	116.20
1	А	147	HIS	CA-C-N	11.32	138.83	116.20
1	В	147	HIS	CA-C-N	11.28	138.77	116.20
1	С	147	HIS	C-N-CA	10.94	145.26	122.30
1	D	147	HIS	C-N-CA	10.93	145.25	122.30
1	N	147	HIS	C-N-CA	10.58	144.51	122.30
1	N	110	ASP	CB-CG-OD2	-10.57	108.79	118.30
1	В	147	HIS	C-N-CA	10.32	143.98	122.30
1	В	147	HIS	O-C-N	-10.19	105.87	123.20
1	М	147	HIS	CA-C-N	10.10	136.40	116.20
1	Н	147	HIS	CA-C-N	10.04	136.28	116.20
1	G	147	HIS	CA-C-N	10.00	136.20	116.20
1	С	127	ARG	NE-CZ-NH1	9.92	125.26	120.30
1	N	147	HIS	O-C-N	-9.89	106.38	123.20
1	D	147	HIS	O-C-N	-9.88	106.41	123.20
1	А	147	HIS	C-N-CA	9.80	142.88	122.30
1	С	147	HIS	O-C-N	-9.73	106.65	123.20
1	Н	147	HIS	C-N-CA	9.13	141.47	122.30
1	А	147	HIS	O-C-N	-9.04	107.83	123.20
1	G	147	HIS	O-C-N	-8.83	108.19	123.20
1	N	572	ASP	CB-CG-OD1	8.79	126.21	118.30
1	G	147	HIS	C-N-CA	8.59	140.33	122.30
1	Н	147	HIS	O-C-N	-8.45	108.83	123.20
1	М	147	HIS	C-N-CA	8.39	139.92	122.30
1	Н	127	ARG	NE-CZ-NH1	8.33	124.46	120.30
1	А	367	ARG	NE-CZ-NH2	8.30	124.45	120.30
1	G	520	ARG	NE-CZ-NH1	-8.26	116.17	120.30

7CED

	Choin	<i>previ</i>	ous page.	Atoma	7	Obcomund(0)	$\mathbf{Ideal}(\theta)$
		res			0.01	104 40	100.20
1	H	520	ARG	NE-CZ-NH2	8.21	124.40	120.30
1	G	114	MEI	CG-SD-CE	-8.20	87.08	100.20
1	G D	232	ASP	CB-CG-ODI	8.14	125.03	118.30
1	B	282	MEI	UG-SD-UE	-8.14	87.18	100.20
1	G	520	ARG	NE-CZ-NH2	8.10	124.35	120.30
1	M	147	HIS	O-C-N	-8.02	109.57	123.20
1	D	107	ASP	CB-CG-ODI	8.01	125.51	118.30
1	C	232	ASP	CB-CG-ODI	8.00	125.50	118.30
1	D	137	ARG	NE-CZ-NHI	-7.83	116.39	120.30
1	C	282	MET	CG-SD-CE	-7.61	88.03	100.20
1	D	127	ARG	NE-CZ-NH1	7.52	124.06	120.30
1	A	56	ARG	NE-CZ-NH2	-7.48	116.56	120.30
1	N	367	ARG	NE-CZ-NH2	7.39	124.00	120.30
1	A	317	ARG	NE-CZ-NH1	7.37	123.98	120.30
1	N	127	ARG	NE-CZ-NH1	7.34	123.97	120.30
1	A	127	ARG	NE-CZ-NH1	7.32	123.96	120.30
1	Н	110	ASP	CB-CG-OD2	-7.27	111.75	118.30
1	С	127	ARG	NE-CZ-NH2	-7.23	116.69	120.30
1	G	137	ARG	NE-CZ-NH1	-7.21	116.70	120.30
1	D	127	ARG	NE-CZ-NH2	-7.18	116.71	120.30
2	Κ	76	ARG	NE-CZ-NH1	-7.14	116.73	120.30
1	G	282	MET	CG-SD-CE	-7.04	88.93	100.20
1	Ν	444	ASP	CB-CG-OD1	7.02	124.62	118.30
1	G	144	ALA	O-C-N	-7.00	111.31	123.20
1	В	545	GLN	CA-CB-CG	6.99	128.78	113.40
1	G	38	ASP	CB-CG-OD1	6.99	124.59	118.30
1	А	127	ARG	NE-CZ-NH2	-6.98	116.81	120.30
1	N	317	ARG	NE-CZ-NH1	6.95	123.77	120.30
1	А	144	ALA	CA-C-N	6.92	130.05	116.20
1	Ν	572	ASP	CB-CG-OD2	-6.90	112.09	118.30
1	А	572	ASP	CB-CG-OD1	6.79	124.41	118.30
1	В	514	ASP	CB-CG-OD1	6.77	124.39	118.30
1	G	144	ALA	CA-C-N	6.75	129.70	116.20
1	В	444	ASP	CB-CG-OD1	6.69	124.32	118.30
1	А	232	ASP	CB-CG-OD1	6.66	124.30	118.30
1	G	572	ASP	CB-CG-OD1	6.66	124.30	118.30
1	N	144	ALA	O-C-N	-6.57	112.03	123.20
1	D	444	ASP	CB-CG-OD1	6.54	124.19	118.30
1	В	317	ARG	NE-CZ-NH1	6.54	123.57	120.30
2	Ι	76	ARG	NE-CZ-NH2	6.46	123.53	120.30
1	Н	127	ARG	NE-CZ-NH2	-6.40	117.10	120.30
1	G	523	ARG	NE-CZ-NH1	6.38	123.49	120.30

10D

	Chain	i prevu	Type	Atoms	7	Observed ⁽⁰⁾	Ideal(0)
1	M	1105		CP CC OD1	6.27	124.02	110 20
1	IN M	202	ASE	CC SD CE	0.37	124.05	110.00
1	IVI N	522		OCN	-0.07	90.02	100.20 122.70
1		022 147			-0.55	112.04	122.70
1	 	147		N-CA-C	0.52	128.07	111.00
1	П N	140		N-CA-C	0.52	120.90	115.10
1		144	ALA	CR-C-N	0.32	120.00	110.20
1	B M	38	ASP	N CA C	0.31	123.98	118.30
	M	147		N-CA-C	0.29 6.29	127.98	111.00
		072 197	ASP	NE CZ NII1	0.28	123.90	118.30
1	B N	121	ARG	NE-CZ-NHI	0.28	123.44	120.30
		514	ASP	CB-CG-ODI	0.27	123.94	118.30
1	A	404	ARG	NE-CZ-NH2	-0.19	117.20	120.30
1	A	144	ALA	U-C-N	-0.18	112.69	123.20
2	F A	76	ARG	NE-CZ-NH2	0.15	123.38	120.30
1	A	158	ASP	CB-CG-ODI	6.14	123.82	118.30
	C	232	ASP	CB-CG-OD2	-6.12	112.80	118.30
1	H	380	ASP	CB-CG-ODI	6.10	123.79	118.30
1	C	56	ARG	NE-CZ-NH2	-6.09	117.26	120.30
1	M	572	ASP	CB-CG-OD2	-6.09	112.82	118.30
1	D	514	ASP	CB-CG-OD1	6.03	123.73	118.30
1	С	444	ASP	CB-CG-OD1	6.02	123.72	118.30
1	A	225	ARG	NE-CZ-NH2	-6.02	117.29	120.30
1	Н	520	ARG	NE-CZ-NH1	-6.00	117.30	120.30
2	K	72	ARG	NE-CZ-NH1	6.00	123.30	120.30
1	Н	198	LEU	CA-CB-CG	5.99	129.07	115.30
1	N	444	ASP	CB-CG-OD2	-5.98	112.92	118.30
1	N	110	ASP	CB-CG-OD1	5.94	123.65	118.30
1	В	572	ASP	CB-CG-OD2	-5.94	112.95	118.30
2	Е	24	ASP	CB-CG-OD2	-5.92	112.97	118.30
1	Ν	40	ARG	NE-CZ-NH1	5.91	123.26	120.30
1	Ν	145	GLY	CA-C-N	5.91	130.21	117.20
1	D	137	ARG	NE-CZ-NH2	5.86	123.23	120.30
1	М	232	ASP	CB-CG-OD1	5.85	123.56	118.30
2	Р	26	THR	OG1-CB-CG2	5.85	123.45	110.00
2	Р	26	THR	N-CA-CB	-5.83	99.21	110.30
1	А	572	ASP	CB-CG-OD2	-5.83	113.05	118.30
2	K	76	ARG	NE-CZ-NH2	5.79	123.19	120.30
1	Н	444	ASP	CB-CG-OD2	-5.78	113.10	118.30
1	D	144	ALA	CA-C-N	5.77	127.75	116.20
1	А	137	ARG	CG-CD-NE	-5.77	99.69	111.80
1	М	137	ARG	NE-CZ-NH1	-5.74	117.43	120.30
1	М	56	ARG	NE-CZ-NH1	5.73	123.17	120.30

10D

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	G	523	ARG	NE-CZ-NH2	-5.71	117.44	120.30
1	Н	38	ASP	CB-CG-OD1	5.70	123.43	118.30
1	А	520	ARG	NE-CZ-NH2	5.67	123.14	120.30
1	В	107	ASP	CB-CG-OD1	5.67	123.41	118.30
2	F	51	ASP	CB-CG-OD1	5.67	123.41	118.30
2	Е	76	ARG	NE-CZ-NH2	5.64	123.12	120.30
1	В	127	ARG	NE-CZ-NH2	-5.61	117.49	120.30
1	С	33	ASP	CB-CG-OD1	5.61	123.35	118.30
1	G	127	ARG	NE-CZ-NH1	5.61	123.11	120.30
1	М	127	ARG	NE-CZ-NH1	5.60	123.10	120.30
1	В	514	ASP	CB-CG-OD2	-5.58	113.28	118.30
1	Н	137	ARG	CG-CD-NE	-5.58	100.07	111.80
2	L	76	ARG	NE-CZ-NH2	5.58	123.09	120.30
1	А	430	ASP	CB-CG-OD1	5.58	123.32	118.30
1	Н	144	ALA	CA-C-N	5.57	127.35	116.20
1	Н	147	HIS	N-CA-C	5.57	126.03	111.00
1	В	380	ASP	CB-CG-OD1	5.56	123.30	118.30
1	Н	444	ASP	CB-CG-OD1	5.54	123.29	118.30
1	G	298	ARG	NE-CZ-NH1	-5.54	117.53	120.30
1	М	225	ARG	NE-CZ-NH1	5.53	123.07	120.30
1	В	380	ASP	CB-CG-OD2	-5.52	113.33	118.30
1	Н	572	ASP	CB-CG-OD1	5.52	123.27	118.30
1	N	520	ARG	NE-CZ-NH2	5.51	123.06	120.30
1	N	145	GLY	CA-C-O	-5.50	110.69	120.60
1	N	209	ARG	NE-CZ-NH2	5.48	123.04	120.30
1	N	219	ASP	CB-CG-OD1	5.48	123.23	118.30
2	Ι	55	ASP	CB-CG-OD1	5.46	123.21	118.30
1	А	147	HIS	N-CA-C	5.44	125.69	111.00
1	Н	225	ARG	NE-CZ-NH1	5.44	123.02	120.30
1	М	314	ASP	CB-CG-OD1	5.44	123.19	118.30
1	G	144	ALA	C-N-CA	5.43	133.71	122.30
1	Н	282	MET	CG-SD-CE	-5.43	91.52	100.20
1	G	148	GLY	CA-C-O	-5.42	110.85	120.60
1	N	314	ASP	CB-CG-OD1	5.41	123.17	118.30
1	N	367	ARG	NE-CZ-NH1	-5.39	117.60	120.30
1	В	572	ASP	CB-CG-OD1	5.39	123.15	118.30
1	G	225	ARG	NE-CZ-NH1	5.39	122.99	120.30
1	G	127	ARG	NE-CZ-NH2	-5.37	117.62	120.30
1	C	137	ARG	CG-CD-NE	-5.37	100.53	111.80
1	G	317	ARG	NE-CZ-NH1	5.36	122.98	120.30
1	G	444	ASP	CB-CG-OD1	5.36	123.12	118.30
1	D	367	ARG	NE-CZ-NH1	-5.35	117.62	120.30

7	CED	
•	$\nabla \mathbf{L} \mathbf{L}$	

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	D	104	TYR	CB-CG-CD2	-5.35	117.79	121.00
1	N	127	ARG	NE-CZ-NH2	-5.35	117.62	120.30
1	N	147	HIS	N-CA-C	5.34	125.41	111.00
1	Н	209	ARG	NE-CZ-NH2	5.32	122.96	120.30
1	С	572	ASP	CB-CG-OD2	-5.32	113.51	118.30
1	G	147	HIS	N-CA-C	5.31	125.34	111.00
2	L	26	THR	CA-CB-CG2	5.30	119.83	112.40
2	K	72	ARG	NE-CZ-NH2	-5.29	117.66	120.30
1	В	404	ARG	NE-CZ-NH2	-5.29	117.66	120.30
1	D	282	MET	CG-SD-CE	-5.28	91.75	100.20
1	G	380	ASP	CB-CG-OD1	5.25	123.02	118.30
1	G	56	ARG	NE-CZ-NH2	-5.24	117.68	120.30
1	Н	34	ARG	NE-CZ-NH2	-5.24	117.68	120.30
1	G	312	ASP	CB-CG-OD1	-5.23	113.59	118.30
1	М	404	ARG	NE-CZ-NH2	-5.23	117.69	120.30
1	D	261	ASP	CB-CG-OD2	-5.21	113.61	118.30
1	D	145	GLY	CA-C-O	-5.21	111.23	120.60
1	А	144	ALA	C-N-CA	5.18	133.19	122.30
1	Н	34	ARG	CG-CD-NE	-5.18	100.92	111.80
1	D	232	ASP	CB-CG-OD1	5.17	122.95	118.30
1	В	317	ARG	NE-CZ-NH2	-5.17	117.72	120.30
1	М	444	ASP	CB-CG-OD1	5.17	122.95	118.30
1	С	147	HIS	N-CA-C	5.16	124.92	111.00
1	G	572	ASP	CB-CG-OD2	-5.14	113.67	118.30
1	Н	110	ASP	CB-CG-OD1	5.14	122.92	118.30
1	А	317	ARG	NE-CZ-NH2	-5.12	117.74	120.30
1	В	147	HIS	N-CA-C	5.09	124.76	111.00
1	D	144	ALA	O-C-N	-5.08	114.57	123.20
1	Ν	137	ARG	CG-CD-NE	-5.06	101.17	111.80
1	Н	179	ASP	CB-CG-OD1	5.06	122.85	118.30
1	Н	528	LYS	CD-CE-NZ	-5.06	100.07	111.70
1	М	472	MET	CG-SD-CE	5.04	108.26	100.20
2	Ι	76	ARG	NE-CZ-NH1	-5.03	117.79	120.30
1	D	397	ARG	NE-CZ-NH2	5.02	122.81	120.30
2	L	62	GLN	CB-CA-C	-5.01	100.37	110.40
1	С	298	ARG	NE-CZ-NH2	5.01	122.81	120.30
1	М	380	ASP	CB-CG-OD1	5.00	122.80	118.30
1	В	104	TYR	CB-CG-CD2	-5.00	118.00	121.00

There are no chirality outliers.

All (10) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	А	144	ALA	Peptide
1	А	145	GLY	Peptide
1	В	144	ALA	Peptide
1	D	137	ARG	Sidechain
1	G	145	GLY	Peptide
1	G	97	THR	Mainchain
1	Н	144	ALA	Peptide
1	Н	147	HIS	Peptide
1	М	144	ALA	Peptide
1	М	145	GLY	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	4491	0	4320	10	0
1	В	4490	0	4320	11	0
1	С	4491	0	4320	11	0
1	D	4490	0	4320	17	0
1	G	4491	0	4320	14	0
1	Н	4490	0	4320	12	0
1	М	4491	0	4320	13	0
1	Ν	4490	0	4319	20	0
2	Е	568	0	545	3	0
2	F	568	0	545	5	0
2	Ι	568	0	545	3	0
2	J	568	0	545	6	0
2	Κ	568	0	545	3	0
2	L	568	0	545	2	0
2	Ο	568	0	545	3	0
2	Р	568	0	545	8	0
3	А	548	0	0	3	0
3	В	491	0	0	2	0
3	С	500	0	0	4	0
3	D	511	0	0	3	0
3	Е	114	0	0	1	0
3	F	77	0	0	2	0
3	G	529	0	0	2	0
3	Н	481	0	0	3	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	Ι	84	0	0	0	0
3	J	79	0	0	1	0
3	Κ	81	0	0	0	0
3	L	97	0	0	0	0
3	М	453	0	0	4	0
3	Ν	505	0	0	6	0
3	0	61	0	0	1	0
3	Р	98	0	0	1	0
All	All	45177	0	38919	131	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

All (131) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:J:74:GLN:HG2	3:J:166:HOH:O	1.64	0.98	
1:H:112:ARG:HD3	1:H:112:ARG:O	1.67	0.94	
1:B:112:ARG:O	1:B:112:ARG:HD3	1.75	0.87	
1:D:196:LYS:HE3	1:D:223:GLU:HG3	1.60	0.83	
2:P:26:THR:HG23	3:P:167:HOH:O	1.80	0.79	
1:N:209:ARG:H	2:P:62:GLN:HE22	1.30	0.79	
1:A:110:ASP:OD1	3:A:701:HOH:O	2.01	0.78	
1:D:145:GLY:HA3	1:D:148:GLY:O	1.84	0.77	
1:D:196:LYS:CE	1:D:223:GLU:HG3	2.16	0.76	
1:N:145:GLY:HA3	1:N:148:GLY:O	1.87	0.75	
1:B:112:ARG:O	1:B:112:ARG:CD	2.37	0.73	
1:N:432:LYS:HE3	3:N:847:HOH:O	1.89	0.73	
1:G:145:GLY:HA2	1:G:147:HIS:CD2	2.26	0.69	
1:H:112:ARG:O	1:H:112:ARG:CD	2.41	0.68	
3:M:1002:HOH:O	2:O:54:HIS:HD2	1.77	0.68	
3:H:1031:HOH:O	2:J:54:HIS:HD2	1.78	0.67	
1:B:198:LEU:HD11	1:B:283:ILE:HD13	1.77	0.65	
1:G:145:GLY:HA3	1:G:148:GLY:O	1.96	0.65	
3:D:965:HOH:O	2:L:54:HIS:HD2	1.80	0.63	
1:N:209:ARG:H	2:P:62:GLN:NE2	1.95	0.62	
1:C:145:GLY:O	1:C:148:GLY:HA2	2.00	0.61	
1:B:112:ARG:HD3	1:B:112:ARG:C	2.17	0.60	
3:G:942:HOH:O	2:I:54:HIS:HD2	1.85	0.59	
1:G:193:VAL:HG21	1:G:283:ILE:CD1	2.33	0.59	
3:D:1028:HOH:O	2:L:54:HIS:HE1	1.86	0.58	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:M:145:GLY:O	1:M:148:GLY:HA2	2.04	0.58	
3:M:1017:HOH:O	2:O:54:HIS:HE1	1.88	0.57	
1:G:193:VAL:HG21	1:G:283:ILE:HD11	1.88	0.55	
1:G:145:GLY:O	1:G:148:GLY:HA2	2.05	0.55	
3:G:1046:HOH:O	2:I:54:HIS:HE1	1.89	0.55	
1:H:31:GLU:OE1	1:H:34:ARG:NH1	2.40	0.55	
1:H:453:ARG:HG3	3:H:1028:HOH:O	2.07	0.55	
3:N:1031:HOH:O	2:P:54:HIS:HE1	1.89	0.54	
1:M:591:GLN:HG2	1:N:114:MET:HE1	1.90	0.54	
1:B:145:GLY:O	1:B:148:GLY:HA2	2.08	0.54	
3:A:976:HOH:O	2:E:54:HIS:HD2	1.90	0.54	
1:D:196:LYS:HE3	1:D:223:GLU:CG	2.35	0.54	
3:B:1053:HOH:O	2:F:54:HIS:HE1	1.91	0.53	
3:C:897:HOH:O	2:K:54:HIS:HD2	1.91	0.53	
1:N:31:GLU:OE1	1:N:34:ARG:NH1	2.42	0.53	
1:N:145:GLY:O	1:N:148:GLY:HA2	2.09	0.53	
1:H:145:GLY:O	1:H:148:GLY:HA2	2.09	0.53	
1:A:145:GLY:O	1:A:148:GLY:HA2	2.10	0.52	
1:M:31:GLU:OE2	1:M:34:ARG:NH2	2.39	0.52	
1:H:97:THR:HB	1:H:98:PRO:HD2	1.91	0.52	
2:P:24:ASP:OD1	2:P:26:THR:HB	2.11	0.51	
3:B:952:HOH:O	2:F:54:HIS:HD2	1.93	0.51	
2:J:53:LYS:HA	2:J:53:LYS:CE	2.41	0.50	
2:I:75:LYS:HD3	2:I:90:VAL:HB	1.93	0.50	
2:F:89:LYS:HG2	3:F:147:HOH:O	2.10	0.50	
1:N:76:THR:HB	1:N:97:THR:HG22	1.94	0.50	
3:N:989:HOH:O	2:P:54:HIS:HD2	1.94	0.49	
2:O:44:LYS:NZ	3:O:101:HOH:O	2.44	0.49	
3:A:1059:HOH:O	2:E:54:HIS:HE1	1.96	0.49	
1:C:514:ASP:O	1:D:112:ARG:HD3	2.12	0.48	
1:G:333:ALA:O	1:G:358:ARG:HG3	2.13	0.48	
1:N:198:LEU:HD11	1:N:283:ILE:HD13	1.95	0.48	
3:C:1031:HOH:O	2:K:54:HIS:HE1	1.96	0.48	
1:M:37:LYS:HE2	3:M:1082:HOH:O	2.14	0.48	
2:E:27:HIS:HE1	3:E:130:HOH:O	1.97	0.48	
1:A:145:GLY:HA2	1:A:147:HIS:CD2	2.49	0.47	
3:H:994:HOH:O	2:J:54:HIS:HE1	1.97	0.47	
1:M:561:TRP:O	1:M:564:VAL:HG22	2.15	0.47	
1:H:147:HIS:CD2	1:H:217:ILE:HD11	2.50	0.46	
1:M:276:TYR:HD1	1:M:283:ILE:HD13	1.79	0.46	
1:G:29:ASN:N	1:G:194:LYS:H	2.13	0.46	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:G:533:LEU:O	1:H:112:ARG:NH2	2.45	0.46	
1:M:193:VAL:HG11	1:M:283:ILE:HD11	1.97	0.46	
1:C:193:VAL:HG21	1:C:283:ILE:CD1	2.46	0.46	
1:C:239:LYS:HD3	3:C:1077:HOH:O	2.15	0.46	
1:N:209:ARG:N	2:P:62:GLN:HE22	2.06	0.46	
1:D:145:GLY:O	1:D:148:GLY:HA2	2.16	0.46	
2:F:24:ASP:OD1	2:F:26:THR:OG1	2.25	0.46	
1:D:196:LYS:CD	1:D:223:GLU:HG3	2.46	0.45	
1:G:145:GLY:HA2	1:G:147:HIS:NE2	2.31	0.45	
1:D:147:HIS:CD2	1:D:217:ILE:HD11	2.51	0.45	
1:M:276:TYR:CD1	1:M:283:ILE:HD13	2.52	0.45	
1:C:110:ASP:OD1	3:C:701:HOH:O	2.21	0.45	
1:D:432:LYS:HE3	3:D:719:HOH:O	2.16	0.45	
1:G:584:ARG:CZ	1:G:584:ARG:HB3	2.46	0.45	
1:G:193:VAL:HG21	1:G:283:ILE:HD12	1.99	0.44	
1:G:193:VAL:HG11	1:G:283:ILE:HD11	1.99	0.44	
1:G:591:GLN:HE21	1:H:114:MET:CE	2.30	0.44	
3:M:1038:HOH:O	1:N:588:HIS:HD2	1.99	0.44	
1:A:353:LEU:O	1:A:364:THR:HA	2.17	0.44	
1:N:145:GLY:HA2	1:N:147:HIS:CD2	2.52	0.44	
1:B:196:LYS:CE	1:B:223:GLU:HG2	2.48	0.44	
1:D:145:GLY:CA	1:D:148:GLY:O	2.62	0.44	
1:D:195:ASP:OD1	1:D:196:LYS:NZ	2.51	0.43	
2:J:53:LYS:HA	2:J:53:LYS:HE2	1.99	0.43	
1:N:117:GLN:NE2	1:N:119:LYS:HD2	2.33	0.43	
1:D:97:THR:HB	1:D:98:PRO:HD2	2.01	0.43	
1:N:72:TRP:CZ2	1:N:598:VAL:HG21	2.54	0.43	
1:N:97:THR:HB	1:N:98:PRO:HD2	1.99	0.43	
1:A:194:LYS:NZ	1:A:314:ASP:OD1	2.45	0.43	
1:A:561:TRP:O	1:A:564:VAL:HG22	2.19	0.43	
1:A:533:LEU:O	1:B:112:ARG:NH2	2.51	0.43	
1:D:145:GLY:HA2	1:D:147:HIS:CD2	2.54	0.43	
1:D:196:LYS:HD2	1:D:223:GLU:HG3	2.01	0.43	
1:A:112:ARG:HD3	1:B:514:ASP:O	2.19	0.43	
1:C:561:TRP:O	1:C:564:VAL:HG22	2.19	0.42	
1:H:76:THR:HB	1:H:97:THR:HG22	2.02	0.42	
1:N:90:ASP:HB3	3:N:726:HOH:O	2.19	0.42	
1:C:29:ASN:N	1:C:194:LYS:H	2.18	0.42	
1:C:85:ALA:HB1	1:C:86:PRO:CD	2.49	0.42	
1:B:29:ASN:N	1:B:194:LYS:H	2.18	0.42	
1:G:76:THR:HB	1:G:97:THR:HG22	2.02	0.42	

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
1:M:74:LEU:HD11	1:M:106:VAL:HG21	2.02	0.41
1:D:83:GLU:HG3	1:D:538:ILE:HD12	2.02	0.41
1:N:208:VAL:HA	2:P:62:GLN:HE22	1.85	0.41
1:C:76:THR:HB	1:C:97:THR:HG22	2.02	0.41
1:H:353:LEU:O	1:H:364:THR:HA	2.20	0.41
1:A:79:LEU:O	1:A:80:HIS:HB2	2.21	0.41
1:B:145:GLY:HA3	1:B:147:HIS:CD2	2.55	0.41
1:M:353:LEU:O	1:M:364:THR:HA	2.20	0.41
2:J:53:LYS:HE2	2:J:53:LYS:CA	2.50	0.41
1:M:145:GLY:HA3	1:M:148:GLY:O	2.21	0.41
1:N:196:LYS:HE2	3:N:704:HOH:O	2.19	0.41
1:C:329:GLU:HB2	1:C:330:TRP:CE2	2.56	0.41
1:M:29:ASN:N	1:M:194:LYS:H	2.18	0.41
1:B:31:GLU:OE1	1:B:34:ARG:NH1	2.54	0.41
1:D:447:PRO:HA	1:D:461:ALA:HA	2.02	0.41
1:H:29:ASN:N	1:H:194:LYS:H	2.19	0.41
1:N:303:LYS:HA	1:N:304:TRP:HA	1.86	0.41
1:A:276:TYR:HD1	1:A:283:ILE:HD13	1.85	0.41
2:F:85:LYS:NZ	3:F:102:HOH:O	2.52	0.40
2:K:52:PRO:HB2	2:K:54:HIS:CE1	2.57	0.40
1:M:511:GLY:HA3	1:M:537:VAL:HG11	2.04	0.40
1:C:266:GLY:O	1:C:290:PRO:HA	2.21	0.40
1:D:96:HIS:CE1	1:D:138:GLY:HA2	2.57	0.40
1:N:584:ARG:HD3	3:N:1065:HOH:O	2.20	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	571/573~(100%)	543 (95%)	27~(5%)	1 (0%)	47 38

7CED

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	В	571/573~(100%)	542 (95%)	29~(5%)	0	100 100
1	С	571/573~(100%)	544 (95%)	26~(5%)	1 (0%)	47 38
1	D	571/573~(100%)	543~(95%)	25~(4%)	3~(0%)	29 18
1	G	571/573~(100%)	539 (94%)	30~(5%)	2~(0%)	34 24
1	Н	571/573~(100%)	539 (94%)	30~(5%)	2(0%)	34 24
1	М	571/573~(100%)	541 (95%)	29~(5%)	1 (0%)	47 38
1	Ν	571/573~(100%)	545 (95%)	24 (4%)	2(0%)	34 24
2	Е	69/72~(96%)	69 (100%)	0	0	100 100
2	F	69/72~(96%)	69 (100%)	0	0	100 100
2	Ι	69/72~(96%)	68~(99%)	1 (1%)	0	100 100
2	J	69/72~(96%)	69 (100%)	0	0	100 100
2	К	69/72~(96%)	69 (100%)	0	0	100 100
2	L	69/72~(96%)	69 (100%)	0	0	100 100
2	Ο	69/72~(96%)	69 (100%)	0	0	100 100
2	Р	69/72~(96%)	69 (100%)	0	0	100 100
All	All	5120/5160~(99%)	4887 (95%)	221 (4%)	12 (0%)	47 38

Continued from previous page...

All (12) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	D	145	GLY
1	Ν	145	GLY
1	Н	557	GLY
1	А	134	VAL
1	С	134	VAL
1	G	145	GLY
1	G	594	GLY
1	М	134	VAL
1	Ν	594	GLY
1	D	134	VAL
1	D	557	GLY
1	Н	594	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	464/464~(100%)	458~(99%)	6 (1%)	69	68
1	В	464/464~(100%)	456~(98%)	8 (2%)	60	57
1	С	464/464~(100%)	458~(99%)	6 (1%)	69	68
1	D	464/464~(100%)	462 (100%)	2~(0%)	91	91
1	G	464/464~(100%)	460 (99%)	4 (1%)	78	79
1	Н	464/464~(100%)	458~(99%)	6 (1%)	69	68
1	М	464/464~(100%)	458~(99%)	6 (1%)	69	68
1	Ν	464/464~(100%)	459~(99%)	5 (1%)	73	73
2	Ε	60/61~(98%)	58~(97%)	2(3%)	38	29
2	F	60/61~(98%)	57~(95%)	3~(5%)	24	15
2	Ι	60/61~(98%)	57~(95%)	3~(5%)	24	15
2	J	60/61~(98%)	57~(95%)	3~(5%)	24	15
2	Κ	60/61~(98%)	59~(98%)	1 (2%)	60	57
2	L	60/61~(98%)	57~(95%)	3~(5%)	24	15
2	Ο	60/61~(98%)	59~(98%)	1 (2%)	60	57
2	Р	$\overline{60/61}\ (98\%)$	57~(95%)	3~(5%)	24	15
All	All	4192/4200 (100%)	4130 (98%)	62(2%)	65	62

All (62) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	337	TYR
1	А	400	GLU
1	А	445	TRP
1	А	453	ARG
1	А	523	ARG
1	А	571	LYS
1	В	112	ARG
1	В	221	LYS

Mol	Chain	Res	Type
1	В	243	LYS
1	В	337	TYR
1	В	387	LYS
1	В	391	LYS
1	В	445	TRP
1	В	569	ASP
1	С	233	GLU
1	С	239	LYS
1	С	279	LYS
1	С	337	TYR
1	С	445	TRP
1	С	530	GLN
1	D	337	TYR
1	D	584	ARG
2	Е	57	ASN
2	Е	80	TYR
2	F	43	ASP
2	F	59	LEU
2	F	93	ILE
1	G	146	GLU
1	G	279	LYS
1	G	337	TYR
1	G	387	LYS
1	Н	112	ARG
1	Н	146	GLU
1	Н	279	LYS
1	Н	337	TYR
1	Н	472	MET
1	Н	571	LYS
2	Ι	89	LYS
2	Ι	91	GLU
2	Ι	92	ASP
2	J	53	LYS
2	J	59	LEU
2	J	82	LYS
2	K	85	LYS
2	L	26	THR
2	L	43	ASP
2	L	59	LEU
1	М	146	GLU
1	М	337	TYR
1	М	400	GLU

Mol	Chain	\mathbf{Res}	Type
1	М	410	LYS
1	М	447	PRO
1	М	584	ARG
1	Ν	337	TYR
1	Ν	391	LYS
1	Ν	472	MET
1	Ν	523	ARG
1	Ν	530	GLN
2	0	85	LYS
2	Р	26	THR
2	Р	59	LEU
2	Р	82	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (25) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	591	GLN
1	В	117	GLN
1	В	216	ASN
1	С	270	ASN
1	D	156	GLN
1	D	216	ASN
1	D	270	ASN
2	Е	54	HIS
2	F	54	HIS
1	G	591	GLN
1	Н	545	GLN
1	Н	588	HIS
1	Н	591	GLN
2	Ι	54	HIS
2	J	54	HIS
2	Κ	54	HIS
2	L	54	HIS
1	М	591	GLN
1	N	117	GLN
1	Ν	156	GLN
1	N	464	ASN
1	Ν	588	HIS
2	0	54	HIS
2	Р	54	HIS
2	Р	62	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	573/573~(100%)	-0.50	1 (0%) 95 95	12, 17, 29, 52	0
1	В	573/573~(100%)	-0.48	2 (0%) 94 94	12, 16, 29, 44	0
1	С	573/573~(100%)	-0.53	0 100 100	12, 16, 27, 43	0
1	D	573/573~(100%)	-0.49	3 (0%) 91 92	12, 17, 28, 49	0
1	G	573/573~(100%)	-0.53	1 (0%) 95 95	12, 17, 28, 41	0
1	Н	573/573~(100%)	-0.45	1 (0%) 95 95	12, 19, 32, 49	0
1	М	573/573~(100%)	-0.39	0 100 100	13, 20, 34, 58	0
1	Ν	573/573~(100%)	-0.55	2 (0%) 94 94	12, 16, 28, 41	0
2	Ε	71/72~(98%)	-0.15	1 (1%) 75 77	17, 24, 41, 54	0
2	F	71/72~(98%)	-0.10	3 (4%) 36 39	14, 21, 46, 86	0
2	Ι	71/72~(98%)	0.14	5 (7%) 16 18	16, 23, 66, 100	0
2	J	71/72~(98%)	0.32	2 (2%) 53 56	22, 30, 49, 63	0
2	Κ	71/72~(98%)	-0.20	3 (4%) 36 39	15, 22, 36, 51	0
2	L	71/72~(98%)	-0.18	2 (2%) 53 56	16, 23, 38, 56	0
2	Ο	71/72~(98%)	0.44	8 (11%) 5 5	24, 34, 55, 64	0
2	Р	71/72~(98%)	-0.04	5 (7%) 16 18	16, 21, 43, 60	0
All	All	5152/5160~(99%)	-0.43	39 (0%) 86 87	12, 18, 34, 100	0

All (39) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
2	Ι	93	ILE	9.2
2	F	93	ILE	7.0
2	F	92	ASP	5.8
2	Ι	92	ASP	5.6
2	F	91	GLU	4.5

Mol	Chain	Res	Type	RSRZ
2	Ι	91	GLU	4.3
2	Ι	90	VAL	3.9
2	0	82	LYS	3.9
2	J	91	GLU	3.7
2	Е	93	ILE	3.3
2	0	90	VAL	3.0
2	0	85	LYS	3.0
2	0	91	GLU	2.9
2	Р	91	GLU	2.8
1	А	571	LYS	2.7
2	K	91	GLU	2.7
2	0	93	ILE	2.7
2	L	91	GLU	2.7
1	Н	347	GLY	2.6
1	В	584	ARG	2.6
2	Р	89	LYS	2.6
2	Р	81	ALA	2.5
2	0	83	THR	2.5
1	D	346	ASP	2.5
1	Ν	347	GLY	2.5
1	Ν	346	ASP	2.3
1	G	346	ASP	2.3
2	Р	85	LYS	2.3
1	В	346	ASP	2.3
2	L	93	ILE	2.2
2	0	43	ASP	2.2
2	0	39	PRO	2.2
2	J	82	LYS	2.2
2	Р	82	LYS	2.1
2	K	92	ASP	2.1
1	D	63	HIS	2.1
2	Ι	82	LYS	2.0
1	D	347	GLY	2.0
2	K	93	ILE	2.0

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

