

Apr 16, 2024 - 11:12 am BST

PDB ID	:	8CMJ
EMDB ID	:	EMD-16729
Title	:	Translocation intermediate 4 (TI- 4^*) of 80S S. cerevisiae ribosome with eEF2
		in the absence of sordarin
Authors	:	Milicevic, N.; Jenner, L.; Myasnikov, A.; Yusupov, M.; Yusupova, G.
Deposited on	:	2023-02-20
Resolution	:	3.79 Å(reported)
This is	a I	Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp

with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis Mogul	:	0.0.1.dev92 1.8.4 CSD as541be (2020)
MolProbity	:	4.09b.467
huster report	:	4.020^{-401}
buster-report	•	1.1.7 (2010)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.79 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM\ structures}\ (\#{ m Entries})$
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826
RNA backbone	4643	859

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain	
1	0	135	99%	
2	1	108	64% · 35%	5
3	2	119	82%	18%
4	3	82	99%	
5	4	67	93%	• 6%
6	5	56	86%	• 12%
7	6	63	75% 10%	16%
8	7	319	99%	•
9	8	152	24% 76%	

Continued on next page...

Mol	Chain	Length	Quality of chain	
10	А	199	98%	••
11	AA	3396	74% 19%	• 6%
12	Aa	842	96%	·
13	В	184	83% •	16%
14	BB	121	83%	17%
15	С	186	99%	••
16	$\mathbf{C}\mathbf{C}$	158	82%	18%
17	D	189	93%	• 7%
18	DD	312	63% 37%	
19	Е	172	100%	
20	EE	254	99%	
21	Ee	165	96%	· ·
22	F	160	99%	••
23	FF	387	99%	
24	G	121	80%	20%
25	GG	362	99%	•
26	Н	137	94%	6%
27	HH	297	100%	
28	Ι	155	40% • 59%	
29	II	176	88%	12%
30	J	142	84% .	15%
31	JJ	244	90%	• 9%
32	K	127	98%	
33	KK	256	91%	9%
34	L	136	99%	••

Continued from previous page...

Continued on next page...

Chain Length Quality of chain Mol 35 LL191 100% 36 М 14999% 37 MM 221 97% • Ν 385998% . NN 39 17497% • Ο 4010592% 8% • • 00 41 19996% . . 42Р 11396% \mathbf{PP} 1384399% . ••• 44Q 13097% $\mathbf{Q}\mathbf{Q}$ 45204100% R 1074699% 47 \mathbf{S} 12190% 10% Т ••• 4812098% U 4910099% V 5088 92% •• 5% W 5178 99% . 52Х 5198% Υ 128 5338% 59% • Ζ 2554100% 55106 \mathbf{a} 95% • • ••• 56 \mathbf{b} 9298% 571800 \mathbf{c} 61% 26% 11% • 58 \mathbf{d} 25282% 18% 5925517% е 82%

Continued from previous page...

Continued on next page...

Mol	Chain	Length	Quality of chain	
60	f	254	85%	15%
61	g	240	75% •	24%
62	h	261	98%	
63	i	225	88%	12%
64	j	236	89%	• 7%
65	k	190	96%	•••
66	1	200	92%	8%
67	m	197	93%	• 6%
68	n	105	31% 69%	
69	0	156	89%	• 9%
70	р	151	99%	
71	q	137	93%	7%
72	r	142	63% · 3	6%
73	S	143	92%	• 5%
74	t	136	88%	• 11%
75	u	146	99%	
76	V	144	99%	
77	W	121	81%	• 17%
78	x	87	100%	
79	у	130	98%	
80	Z	145	98%	

Continued from previous page...

2 Entry composition (i)

There are 85 unique types of molecules in this entry. The entry contains 202630 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called 40S ribosomal protein S24-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
1	0	134	Total 1073	C 676	N 208	O 189	0	0

• Molecule 2 is a protein called 40S ribosomal protein S25-A.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
2	1	70	Total 563	C 360	N 104	O 99	0	0

• Molecule 3 is a protein called 40S ribosomal protein S26.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	2	97	Total 769	C 475	N 160	O 129	${ m S}{ m 5}$	0	0

• Molecule 4 is a protein called 40S ribosomal protein S27-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	3	81	Total 610	C 382	N 110	0 113	${S \atop 5}$	0	0

• Molecule 5 is a protein called 40S ribosomal protein S28-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	4	63	Total 497	C 306	N 99	0 91	S 1	0	0

• Molecule 6 is a protein called HLJ1_G0030400.mRNA.1.CDS.1.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	5	40	Total	С	Ν	Ō	S	0	0
0	0	43	404	249	86	65	4	0	0

• Molecule 7 is a protein called 40S ribosomal protein S30-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace		
7	6	53	Total 427	C 269	N 88	O 69	S 1	0	0

• Molecule 8 is a protein called Guanine nucleotide-binding protein subunit beta-like protein.

Mol	Chain	Residues		Ate	AltConf	Trace			
8	7	318	Total 2436	C 1541	N 418	O 469	S 8	0	0

• Molecule 9 is a protein called Ubiquitin-40S ribosomal protein S31.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
9	8	36	Total 276	C 173	N 54	O 45	S 4	0	0

• Molecule 10 is a protein called 60S ribosomal protein L16-A.

Mol	Chain	Residues	Atoms					AltConf	Trace
10	А	197	Total 1555	C 1003	N 289	O 262	S 1	0	0

• Molecule 11 is a RNA chain called 25S ribosomal RNA.

Mol	Chain	Residues			Atoms			AltConf	Trace
11	AA	3197	Total 68429	C 30589	N 12334	O 22309	Р 3197	0	0

• Molecule 12 is a protein called Elongation factor 2.

Mol	Chain	Residues		Α	AltConf	Trace			
19	Ale	816	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
14	Ла	010	6368	4051	1088	1198	31	0	0

• Molecule 13 is a protein called 60S ribosomal protein L17-A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
13	В	154	Total 1222	C 761	N 237	O 224	0	0

• Molecule 14 is a RNA chain called 5S ribosomal RNA.

Mol	Chain	Residues		\mathbf{A}	toms			AltConf	Trace
14	BB	121	Total 2579	C 1152	N 461	O 845	Р 121	0	0

• Molecule 15 is a protein called 60S ribosomal protein L18-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	С	185	Total 1441	C 908	N 290	0 241	${S \over 2}$	0	0

• Molecule 16 is a RNA chain called 5.8S ribosomal RNA.

Mol	Chain	Residues		А	toms	Atoms						
16	CC	158	Total 3353	C 1500	N 586	O 1109	Р 158	0	0			

• Molecule 17 is a protein called 60S ribosomal protein L19-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
17	D	176	Total 1423	C 875	N 308	O 240	0	0

• Molecule 18 is a protein called 60S acidic ribosomal protein P0.

Mol	Chain	Residues		At	oms	AltConf	Trace		
18	DD	197	Total 1531	C 980	N 266	0 281	S 4	0	0

• Molecule 19 is a protein called 60S ribosomal protein L20-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	Е	172	Total 1445	C 930	N 267	0 244	$\frac{S}{4}$	0	0

• Molecule 20 is a protein called 60S ribosomal protein L2-A.

Mol	Chain	Residues		At		AltConf	Trace		
20	EE	252	Total 1914	C 1191	N 388	0 334	S 1	0	0

• Molecule 21 is a protein called 60S ribosomal protein L12-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
21	Ee	158	Total 1196	C 750	N 216	O 228	${ m S} { m 2}$	0	0

• Molecule 22 is a protein called 60S ribosomal protein L21-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	F	159	Total 1276	C 805	N 246	0 221	$\frac{S}{4}$	0	0

• Molecule 23 is a protein called 60S ribosomal protein L3.

Mol	Chain	Residues		Ate	AltConf	Trace			
23	\mathbf{FF}	386	Total 3075	C 1950	N 584	O 533	S 8	0	0

• Molecule 24 is a protein called 60S ribosomal protein L22-A.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
24	G	97	Total 770	C 499	N 126	0 145	0	0

• Molecule 25 is a protein called 60S ribosomal protein L4-A.

Mol	Chain	Residues		At	AltConf	Trace			
25	GG	361	Total 2748	C 1729	N 522	O 494	$\frac{S}{3}$	0	0

• Molecule 26 is a protein called 60S ribosomal protein L23-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
26	Н	129	Total 963	C 607	N 180	O 169	${ m S} 7$	0	0

• Molecule 27 is a protein called 60S ribosomal protein L5.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	HH	296	Total 2375	C 1501	N 414	0 458	${S \over 2}$	0	0

• Molecule 28 is a protein called 60S ribosomal protein L24-A.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
28	Ι	63	Total 521	C 336	N 102	O 82	S 1	0	0

• Molecule 29 is a protein called 60S ribosomal protein L6-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	II	155	Total 1230	C 795	N 221	0 213	S 1	0	0

• Molecule 30 is a protein called 60S ribosomal protein L25.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	J	120	Total 959	C 617	N 168	0 172	${ m S} { m 2}$	0	0

• Molecule 31 is a protein called 60S ribosomal protein L7-A.

Mol	Chain	Residues		At	AltConf	Trace			
31	JJ	222	Total 1784	C 1151	N 324	O 308	S 1	0	0

• Molecule 32 is a protein called 60S ribosomal protein L26-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
32	K	126	Total 993	C 625	N 192	O 176	0	0

• Molecule 33 is a protein called 60S ribosomal protein L8-A.

Mol	Chain	Residues		At	AltConf	Trace			
33	KK	233	Total 1804	C 1151	N 323	O 327	${ m S} { m 3}$	0	0

• Molecule 34 is a protein called 60S ribosomal protein L27-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
34	L	135	Total 1092	С 710	N 202	O 180	0	0

• Molecule 35 is a protein called RPL9A isoform 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	LL	191	Total 1518	C 963	N 274	O 277	$\frac{S}{4}$	0	0

• Molecule 36 is a protein called 60S ribosomal protein L28.

Mol	Chain	Residues		At	AltConf	Trace			
36	М	148	Total 1173	C 749	N 231	O 190	${ m S} { m 3}$	0	0

• Molecule 37 is a protein called 60S ribosomal protein L10.

Mol	Chain	Residues		Ate	AltConf	Trace			
37	MM	215	Total 1743	C 1102	N 331	O 303	${f S}{7}$	0	0

• Molecule 38 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
38	Ν	58	Total 462	C 289	N 100	O 73	0	0

• Molecule 39 is a protein called 60S ribosomal protein L11-A.

Mol	Chain	Residues		At	AltConf	Trace			
39	NN	169	Total 1353	C 847	N 253	0 249	S 4	0	0

• Molecule 40 is a protein called 60S ribosomal protein L30.

Mol	Chain	Residues		At	AltConf	Trace			
40	Ο	97	Total 742	C 479	N 124	0 138	S 1	0	0

• Molecule 41 is a protein called 60S ribosomal protein L13-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
41	00	193	Total 1543	C 962	N 315	O 266	0	0

• Molecule 42 is a protein called 60S ribosomal protein L31-A.

Mol	Chain	Residues		At	AltConf	Trace			
42	Р	109	Total 883	$\begin{array}{c} \mathrm{C} \\ 559 \end{array}$	N 167	0 156	S 1	0	0

• Molecule 43 is a protein called 60S ribosomal protein L14-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
43	PP	136	Total 1053	C 675	N 199	0 177	${S \over 2}$	0	0

• Molecule 44 is a protein called 60S ribosomal protein L32.

Mol	Chain	Residues		At	oms	AltConf	Trace		
44	Q	127	Total 1020	С 647	N 205	0 167	S 1	0	0

• Molecule 45 is a protein called 60S ribosomal protein L15-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
45	QQ	203	Total 1720	C 1077	N 361	0 281	S 1	0	0

• Molecule 46 is a protein called 60S ribosomal protein L33-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
46	R	106	Total 850	C 540	N 165	0 144	S 1	0	0

• Molecule 47 is a protein called 60S ribosomal protein L34-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
47	S	109	Total 861	C 533	N 175	0 149	$\frac{S}{4}$	0	0

• Molecule 48 is a protein called 60S ribosomal protein L35-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
48	Т	119	Total 969	C 615	N 186	0 167	S 1	0	0

• Molecule 49 is a protein called 60S ribosomal protein L36-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
49	U	99	Total 771	C 481	N 156	0 132	${ m S} { m 2}$	0	0

• Molecule 50 is a protein called 60S ribosomal protein L37-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
50	V	84	Total 665	C 405	N 145	0 110	${f S}{5}$	0	0

• Molecule 51 is a protein called 60S ribosomal protein L38.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
51	W	77	Total 612	C 391	N 115	O 106	0	0

• Molecule 52 is a protein called 60S ribosomal protein L39.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
52	v	50	Total	С	Ν	Ο	S	0	0
52	Λ	50	436	272	97	65	2	0	0

• Molecule 53 is a protein called Ubiquitin-60S ribosomal protein L40.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
53	Y	52	Total 417	C 259	N 86	O 67	${ m S}{ m 5}$	0	0

• Molecule 54 is a protein called 60S ribosomal protein L41.

Mol	Chain	Residues		Ato	\mathbf{ms}		AltConf	Trace	
54	Ζ	25	Total 233	C 142	N 63	O 27	S 1	0	0

• Molecule 55 is a protein called 60S ribosomal protein L42-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
55	a	102	Total 819	C 514	N 166	0 134	${S \atop 5}$	0	0

• Molecule 56 is a protein called 60S ribosomal protein L43-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
56	b	91	Total 694	C 429	N 138	0 121	S 6	0	0

• Molecule 57 is a RNA chain called 18S ribosomal RNA.

Mol	Chain	Residues		I	Atoms			AltConf	Trace
57	С	1608	Total 34321	C 15360	N 6093	O 11260	Р 1608	0	0

• Molecule 58 is a protein called 40S ribosomal protein S0-A.

Mol	Chain	Residues		Ate	AltConf	Trace			
58	d	206	Total 1583	C 1017	N 281	O 283	${ m S} { m 2}$	0	0

• Molecule 59 is a protein called 40S ribosomal protein S1-A.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
59	е	212	Total 1689	C 1073	N 303	O 309	$\frac{S}{4}$	0	0

• Molecule 60 is a protein called 40S ribosomal protein S2.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
60	f	217	Total 1635	C 1047	N 289	0 297	$\frac{S}{2}$	0	0

• Molecule 61 is a protein called RPS3 isoform 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
61	g	183	Total 1412	C 893	N 260	O 253	S 6	0	0

• Molecule 62 is a protein called 40S ribosomal protein S4-A.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
62	h	258	Total 2056	C 1308	N 387	O 358	$\frac{S}{3}$	0	0

• Molecule 63 is a protein called 40S ribosomal protein S5.

Mol	Chain	Residues		At	oms			AltConf	Trace
63	i	199	Total 1572	C 987	N 290	O 292	${ m S} { m 3}$	0	0

• Molecule 64 is a protein called 40S ribosomal protein S6-A.

Mol	Chain	Residues		At	AltConf	Trace			
64	j	219	Total 1766	C 1108	N 341	0 314	${ m S} { m 3}$	0	0

• Molecule 65 is a protein called 40S ribosomal protein S7-A.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
65	k	184	Total 1481	C 951	N 265	O 265	0	0

• Molecule 66 is a protein called 40S ribosomal protein S8-B.

Mol	Chain	Residues		At	oms			AltConf	Trace
66	1	184	Total 1457	C 906	N 291	O 258	S 2	0	0

• Molecule 67 is a protein called 40S ribosomal protein S9-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
67	m	185	Total 1494	C 943	N 289	O 261	S 1	0	0

• Molecule 68 is a protein called 40S ribosomal protein S10-A.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
68	n	33	Total 300	C 199	N 46	O 55	0	0

• Molecule 69 is a protein called 40S ribosomal protein S11-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
69	О	142	Total 1146	C 735	N 217	0 191	${ m S} { m 3}$	0	0

• Molecule 70 is a protein called 40S ribosomal protein S13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
70	р	150	Total 1192	C 759	N 224	O 207	${ m S}$ 2	0	0

• Molecule 71 is a protein called 40S ribosomal protein S14-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
71	q	127	Total 891	C 545	N 182	0 163	S 1	0	0

• Molecule 72 is a protein called 40S ribosomal protein S15.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
72	r	91	Total 732	C 469	N 138	O 120	${ m S}{ m 5}$	0	0

• Molecule 73 is a protein called 40S ribosomal protein S16-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
73	s	136	Total	С	Ν	0	0	0
	2	100	1069	686	195	188		0

• Molecule 74 is a protein called 40S ribosomal protein S17-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
74	t	121	Total 961	C 599	N 182	0 178	$\frac{S}{2}$	0	0

• Molecule 75 is a protein called 40S ribosomal protein S18-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
75	u	145	Total 1192	С 743	N 237	O 210	${ m S} { m 2}$	0	0

• Molecule 76 is a protein called 40S ribosomal protein S19-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
76	V	143	Total 1112	C 694	N 208	O 208	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 77 is a protein called 40S ribosomal protein S20.

Mol	Chain	Residues		At	oms	AltConf	Trace		
77	W	100	Total 800	C 509	N 144	O 146	S 1	0	0

• Molecule 78 is a protein called 40S ribosomal protein S21-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
78	x	87	Total 684	C 420	N 125	0 137	${S \over 2}$	0	0

• Molecule 79 is a protein called 40S ribosomal protein S22-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
79	У	129	Total 1021	C 650	N 188	0 180	${ m S} { m 3}$	0	0

• Molecule 80 is a protein called 40S ribosomal protein S23-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
80	Z	144	Total 1121	C 708	N 220	0 191	${ m S} { m 2}$	0	0

• Molecule 81 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
81	2	1	Total Zn 1 1	0
81	5	1	Total Zn 1 1	0
81	8	1	Total Zn 1 1	0
81	S	1	Total Zn 1 1	0
81	V	1	Total Zn 1 1	0
81	Y	1	Total Zn 1 1	0
81	a	1	Total Zn 1 1	0
81	b	1	Total Zn 1 1	0

• Molecule 82 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
82	АА	119	Total Mg 119 119	0
82	Aa	1	Total Mg 1 1	0
82	BB	3	Total Mg 3 3	0
82	CC	3	Total Mg 3 3	0
82	Н	1	Total Mg 1 1	0
82	JJ	1	Total Mg 1 1	0
82	с	25	TotalMg2525	0

• Molecule 83 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	AltConf
83	АА	9	Total K 9 9	0
83	EE	1	Total K 1 1	0

• Molecule 84 is GUANOSINE-5'-TRIPHOSPHATE (three-letter code: GTP) (formula: $C_{10}H_{16}N_5O_{14}P_3$).

Mol	Chain	Residues		Atoms								
81	1.0	1	Total	С	Ν	Ο	Р	0				
04	Aa	1	32	10	5	14	3	0				

• Molecule 85 is water.

Mol	Chain	Residues	Atoms	AltConf
85	AA	71	Total O 71 71	0
85	В	1	Total O 1 1	0
85	CC	8	Total O 8 8	0
85	F	1	Total O 1 1	0
85	JJ	1	Total O 1 1	0
85	R	1	Total O 1 1	0
85	V	1	Total O 1 1	0
85	с	18	Total O 18 18	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 40S ribosomal protein S24-A

Chain 0: 99%	
MET S 2 M112 D 135 D 135	
• Molecule 2: 40S ribosomal protein S25-A	
Chain 1: 64% .	35%
MET MET PRO PRO CIN CIN CIN CIN CIN CIN CIN CIN CIN CIN	
• Molecule 3: 40S ribosomal protein S26	
Chain 2: 82%	18%
MET P30 ARG ARG ARG ARG ARG ARG ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	
• Molecule 4: 40S ribosomal protein S27-A	
Chain 3: 99%	
MET V2 K82	
• Molecule 5: 40S ribosomal protein S28-A	
Chain 4: 93%	• 6%
MET ASSP ASSP I T R R R R R R R R	
• Molecule 6: HLJ1_G0030400.mRNA.1.CDS.1	
Chain 5: 86%	• 12%

• Molecule 7: 40S ribosomal protein S30-A

A U	n n	0	G A	סט	G494		0503 C503		A519 11520	A521		A533 A533	U534		C543	G552		0000 A557	U558	A559	A589		ZACA	G597	U601	A602	A603 G604		A607	4611	7190	A619	U620 A621		C636	C638		A645	A649	C650
C655	A660 G661	U662	C667	4677	G678	11201	Teon	A690	A691	A705	0 1211	AT / D	G737		<u>6/90</u>	C758	N 76 1	TOIN	U766	U767	A780	G781	A784	G785	A / 86	0620	6299		G805 A806	A807	A816	A817	6826		A830	G835		C849	G857	C861
<mark>6867</mark>	U874	G875	Að/ þ	0879 נגפוו		C890	A896	U897	0898	6907	G908	G910		A914	G916	A917		U922	C923	6924 A975	A926		G938 C938	1939	U943	C944	G953		C959 U960	C961	ABOZ	G974	(197.8	0979	A980	TOCO	G984	0988		CI000
A1006	G1013 U1014	U1015	C1015	G1018	A1025	A1026	A1 02 / U1 02 8		U1033 111034	G1035	A1036	C1038	-	C1045	A1046 A1047		A1064	G1072			U1081		1987	U1096	61097 A1098		A1103	U1111	G1117		G1131 C1132	A1133	G1 140		A1143	C1155		A1159	C1176	G1177 G1178
A1179 A1180	U1181 A1182		A1190 U1191	C1192 41193		C1196	<mark>C1201</mark>		U1208 G1209		A1221	7775	<mark>U1235</mark>	G1236	<u>6123/</u>	A1240	220	A1245	G1246	111053		<mark>U1258</mark>	A1259 A1260		A1263 G1264	U1265	C1272		C1283	A1286	A126/	A1294	A1302		G1307		<mark>U1325</mark>	C1328	U1329	A1330 U1331
1332	1345	1348 1248	1049	1352	1355	1356	1 30 /	1363	1366	1367	00	1300	1 <mark>392</mark>	1 200	1399		1408	1417	1418	1405		1434	1435 1436	:1437	1443		1446	1449	1450	1455	1469		1483 1484		1487	1495	1496	1508	1509	1510
514 A	523 524	525 U	527 627	528 A	539 A		5	556 A	557 558	559 G	560	562	563	000	000 000 000	570	571 G	573 G	574 A	575 11	578	579 G	581 U	0 582 0	0 0	587	888 589	A	2 <u>9</u> 3	305 U	521 C		529 G	531	g 31	538 U		542 543 C	544 A	545 546
G1		G 11		G11	A1	-	و ړ	C1		A1	GI		CI			010	A1	G11	CI	A 10	CI	C1		CI	AI	1 A1			A1	L A10	5 A1(2 U10	C10				A10 A10	CIC	010 010
A1647	C1657	A1683	U1688			U1724	A1741		A1750 G1751		C1756	C1759		C1762	U1/63	U1765	G1766	U1768	G1769	C1779		C1788	A1797		20815	A1814	U1815 A1816	G1817	U1820	U1821	A1835		A1842	G1848	C1845	100TH	C1854	C1866		61878 A1879
U1880	U1888	A1893	C1904	G1905 C1906		U1912	G1935		C1943	G1948		50619	5	n ,	4 U	n	ი ა	⊈ IJ	IJ	5 5	00	n	⊃ ٿ	5	⊃ U	A	9 V	U	5 0	Ā	5 U	5	• •	o o	51	o U	с ;		5;	- U
G A	υÞ		ם ט	טכ		D	5 5	Ċ	5 5	n	n	50	n	0 :	- U	C D	n	4 U	U	0 5	5 0	A	פט	A	a c	n	ర ల	0.0	D U	0	ם ט	n	0 0	n	υ =	A	. შ	C A	50	90
C C	D U	5	ο¥	5 5	, D	0 =	5 U	U	סט	ņ	A C	۵ ۹	U	00	םפ	Ū	ۍ ر	0 D	n	5 5	o D	Ā	ש כ	A ::	n D	A	A2093	C2101	U2102	G2111	02112 A2113	C2114	G2122		A2131	20120	U2137	A2142	1.000	G2155
A2158	G2165 A2166	A2167	A2168 G2169	U2170 C2171		U2176	A2188		G2194	U2205	G2206	A2201 A2208	U2209	G2210	A2213		A2220	A2233	A2224	U2225	A2244		67776	A2256	U2258/ U2258	-	A2262	C2265	62272	G2273	A2280	A2281	U2282	U2286	C2287	00775	U2297	U2298	G2307	C2308 A2309
A2313	U2314 G2315		A2320	U2336 C2337	000	U2347	<mark>G2355</mark>		A2363	A2373	C2374	6729	C2383		02388	G2393	2000 V	1 607 H	A2402	G2403 A2404	1017U	U2411	U2417	G2418	A2419 C2420	U2421	U2434	G2435	G2440	-	A 244 / G 2448		U2453 G2454		A2458	N2460	A2461	A2462 G2463	U2464	G2465 G2466
G2467 A2468	G2469 C2470	U2471	02472 C2473	G2474 C2475	C2476	G2477 C2477	C2479 C2479	A2480	G2481	A2486	U2487	A 24 88 C 24 89	C2490	A2491	02492 U2493	A2494	C2495	02430	U2 <mark>4</mark> 99	A2500 117501	A2502	G2503	A2511		U2514 A2515		G2522 A2523	A2524	G2525 C2526		AZ0Z9	U2532	C2539	A2540	U2541 117543	77070	A2547	C2548 G2549		C2552 U2553
A2554 G2555	C2560	A2561	A2569	U2570 112571	C2572	G2573	G2585	G2586	U2587	A2593	C2594	G2602		G2606	10020	G2 <mark>614</mark>	7 12001	0201/ G2618	G2619	110634	H 0070	A2640	G2648		0.2002	A2656	A2657	G2672	A2673 A2674		426778	A2679	A2680 U2681		A2689	42030 A2691		A2696	A2704	C2711

UZ714 UZ714 UZ714 UZ729 UZ729 CZ737 AZ747 AZ755 AZ755 AZ755 AZ755 AZ755 AZ755 CZ777 A2805 C2775 A2805 C2775 A2805 C2795 C2775 A2805 C2795 C2775 C2795 C2795 C2795 C2775 C2775 C2775 C2775 C2795 C28555 C2855 C2855 C2855 C2855 C28555 C2855 C2855 C2855 C2855 C285
C2867 42875 42875 42875 42875 42875 22894 42918 42921 12921 42945 4295 429
G3059 G3059 G3059 G3059 G3059 G3074 G3059 G3059 G3059 G3059 G3059 G3059 G3059 G3101 G3104 U3104 U31104 U3115 U3151 U3151 U3151 U3151 U3151 U3155 U3156 U3157 U3157<
(32.05 (32.05 (32.05 (32.15 (32.15 (32.18 (32.18 (32.18 (32.245 (32.245 (32.245 (32.245 (32.245 (32.245 (32.245 (32.245 (32.245 (32.245 (32.245 (32.265 (32.245 (32.245 (32.265 (32.245 (32.265 (32.245 (32.265 (32.245 (32.265 (32.245)(32.24
U 133555 133555 133555 133555 133555 133555 133555 133555 1335555 133555 133555 1335555 1335555 1335555 1335555 13355555 13355555555
• Molecule 12: Elongation factor 2
Chain Aa: 96% ·
M1 ILE ALA ALA ALA ALA ALA ALA ALA ALA ALA A
• Molecule 13: 60S ribosomal protein L17-A
Chain B: 83% · 16%
MET A2 R23 R23 R23 R23 R23 R23 R23 R23 R23 R2
• Molecule 14: 5S ribosomal RNA
Chain BB: 83% 17%
G1 G1 A11 A11 A12 C29 C29 C47 C29 C47 C47 C47 C47 C47 C47 C47 C47 C59 C74 C75 C75 C75 C77 C77 C77 C77 C79 C77 C77 C77 C79 C77 C79 C77 C79 C79 C79 C79 C79 C79 C79 C79 C79 C79 C79 C79 C79 C79 C79 C79 C79 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C77 C7
• Molecule 15: 60S ribosomal protein L18-A
Chain C: 99%
• Molecule 16: 5.8S ribosomal RNA
Chain CC: 82% 18%

A1 123 123 123 123 123 123 133 133 133 13	A59 459 653 653 653 653 653 653 886 886 886 886 886 886 886 886 886 88	U113 1125 1126 1128 1138 1158
• Molecule 17: 60	S ribosomal protein L19-A	
Chain D:	93%	• 7%
MET A2 A2 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1 A1	LLEU LLYS ASP ALA	
• Molecule 18: 60	S acidic ribosomal protein P0	
Chain DD:	63%	37%
MET GLY GLY I 14 I 14 I 16 I 16 I 16 I 16 I 16 I 16 I 16 I 16	CLU VAL VAL PHES PHES VAL VAL ALA SER SER SER SER SER SER SER CLEU ALA ALA ALA ALA SER SER SER SER THR THR THR THR PRO PRO PRO PRO PRO PHES PHES PHES PHES PHES PHES PHES PHES	SER VAL GLY THR THR LEU TILE ASN TYR ASN LEU LEU VAL ALA ALA ALA ALA ALA SER SER
TYR HIS TYR PRO GLU GLU GLU ASP ASP ASP ASP ARG	GLU PRO GLU GLYS TYS GLY GLY ALA ALA ALA ALA ALA ALA ALA ALA ALA A	ALA ALA ALA GLU GLU GLU GLU GLU CLU CLV CLY CLY CLY CLY ASP CLY CLV ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP
• Molecule 19: 60	S ribosomal protein L20-A	
Chain E:	100%	
There are no outli	ier residues recorded for this chain.	
• Molecule 20: 60	S ribosomal protein L2-A	
Chain EE:	99%	
MET G2 Q253 ASP ASP		
• Molecule 21: 60	S ribosomal protein L12-A	
Chain Ee:	96%	·
MET PRO LYS LYS ASP PRO N8 N165		
• Molecule 22: 60	S ribosomal protein L21-A	
Chain F:	99%	
MET G2 R83 I160		
• Molecule 23: 60	S ribosomal protein L3	
Chain FF:	99%	

MET S2	T104	L387
-----------	------	------

• Molecule 24: 60S ribosomal protein L22-A

Chain G:	80%	20%
MET ALA ALA ALA ALA ASO ASO ALA CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	THR GLU GLU ASP GLU GLU GLU GLU GLU GLU	
• Molecule 25: 60S rit	posomal protein L4-A	
Chain GG:	99%	
MET S2 R3 R43 R138 D362		
• Molecule 26: 60S rib	posomal protein L23-A	
Chain H:	94%	6%
MET SER GLY ASN ALA ALA GLY CLY V137		
• Molecule 27: 60S rit	posomal protein L5	
Chain HH:	100%	
MET A2 Q297		
• Molecule 28: 60S rit	posomal protein L24-A	
Chain I: 40)% · 5	9%
M1 R47 163 163 163 CHR CHR CHR CHR CHR CHR CHR CHR CHR CHR	THR VAL VAL VAL ALA ALA PRO PRO PRO PRO PRO CLN THR CLU THR CLU THR ARG CLU ARG ARG CLU VI THR PRO CLU VI THR PRO CLU VI VI VAL VAL VAL VAL VAL VAL VAL VAL VAL VAL	GLU VAL VAL LYS ARG ARG ASN ASN ASN CLU CVS LYS CLVS CLVS CLVS CLVS CLVS AAA ASN ASA ASN AAA ASN AAA ASN AAA ASN ASN
GLU LYS ALA ALA ALA ARG LYS GLU CYS SER ALA ALA ALA CLY SER CLN GLY GLN GLN	SER PHE PHE PHE PHE PHE CLN CLN ALA ALA ALA ALA ALA ALA ALA ALA ALA A	
• Molecule 29: 60S rit	posomal protein L6-A	
Chain II:	88%	12%
MET 22 22 24 24 24 24 24 24 24 24 24 24 24	PHE PHE GLU GLU GLN ASN LIY FI76	
• Molecule 30: 60S rit	posomal protein L25	

Chain J:	84%	• 15%
MET ALA PRO SER ALA LYS LYS ALA ALA ALA ALA	LYS VAL VAL LYS GLY CLYS GLY LYS LYS LYS LYS LYS LYS LYS LYS LYS L	
• Molecule 31:	60S ribosomal protein L7-A	
Chain JJ:	90%	• 9%
MET ALA ALA ALA GLU CYS CLU FRO FRO CLU SER	GEN LEEU LYS SER LYS ALA GLN GLN GLN GLN GLN GLN GLN GLN GLN GLN	
• Molecule 32:	60S ribosomal protein L26-A	
Chain K:	98%	
MET A2 K3 E127		
• Molecule 33:	60S ribosomal protein L8-A	
Chain KK:	91%	9%
MET ALA PRO CLYS LYS LYS VAL ALA PRO PRO	CLY CLY ALA SER THR ASN ASR ASN AS6 A256	
• Molecule 34:	60S ribosomal protein L27-A	
Chain L:	99%	
MET A2 E102 F136		
• Molecule 35:	RPL9A isoform 1	
Chain LL:	100%	
There are no ou	utlier residues recorded for this chain.	
• Molecule 36:	60S ribosomal protein L28	
Chain M:	99%	
MET P2 A149		
• Molecule 37:	60S ribosomal protein L10	
Chain MM:	97%	

MET A2 4211 PHE ALA ALA ALA ALA
• Molecule 38: 60S ribosomal protein L29
Chain N: 98% ·
MET A2 K59
• Molecule 39: 60S ribosomal protein L11-A
Chain NN: 97%
MET LALA ALA K174
• Molecule 40: 60S ribosomal protein L30
Chain O: 92% 8%
MET ALA SER SER GLU SCU A105
• Molecule 41: 60S ribosomal protein L13-A
Chain OO: 96%
MET K45 V63 E194 GLU LLYS LLYS LLYS
• Molecule 42: 60S ribosomal protein L31-A
Chain P: 96% · ·
MET ALA ALA K18 D112 ALA
• Molecule 43: 60S ribosomal protein L14-A
Chain PP: 99%
MET 13 13 A138
• Molecule 44: 60S ribosomal protein L32
Chain Q: 97% ···

MET A2	K61	L128	GLU ALA
-----------	-----	------	------------

• Molecule 45: 60S ribosomal protein L15-A

Chain QQ: 100% MET • Molecule 46: 60S ribosomal protein L33-A Chain R: 99% MET <mark>A</mark>2 • Molecule 47: 60S ribosomal protein L34-A Chain S: 90% 10% ALA ALA LYS LYS LYS SER GLU CYS LYS LYS LYS LYS LYS MET • Molecule 48: 60S ribosomal protein L35-A Chain T: ... 98% MET • Molecule 49: 60S ribosomal protein L36-A Chain U: 99% MET TO • Molecule 50: 60S ribosomal protein L37-A Chain V: 92% •• 5% ALA SER ALA • Molecule 51: 60S ribosomal protein L38 Chain W: 99%

98%

•

	_
MET A2	L78

• Molecule 52: 60S ribosomal protein L39

Chain X:

• Molecule 53: Ubiquitin-60S ribosomal protein L40

Chain Y:	38%	•	59%	
MET GLN TLE PHE VAL LYS THR LEU CLY	THR THR THE THE LEU GLU GLU SER SER ASP THR THR THR	ASP ASN VAL LYS SER LYS SER CLY GLN GLV GLV GLV TLE	PRO ASP GLN GLN GLN ILE ILE PHE ALA GLY	LYS GLN LEU GLV GLY ASP CLY CLU CLU SER ASP ASN
ILE GLU CYS GLU SER THR THR LEU LEU VAL	ARG LEU ARG GLY GLY GLY F104 P105 R106 R106 R128			
• Molecule 54:	60S ribosomal p	rotein L41		
Chain Z:		100%		
There are no ou	utlier residues re	corded for this cha	in.	
• Molecule 55:	60S ribosomal p	rotein L42-A		
Chain a:		95%		
MET V2 K71 A103 LEU GLN PHE				
• Molecule 56:	60S ribosomal p	rotein L43-A		
Chain b:		98%		••
MET A2 R24 A92				
• Molecule 57:	18S ribosomal R	RNA		
Chain c:	61%		26%	• 11%
U1 A2 43 C4 A26 A26 A28 A28 A28 A28 A28 A28 A28 A28 A28 A28	642 043 044 045 046 047 047 045 050 063 063	A67 A68 A68 A68 A72 U U V A78 A78 A78 A78 A78 A78 A78 A78 A78 A78	681 082 083 094 094 111 0111	0,114 0,115 0,115 0,127 0,127 0,131 0,0 0,136 0,136 0,136 0,136
A140 U146 U152 0153 0154 0154 0166 C166	0167 0168 0168 0170 0178 0178 0184 0185 0186 0186 0384 0185 0384 0385 0384 0385 0386 0386 0386 0386 0386 0386 0386 0386	0 7 7 7 8 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8	U212 A213 G214 A215 A A A A A A A A	< < > > > < < > > > > > > > > > > > > >

5 5	C A	ъc	þ	U 11242		G246	N248 U248	U249	A253	A254	U255 A266	A250 A257	C258	U259	U260 11261	U262		A265	A266 11267		U272	77 CII	U278	G279	U280	U283	G284	6285 C286	G287	A299		U302	U313	C314	A315	A316	U320	C321	6322	A333	1000	<u>6337</u>
A359 A360	C361	G373	A378	4400	A401	C402	6403 6404		C414	A417		A420	G423	C424	A425 G476	C427	A428		6434 C435	A436		U439	C444		C448	U454	C455	4460		A468	A475	U476	A477 A478	C479	G480	A481	C484	A485	9 8	, 5	с t	ວບ
A U	D U	5 5	5 13	рU	n D	0502	u504	A505		U508	T T U	TTOP	G514	A515	4518	C519	A520		0524 4525	A526	A527	AF 38	G539	G540	A541	ZEON	A545	G551		A555 A556	G557	U558	2000	<mark>G562</mark>	U563	G564 C565	C566	A567	(1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	C572	VE 11	U578
A579	U582	A594	U611	11617	U618	A619	A020	A623	6624	U639	C 7 4 2	G6443 C644	C645		G648 11649	U650	G651	ۍ ن	00	0 13	ß	Þ	0 0	IJ	A 11	o n	n	0 11	n	0 0	n	5	0 A	U	n	5 5	Ä	n) II	, D	C683	C686
G687 G688	6890 6690	C691	7000	0695 C696	D D	n H	5 U	n		U D	n •	A	: 0	ט ;	D 11	o 13	А	5;	ם נו	00	U	D	0	IJ	ლ დ	20	U	0 11	5	9 0	5	Å	₹ U	U	A	9 0	Ä	U	U/42 11743	U7 44	U745	A753
A760	G763	U764 C765	0166 U766	<u>677</u> 6		G778	A780	U781	0782 G783	C784	002.4	A / 09	A793	U794	0795 4796		A803	A804	0805 4806		A809	G810 A811	A812	U813	A814	G819	<u>U820</u>	U821 11822	IJ	11	n	0:	D A	U	n	0 0	0 10	n	ے ت	, ლ	D #	οD
c C	A D	ۍ ۲	d D	C ARFO	U851	C852	U854	A855	AS56	A859	U860	1980 A862	A863	02000	08/3	G895	<mark>0896</mark>	C897	A898	A906		G913 C914	A915	U916	U917	A919		A933 C934	U935	11945		A951	0960	U961	0962	A 966		A970	A974		6987	A988
A992	0660	1999	A1001	G1002 41003	U1004	4 0 0 0	A1020 A1027	C1028	U1031		A1039	G1040 G1041	G1042	A1043	111049		U1052	G1053	111059	U1060	A1061	A1062		C1070	U1071	21010	A1076	41081	C1082	G1083	A1092	A1093	U1097	U1098	U1099	G1100	G1111	G1112		G1126		All38
146	150	.157 158		.162 163	164	167	101	171	174	175	.176	182 182	183	184	.185 186	187		N1191	192	194	.195	196	199	200	201	203	204	206	207	212	213	214	217	218		221	223	224	225	227	228	230
37 37	80 80	41 A1	4 <u>3</u>	44 C1	46 G1	47 46	40 49	50 A1	61 52 C1		56 G1	o/ 58	59 A1	60 A1	61 U1	69 01	20	71 BE	74 CI	75 A1	76 C1	A1	5	84 G1	85 G1	97 A1	A1		07 C1	14 G1	15 G1	16 UJ	21 A1	5	24	25 A1	35 A1	36 A1	37 28 A1	39 A1	40 61	41 41
G12	A12	G12	G12	A12	C12	012	012	U12	012 C12		A12		U12	U12	G12	U12	G12	G12	C12	A12	U12	C1N	7TM	C12	U12	G12		013	U13	113 1113	U13	G13	A13		G13	A13	U13	A13	C13 C13	C13	U13	CTH
A1345 A1346	01347	U1350	G1352	01353 01354	C1355	U1356	G1358	100 111	01361 01362	U1363	G1364	CO2 10	G1368	U1369	01370	01372	C1373	C1374	A1375 C1376	01377	U1378	C1379		A1388	C1389		U1397	01398	G1402	G1405		G1408	61409 A1410	A1411	G1412	01413 01414	01415		A1421 A1422		A1425	C1420 A1427
G1428	01432 G1433	A1/36	OCETY	C1439 C1440	C1441	A 1 0 0 0	61445 G1445	A1446	C1 44 /	G1453	C1 AE 7	G1458 G1458	C1459		C1463 C1464	C1465	G1466	C1467	01468	G1474		G1477 C1778	A1479	G1480	C1481	A1483		G1488 111489	C1490	01491 41492		C1495	01497 01497	-	C1500	C1501	A1505	G1506	61507	G1513	U1514	A1515 A1516
U1517 C1518	A1524	A1525	C1527	61531	U1532	C1533	U1535	G1536	C153/	G1540	G1541	77010	G1546	A1547	G1548	A1556	U1557	U1558	A1559 111560	U1561		U1564	U1566	U1567	C1568	A1570	C1571	G1572 A1573	G1574	G1575	A1583		A1592	A1593	G1594	01595 C1596		A1600	G1601 C1602	U1603	U1604	61606 C1606
G1607 U1608	01609 G1610	A1611	A1614	C1615 C1616	U1617	C1618		A1631	C1632 A1633	C1634	A1635	G1642		A1651	111 65.7	G1658		A1678	G1679 C1680	A1681	U1682	C1683	G1685	C1686	U1687	A	5	۲ ع	Ā	A G	5	5 0	5 05	C	A	G	n	0	υ ₹	n	с :	л U
A G	A1714 G1715	C1716 C1717		A1730	A1756	G1757	G1760	U1761	A1/62	A1766	092111	01/08		N1773	C1780	A1781	A1782		61792 61793	A1794	U1795	C1796	U1798	U1799	A																	

• Molecule 58: 40S ribosomal protein S0-A

Chain d:	82%	18%
MET 82 82 8207 810 810 910 910 910 910 910 910	ALA ALA ALA ALA ALA ALA ALA ALA ALA ALA	
• Molecule 59:	40S ribosomal protein S1-A	
Chain e:	82% .	17%
MET ALA VAL GLY LYS ASN LYS ARG LEU SER SER LYS	CLY CLYS CLY CLYS CLY CLYS CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	ИАЦ
• Molecule 60:	40S ribosomal protein S2	
Chain f:	85%	15%
MET SER ALA ALA CLU GLU GLN GLN CLN CLN CLN ARG	CLY CLY PHE CLY CLY CLY CLY ARG ARG ARG ARG CLU ARG CLU CLU CLU CLU CLY CCU CLU CLU CLU CLU CLU CLU CLU CLU CRA CLU CRA CLU CRA CLU CRA CLU CRA CRA CLY CRA CRA CLY ARG CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	
• Molecule 61:	RPS3 isoform 1	
Chain g:	75% · 24	%
MET VAL ALA LEU LEU TLE K7 K8 K8 E38 VAL	ARG VAL THR THR THR THR THR THR CLU VAL TILE TRB TRB TRB TRB TRB TRB TRB TRB TRB TRB	LEU PRO SER VAL LYS ASP ASP PRO PRO ALA
GLU GLU GLU GLU ALA GLN ALA GLU PRO VAL	YTY	
• Molecule 62:	40S ribosomal protein S4-A	
Chain h:	98%	
MET A2 A108 L164 Q259 GLY LEU		
• Molecule 63:	40S ribosomal protein S5	
Chain i:	88%	12%
MET SER ASP GLU GLU PRO PLA CLU VAL VAL CLU GLN	ASP PHE VAL VAL VAL VAL VAL CIU GUV GUV GUY GUY GUY ARG ARG ARG ARG ARG	
• Molecule 64:	40S ribosomal protein S6-A	
Chain j:	89%	• 7%
M1 N4 R23 R23 R31 L68 R31 R98	K164 K164 K1214 K214 K214 K214 K214 K128 A124 A124 A124 A124 A124 A124 A124 A124	

• Molecule $65:40$	S ribosomal protein S7-A	
Chain k:	96%	•••
MET SER SER PALA P4 C C C S187 C S187 C C C U U S C S187 C S187 C C LU		
• Molecule 66: 40	S ribosomal protein S8-B	
Chain l:	92%	8%
MET 62 11 12 12 12 12 12 12 12 12 12 12 12 11 11	VAL LYS SER ASN ASN K200	
• Molecule 67: 40	S ribosomal protein S9-A	
Chain m:	93%	• 6%
MET P2 K138 ALA ALA ALA ALA ALA ALA ALA ALA ALA CUU CUU	ALA GLU GLU	
• Molecule 68: 40	S ribosomal protein S10-A	
Chain n:	31% 69%	
MET LEU PRO PRO CLVS CLVS GLV VAL VAL VAL	VAL VAL LYS LYS LYS ASP ASP ASP ASP ASP ASP CLV CLV CLV CLV CLV CLV CLV CLV CLV CLV	VAL TYR LEU ARG GLU ARG GLU ASN LEU ASN LEU PRO GLU HIS TLE
PRO GLY THR TYR TYR GLU GLU ARG CLU PRO PRO CLU	PRIO ALIA ARG TYPR	
• Molecule 69: 40	S ribosomal protein S11-A	
Chain o:	89%	• 9%
MET SER BA N37 N37 ALA ALA ALA CLY	LYS ASN LYS CLYS ALA ALA LYS PHE PHE	
• Molecule 70: 40	S ribosomal protein S13	
Chain p:	99%	·
MET G2 M151		
• Molecule 71: 40	S ribosomal protein S14-A	
Chain q:	93%	7%

MET SER ASN VAL VAL CLN GLN ASP ASN ASN S11 L137

 \bullet Molecule 72: 40S ribosomal protein S15

Chain r:	63% ·	36%
MET SER GLN ALA VAL ASN	LYS LYS LYS LYS LYS LYS LYS LYS HIS LEU LEU LEU LEU LEU LEU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	PICY PICY MS7 CLY MS7 CLY CLY ALA ALA ALA ALA ALA ALA ALA CLY THR THR THR THR THR THR THR THR THR THR
LYS		
• Molecu	lle 73: 40S ribosomal protein S16-A	
Chain s:	92%	• 5%
MET SER ALA VAL PRO SER	K26 E40 R114 R114 A142 A16	
• Molecu	le 74: 40S ribosomal protein S17-A	
Chain t:	88%	• 11%
MET G2 K59 I122	VAL SER ALA GLN GLN ARG ARG LYR ARG LYR VAL	
• Molecu	le 75: 40S ribosomal protein S18-A	
Chain u:	99%	
MET S2 R41 A146		
• Molecu	lle 76: 40S ribosomal protein S19-A	
Chain v:	99%	·
MET P2 E144		
• Molecu	le 77: 40S ribosomal protein S20	
Chain w:	81%	• 17%
MET SER ASP PHE GLN LYS	UAL VAL GLU GLU GLN GLN GLN GLN GLN GLN GLN GLN GLN GLN	

 \bullet Molecule 78: 40S ribosomal protein S21-A

100%

•••

Chain x:

There are no outlier residues recorded for this chain.

• Molecule 79: 40S ribosomal protein S22-A

Chain y: 98%

MET T2 R3 Y130

• Molecule 80: 40S ribosomal protein S23-A

Chain z: 98% ...

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	38558	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	40	Depositor
Minimum defocus (nm)	400	Depositor
Maximum defocus (nm)	1000	Depositor
Magnification	165000	Depositor
Image detector	FEI FALCON IV (4k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: OMG, A2M, ZN, 4AC, UR3, MG, GTP, G7M, 5MC, K, B8N, MA6, OMU, DDE, 1MA, OMC

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	ond lengths	Bond angles				
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5			
1	0	0.28	0/1087	0.60	0/1449			
2	1	0.26	0/571	0.66	0/768			
3	2	0.31	0/782	0.64	0/1047			
4	3	0.29	0/620	0.61	0/838			
5	4	0.28	0/499	0.62	0/670			
6	5	0.29	0/412	0.60	0/544			
7	6	0.57	1/433~(0.2%)	1.05	5/575~(0.9%)			
8	7	0.40	1/2489~(0.0%)	0.73	4/3389~(0.1%)			
9	8	0.26	0/279	0.60	0/369			
10	А	0.33	0/1585	0.54	0/2128			
11	AA	0.40	0/75545	0.83	29/117782~(0.0%)			
12	Aa	0.28	0/6470	0.55	0/8759			
13	В	0.33	0/1245	0.59	0/1676			
14	BB	0.38	0/2883	0.80	1/4491~(0.0%)			
15	С	0.29	0/1465	0.58	1/1965~(0.1%)			
16	CC	0.41	0/3746	0.81	0/5832			
17	D	0.29	0/1440	0.58	0/1921			
18	DD	0.27	0/1558	0.53	0/2107			
19	Ε	0.34	0/1481	0.61	0/1990			
20	EE	0.31	0/1948	0.60	0/2617			
21	Ee	0.28	0/1210	0.55	0/1627			
22	F	0.30	0/1300	0.55	0/1743			
23	\mathbf{FF}	0.30	0/3146	0.55	0/4228			
24	G	0.30	0/786	0.53	0/1065			
25	GG	0.30	0/2800	0.53	0/3790			
26	Н	0.31	0/978	0.58	0/1316			
27	HH	0.30	0/2425	0.53	0/3271			
28	Ι	0.34	0/533	0.57	0/707			
29	II	0.30	0/1251	0.56	0/1682			
30	J	0.29	0/974	0.55	0/1314			
31	JJ	0.35	0/1821	0.54	0/2451			
32	K	0.29	0/1004	0.56	0/1341			

Mal	Chain	Bo	ond lengths	Bond angles	
1VIOI	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5
33	KK	0.27	0/1836	0.48	0/2481
34	L	0.31	0/1118	0.52	0/1497
35	LL	0.32	0/1539	0.56	0/2073
36	М	0.27	0/1204	0.56	0/1612
37	MM	0.30	0/1779	0.55	0/2386
38	Ν	0.26	0/473	0.54	0/629
39	NN	0.28	0/1374	0.60	0/1842
40	0	0.32	0/750	0.57	0/1008
41	00	0.29	0/1568	0.59	0/2106
42	Р	0.30	0/897	0.59	0/1205
43	PP	0.28	0/1068	0.55	0/1438
44	Q	0.29	0/1041	0.54	0/1394
45	QQ	0.29	0/1757	0.59	0/2354
46	R	0.35	0/868	0.60	0/1168
47	S	0.30	0/871	0.58	0/1164
48	Т	0.28	0/978	0.55	0/1301
49	U	0.27	0/778	0.59	0/1034
50	V	0.31	0/680	0.64	0/901
51	W	0.29	0/618	0.59	0/826
52	Х	0.30	0/443	0.67	0/588
53	Y	0.29	0/423	0.62	0/562
54	Ζ	0.29	0/234	0.88	0/300
55	a	0.29	0/831	0.61	0/1097
56	b	0.30	0/701	0.63	0/934
57	с	0.37	0/37760	0.94	120/58811~(0.2%)
58	d	0.28	0/1623	0.54	0/2222
59	е	0.29	0/1714	0.58	0/2308
60	f	0.29	0/1665	0.56	0/2263
61	g	0.29	0/1429	0.59	0/1913
62	h	0.31	0/2097	0.61	1/2823~(0.0%)
63	i	0.28	0/1591	0.61	0/2151
64	j	0.28	0/1790	0.62	1/2393~(0.0%)
65	k	0.28	0/1506	0.57	0/2028
66	1	0.31	0/1482	0.63	0/1980
67	m	0.28	0/1519	0.59	0/2035
68	n	0.29	$0/30\overline{9}$	0.49	0/416
69	0	0.30	0/1172	0.61	0/1580
70	р	0.31	0/1215	0.57	0/1638
71	q	0.29	0/901	0.62	$0/1\overline{217}$
72	r	0.31	$0/74\overline{7}$	0.64	0/1002
73	s	$0.2\overline{7}$	0/1088	$0.5\overline{9}$	0/1459
74	t	0.27	0/971	0.59	0/1303
75	u	0.27	$0/121\overline{11}$	0.60	$0/162\overline{8}$

Mol	Chain	Bo	ond lengths	Bond angles		
		RMSZ	# Z > 5	RMSZ	# Z > 5	
76	V	0.26	0/1130	0.56	0/1517	
77	W	0.26	0/810	0.57	0/1095	
78	Х	0.31	0/693	0.60	0/935	
79	У	0.31	0/1038	0.57	0/1395	
80	Z	0.29	0/1139	0.60	0/1518	
All	All	0.35	2/215195~(0.0%)	0.76	162/314982~(0.1%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
7	6	0	1
31	JJ	0	2
34	L	0	1
50	V	0	1
53	Y	0	1
64	j	0	1
65	k	0	1
69	0	0	1
73	s	0	1
All	All	0	10

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
8	7	287	PRO	CG-CD	-13.52	1.06	1.50
7	6	19	PRO	CG-CD	-8.23	1.23	1.50

All (162) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
8	7	287	PRO	N-CD-CG	-18.44	75.55	103.20
57	с	94	U	C2-N3-C4	14.86	135.92	127.00
57	с	1501	С	N1-C2-O2	14.09	127.35	118.90
8	7	287	PRO	CA-CB-CG	-12.15	80.92	104.00
57	с	1602	С	OP1-P-O3'	-11.57	79.74	105.20
57	с	1175	U	OP1-P-O3'	-11.23	80.50	105.20
57	с	1439	С	OP1-P-O3'	-11.09	80.79	105.20
57	с	1496	U	OP1-P-O3'	-11.08	80.82	105.20
57	с	1440	С	OP1-P-O3'	-11.04	80.91	105.20

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
57	с	804	А	OP1-P-O3'	-11.02	80.95	105.20
57	с	1157	А	OP1-P-O3'	-11.01	80.98	105.20
57	с	82	U	OP1-P-O3'	-10.79	81.46	105.20
57	с	1421	А	OP1-P-O3'	-10.72	81.62	105.20
7	6	19	PRO	N-CD-CG	-10.68	87.18	103.20
57	с	81	G	OP1-P-O3'	-10.67	81.72	105.20
57	с	82	U	OP2-P-O3'	-10.61	81.86	105.20
57	с	804	А	OP2-P-O3'	-10.28	82.58	105.20
57	с	1175	U	OP2-P-O3'	-10.24	82.67	105.20
57	с	81	G	OP2-P-O3'	-9.68	83.90	105.20
57	с	94	U	N1-C2-N3	9.66	120.70	114.90
57	с	1421	А	OP2-P-O3'	-9.53	84.23	105.20
57	с	1507	G	C5-C6-O6	9.51	134.31	128.60
57	с	1374	С	N1-C2-O2	9.51	124.60	118.90
57	с	1440	С	OP2-P-O3'	-9.45	84.41	105.20
57	с	1439	С	OP2-P-O3'	-9.44	84.42	105.20
57	с	1350	U	N3-C2-O2	-9.44	115.59	122.20
57	с	689	G	N3-C4-N9	9.35	131.61	126.00
7	6	18	THR	N-CA-CB	-9.34	92.55	110.30
57	с	1374	С	N3-C2-O2	-9.24	115.44	121.90
57	с	1501	С	N3-C2-O2	-9.11	115.52	121.90
57	с	686	С	N3-C2-O2	-8.98	115.61	121.90
57	с	1496	U	OP2-P-O3'	-8.93	85.57	105.20
57	с	1507	G	N1-C6-O6	-8.66	114.70	119.90
57	с	1602	С	OP2-P-O3'	-8.60	86.29	105.20
57	с	1533	С	N3-C2-O2	-8.50	115.95	121.90
57	с	1506	G	N3-C2-N2	8.42	125.79	119.90
57	с	1157	A	OP2-P-O3'	-8.26	87.02	105.20
57	с	479	С	O4'-C1'-N1	8.14	114.71	108.20
11	AA	1788	C	N3-C2-O2	-8.07	116.25	121.90
57	с	1365	С	N1-C2-O2	8.04	123.73	118.90
7	6	19	PRO	CA-N-CD	-7.99	100.32	111.50
57	с	689	G	C8-N9-C1'	-7.97	116.64	127.00
8	7	287	PRO	CA-N-CD	-7.90	100.44	111.50
57	с	1422	A	OP1-P-OP2	7.82	131.32	119.60
57	с	645	С	N3-C2-O2	-7.57	116.60	121.90
57	с	689	G	N9-C4-C5	-7.56	102.38	105.40
57	с	1603	U	OP1-P-OP2	7.55	130.93	119.60
57	с	1176	G	OP1-P-OP2	7.53	130.89	119.60
8	7	287	PRO	CB-CG-CD	7.47	135.64	106.50
57	с	689	G	C4-N9-C1'	7.42	136.14	126.50
57	с	484	С	N3-C2-O2	-7.40	116.72	121.90

α \cdot \cdot \cdot	C		
Continued	from	previous	page
		1	1 0

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
57	с	1500	С	C6-N1-C2	-7.37	117.35	120.30
57	с	1506	G	N9-C4-C5	-7.34	102.46	105.40
57	с	1374	С	C2-N1-C1'	7.33	126.86	118.80
57	с	1716	С	C2-N1-C1'	-7.29	110.78	118.80
57	с	1158	С	OP1-P-OP2	7.29	130.53	119.60
11	AA	1283	С	N3-C2-O2	-7.29	116.80	121.90
57	с	1376	С	C2-N1-C1'	-7.29	110.79	118.80
57	с	691	С	N3-C2-O2	-7.25	116.83	121.90
57	с	686	С	C6-N1-C2	-7.21	117.42	120.30
57	с	83	G	OP1-P-OP2	7.21	130.41	119.60
57	с	805	U	OP1-P-OP2	7.16	130.35	119.60
57	с	1533	С	N1-C2-O2	7.16	123.20	118.90
57	с	1497	U	OP1-P-OP2	7.14	130.31	119.60
57	с	1565	С	N3-C2-O2	-7.09	116.94	121.90
57	с	1440	С	OP1-P-OP2	7.08	130.22	119.60
11	AA	2711	С	N3-C2-O2	-7.06	116.96	121.90
57	с	689	G	C6-C5-N7	-7.06	126.17	130.40
57	с	1441	С	OP1-P-OP2	7.03	130.15	119.60
11	AA	1328	С	N3-C2-O2	-7.03	116.98	121.90
57	с	1591	С	C4'-C3'-O3'	-7.01	94.68	109.40
57	с	686	С	C5-C4-N4	7.01	125.10	120.20
57	с	645	С	N1-C2-O2	7.00	123.10	118.90
57	с	1495	С	N3-C2-O2	-7.00	117.00	121.90
57	с	1350	U	N1-C2-O2	6.95	127.67	122.80
57	с	479	С	C2-N1-C1'	6.90	126.39	118.80
57	с	479	С	N1-C2-O2	6.89	123.03	118.90
11	AA	2137	U	C2-N1-C1'	6.84	125.91	117.70
57	с	82	U	OP1-P-OP2	6.82	129.83	119.60
57	с	691	С	N1-C2-O2	6.80	122.98	118.90
57	с	1376	С	C6-N1-C1'	6.78	128.93	120.80
57	с	1591	С	N1-C1'-C2'	6.75	122.78	114.00
11	AA	2843	U	N1-C2-O2	6.74	127.51	122.80
57	с	648	G	C5-C6-O6	6.72	132.63	128.60
57	с	1500	С	C5-C4-N4	6.72	124.90	120.20
57	с	644	С	N1-C2-O2	6.68	122.91	118.90
11	AA	620	U	C2-N1-C1'	6.64	125.67	117.70
11	AA	2137	U	N1-C2-O2	6.63	127.44	122.80
11	AA	1788	С	N1-C2-O2	6.61	122.86	118.90
11	AA	1328	С	N1-C2-O2	6.57	122.84	118.90
57	с	1500	С	N3-C2-O2	-6.57	117.30	121.90
57	с	1716	С	C6-N1-C1'	6.53	128.63	120.80
57	с	1506	G	N3-C4-N9	6.51	129.91	126.00

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
57	с	1501	С	N3-C4-C5	6.50	124.50	121.90
57	с	1507	G	N9-C4-C5	6.49	108.00	105.40
57	с	1506	G	C4-C5-N7	6.48	113.39	110.80
11	AA	2843	U	C2-N1-C1'	6.47	125.46	117.70
57	с	1389	С	C2-N1-C1'	6.44	125.89	118.80
11	AA	620	U	N1-C2-O2	6.44	127.31	122.80
57	с	94	U	N3-C2-O2	-6.42	117.70	122.20
57	с	1389	С	C6-N1-C2	-6.39	117.74	120.30
57	с	1246	С	C2-N1-C1'	6.30	125.73	118.80
57	с	1565	С	N1-C2-O2	6.20	122.62	118.90
57	с	479	С	N3-C2-O2	-6.05	117.66	121.90
57	с	689	G	C4-C5-N7	6.04	113.22	110.80
11	AA	620	U	N3-C2-O2	-5.97	118.02	122.20
57	с	1513	G	C5-C6-O6	5.97	132.18	128.60
11	AA	1496	С	C2-N1-C1'	5.94	125.34	118.80
57	с	1565	С	C6-N1-C2	-5.94	117.92	120.30
11	AA	2137	U	N3-C2-O2	-5.93	118.05	122.20
57	с	479	C	C6-N1-C2	-5.93	117.93	120.30
57	с	484	С	N1-C2-O2	5.92	122.45	118.90
57	с	485	A	O4'-C1'-N9	5.91	112.92	108.20
11	AA	1222	G	O4'-C1'-N9	5.90	112.92	108.20
57	с	648	G	N1-C6-O6	-5.86	116.38	119.90
7	6	18	THR	C-N-CD	5.84	140.66	128.40
57	с	572	С	N3-C2-O2	-5.83	117.82	121.90
57	с	1374	С	C6-N1-C2	-5.81	117.98	120.30
11	AA	1176	С	N3-C2-O2	-5.79	117.85	121.90
11	AA	2843	U	N3-C2-O2	-5.75	118.18	122.20
57	с	1507	G	C4-C5-N7	-5.74	108.51	110.80
57	с	962	С	N3-C2-O2	-5.71	117.91	121.90
11	AA	2677	G	O4'-C1'-N9	5.66	112.73	108.20
57	с	644	С	C2-N1-C1'	5.63	125.00	118.80
62	h	164	LEU	CA-CB-CG	5.63	128.25	115.30
57	с	1501	С	C4-C5-C6	-5.62	114.59	117.40
57	с	1716	С	N1-C2-O2	-5.61	115.53	118.90
57	с	962	С	N1-C2-O2	5.61	122.27	118.90
64	j	68	LEU	CA-CB-CG	5.58	128.13	115.30
57	с	1207	С	N1-C2-O2	5.57	122.24	118.90
57	с	686	C	N3-C4-N4	-5.57	114.10	118.00
57	с	1591	C	O4'-C1'-C2'	-5.51	100.29	105.80
57	с	94	U	N3-C4-C5	5.46	117.87	114.60
57	с	1506	G	N1-C2-N2	-5.44	111.31	116.20
7	6	19	PRO	CA-CB-CG	-5.43	93.67	104.00

Mol	Chain	Res	Type	Atoms	Z	Observed(°)	$Ideal(^{o})$
11	AA	2711	С	N1-C2-O2	5.42	122.15	118.90
11	AA	3214	U	N3-C2-O2	-5.42	118.41	122.20
57	с	1501	С	N3-C4-N4	-5.42	114.21	118.00
14	BB	89	G	N1-C6-O6	-5.39	116.67	119.90
57	с	1546	G	N3-C4-N9	-5.38	122.78	126.00
57	с	1546	G	N1-C6-O6	-5.32	116.71	119.90
57	с	689	G	N3-C2-N2	5.31	123.62	119.90
11	AA	1283	С	N1-C2-O2	5.30	122.08	118.90
57	с	1389	С	N3-C2-O2	-5.26	118.22	121.90
11	AA	2499	U	N1-C2-O2	5.25	126.47	122.80
11	AA	2983	С	C2-N1-C1'	5.24	124.56	118.80
57	с	689	G	N3-C4-C5	-5.24	125.98	128.60
15	С	95	GLU	C-N-CA	-5.23	108.62	121.70
57	с	852	С	N1-C2-O2	5.18	122.01	118.90
57	с	1244	А	P-O3'-C3'	5.18	125.91	119.70
57	с	1389	С	N1-C2-O2	5.17	122.00	118.90
57	с	1501	С	C2-N1-C1'	5.17	124.48	118.80
57	с	1500	С	C6-N1-C1'	5.14	126.97	120.80
57	с	1565	С	C2-N1-C1'	5.13	124.44	118.80
11	AA	601	U	C2-N1-C1'	5.08	123.79	117.70
57	с	1507	G	N3-C4-N9	-5.07	122.96	126.00
57	с	1513	G	N1-C6-O6	-5.06	116.86	119.90
57	с	686	С	N1-C2-N3	5.05	122.73	119.20
11	AA	1190	A	N1-C2-N3	5.04	131.82	129.30
11	AA	1767	С	C2-N1-C1'	5.04	124.35	118.80
11	AA	3058	U	C2-N1-C1'	5.03	123.74	117.70
11	AA	2857	С	N3-C2-O2	-5.01	118.39	121.90

There are no chirality outliers.

All (10) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
7	6	17	GLN	Mainchain
31	JJ	158	LYS	Peptide
31	JJ	232	ARG	Peptide
34	L	102	GLU	Peptide
50	V	64	MET	Peptide
53	Y	104	PRO	Peptide
64	j	23	ARG	Sidechain
65	k	64	VAL	Peptide
69	0	37	ASN	Peptide
73	s	40	GLU	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
1	0	132/135~(98%)	126 (96%)	6 (4%)	0	100	100
2	1	68/108~(63%)	61 (90%)	7 (10%)	0	100	100
3	2	95/119~(80%)	90 (95%)	5 (5%)	0	100	100
4	3	79/82~(96%)	73 (92%)	6 (8%)	0	100	100
5	4	61/67~(91%)	59 (97%)	2 (3%)	0	100	100
6	5	47/56~(84%)	45 (96%)	2 (4%)	0	100	100
7	6	51/63~(81%)	48 (94%)	3 (6%)	0	100	100
8	7	316/319~(99%)	298 (94%)	18 (6%)	0	100	100
9	8	32/152~(21%)	19 (59%)	13 (41%)	0	100	100
10	А	195/199~(98%)	193 (99%)	2 (1%)	0	100	100
12	Aa	811/842~(96%)	794 (98%)	17 (2%)	0	100	100
13	В	152/184~(83%)	152 (100%)	0	0	100	100
15	С	183/186~(98%)	182 (100%)	1 (0%)	0	100	100
17	D	174/189~(92%)	170 (98%)	4 (2%)	0	100	100
18	DD	195/312~(62%)	192 (98%)	3 (2%)	0	100	100
19	Е	170/172~(99%)	166 (98%)	4 (2%)	0	100	100
20	EE	250/254~(98%)	248 (99%)	2 (1%)	0	100	100
21	Ee	156/165~(94%)	148 (95%)	8 (5%)	0	100	100
22	F	$\overline{157/160}~(98\%)$	155 (99%)	2 (1%)	0	100	100
23	FF	384/387~(99%)	373 (97%)	11 (3%)	0	100	100
24	G	95/121 (78%)	95 (100%)	0	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
25	GG	359/362~(99%)	350 (98%)	9 (2%)	0	100	100
26	Н	127/137~(93%)	127 (100%)	0	0	100	100
27	HH	294/297~(99%)	285 (97%)	9 (3%)	0	100	100
28	Ι	61/155~(39%)	61 (100%)	0	0	100	100
29	II	151/176~(86%)	150 (99%)	1 (1%)	0	100	100
30	J	118/142 (83%)	114 (97%)	4 (3%)	0	100	100
31	JJ	220/244~(90%)	212 (96%)	7 (3%)	1 (0%)	29	66
32	K	124/127~(98%)	123 (99%)	1 (1%)	0	100	100
33	KK	231/256~(90%)	226 (98%)	5 (2%)	0	100	100
34	L	133/136~(98%)	129 (97%)	3 (2%)	1 (1%)	19	57
35	LL	189/191~(99%)	184 (97%)	5 (3%)	0	100	100
36	М	146/149~(98%)	141 (97%)	5 (3%)	0	100	100
37	MM	213/221~(96%)	207 (97%)	6 (3%)	0	100	100
38	Ν	56/59~(95%)	54 (96%)	2 (4%)	0	100	100
39	NN	167/174~(96%)	159 (95%)	8 (5%)	0	100	100
40	О	95/105~(90%)	95 (100%)	0	0	100	100
41	00	191/199~(96%)	180 (94%)	10 (5%)	1 (0%)	29	66
42	Р	107/113~(95%)	105 (98%)	2 (2%)	0	100	100
43	PP	134/138~(97%)	131 (98%)	3 (2%)	0	100	100
44	Q	125/130~(96%)	123 (98%)	2 (2%)	0	100	100
45	QQ	201/204~(98%)	196 (98%)	5 (2%)	0	100	100
46	R	104/107~(97%)	103 (99%)	1 (1%)	0	100	100
47	S	107/121~(88%)	107 (100%)	0	0	100	100
48	Т	117/120~(98%)	115 (98%)	2 (2%)	0	100	100
49	U	97/100~(97%)	91 (94%)	6 (6%)	0	100	100
50	V	82/88~(93%)	79 (96%)	2 (2%)	1 (1%)	13	50
51	W	75/78~(96%)	72 (96%)	3 (4%)	0	100	100
52	Х	48/51~(94%)	47 (98%)	1 (2%)	0	100	100
53	Y	50/128~(39%)	47 (94%)	2 (4%)	1 (2%)	7	41
54	Ζ	23/25~(92%)	23 (100%)	0	0	100	100
55	a	100/106~(94%)	97 (97%)	3 (3%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
56	b	89/92~(97%)	88~(99%)	1 (1%)	0	100	100
58	d	204/252~(81%)	193~(95%)	11 (5%)	0	100	100
59	е	210/255~(82%)	196 (93%)	14 (7%)	0	100	100
60	f	215/254~(85%)	201 (94%)	14 (6%)	0	100	100
61	g	177/240~(74%)	170 (96%)	7 (4%)	0	100	100
62	h	256/261~(98%)	244~(95%)	12~(5%)	0	100	100
63	i	195/225~(87%)	186 (95%)	9~(5%)	0	100	100
64	j	217/236~(92%)	217 (100%)	0	0	100	100
65	k	182/190~(96%)	172 (94%)	10 (6%)	0	100	100
66	1	180/200~(90%)	169 (94%)	11 (6%)	0	100	100
67	m	183/197~(93%)	175 (96%)	8 (4%)	0	100	100
68	n	29/105~(28%)	29 (100%)	0	0	100	100
69	0	140/156~(90%)	133 (95%)	7~(5%)	0	100	100
70	р	148/151~(98%)	145 (98%)	3 (2%)	0	100	100
71	q	125/137~(91%)	119 (95%)	6~(5%)	0	100	100
72	r	85/142~(60%)	80 (94%)	5~(6%)	0	100	100
73	s	134/143~(94%)	126 (94%)	8 (6%)	0	100	100
74	t	119/136~(88%)	114 (96%)	5 (4%)	0	100	100
75	u	143/146~(98%)	134 (94%)	9~(6%)	0	100	100
76	V	141/144~(98%)	137 (97%)	4 (3%)	0	100	100
77	W	98/121 (81%)	98 (100%)	0	0	100	100
78	х	85/87~(98%)	81 (95%)	4 (5%)	0	100	100
79	У	127/130~(98%)	125 (98%)	2 (2%)	0	100	100
80	Z	142/145~(98%)	132 (93%)	10 (7%)	0	100	100
All	All	11672/13056~(89%)	11284 (97%)	383 (3%)	5(0%)	100	100

All (5) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
31	JJ	159	GLN
50	V	65	ARG
34	L	102	GLU
53	Y	105	PRO
41	00	63	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	0	112/113~(99%)	111 (99%)	1 (1%)	78	88
2	1	61/89~(68%)	60~(98%)	1 (2%)	62	79
3	2	83/101~(82%)	83 (100%)	0	100	100
4	3	70/71~(99%)	70 (100%)	0	100	100
5	4	56/60~(93%)	55~(98%)	1 (2%)	59	77
6	5	43/49~(88%)	42 (98%)	1 (2%)	50	72
7	6	46/54~(85%)	43 (94%)	3 (6%)	17	48
8	7	259/262~(99%)	258 (100%)	1 (0%)	91	95
9	8	30/135~(22%)	30 (100%)	0	100	100
10	А	160/162~(99%)	159 (99%)	1 (1%)	86	92
12	Aa	694/714~(97%)	691 (100%)	3 (0%)	91	95
13	В	125/146~(86%)	123 (98%)	2(2%)	62	79
15	С	150/151~(99%)	150 (100%)	0	100	100
17	D	143/154~(93%)	142 (99%)	1 (1%)	84	91
18	DD	167/254~(66%)	167 (100%)	0	100	100
19	Е	156/156~(100%)	156 (100%)	0	100	100
20	EE	193/196~(98%)	193 (100%)	0	100	100
21	Ee	129/136~(95%)	129 (100%)	0	100	100
22	F	136/137~(99%)	135 (99%)	1 (1%)	84	91
23	\mathbf{FF}	320/323~(99%)	319 (100%)	1 (0%)	92	96
24	G	84/107~(78%)	84 (100%)	0	100	100
25	GG	288/289~(100%)	285~(99%)	3 (1%)	76	86
26	Н	101/105~(96%)	101 (100%)	0	100	100
27	HH	244/245~(100%)	244 (100%)	0	100	100
28	Ι	55/129 (43%)	54 (98%)	1 (2%)	59	77
29	II	133/153~(87%)	133 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
30	J	104/118~(88%)	103~(99%)	1 (1%)	76	86
31	JJ	186/205~(91%)	186 (100%)	0	100	100
32	Κ	109/110~(99%)	108 (99%)	1 (1%)	78	88
33	KK	187/208~(90%)	187 (100%)	0	100	100
34	L	115/116~(99%)	115 (100%)	0	100	100
35	LL	171/171~(100%)	171 (100%)	0	100	100
36	М	118/119~(99%)	118 (100%)	0	100	100
37	MM	184/187~(98%)	183 (100%)	1 (0%)	88	94
38	Ν	46/47~(98%)	46 (100%)	0	100	100
39	NN	147/150~(98%)	147 (100%)	0	100	100
40	О	81/88~(92%)	81 (100%)	0	100	100
41	00	154/159~(97%)	153 (99%)	1 (1%)	86	92
42	Р	94/97~(97%)	93~(99%)	1 (1%)	73	85
43	PP	107/109~(98%)	107 (100%)	0	100	100
44	Q	109/111~(98%)	108 (99%)	1 (1%)	78	88
45	QQ	175/176~(99%)	175 (100%)	0	100	100
46	R	90/91~(99%)	90 (100%)	0	100	100
47	S	94/103~(91%)	94 (100%)	0	100	100
48	Т	104/105~(99%)	103 (99%)	1 (1%)	76	86
49	U	81/82~(99%)	81 (100%)	0	100	100
50	V	69/71~(97%)	67~(97%)	2(3%)	42	67
51	W	68/69~(99%)	68 (100%)	0	100	100
52	Х	45/46~(98%)	45 (100%)	0	100	100
53	Y	47/116 (40%)	46 (98%)	1 (2%)	53	74
54	Ζ	23/23~(100%)	23 (100%)	0	100	100
55	a	87/91~(96%)	86 (99%)	1 (1%)	73	85
56	b	71/72~(99%)	70 (99%)	1 (1%)	67	81
58	d	165/210~(79%)	165 (100%)	0	100	100
59	е	189/224~(84%)	187 (99%)	2 (1%)	73	85
60	f	176/205~(86%)	175 (99%)	1 (1%)	86	92
61	g	145/195~(74%)	142 (98%)	3 (2%)	53	74

Mol	Chain	Analysed	Rotameric	Outliers	Percentile	
62	h	220/222~(99%)	219 (100%)	1 (0%)	88	94
63	i	172/191~(90%)	171 (99%)	1 (1%)	86	92
64	j	188/201~(94%)	182 (97%)	6 (3%)	39	65
65	k	165/170~(97%)	164 (99%)	1 (1%)	86	92
66	1	146/161~(91%)	146 (100%)	0	100	100
67	m	158/166~(95%)	157 (99%)	1 (1%)	86	92
68	n	32/98~(33%)	32 (100%)	0	100	100
69	0	127/137~(93%)	125 (98%)	2 (2%)	62	79
70	р	127/128~(99%)	127 (100%)	0	100	100
71	q	81/105 (77%)	81 (100%)	0	100	100
72	r	77/118~(65%)	76~(99%)	1 (1%)	69	82
73	S	113/119~(95%)	110 (97%)	3 (3%)	44	69
74	t	105/124~(85%)	104 (99%)	1 (1%)	76	86
75	u	128/129~(99%)	127~(99%)	1 (1%)	81	89
76	v	115/116~(99%)	115 (100%)	0	100	100
77	W	94/114~(82%)	92~(98%)	2 (2%)	53	74
78	х	74/74~(100%)	74 (100%)	0	100	100
79	У	110/111 (99%)	109 (99%)	1 (1%)	78	88
80	Z	119/120~(99%)	117 (98%)	2 (2%)	60	78
All	All	9930/10969 (90%)	9868 (99%)	62 (1%)	86	92

All (62) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	0	112	LYS
2	1	77	ARG
5	4	49	ARG
6	5	19	ARG
7	6	10	ARG
7	6	29	LYS
7	6	31	LYS
8	7	127	ARG
10	А	14	HIS
12	Aa	271	ARG
12	Aa	437	MET

Mol	Chain	Res	Type
12	Aa	555	LYS
13	В	23	ARG
13	В	138	LYS
17	D	166	ASN
22	F	83	ARG
23	FF	104	THR
25	GG	3	ARG
25	GG	43	ASN
25	GG	138	ARG
28	Ι	47	ARG
30	J	97	LYS
32	K	3	LYS
37	MM	211	ARG
41	00	45	LYS
42	Р	18	LYS
44	Q	61	LYS
48	Т	108	GLN
50	V	57	HIS
50	V	65	ARG
53	Y	106	ARG
55	a	71	ARG
56	b	24	ARG
59	е	50	LYS
59	е	214	LYS
60	f	141	ARG
61	g	8	LYS
61	g	75	LYS
61	g	151	LYS
62	h	108	ARG
63	i	222	LYS
64	j	4	ASN
64	j	31	ARG
64	j	98	ARG
64	j	164	LYS
64	j	182	GLN
64	j	214	LYS
65	k	107	ARG
67	m	138	LYS
69	0	36	LYS
69	0	67	ARG
72	r	127	ARG
73	S	26	LYS

Conti	nueu jron	i previ	bus puge
Mol	Chain	Res	Type
73	s	114	ARG
73	s	123	ARG
74	t	59	LYS
75	u	41	ARG
77	W	21	LYS
77	W	52	LYS
79	У	3	ARG
80	Z	31	LYS
80	Z	114	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (49) such sidechains are listed below:

Mol	Chain	Res	Type
3	2	43	ASN
5	4	27	GLN
8	7	64	HIS
8	7	147	HIS
8	7	224	ASN
12	Aa	644	ASN
13	В	137	ASN
15	С	45	ASN
17	D	75	HIS
17	D	150	GLN
20	EE	211	HIS
22	F	54	HIS
23	\mathbf{FF}	165	GLN
23	\mathbf{FF}	212	ASN
25	GG	307	GLN
25	GG	311	HIS
25	GG	316	ASN
26	Н	98	ASN
29	II	172	HIS
31	JJ	194	HIS
31	JJ	197	GLN
33	KK	138	HIS
34	L	78	ASN
37	MM	59	GLN
37	MM	208	ASN
39	NN	47	GLN
44	Q	49	ASN
46	R	26	ASN
47	S	108	GLN

Mol	Chain	Res	Type
49	U	12	ASN
52	Х	19	GLN
56	b	33	GLN
61	g	74	GLN
61	g	111	ASN
62	h	259	GLN
63	i	128	ASN
63	i	170	GLN
64	j	199	GLN
68	n	58	GLN
70	р	78	ASN
72	r	82	ASN
73	S	139	GLN
74	t	48	ASN
75	u	6	GLN
76	V	16	ASN
76	V	101	ASN
79	У	16	ASN
80	Z	18	HIS
80	Z	99	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
11	AA	3193/3396~(94%)	636~(19%)	21 (0%)
14	BB	120/121~(99%)	18 (15%)	1 (0%)
16	CC	157/158~(99%)	28 (17%)	1 (0%)
57	с	1593/1800~(88%)	468 (29%)	0
All	All	5063/5475~(92%)	1150 (22%)	23~(0%)

All (1150) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
11	AA	4	U
11	AA	6	А
11	AA	12	А
11	AA	14	U
11	AA	26	А
11	AA	40	А
11	AA	43	А
11	AA	49	А

Mol	Chain	Res	Type
11	AA	60	А
11	AA	63	А
11	AA	65	А
11	AA	66	А
11	AA	73	С
11	AA	77	А
11	AA	85	А
11	AA	92	G
11	AA	96	G
11	AA	109	A
11	AA	110	G
11	AA	111	С
11	AA	113	C
11	AA	116	A
11	AA	118	U
11	AA	120	G
11	AA	122	А
11	AA	135	C
11	AA	136	G
11	AA	142	С
11	AA	150	А
11	AA	156	G
11	AA	157	А
11	AA	162	G
11	AA	165	А
11	AA	170	G
11	AA	172	G
11	AA	173	G
11	AA	182	U
11	AA	190	U
11	AA	191	U
11	AA	200	С
11	AA	212	G
11	AA	219	A
11	AA	220	G
11	AA	227	G
11	AA	243	G
11	AA	247	C
11	AA	248	U
11	AA	249	U
11	AA	252	U
11	AA	253	А

Mol	Chain	Res	Type
11	AA	263	С
11	AA	266	A
11	AA	268	А
11	AA	269	G
11	AA	286	U
11	AA	295	А
11	AA	305	U
11	AA	315	С
11	AA	321	С
11	AA	329	U
11	AA	346	С
11	AA	360	G
11	AA	362	U
11	AA	374	A
11	AA	376	G
11	AA	397	A
11	AA	398	А
11	AA	399	A
11	AA	401	U
11	AA	402	A
11	AA	403	С
11	AA	420	G
11	AA	421	G
11	AA	422	А
11	AA	502	U
11	AA	503	С
11	AA	519	А
11	AA	520	U
11	AA	521	A
11	AA	532	А
11	AA	534	U
11	AA	543	С
11	AA	552	G
11	AA	556	U
11	AA	557	A
11	AA	558	U
11	AA	559	А
11	AA	589	A
11	AA	592	A
11	AA	597	G
11	AA	601	U
11	AA	602	А

Mol	Chain	Res	Type
11	AA	603	А
11	AA	604	G
11	AA	607	А
11	AA	611	А
11	AA	612	U
11	AA	620	U
11	AA	621	А
11	AA	636	С
11	AA	637	С
11	AA	638	С
11	AA	645	1MA
11	AA	649	A2M
11	AA	655	С
11	AA	660	A
11	AA	662	U
11	AA	667	C
11	AA	677	А
11	AA	678	G
11	AA	681	U
11	AA	690	А
11	AA	691	А
11	AA	705	А
11	AA	719	U
11	AA	737	G
11	AA	750	G
11	AA	758	С
11	AA	761	A
11	AA	766	U
11	AA	767	U
11	AA	780	А
11	AA	781	G
11	AA	784	А
11	AA	785	G
11	AA	786	A
11	AA	790	U
11	AA	799	G
11	AA	806	A
11	AA	807	A2M
11	AA	816	A
11	AA	817	A2M
11	AA	826	G
11	AA	830	А

Mol	Chain	Res	Type
11	AA	835	G
11	AA	849	С
11	AA	857	G
11	AA	861	С
11	AA	874	U
11	AA	875	G
11	AA	879	U
11	AA	880	G
11	AA	890	С
11	AA	896	А
11	AA	907	G
11	AA	908	OMG
11	AA	910	G
11	AA	914	A
11	AA	916	G
11	AA	917	A
11	AA	921	А
11	AA	923	С
11	AA	924	G
11	AA	926	А
11	AA	937	G
11	AA	939	U
11	AA	943	U
11	AA	944	С
11	AA	953	G
11	AA	959	С
11	AA	960	U
11	AA	961	С
11	AA	962	А
11	AA	974	G
11	AA	979	U
11	AA	980	A
11	AA	981	U
11	AA	984	G
11	AA	988	U
11	AA	1000	С
11	AA	1006	А
11	AA	1013	G
11	AA	1015	U
11	AA	1017	С
11	AA	1018	G
11	AA	1025	А

Mol	Chain	Res	Type
11	AA	1026	А
11	AA	1027	А
11	AA	1028	U
11	AA	1034	U
11	AA	1036	А
11	AA	1037	С
11	AA	1038	С
11	AA	1045	С
11	AA	1047	А
11	AA	1064	А
11	AA	1072	G
11	AA	1075	А
11	AA	1081	U
11	AA	1087	G
11	AA	1096	U
11	AA	1097	G
11	AA	1098	А
11	AA	1103	А
11	AA	1111	U
11	AA	1117	G
11	AA	1131	G
11	AA	1140	G
11	AA	1143	А
11	AA	1155	С
11	AA	1159	А
11	AA	1177	G
11	AA	1178	G
11	AA	1179	А
11	AA	1180	А
11	AA	1181	U
11	AA	1182	А
11	AA	1191	U
11	AA	1193	А
11	AA	1196	С
11	AA	1201	С
11	AA	1208	U
11	AA	1209	G
11	AA	1221	А
11	AA	1222	G
11	AA	1235	U
11	AA	1236	G
11	AA	1237	G

Mol	Chain	Res	Type
11	AA	1240	А
11	AA	1244	А
11	AA	1245	A
11	AA	1246	G
11	AA	1253	U
11	AA	1258	U
11	AA	1260	А
11	AA	1263	А
11	AA	1265	U
11	AA	1272	С
11	AA	1286	А
11	AA	1287	А
11	AA	1294	A
11	AA	1302	A
11	AA	1307	G
11	AA	1308	A
11	AA	1325	U
11	AA	1330	A
11	AA	1332	А
11	AA	1345	G
11	AA	1348	U
11	AA	1349	G
11	AA	1352	А
11	AA	1355	А
11	AA	1357	G
11	AA	1363	А
11	AA	1366	A
11	AA	1367	G
11	AA	1386	A
11	AA	1392	G
11	AA	1399	A
11	AA	1400	G
11	AA	1408	G
11	AA	1417	G
11	AA	1418	A
11	AA	1425	U
11	AA	1434	G
11	AA	1436	U
11	AA	1437	OMC
11	AA	1443	G
11	AA	1446	A
11	AA	1450	OMG

Mol	Chain	Res	Type
11	AA	1455	U
11	AA	1469	С
11	AA	1483	G
11	AA	1484	U
11	AA	1487	G
11	AA	1495	U
11	AA	1508	С
11	AA	1510	G
11	AA	1514	G
11	AA	1523	U
11	AA	1525	G
11	AA	1527	С
11	AA	1528	G
11	AA	1539	A
11	AA	1542	G
11	AA	1556	С
11	AA	1558	A
11	AA	1560	G
11	AA	1561	G
11	AA	1562	С
11	AA	1563	С
11	AA	1568	U
11	AA	1569	U
11	AA	1570	U
11	AA	1571	А
11	AA	1573	G
11	AA	1575	А
11	AA	1578	С
11	AA	1579	С
11	AA	1581	С
11	AA	1582	С
11	AA	1583	A
11	AA	1587	A
11	AA	1589	A
11	AA	1593	A
11	AA	$160\overline{5}$	A
11	AA	1621	A
11	AA	1629	U
11	AA	1630	U
11	AA	1631	C
11	AA	1637	A
11	AA	1638	А

Mol	Chain	Res	Type
11	AA	1642	А
11	AA	1643	А
11	AA	1645	U
11	AA	1647	А
11	AA	1657	С
11	AA	1683	А
11	AA	1688	U
11	AA	1694	U
11	AA	1724	U
11	AA	1741	А
11	AA	1750	А
11	AA	1751	G
11	AA	1756	С
11	AA	1759	С
11	AA	1762	С
11	AA	1763	U
11	AA	1765	U
11	AA	1767	С
11	AA	1769	G
11	AA	1773	С
11	AA	1797	А
11	AA	1808	G
11	AA	1814	А
11	AA	1815	U
11	AA	1816	А
11	AA	1817	G
11	AA	1820	U
11	AA	1821	U
11	AA	1835	А
11	AA	1842	А
11	AA	1848	G
11	AA	1850	А
11	AA	1854	C
11	AA	1866	С
11	AA	1878	G
11	AA	1879	A
11	AA	1880	U
11	AA	1893	А
11	AA	1905	G
11	AA	1906	G
11	AA	1912	U
11	AA	1935	G

Mol	Chain	Res	Type
11	AA	1943	С
11	AA	1948	G
11	AA	2101	С
11	AA	2102	U
11	AA	2111	G
11	AA	2112	U
11	AA	2114	С
11	AA	2122	G
11	AA	2131	А
11	AA	2132	С
11	AA	2155	G
11	AA	2158	А
11	AA	2165	G
11	AA	2167	A
11	AA	2168	А
11	AA	2169	G
11	AA	2170	U
11	AA	2171	G
11	AA	2176	U
11	AA	2188	А
11	AA	2194	G
11	AA	2205	U
11	AA	2206	G
11	AA	2208	А
11	AA	2210	G
11	AA	2213	А
11	AA	2223	A
11	AA	2225	U
11	AA	2244	А
11	AA	2249	G
11	AA	2256	A2M
11	AA	2257	С
11	AA	2258	U
11	AA	2262	A
11	AA	$2\overline{265}$	C
11	AA	2272	G
11	AA	2273	G
11	AA	2280	A2M
11	AA	2281	A2M
11	AA	2282	U
11	AA	2286	U
11	AA	2297	U

Mol	Chain	Res	Type
11	AA	2298	U
11	AA	2307	G
11	AA	2309	А
11	AA	2313	А
11	AA	2315	G
11	AA	2320	А
11	AA	2336	U
11	AA	2337	OMC
11	AA	2355	G
11	AA	2363	А
11	AA	2373	А
11	AA	2374	С
11	AA	2375	G
11	AA	2383	С
11	AA	2388	U
11	AA	2393	G
11	AA	2397	А
11	AA	2402	А
11	AA	2403	G
11	AA	2404	А
11	AA	2411	U
11	AA	2418	G
11	AA	2419	А
11	AA	2434	U
11	AA	2435	G
11	AA	2440	G
11	AA	2447	А
11	AA	2448	G
11	AA	2453	U
11	AA	2454	G
11	AA	2458	А
11	AA	2459	A
11	AA	2460	U
11	AA	2461	A
11	AA	2462	A
11	AA	2463	G
11	AA	2464	U
11	AA	2465	G
11	AA	2466	G
11	AA	2468	A
11	AA	2470	C
11	AA	2472	U

Mol	Chain	Res	Type
11	AA	2474	G
11	AA	2475	G
11	AA	2476	С
11	AA	2477	G
11	AA	2478	С
11	AA	2480	А
11	AA	2481	G
11	AA	2486	А
11	AA	2487	U
11	AA	2488	А
11	AA	2489	С
11	AA	2490	С
11	AA	2491	А
11	AA	2492	С
11	AA	2494	A
11	AA	2496	С
11	AA	2501	U
11	AA	2502	А
11	AA	2503	G
11	AA	2511	А
11	AA	2514	U
11	AA	2515	А
11	AA	2522	G
11	AA	2523	А
11	AA	2524	А
11	AA	2525	G
11	AA	2526	С
11	AA	2529	А
11	AA	2532	U
11	AA	2539	С
11	AA	2540	A
11	AA	2541	U
11	AA	2542	U
11	AA	$25\overline{47}$	A
11	AA	2549	G
11	AA	$25\overline{52}$	C
11	AA	2554	A
11	AA	2555	G
11	AA	$25\overline{60}$	C
11	AA	2561	A
11	AA	2569	A
11	AA	$2\overline{570}$	U

Mol	Chain	Res	Type
11	AA	2571	U
11	AA	2572	С
11	AA	2573	G
11	AA	2585	G
11	AA	2587	U
11	AA	2593	A
11	AA	2594	С
11	AA	2602	G
11	AA	2606	G
11	AA	2607	G
11	AA	2614	G
11	AA	2617	U
11	AA	2648	G
11	AA	2652	U
11	AA	2656	A
11	AA	2657	A
11	AA	2672	G
11	AA	2674	А
11	AA	2677	G
11	AA	2678	А
11	AA	2680	А
11	AA	2681	U
11	AA	2689	А
11	AA	2691	А
11	AA	2696	А
11	AA	2704	А
11	AA	2713	U
11	AA	2714	G
11	AA	2728	G
11	AA	2729	OMU
11	AA	2737	C
11	AA	2747	A
11	AA	2753	G
11	AA	2762	A
11	AA	2772	C
11	AA	2777	G
11	AA	2780	A
11	AA	2786	G
11	AA	$2\overline{795}$	U
11	AA	2796	G
11	AA	2799	A
11	AA	2800	G

Mol	Chain	Res	Type
11	AA	2801	А
11	AA	2802	А
11	AA	2803	A
11	AA	2804	A
11	AA	2808	А
11	AA	2810	С
11	AA	2817	А
11	AA	2834	G
11	AA	2842	U
11	AA	2844	С
11	AA	2845	А
11	AA	2858	U
11	AA	2860	U
11	AA	2861	U
11	AA	2867	С
11	AA	2872	А
11	AA	2875	U
11	AA	2887	А
11	AA	2894	С
11	AA	2899	С
11	AA	2900	А
11	AA	2918	G
11	AA	2922	OMG
11	AA	2923	U
11	AA	2934	А
11	AA	2935	U
11	AA	2936	А
11	AA	2938	G
11	AA	2941	А
11	AA	2945	G
11	AA	2946	A2M
11	AA	2947	G
11	AA	2951	G
11	AA	2966	G
11	AA	$2\overline{971}$	A
11	AA	2972	G
11	AA	2983	С
11	AA	2990	G
11	AA	2996	U
11	AA	2997	G
11	AA	3003	G
11	AA	3005	А

Mol	Chain	Res	Type
11	AA	3012	А
11	AA	3023	U
11	AA	3030	G
11	AA	3055	U
11	AA	3056	U
11	AA	3059	G
11	AA	3069	G
11	AA	3074	G
11	AA	3078	U
11	AA	3080	G
11	AA	3091	А
11	AA	3092	С
11	AA	3093	С
11	AA	3094	A
11	AA	3101	G
11	AA	3104	U
11	AA	3109	G
11	AA	3116	G
11	AA	3117	С
11	AA	3122	А
11	AA	3130	А
11	AA	3131	U
11	AA	3139	А
11	AA	3142	А
11	AA	3143	С
11	AA	3151	U
11	AA	3153	U
11	AA	3154	С
11	AA	3155	U
11	AA	3156	U
11	AA	3157	U
11	AA	3168	A
11	AA	3170	A
11	AA	$317\overline{2}$	A
11	AA	3173	G
11	AA	3176	G
11	AA	3179	U
11	AA	3181	С
11	AA	3186	A
11	AA	3187	A
11	AA	3196	U
11	AA	3205	G

Mol	Chain	Res	Type
11	AA	3207	U
11	AA	3217	С
11	AA	3218	А
11	AA	3219	G
11	AA	3230	G
11	AA	3238	G
11	AA	3244	А
11	AA	3246	G
11	AA	3247	G
11	AA	3260	G
11	AA	3263	G
11	AA	3273	А
11	AA	3275	U
11	AA	3276	G
11	AA	3277	U
11	AA	3281	U
11	AA	3288	G
11	AA	3294	А
11	AA	3304	U
11	AA	3307	А
11	AA	3313	U
11	AA	3316	А
11	AA	3320	А
11	AA	3334	U
11	AA	3335	А
11	AA	3341	U
11	AA	3345	G
11	AA	3348	G
11	AA	3349	С
11	AA	3350	С
11	AA	3351	U
11	AA	3352	U
11	AA	3353	G
11	AA	3358	U
11	AA	3359	А
11	AA	3369	G
11	AA	3378	С
11	AA	3389	U
11	AA	3390	G
11	AA	3396	U
14	BB	7	G
14	BB	11	А

Mol	Chain	Res	Type
14	BB	29	С
14	BB	33	U
14	BB	41	G
14	BB	42	А
14	BB	45	А
14	BB	47	С
14	BB	52	G
14	BB	54	U
14	BB	55	А
14	BB	65	G
14	BB	73	С
14	BB	74	С
14	BB	76	A
14	BB	93	С
14	BB	112	G
14	BB	121	U
16	CC	23	U
16	CC	34	U
16	CC	35	С
16	CC	37	А
16	CC	39	G
16	CC	51	G
16	CC	52	А
16	CC	59	А
16	CC	62	C
16	CC	63	G
16	CC	82	U
16	CC	83	С
16	CC	84	С
16	CC	85	G
16	CC	86	U
16	CC	87	G
16	CC	90	U
16	CC	91	C
16	CC	95	G
16	CC	100	U
16	CC	102	U
16	CC	104	A
16	CC	106	С
16	CC	113	U
16	CC	125	U
16	CC	126	А

Mol	Chain	Res	Type
16	CC	138	А
16	CC	158	U
57	с	2	А
57	с	4	С
57	с	26	А
57	с	28	A2M
57	с	34	G
57	С	42	G
57	с	43	А
57	с	45	U
57	с	47	А
57	с	50	С
57	с	61	A
57	с	63	G
57	с	67	A
57	с	68	A
57	с	69	G
57	с	72	А
57	с	78	А
57	с	80	А
57	с	94	U
57	с	111	U
57	с	114	С
57	с	115	G
57	с	116	U
57	с	127	G
57	с	131	С
57	с	137	U
57	с	140	A
57	с	146	U
57	с	152	U
57	с	154	G
57	с	165	G
57	с	166	C
57	с	168	A
57	с	170	U
57	с	178	U
57	с	184	С
57	с	204	G
57	с	212	U
57	с	213	А
57	с	214	G

Mol	Chain	Res	Type
57	с	246	G
57	с	247	A
57	с	248	U
57	с	249	U
57	с	253	А
57	с	254	А
57	с	256	А
57	с	257	А
57	с	258	С
57	с	260	U
57	с	261	U
57	с	262	U
57	с	265	А
57	с	267	U
57	с	272	U
57	с	277	U
57	с	278	U
57	с	279	G
57	с	280	U
57	с	283	U
57	с	285	G
57	с	287	G
57	с	299	A
57	с	302	U
57	с	313	U
57	с	314	С
57	с	316	А
57	с	320	U
57	с	321	С
57	с	322	G
57	с	333	A
57	с	337	G
57	с	359	A
57	с	361	C
57	с	373	G
57	с	378	A
57	с	400	A
57	с	401	A
57	с	402	C
57	с	404	G
57	С	414	OMC
57	с	417	А

Mol	Chain	Res	Type
57	с	420	A2M
57	с	423	G
57	с	424	С
57	с	426	G
57	С	428	А
57	с	434	G
57	с	435	С
57	с	439	U
57	с	444	С
57	с	448	С
57	с	454	U
57	С	455	С
57	с	460	А
57	с	468	А
57	с	475	А
57	с	477	А
57	с	479	С
57	с	481	А
57	с	484	С
57	с	485	А
57	с	503	G
57	с	504	U
57	с	506	А
57	с	507	U
57	с	508	U
57	с	511	А
57	с	514	G
57	с	515	А
57	с	518	А
57	с	520	А
57	с	524	U
57	с	525	А
57	с	526	А
57	с	527	А
57	с	538	А
57	с	539	G
57	с	541	A2M
57	с	542	А
57	с	545	А
57	с	551	G
57	с	555	А
57	с	557	G

Mol	Chain	Res	Type
57	с	559	С
57	с	562	OMG
57	с	563	U
57	с	565	С
57	с	566	С
57	с	568	G
57	с	577	G
57	с	578	OMU
57	с	579	A
57	с	582	U
57	с	594	А
57	с	611	U
57	с	617	U
57	с	619	A2M
57	с	620	A
57	с	623	А
57	с	624	G
57	с	639	U
57	с	643	G
57	с	644	С
57	с	645	С
57	с	649	U
57	с	650	U
57	С	651	G
57	с	686	С
57	с	687	G
57	с	688	G
57	с	691	С
57	с	692	С
57	с	695	U
57	с	696	C
57	с	743	U
57	с	745	U
57	с	753	А
57	с	760	A
57	с	763	G
57	с	765	G
57	с	766	U
57	с	775	G
57	с	778	G
57	с	780	A
57	с	781	U

Mol	Chain	Res	Type
57	с	782	U
57	с	783	G
57	с	784	С
57	с	789	А
57	с	793	А
57	с	794	U
57	с	795	U
57	с	803	А
57	с	806	А
57	с	809	А
57	с	810	G
57	с	812	А
57	с	814	А
57	с	819	G
57	с	820	U
57	с	852	C
57	с	853	G
57	с	854	U
57	с	856	А
57	с	859	А
57	с	861	U
57	с	862	А
57	с	863	А
57	с	873	U
57	с	895	G
57	с	896	U
57	с	897	С
57	с	898	A
57	с	906	A
57	с	913	G
57	с	914	G
57	с	915	А
57	с	916	U
57	с	918	U
57	с	919	A
57	с	933	A
57	с	935	U
57	с	945	U
57	с	951	A
57	с	960	U
57	с	966	A
57	с	970	A

Mol	Chain	Res	Type
57	с	987	G
57	с	988	А
57	с	992	А
57	с	996	U
57	с	999	U
57	с	1000	С
57	с	1001	А
57	с	1002	G
57	с	1004	U
57	с	1026	А
57	с	1027	А
57	с	1028	С
57	с	1031	U
57	с	1039	A
57	с	1041	G
57	с	1043	А
57	с	1049	U
57	с	1052	U
57	с	1053	G
57	с	1059	U
57	с	1060	U
57	с	1061	А
57	с	1063	U
57	с	1070	С
57	с	1072	С
57	с	1076	А
57	с	1081	А
57	с	1082	С
57	с	1083	G
57	с	1092	А
57	с	1093	А
57	с	1097	U
57	с	1098	U
$57^{$	с	1100	G
57	с	1111	G
57	с	1113	A
57	с	1138	А
57	с	1146	G
57	с	1150	G
57	с	1158	С
57	с	1162	C
57	с	1164	G

Mol	Chain	Res	Type
57	с	1167	G
57	с	1171	А
57	с	1174	С
57	с	1182	U
57	с	1183	А
57	с	1185	U
57	с	1187	U
57	с	1192	С
57	с	1194	А
57	С	1196	А
57	с	1199	G
57	С	1200	G
57	с	1201	G
57	с	1202	А
57	с	1203	А
57	с	1204	A
57	С	1205	С
57	с	1207	С
57	с	1212	G
57	с	1214	U
57	с	1217	А
57	с	1218	G
57	с	1221	А
57	С	1222	С
57	с	1223	А
57	с	1225	U
57	С	1226	А
57	с	1227	А
57	С	1228	G
57	с	1229	G
57	с	1230	А
57	с	1237	G
57	с	1238	А
57	с	1241	G
57	с	1243	G
57	с	1244	A
57	с	1245	G
57	с	1246	С
57	с	1248	С
57	с	1249	U
57	с	1250	U
57	с	1251	U

Mol	Chain	Res	Type
57	с	1252	С
57	с	1256	А
57	С	1257	U
57	с	1258	U
57	С	1259	U
57	с	1261	G
57	с	1270	G
57	с	1274	С
57	с	1276	U
57	с	1284	С
57	с	1285	U
57	С	1297	G
57	с	1305	U
57	с	1307	U
57	с	1314	U
57	с	1315	U
57	с	1316	G
57	с	1321	А
57	с	1324	G
57	с	1325	А
57	с	1335	U
57	с	1336	А
57	с	1338	С
57	с	1339	С
57	с	1340	U
57	с	1341	А
57	с	1345	А
57	с	1346	А
57	с	1347	U
57	с	1350	U
57	с	1352	G
57	с	1353	U
57	с	1355	С
57	с	1356	U
57	с	1357	A
57	с	1358	G
57	с	1361	U
57	с	1362	U
57	с	1363	U
57	с	1364	G
57	с	1365	С
57	с	1368	G

Mol	Chain	Res	Type
57	с	1369	U
57	с	1370	U
57	с	1371	А
57	с	1372	U
57	С	1373	С
57	с	1374	С
57	с	1375	А
57	с	1376	С
57	с	1377	U
57	с	1378	U
57	с	1380	U
57	с	1388	А
57	с	1390	U
57	с	1397	U
57	с	1398	U
57	с	1402	G
57	с	1405	G
57	с	1408	G
57	с	1410	А
57	с	1411	А
57	с	1412	G
57	с	1413	U
57	с	1414	U
57	С	1415	U
57	с	1421	А
57	с	1425	А
57	с	1427	А
57	с	1428	OMG
57	с	1432	U
57	с	1433	G
57	с	1436	A
57	с	1444	A
57	с	1445	G
57	с	1447	С
57	с	1453	G
57	с	1457	C
57	с	1458	G
57	с	1459	С
57	с	1463	С
57	с	1464	G
57	с	1466	G
57	с	1468	U

Mol	Chain	Res	Type
57	с	1474	G
57	с	1477	G
57	с	1478	G
57	с	1480	G
57	с	1482	С
57	с	1483	А
57	с	1488	G
57	с	1489	U
57	с	1490	С
57	с	1491	U
57	с	1492	А
57	с	1496	U
57	с	1500	С
57	с	1505	A
57	с	1506	G
57	с	1515	А
57	с	1516	А
57	с	1518	С
57	с	1524	А
57	с	1525	А
57	с	1527	С
57	с	1531	G
57	с	1535	U
57	с	1536	G
57	с	1537	C
57	с	1540	G
57	с	1542	G
57	с	1546	G
57	с	1548	G
57	с	1556	А
57	с	1557	U
57	с	1559	A
57	с	1561	U
57	с	$156\overline{4}$	U
57	с	1565	С
57	с	$15\overline{67}$	U
57	с	1568	C
57	с	1570	A
57	с	1572	OMG
57	с	1573	A
57	с	1583	A
57	с	1591	C

Mol	Chain	Res	Type
57	с	1592	А
57	с	1594	G
57	с	1596	С
57	с	1600	А
57	с	1601	G
57	с	1602	С
57	с	1603	U
57	с	1604	U
57	с	1605	G
57	с	1606	С
57	с	1607	G
57	С	1609	U
57	с	1611	А
57	с	1614	A
57	с	1616	G
57	с	1618	С
57	с	1619	С
57	с	1631	А
57	с	1633	А
57	с	1634	С
57	с	1635	А
57	с	1642	G
57	с	1651	А
57	с	1657	U
57	с	1658	G
57	с	1678	А
57	с	1680	G
57	с	1681	А
57	с	1683	С
57	с	1684	U
57	с	1685	G
57	с	1686	С
57	с	1687	U
57	с	1717	G
57	с	1730	A
57	с	1756	A
57	с	1757	G
57	с	1760	G
57	с	1762	А
57	с	1766	A
57	с	1769	U
57	с	1770	U

Continued from previous page...

Mol	Chain	Res	Type
57	с	1780	G
57	с	1792	G
57	с	1793	G
57	с	1794	А
57	с	1795	U
57	с	1796	С
57	с	1798	U
57	с	1799	U

All (23) RNA pucker outliers are listed below:

Mol	Chain	Res	Type		
11	AA	601	U		
11	AA	619	А		
11	AA	916	G		
11	AA	978	G		
11	AA	1016	С		
11	AA	1033	U		
11	AA	1348	U		
11	AA	1562	С		
11	AA	1904	С		
11	AA	2101	С		
11	AA	2167	А		
11	AA	2418	G		
11	AA	2458	А		
11	AA	2467	G		
11	AA	2490	С		
11	AA	2500	А		
11	AA	2501	U		
11	AA	2570	U		
11	AA	2971	A		
11	AA	3121	U		
11	AA	3206	С		
14	BB	72	А		
16	CC	89	A		

5.4 Non-standard residues in protein, DNA, RNA chains (i)

67 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and

the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Type	Chain	Bos	Link	B	ond leng	gths	Bond angles		
	Type	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
11	OMG	AA	2791	11	18,26,27	1.19	2 (11%)	19,38,41	0.83	1(5%)
57	OMG	с	1428	57	18,26,27	1.14	2 (11%)	19,38,41	0.82	1 (5%)
11	A2M	AA	1449	82,11	18,25,26	<mark>3.63</mark>	8 (44%)	18,36,39	3.42	4 (22%)
57	A2M	с	100	82,57	18,25,26	<mark>3.63</mark>	8 (44%)	18,36,39	3.31	3 (16%)
11	A2M	AA	2256	11	18,25,26	3.58	8 (44%)	18,36,39	3.57	5 (27%)
11	OMG	AA	2288	11	18,26,27	1.18	2 (11%)	19,38,41	0.79	1 (5%)
57	OMG	с	1572	57	18,26,27	1.17	2 (11%)	19,38,41	0.87	1 (5%)
57	4AC	с	1773	57	21,24,25	3.47	10 (47%)	29,34,37	1.61	5 (17%)
11	OMG	AA	1450	11	18,26,27	1.14	2 (11%)	19,38,41	0.80	1 (5%)
11	OMU	AA	1888	11	19,22,23	<mark>3.03</mark>	8 (42%)	26,31,34	1.72	5 (19%)
11	A2M	AA	2220	11	18,25,26	<mark>3.59</mark>	8 (44%)	18,36,39	3.45	4 (22%)
57	OMG	с	562	57	18,26,27	1.24	2 (11%)	19,38,41	0.80	0
11	UR3	AA	2634	11	19,22,23	2.76	7 (36%)	26,32,35	1.25	1 (3%)
57	OMC	с	414	57	19,22,23	0.62	0	26,31,34	1.08	2 (7%)
11	5MC	AA	2278	82,11	18,22,23	0.59	0	26,32,35	0.67	0
11	OMC	AA	1437	82,11	19,22,23	0.62	0	26,31,34	1.34	2 (7%)
11	OMU	AA	2347	11	19,22,23	<mark>3.00</mark>	8 (42%)	26,31,34	1.75	4 (15%)
11	OMC	AA	2948	11	19,22,23	0.61	0	26,31,34	1.03	2 (7%)
12	DDE	Aa	699	12	14,20,21	1.02	1 (7%)	14,28,30	1.17	2 (14%)
11	OMU	AA	898	11	19,22,23	3.04	8 (42%)	26,31,34	1.72	5 (19%)
11	OMG	AA	2922	11	18,26,27	1.15	2 (11%)	19,38,41	0.87	1 (5%)
11	OMC	AA	2337	11	19,22,23	0.60	0	26,31,34	0.80	1 (3%)
11	OMC	AA	2197	11,83	19,22,23	0.54	0	26,31,34	0.66	0
11	OMU	AA	2421	11	19,22,23	3.02	8 (42%)	26,31,34	1.70	5 (19%)
11	A2M	AA	2280	11	18,25,26	<mark>3.63</mark>	8 (44%)	18,36,39	3.34	4 (22%)
57	A2M	с	28	80,57	18,25,26	<mark>3.62</mark>	9 (50%)	18,36,39	<mark>3.36</mark>	4 (22%)
11	A2M	AA	1133	82,11	18,25,26	3.64	8 (44%)	18,36,39	3.32	3 (16%)
57	4AC	с	1280	57	21,24,25	<mark>3.54</mark>	10 (47%)	29,34,37	1.77	7 (24%)
57	G7M	с	1575	57	20,26,27	2.46	7 (35%)	17,39,42	1.15	1 (5%)
11	A2M	AA	2640	11	18,25,26	3.58	8 (44%)	18,36,39	3.42	4 (22%)
11	OMU	AA	2724	11	19,22,23	3.02	8 (42%)	26,31,34	1.75	5 (19%)

Mal	Turne	Chain	Dec	Tink	B	ond leng	gths	Bond angles		
	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
11	OMC	AA	2959	11	19,22,23	0.55	0	26,31,34	0.68	0
11	1MA	AA	2142	82,11	16,25,26	0.95	2 (12%)	18,37,40	1.10	2 (11%)
11	OMG	AA	805	11	$18,\!26,\!27$	1.16	2 (11%)	19,38,41	0.83	1 (5%)
11	OMC	AA	650	11	19,22,23	0.55	0	26,31,34	0.80	1 (3%)
11	A2M	AA	2281	11	18,25,26	<mark>3.69</mark>	9 (50%)	18,36,39	3.41	4 (22%)
11	OMG	AA	2793	11	18,26,27	1.21	2 (11%)	19,38,41	0.76	1 (5%)
11	A2M	AA	876	11	18,25,26	<mark>3.62</mark>	9 (50%)	18,36,39	3.40	4 (22%)
11	OMC	AA	663	11	19,22,23	0.57	0	26,31,34	0.70	0
57	A2M	с	420	57	18,25,26	<mark>3.60</mark>	8 (44%)	18,36,39	3.41	3 (16%)
57	OMG	с	1271	57	18,26,27	1.14	2 (11%)	19,38,41	0.79	0
57	MA6	с	1782	57	18,26,27	1.03	2 (11%)	19,38,41	3.50	2 (10%)
57	OMG	с	1126	57	18,26,27	1.20	2 (11%)	19,38,41	0.77	1 (5%)
57	A2M	с	541	57	18,25,26	3.62	8 (44%)	18,36,39	<mark>3.29</mark>	4 (22%)
11	A2M	AA	807	11	18,25,26	3.61	8 (44%)	18,36,39	<mark>3.36</mark>	4 (22%)
57	MA6	с	1781	57	18,26,27	1.05	2 (11%)	19,38,41	3.46	2 (10%)
11	5MC	AA	2870	11,83	18,22,23	0.65	0	26,32,35	0.59	0
11	A2M	AA	649	11	18,25,26	<mark>3.62</mark>	8 (44%)	18,36,39	<mark>3.33</mark>	4 (22%)
11	A2M	AA	817	82,11	18,25,26	<mark>3.63</mark>	8 (44%)	18,36,39	<mark>3.55</mark>	4 (22%)
57	A2M	с	974	57	18,25,26	<mark>3.62</mark>	8 (44%)	18,36,39	<mark>3.43</mark>	4 (22%)
57	OMU	с	1269	57	19,22,23	3.12	8 (42%)	26,31,34	1.67	5 (19%)
57	OMC	с	1639	82,57	19,22,23	0.56	0	26,31,34	0.67	0
11	1MA	AA	645	82,11	16,25,26	0.92	2 (12%)	18,37,40	1.03	1 (5%)
57	A2M	с	619	82,57	18,25,26	<mark>3.69</mark>	9 (50%)	18,36,39	<mark>3.39</mark>	4 (22%)
11	OMG	AA	908	11	18,26,27	1.20	2 (11%)	19,38,41	0.83	1 (5%)
57	OMC	с	1007	57	19,22,23	0.55	0	26,31,34	0.70	0
57	B8N	с	1191	57	24,29,30	<mark>3.07</mark>	8 (33%)	29,42,45	1.72	5 (17%)
57	OMU	с	578	57	19,22,23	3.06	8 (42%)	26,31,34	1.69	5 (19%)
11	OMG	AA	867	11,83	18,26,27	1.16	2 (11%)	19,38,41	0.90	2 (10%)
11	OMU	AA	2729	11	19,22,23	3.01	8 (42%)	26,31,34	1.74	4 (15%)
57	A2M	С	436	57	18,25,26	<mark>3.61</mark>	8 (44%)	18,36,39	3.37	4 (22%)
11	OMU	AA	2417	11	19,22,23	2.99	8 (42%)	26,31,34	1.72	5 (19%)
57	A2M	с	796	57	18,25,26	3.64	8 (44%)	18,36,39	<mark>3.39</mark>	3 (16%)
11	A2M	AA	2946	82,11	18,25,26	<mark>3.62</mark>	8 (44%)	18,36,39	<mark>3.31</mark>	4 (22%)
11	OMG	AA	2815	11	18,26,27	1.15	2 (11%)	19,38,41	0.88	1 (5%)
11	OMU	AA	2921	11	19,22,23	<mark>3.00</mark>	8 (42%)	26,31,34	1.71	5 (19%)
11	OMG	AA	2619	11	18,26,27	1.16	2 (11%)	19,38,41	0.82	1 (5%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
11	OMG	AA	2791	11	-	0/5/27/28	0/3/3/3
57	OMG	с	1428	57	-	3/5/27/28	0/3/3/3
11	A2M	AA	1449	82,11	-	0/5/27/28	0/3/3/3
57	A2M	с	100	82,57	-	0/5/27/28	0/3/3/3
11	A2M	AA	2256	11	-	3/5/27/28	0/3/3/3
11	OMG	AA	2288	11	-	0/5/27/28	0/3/3/3
57	OMG	с	1572	57	-	3/5/27/28	0/3/3/3
57	4AC	С	1773	57	-	3/11/29/30	0/2/2/2
11	OMG	AA	1450	11	-	3/5/27/28	0/3/3/3
11	OMU	AA	1888	11	-	0/9/27/28	0/2/2/2
11	A2M	AA	2220	11	-	1/5/27/28	0/3/3/3
57	OMG	с	562	57	-	2/5/27/28	0/3/3/3
11	UR3	AA	2634	11	-	0/7/25/26	0/2/2/2
57	OMC	с	414	57	-	3/9/27/28	0/2/2/2
11	5MC	AA	2278	82,11	-	2/7/25/26	0/2/2/2
11	OMC	AA	1437	82,11	-	5/9/27/28	0/2/2/2
11	OMU	AA	2347	11	-	1/9/27/28	0/2/2/2
11	OMC	AA	2948	11	-	4/9/27/28	0/2/2/2
12	DDE	Aa	699	12	-	12/20/21/23	0/1/1/1
11	OMU	AA	898	11	-	2/9/27/28	0/2/2/2
11	OMG	AA	2922	11	-	2/5/27/28	0/3/3/3
11	OMC	AA	2337	11	-	3/9/27/28	0/2/2/2
11	OMC	AA	2197	11,83	-	2/9/27/28	0/2/2/2
11	OMU	AA	2421	11	-	1/9/27/28	0/2/2/2
11	A2M	AA	2280	11	-	2/5/27/28	0/3/3/3
57	A2M	с	28	80,57	-	3/5/27/28	0/3/3/3
11	A2M	AA	1133	82,11	-	0/5/27/28	0/3/3/3
57	4AC	с	1280	57	-	6/11/29/30	0/2/2/2
57	G7M	с	1575	57	-	2/3/25/26	0/3/3/3
11	A2M	AA	2640	11	-	1/5/27/28	0/3/3/3
11	OMU	AA	2724	11	-	1/9/27/28	0/2/2/2
11	OMC	AA	2959	11	-	1/9/27/28	0/2/2/2
11	1MA	AA	2142	82,11	-	0/3/25/26	0/3/3/3
11	OMG	AA	805	11	-	1/5/27/28	0/3/3/3

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
11	OMC	AA	650	11	-	1/9/27/28	0/2/2/2
11	A2M	AA	2281	11	-	3/5/27/28	0/3/3/3
11	OMG	AA	2793	11	-	1/5/27/28	0/3/3/3
11	A2M	AA	876	11	-	0/5/27/28	0/3/3/3
11	OMC	AA	663	11	-	1/9/27/28	0/2/2/2
57	A2M	с	420	57	-	3/5/27/28	0/3/3/3
57	OMG	с	1271	57	-	1/5/27/28	0/3/3/3
57	MA6	с	1782	57	-	1/7/29/30	0/3/3/3
57	OMG	с	1126	57	-	1/5/27/28	0/3/3/3
57	A2M	с	541	57	-	3/5/27/28	0/3/3/3
11	A2M	AA	807	11	-	4/5/27/28	0/3/3/3
57	MA6	с	1781	57	-	0/7/29/30	0/3/3/3
11	5MC	AA	2870	11,83	-	5/7/25/26	0/2/2/2
11	A2M	AA	649	11	-	1/5/27/28	0/3/3/3
11	A2M	AA	817	82,11	-	2/5/27/28	0/3/3/3
57	A2M	с	974	57	-	0/5/27/28	0/3/3/3
57	OMU	с	1269	57	-	5/9/27/28	0/2/2/2
57	OMC	с	1639	82,57	-	0/9/27/28	0/2/2/2
11	1MA	AA	645	82,11	-	2/3/25/26	0/3/3/3
57	A2M	с	619	82,57	-	2/5/27/28	0/3/3/3
11	OMG	AA	908	11	-	3/5/27/28	0/3/3/3
57	OMC	с	1007	57	-	0/9/27/28	0/2/2/2
57	B8N	с	1191	57	-	7/16/34/35	0/2/2/2
57	OMU	с	578	57	-	0/9/27/28	0/2/2/2
11	OMG	AA	867	11,83	-	0/5/27/28	0/3/3/3
11	OMU	AA	2729	11	-	1/9/27/28	0/2/2/2
57	A2M	С	436	57	-	0/5/27/28	0/3/3/3
11	OMU	AA	2417	11	-	0/9/27/28	0/2/2/2
57	A2M	с	796	57	-	1/5/27/28	0/3/3/3
11	A2M	AA	2946	82,11	_	3/5/27/28	0/3/3/3
11	OMG	AA	2815	11	-	1/5/27/28	0/3/3/3
11	OMU	AA	2921	11	-	1/9/27/28	0/2/2/2
11	OMG	AA	2619	11	-	0/5/27/28	0/3/3/3

All (325) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
57	с	28	A2M	C3'-C4'	-9.16	1.29	1.53
11	AA	1133	A2M	C3'-C4'	-8.99	1.30	1.53
11	AA	1449	A2M	C3'-C4'	-8.99	1.30	1.53

001000	nucu jion	" proore	as page.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
57	с	619	A2M	C3'-C4'	-8.95	1.30	1.53
57	с	974	A2M	C3'-C4'	-8.94	1.30	1.53
57	с	796	A2M	C3'-C4'	-8.92	1.30	1.53
11	AA	2946	A2M	C3'-C4'	-8.89	1.30	1.53
11	AA	2280	A2M	C3'-C4'	-8.89	1.30	1.53
11	AA	876	A2M	C3'-C4'	-8.88	1.30	1.53
57	с	541	A2M	C3'-C4'	-8.86	1.30	1.53
11	AA	2220	A2M	C3'-C4'	-8.81	1.30	1.53
57	с	420	A2M	C3'-C4'	-8.80	1.30	1.53
57	с	100	A2M	C3'-C4'	-8.79	1.30	1.53
57	с	436	A2M	C3'-C4'	-8.79	1.30	1.53
11	AA	2640	A2M	C3'-C4'	-8.76	1.30	1.53
11	AA	649	A2M	C3'-C4'	-8.75	1.30	1.53
11	AA	807	A2M	C3'-C4'	-8.75	1.30	1.53
11	AA	817	A2M	C3'-C4'	-8.66	1.30	1.53
11	AA	2281	A2M	C3'-C4'	-8.58	1.31	1.53
11	AA	2256	A2M	C3'-C4'	-8.40	1.31	1.53
11	AA	2281	A2M	O4'-C1'	-8.00	1.29	1.41
57	с	1191	B8N	C6-N1	7.87	1.56	1.36
57	с	1191	B8N	C4-N3	-7.85	1.25	1.40
11	AA	817	A2M	O4'-C4'	7.71	1.62	1.45
57	с	619	A2M	O4'-C1'	-7.69	1.30	1.41
57	с	100	A2M	O4'-C4'	7.69	1.62	1.45
11	AA	2946	A2M	O4'-C4'	7.69	1.62	1.45
57	с	420	A2M	O4'-C4'	7.66	1.62	1.45
57	с	796	A2M	O4'-C4'	7.64	1.62	1.45
57	С	436	A2M	O4'-C4'	7.63	1.62	1.45
11	AA	2280	A2M	O4'-C4'	7.62	1.62	1.45
11	AA	2220	A2M	O4'-C4'	7.61	1.62	1.45
11	AA	649	A2M	O4'-C1'	-7.57	1.30	1.41
57	с	974	A2M	O4'-C4'	7.56	1.61	1.45
11	AA	2281	A2M	O4'-C4'	7.56	1.61	1.45
11	AA	807	A2M	O4'-C4'	7.55	1.61	1.45
11	AA	2256	A2M	O4'-C4'	7.54	1.61	1.45
11	AA	2256	A2M	O4'-C1'	-7.52	1.30	1.41
11	AA	1133	A2M	O4'-C4'	7.51	1.61	1.45
11	AA	2640	A2M	O4'-C4'	7.50	1.61	1.45
11	AA	876	A2M	O4'-C4'	7.48	1.61	1.45
57	с	541	A2M	O4'-C4'	7.45	1.61	1.45
57	С	28	A2M	O4'-C4'	7.44	1.61	1.45
11	AA	1449	A2M	O4'-C4'	7.43	1.61	1.45
57	c	1269	OMU	C2-N1	7.41	1.50	1.38

001111	nucu jion	i prevu	jus puge.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(Å)
11	AA	649	A2M	O4'-C4'	7.40	1.61	1.45
11	AA	817	A2M	O4'-C1'	-7.38	1.30	1.41
57	с	619	A2M	O4'-C4'	7.37	1.61	1.45
57	с	1280	4AC	C4-N3	7.33	1.45	1.32
57	с	541	A2M	O4'-C1'	-7.29	1.30	1.41
11	AA	1449	A2M	O4'-C1'	-7.27	1.30	1.41
11	AA	1133	A2M	O4'-C1'	-7.27	1.30	1.41
11	AA	807	A2M	O4'-C1'	-7.26	1.30	1.41
11	AA	2280	A2M	O4'-C1'	-7.25	1.31	1.41
57	с	796	A2M	O4'-C1'	-7.23	1.31	1.41
11	AA	876	A2M	O4'-C1'	-7.21	1.31	1.41
57	с	100	A2M	O4'-C1'	-7.20	1.31	1.41
11	AA	2347	OMU	C2-N1	7.17	1.50	1.38
57	с	1773	4AC	C4-N3	7.17	1.45	1.32
57	с	974	A2M	O4'-C1'	-7.14	1.31	1.41
57	с	436	A2M	O4'-C1'	-7.10	1.31	1.41
11	AA	2640	A2M	O4'-C1'	-7.10	1.31	1.41
57	с	578	OMU	C2-N1	7.09	1.49	1.38
11	AA	2724	OMU	C2-N1	7.09	1.49	1.38
11	AA	1888	OMU	C2-N1	7.07	1.49	1.38
11	AA	2220	A2M	O4'-C1'	-7.06	1.31	1.41
57	с	420	A2M	O4'-C1'	-7.05	1.31	1.41
11	AA	2421	OMU	C2-N1	7.03	1.49	1.38
11	AA	898	OMU	C2-N1	7.02	1.49	1.38
11	AA	2729	OMU	C2-N1	7.02	1.49	1.38
57	с	1269	OMU	C2-N3	7.00	1.50	1.38
57	с	28	A2M	O4'-C1'	-6.99	1.31	1.41
11	AA	2946	A2M	O4'-C1'	-6.98	1.31	1.41
11	AA	2417	OMU	C2-N1	6.89	1.49	1.38
57	с	1773	4AC	C6-C5	6.87	1.51	1.35
57	с	578	OMU	C2-N3	6.86	1.50	1.38
11	AA	898	OMU	C2-N3	6.84	1.50	1.38
11	AA	2921	OMU	C2-N1	6.82	1.49	1.38
11	AA	2724	OMU	C2-N3	6.78	1.50	1.38
11	AA	2921	OMU	C2-N3	6.77	1.50	1.38
11	AA	2421	OMU	C2-N3	6.70	1.49	1.38
11	AA	1888	OMU	C2-N3	6.67	1.49	1.38
11	AA	2417	OMU	C2-N3	6.65	1.49	1.38
57	С	1280	4AC	C6-C5	6.62	1.50	1.35
	AA	2729	UMU UDC	C2-N3	6.61	1.49	1.38
11	AA	2634	UR3	C6-C5	6.56	1.50	1.35
11	AA	+2347	LOMU	⊢ C2-N3	+ 6.54	1.49	1.38

OOnu	naca fron	i previe	rus puye.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
11	AA	2634	UR3	C2-N1	6.48	1.47	1.38
57	с	1191	B8N	C2-N1	5.86	1.56	1.39
57	с	1280	4AC	C7-N4	5.78	1.47	1.37
57	с	578	OMU	C6-C5	5.74	1.48	1.35
57	с	1269	OMU	C6-C5	5.73	1.48	1.35
11	AA	898	OMU	C6-C5	5.72	1.48	1.35
11	AA	2921	OMU	C6-C5	5.67	1.48	1.35
11	AA	1888	OMU	C6-C5	5.65	1.48	1.35
11	AA	2729	OMU	C6-C5	5.64	1.48	1.35
11	AA	2421	OMU	C6-C5	5.59	1.48	1.35
11	AA	2417	OMU	C6-C5	5.58	1.48	1.35
11	AA	2347	OMU	C6-C5	5.55	1.48	1.35
11	AA	2724	OMU	C6-C5	5.54	1.47	1.35
57	с	1280	4AC	C2-N1	5.51	1.51	1.40
57	с	1575	G7M	C2-N3	5.49	1.46	1.33
11	AA	2634	UR3	C2-N3	5.49	1.49	1.39
57	с	1773	4AC	C7-N4	5.47	1.47	1.37
57	С	1191	B8N	C6-C5	5.32	1.42	1.34
57	с	1280	4AC	C2-N3	5.18	1.46	1.36
57	с	1280	4AC	C4-N4	5.09	1.47	1.39
57	с	1773	4AC	C4-N4	5.07	1.47	1.39
57	с	1773	4AC	C2-N3	5.01	1.46	1.36
57	с	1773	4AC	C2-N1	4.99	1.50	1.40
57	с	1575	G7M	C4-N3	4.97	1.49	1.37
57	с	1575	G7M	C2-N2	4.77	1.45	1.34
57	с	1269	OMU	C4-N3	4.38	1.46	1.38
57	с	578	OMU	C4-N3	4.32	1.46	1.38
11	AA	1888	OMU	C4-N3	4.25	1.46	1.38
57	с	1280	4AC	CM7-C7	4.24	1.59	1.50
11	AA	2417	OMU	C4-N3	4.22	1.46	1.38
11	AA	2729	OMU	C4-N3	4.20	1.46	1.38
11	AA	2421	OMU	C4-N3	4.16	1.46	1.38
11	AA	898	OMU	C4-N3	4.12	1.45	1.38
11	AA	2921	OMU	C4-N3	4.08	1.45	1.38
11	AA	2724	OMU	C4-N3	4.08	1.45	1.38
57	С	1773	4AC	CM7-C7	4.08	1.59	1.50
57	С	1773	4AC	C5-C4	4.05	1.49	1.40
11	AA	2347	OMU	C4-N3	3.99	1.45	1.38
57	С	1280	4AC	C5-C4	3.97	1.49	1.40
57	с	1575	G7M	C6-N1	3.62	1.43	1.37
57	С	1191	B8N	C1'-C5	3.58	1.58	1.50
57	c	1575	G7M	C5-C6	3.29	1.53	1.45

Contr	naea jion	i previe	has page.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
57	с	562	OMG	C8-N7	-3.23	1.29	1.35
11	AA	2634	UR3	C6-N1	3.18	1.45	1.38
11	AA	2220	A2M	C6-N6	3.16	1.45	1.34
57	с	420	A2M	C6-N6	3.15	1.45	1.34
11	AA	2281	A2M	C6-N6	3.15	1.45	1.34
11	AA	876	A2M	C6-N6	3.14	1.45	1.34
57	с	541	A2M	C6-N6	3.14	1.45	1.34
57	с	28	A2M	C6-N6	3.13	1.45	1.34
11	AA	807	A2M	C6-N6	3.13	1.45	1.34
11	AA	2640	A2M	C6-N6	3.13	1.45	1.34
11	AA	649	A2M	C6-N6	3.13	1.45	1.34
57	с	619	A2M	C6-N6	3.12	1.45	1.34
11	AA	2256	A2M	O3'-C3'	3.12	1.50	1.43
57	с	619	A2M	O3'-C3'	3.12	1.50	1.43
11	AA	1449	A2M	C6-N6	3.12	1.45	1.34
11	AA	2256	A2M	C6-N6	3.11	1.45	1.34
57	с	100	A2M	C6-N6	3.10	1.45	1.34
11	AA	2280	A2M	C6-N6	3.10	1.45	1.34
11	AA	1133	A2M	C6-N6	3.10	1.45	1.34
57	с	796	A2M	C6-N6	3.10	1.45	1.34
57	с	436	A2M	C6-N6	3.09	1.45	1.34
57	с	541	A2M	O3'-C3'	3.09	1.50	1.43
11	AA	2946	A2M	C6-N6	3.08	1.45	1.34
11	AA	2724	OMU	O4-C4	-3.06	1.18	1.24
11	AA	817	A2M	C6-N6	3.04	1.45	1.34
57	с	1269	OMU	C6-N1	3.03	1.45	1.38
11	AA	2417	OMU	O4-C4	-3.01	1.18	1.24
11	AA	2347	OMU	O4-C4	-3.00	1.18	1.24
11	AA	1888	OMU	O4-C4	-2.99	1.18	1.24
57	с	974	A2M	C6-N6	2.99	1.45	1.34
11	AA	2421	OMU	O4-C4	-2.99	1.18	1.24
11	AA	898	OMU	O4-C4	-2.98	1.18	1.24
57	с	436	A2M	O3'-C3'	2.98	1.50	1.43
11	AA	908	OMG	C8-N7	-2.97	1.30	1.35
11	AA	807	A2M	O3'-C3'	2.97	1.50	1.43
11	AA	2921	OMU	O4-C4	-2.97	1.18	1.24
57	с	1428	OMG	C8-N7	-2.96	1.30	1.35
57	с	1572	OMG	C8-N7	-2.96	1.30	1.35
11	AA	2288	OMG	C8-N7	-2.93	1.30	1.35
11	AA	2729	OMU	O4-C4	-2.93	1.18	1.24
11	AA	817	A2M	O2'-C2'	-2.90	1.35	1.42
57	с	420	A2M	O3'-C3'	2.90	1.49	1.43

001000	nucu jion	<i>v</i> preced	rus puye.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
57	с	578	OMU	O4-C4	-2.88	1.18	1.24
11	AA	649	A2M	O3'-C3'	2.88	1.49	1.43
11	AA	2793	OMG	C8-N7	-2.87	1.30	1.35
57	с	974	A2M	C5-C4	-2.87	1.33	1.40
57	с	1126	OMG	C8-N7	-2.86	1.30	1.35
11	AA	2281	A2M	C5-C4	-2.86	1.33	1.40
11	AA	2791	OMG	C8-N7	-2.85	1.30	1.35
11	AA	876	A2M	C5-C4	-2.85	1.33	1.40
11	AA	1133	A2M	C5-C4	-2.84	1.33	1.40
57	С	100	A2M	O3'-C3'	2.83	1.49	1.43
57	с	1269	OMU	O4-C4	-2.83	1.19	1.24
11	AA	2421	OMU	C6-N1	2.82	1.44	1.38
11	AA	2619	OMG	C8-N7	-2.82	1.30	1.35
11	AA	2946	A2M	C5-C4	-2.82	1.33	1.40
57	с	796	A2M	C5-C4	-2.82	1.33	1.40
57	с	578	OMU	C6-N1	2.81	1.44	1.38
11	AA	2220	A2M	O3'-C3'	2.81	1.49	1.43
57	с	420	A2M	C5-C4	-2.81	1.33	1.40
57	с	1575	G7M	C2-N1	2.81	1.44	1.37
57	с	619	A2M	C5-C4	-2.81	1.33	1.40
11	AA	2347	OMU	C6-N1	2.80	1.44	1.38
11	AA	1888	OMU	C6-N1	2.80	1.44	1.38
11	AA	2640	A2M	O3'-C3'	2.79	1.49	1.43
57	с	974	A2M	O3'-C3'	2.79	1.49	1.43
11	AA	1450	OMG	C8-N7	-2.79	1.30	1.35
57	с	796	A2M	O3'-C3'	2.79	1.49	1.43
11	AA	2921	OMU	C6-N1	2.78	1.44	1.38
11	AA	2815	OMG	C8-N7	-2.78	1.30	1.35
57	с	100	A2M	C5-C4	-2.78	1.33	1.40
11	AA	2280	A2M	O3'-C3'	2.77	1.49	1.43
11	AA	2281	A2M	O3'-C3'	2.77	1.49	1.43
11	AA	807	A2M	C5-C4	-2.77	1.33	1.40
57	с	562	OMG	C5-C6	-2.77	1.41	1.47
57	с	974	A2M	O2'-C2'	-2.77	1.35	1.42
11	AA	817	A2M	C5-C4	-2.76	1.33	1.40
11	AA	2946	A2M	O3'-C3'	2.76	1.49	1.43
11	AA	2281	A2M	O2'-C2'	-2.75	1.35	1.42
11	AA	867	OMG	C8-N7	-2.75	1.30	1.35
11	AA	1133	A2M	O2'-C2'	-2.75	1.35	1.42
11	AA	898	OMU	C6-N1	2.74	1.44	1.38
11	AA	2417	OMU	C6-N1	2.74	1.44	1.38
11	AA	12729	OMU	C6-N1	2.74	1.44	1.38

001000	nucu jion	" preeve	as page.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
11	AA	1449	A2M	O3'-C3'	2.74	1.49	1.43
57	с	796	A2M	O2'-C2'	-2.74	1.35	1.42
11	AA	2640	A2M	C5-C4	-2.74	1.33	1.40
11	AA	2922	OMG	C8-N7	-2.73	1.30	1.35
11	AA	817	A2M	O3'-C3'	2.73	1.49	1.43
11	AA	876	A2M	O3'-C3'	2.72	1.49	1.43
11	AA	2256	A2M	C5-C4	-2.72	1.33	1.40
11	AA	805	OMG	C8-N7	-2.72	1.30	1.35
11	AA	649	A2M	C5-C4	-2.71	1.33	1.40
57	С	28	A2M	O3'-C3'	2.71	1.49	1.43
11	AA	2946	A2M	O2'-C2'	-2.70	1.35	1.42
11	AA	1449	A2M	O2'-C2'	-2.70	1.35	1.42
57	с	1271	OMG	C8-N7	-2.70	1.30	1.35
57	с	28	A2M	C5-C4	-2.70	1.33	1.40
57	С	619	A2M	O2'-C2'	-2.70	1.35	1.42
11	AA	2724	OMU	C6-N1	2.69	1.44	1.38
11	AA	2793	OMG	C5-C6	-2.69	1.41	1.47
57	с	100	A2M	O2'-C2'	-2.69	1.35	1.42
57	с	541	A2M	C5-C4	-2.68	1.33	1.40
11	AA	2280	A2M	C5-C4	-2.68	1.33	1.40
11	AA	2288	OMG	C5-C6	-2.67	1.42	1.47
11	AA	1449	A2M	C5-C4	-2.67	1.33	1.40
11	AA	876	A2M	O2'-C2'	-2.67	1.35	1.42
57	с	1782	MA6	C5-C4	-2.66	1.33	1.40
57	с	1781	MA6	C5-C4	-2.66	1.33	1.40
57	с	436	A2M	O2'-C2'	-2.65	1.35	1.42
11	AA	2791	OMG	C5-C6	-2.64	1.42	1.47
11	AA	2220	A2M	C5-C4	-2.64	1.33	1.40
11	AA	2280	A2M	O2'-C2'	-2.63	1.35	1.42
11	AA	908	OMG	C5-C6	-2.61	1.42	1.47
11	AA	807	A2M	O2'-C2'	-2.61	1.35	1.42
57	с	436	A2M	C5-C4	-2.60	1.34	1.40
57	с	28	A2M	O2'-C2'	-2.59	1.36	1.42
11	AA	649	A2M	O2'-C2'	-2.59	1.36	1.42
11	AA	1133	A2M	O3'-C3'	2.59	1.49	1.43
57	с	541	A2M	O2'-C2'	-2.58	1.36	1.42
57	с	1126	OMG	C5-C6	-2.58	1.42	1.47
11	AA	2142	1MA	C8-N7	-2.58	1.30	1.35
57	с	1572	OMG	C5-C6	-2.57	1.42	1.47
57	с	420	A2M	O2'-C2'	-2.56	1.36	1.42
57	с	1773	4AC	C6-N1	2.53	1.44	1.38
57	с	1428	LOMG	C5-C6	-2.53	1.42	1.47

001000	naca jion	" proote	a page.	••			
Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(Å)
11	AA	805	OMG	C5-C6	-2.52	1.42	1.47
11	AA	2640	A2M	O2'-C2'	-2.52	1.36	1.42
57	с	1271	OMG	C5-C6	-2.51	1.42	1.47
11	AA	867	OMG	C5-C6	-2.51	1.42	1.47
11	AA	2619	OMG	C5-C6	-2.50	1.42	1.47
57	с	1782	MA6	C2-N3	2.49	1.36	1.32
11	AA	2347	OMU	O2-C2	-2.48	1.18	1.23
57	с	578	OMU	C5-C4	2.48	1.49	1.43
11	AA	898	OMU	O2-C2	-2.47	1.18	1.23
11	AA	2220	A2M	O2'-C2'	-2.47	1.36	1.42
11	AA	2729	OMU	O2-C2	-2.46	1.18	1.23
11	AA	2724	OMU	O2-C2	-2.45	1.18	1.23
11	AA	1450	OMG	C5-C6	-2.45	1.42	1.47
11	AA	2729	OMU	C5-C4	2.44	1.49	1.43
57	с	1781	MA6	C2-N3	2.42	1.36	1.32
57	с	1280	4AC	C6-N1	2.42	1.43	1.38
11	AA	2815	OMG	C5-C6	-2.41	1.42	1.47
11	AA	2922	OMG	C5-C6	-2.40	1.42	1.47
57	с	1269	OMU	C5-C4	2.40	1.48	1.43
11	AA	2417	OMU	O2-C2	-2.39	1.18	1.23
11	AA	2421	OMU	O2-C2	-2.39	1.18	1.23
11	AA	2921	OMU	O2-C2	-2.38	1.18	1.23
11	AA	645	1MA	C5-C4	-2.36	1.37	1.43
11	AA	2921	OMU	C5-C4	2.36	1.48	1.43
11	AA	1888	OMU	C5-C4	2.34	1.48	1.43
11	AA	2421	OMU	C5-C4	2.33	1.48	1.43
11	AA	1888	OMU	O2-C2	-2.33	1.18	1.23
11	AA	898	OMU	C5-C4	2.31	1.48	1.43
57	с	1773	4AC	O7-C7	-2.31	1.18	1.23
11	AA	2347	OMU	C5-C4	2.30	1.48	1.43
57	с	1280	4AC	O7-C7	-2.30	1.18	1.23
11	AA	2142	1MA	C5-C4	-2.28	1.37	1.43
57	с	578	OMU	O2-C2	-2.25	1.18	1.23
11	AA	2417	OMU	C5-C4	2.25	1.48	1.43
12	Aa	699	DDE	CD2-NE2	2.24	1.39	1.36
57	с	1269	OMU	O2-C2	-2.23	1.19	1.23
57	с	436	A2M	C2-N3	2.22	1.35	1.32
11	AA	645	1MA	C8-N7	-2.19	1.31	1.35
11	AA	2724	OMU	C5-C4	2.18	1.48	1.43
57	С	796	A2M	C2-N3	2.18	1.35	1.32
11	AA	2640	A2M	C2-N3	2.17	1.35	1.32
57	с	541	A2M	C2-N3	2.16	1.35	1.32

Mol	Chain	Res	Type	Atoms	Z	$\operatorname{Observed}(\operatorname{\AA})$	Ideal(Å)
57	с	28	A2M	O5'-C5'	-2.16	1.39	1.44
57	с	420	A2M	C2-N3	2.16	1.35	1.32
11	AA	2256	A2M	O2'-C2'	-2.16	1.37	1.42
57	с	619	A2M	O5'-C5'	-2.15	1.39	1.44
11	AA	2220	A2M	C2-N3	2.14	1.35	1.32
11	AA	2256	A2M	C2-N3	2.14	1.35	1.32
11	AA	2280	A2M	C2-N3	2.13	1.35	1.32
11	AA	2281	A2M	C2-N3	2.13	1.35	1.32
11	AA	2946	A2M	C2-N3	2.13	1.35	1.32
57	с	28	A2M	C2-N3	2.12	1.35	1.32
57	с	100	A2M	C2-N3	2.12	1.35	1.32
11	AA	1449	A2M	C2-N3	2.12	1.35	1.32
11	AA	649	A2M	C2-N3	2.11	1.35	1.32
57	с	1575	G7M	O6-C6	-2.11	1.19	1.23
11	AA	2634	UR3	C5-C4	2.10	1.49	1.43
57	с	619	A2M	C2-N3	2.10	1.35	1.32
11	AA	876	A2M	C2-N3	2.09	1.35	1.32
11	AA	2281	A2M	O5'-C5'	-2.09	1.39	1.44
11	AA	817	A2M	C2-N3	2.08	1.35	1.32
57	с	1191	B8N	O4-C4	-2.07	1.18	1.23
11	AA	1133	A2M	O5'-C5'	-2.05	1.39	1.44
57	с	974	A2M	C2-N3	2.05	1.35	1.32
11	AA	2634	UR3	O2-C2	-2.04	1.18	1.22
11	AA	2634	UR3	C4-N3	2.03	1.45	1.40
11	AA	876	A2M	O5'-C5'	-2.03	1.39	1.44
11	AA	807	A2M	C2-N3	2.03	1.35	1.32
57	с	1191	B8N	O2-C2	-2.00	1.18	1.22
57	с	1191	B8N	C32-C31	2.00	1.56	1.52

Continued from previous page...

All (175) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
57	с	1782	MA6	N1-C6-N6	-14.09	102.23	117.06
57	с	1781	MA6	N1-C6-N6	-13.88	102.45	117.06
11	AA	817	A2M	C5-C6-N6	11.00	137.07	120.35
11	AA	2256	A2M	C5-C6-N6	10.75	136.68	120.35
11	AA	1449	A2M	C5-C6-N6	10.72	136.64	120.35
57	с	420	A2M	C5-C6-N6	10.71	136.62	120.35
57	с	974	A2M	C5-C6-N6	10.70	136.62	120.35
11	AA	2220	A2M	C5-C6-N6	10.63	136.51	120.35
11	AA	807	A2M	C5-C6-N6	10.58	136.43	120.35
11	AA	2640	A2M	C5-C6-N6	10.56	136.40	120.35

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
57	с	796	A2M	C5-C6-N6	10.55	136.38	120.35
57	с	436	A2M	C5-C6-N6	10.53	136.36	120.35
57	с	619	A2M	C5-C6-N6	10.53	136.36	120.35
11	AA	1133	A2M	C5-C6-N6	10.44	136.22	120.35
57	с	28	A2M	C5-C6-N6	10.43	136.21	120.35
11	AA	876	A2M	C5-C6-N6	10.43	136.21	120.35
11	AA	649	A2M	C5-C6-N6	10.41	136.18	120.35
57	с	100	A2M	C5-C6-N6	10.34	136.07	120.35
11	AA	2281	A2M	C5-C6-N6	10.32	136.04	120.35
57	с	541	A2M	C5-C6-N6	10.29	135.99	120.35
11	AA	2946	A2M	C5-C6-N6	10.29	135.99	120.35
11	AA	2280	A2M	C5-C6-N6	10.22	135.88	120.35
11	AA	817	A2M	N6-C6-N1	-7.59	102.83	118.57
11	AA	2256	A2M	N6-C6-N1	-7.50	103.01	118.57
57	с	974	A2M	N6-C6-N1	-7.45	103.12	118.57
11	AA	2220	A2M	N6-C6-N1	-7.34	103.34	118.57
57	с	420	A2M	N6-C6-N1	-7.32	103.38	118.57
57	с	796	A2M	N6-C6-N1	-7.31	103.40	118.57
11	AA	1449	A2M	N6-C6-N1	-7.29	103.45	118.57
11	AA	876	A2M	N6-C6-N1	-7.21	103.61	118.57
11	AA	807	A2M	N6-C6-N1	-7.20	103.62	118.57
11	AA	2640	A2M	N6-C6-N1	-7.20	103.64	118.57
57	с	619	A2M	N6-C6-N1	-7.19	103.65	118.57
57	с	436	A2M	N6-C6-N1	-7.17	103.69	118.57
57	с	100	A2M	N6-C6-N1	-7.12	103.79	118.57
11	AA	2946	A2M	N6-C6-N1	-7.11	103.81	118.57
57	с	28	A2M	N6-C6-N1	-7.06	103.91	118.57
11	AA	2281	A2M	N6-C6-N1	-7.06	103.91	118.57
11	AA	649	A2M	N6-C6-N1	-7.06	103.92	118.57
11	AA	1133	A2M	N6-C6-N1	-7.05	103.95	118.57
11	AA	2280	A2M	N6-C6-N1	-7.00	104.04	118.57
57	с	541	A2M	N6-C6-N1	-6.97	104.10	118.57
57	с	1280	4AC	CM7-C7-N4	5.87	125.45	115.29
11	AA	2256	A2M	N3-C2-N1	-5.77	119.66	128.68
57	с	796	A2M	N3-C2-N1	-5.75	119.69	128.68
57	с	1773	4AC	CM7-C7-N4	5.72	125.19	115.29
11	AA	2220	A2M	N3-C2-N1	-5.62	119.89	128.68
11	AA	1133	A2M	N3-C2-N1	-5.62	119.90	128.68
57	с	974	A2M	N3-C2-N1	-5.61	119.90	128.68
57	с	28	A2M	N3-C2-N1	-5.61	119.90	128.68
57	с	100	A2M	N3-C2-N1	-5.60	119.93	128.68
57	с	420	A2M	N3-C2-N1	-5.57	$1\overline{19.97}$	128.68

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
11	AA	876	A2M	N3-C2-N1	-5.56	119.99	128.68
11	AA	2946	A2M	N3-C2-N1	-5.54	120.01	128.68
11	AA	2281	A2M	N3-C2-N1	-5.53	120.04	128.68
57	с	541	A2M	N3-C2-N1	-5.51	120.06	128.68
11	AA	649	A2M	N3-C2-N1	-5.49	120.11	128.68
57	с	1781	MA6	N3-C2-N1	-5.47	120.13	128.68
11	AA	2640	A2M	N3-C2-N1	-5.46	120.14	128.68
11	AA	2280	A2M	N3-C2-N1	-5.46	120.14	128.68
57	с	619	A2M	N3-C2-N1	-5.45	120.15	128.68
11	AA	817	A2M	N3-C2-N1	-5.41	120.22	128.68
11	AA	2729	OMU	C4-N3-C2	-5.40	119.46	126.58
57	с	1782	MA6	N3-C2-N1	-5.38	120.28	128.68
11	AA	2347	OMU	C4-N3-C2	-5.34	119.53	126.58
57	с	436	A2M	N3-C2-N1	-5.34	120.33	128.68
11	AA	1449	A2M	N3-C2-N1	-5.33	120.35	128.68
11	AA	1888	OMU	C4-N3-C2	-5.28	119.62	126.58
11	AA	2417	OMU	C4-N3-C2	-5.28	119.62	126.58
11	AA	2921	OMU	C4-N3-C2	-5.26	119.64	126.58
11	AA	807	A2M	N3-C2-N1	-5.26	120.46	128.68
57	с	578	OMU	C4-N3-C2	-5.25	119.66	126.58
11	AA	2724	OMU	C4-N3-C2	-5.21	119.71	126.58
11	AA	2421	OMU	C4-N3-C2	-5.20	119.72	126.58
57	с	1191	B8N	C5-C4-N3	5.18	125.77	116.17
11	AA	898	OMU	C4-N3-C2	-5.16	119.77	126.58
11	AA	2634	UR3	C4-N3-C2	-4.82	120.02	124.56
57	с	1269	OMU	C4-N3-C2	-4.79	120.26	126.58
57	с	1191	B8N	C4-N3-C2	-4.58	119.67	125.46
11	AA	1437	OMC	C1'-N1-C2	4.33	128.08	118.42
11	AA	898	OMU	N3-C2-N1	4.18	120.44	114.89
11	AA	2921	OMU	N3-C2-N1	3.97	120.16	114.89
11	AA	2347	OMU	N3-C2-N1	3.95	120.13	114.89
11	AA	2724	OMU	N3-C2-N1	3.85	120.00	114.89
11	AA	2729	OMU	N3-C2-N1	3.78	119.91	114.89
57	с	578	OMU	N3-C2-N1	3.69	119.79	114.89
11	AA	2421	OMU	N3-C2-N1	3.67	119.77	114.89
11	AA	1888	OMU	N3-C2-N1	3.58	119.64	114.89
11	AA	2417	OMU	N3-C2-N1	3.54	119.58	114.89
57	с	1269	OMU	N3-C2-N1	3.52	119.56	114.89
11	AA	2417	OMU	C5-C4-N3	3.47	$120.0\overline{3}$	114.84
11	AA	2421	OMU	C5-C4-N3	3.45	120.00	114.84
11	AA	2729	$OM\overline{U}$	C5-C4-N3	$3.4\overline{4}$	$119.9\overline{8}$	114.84
11	AA	2347	OMU	C5-C4-N3	3.42	119.96	114.84

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
11	AA	1888	OMU	C5-C4-N3	3.42	119.95	114.84
11	AA	2724	OMU	C5-C4-N3	3.39	119.91	114.84
11	AA	1437	OMC	C1'-N1-C6	-3.25	113.74	120.84
57	с	578	OMU	C5-C4-N3	3.24	119.69	114.84
11	AA	2921	OMU	C5-C4-N3	3.18	119.59	114.84
11	AA	2417	OMU	O4-C4-C5	-3.17	119.58	125.16
57	с	1269	OMU	C5-C4-N3	3.17	119.58	114.84
57	с	414	OMC	C1'-N1-C2	3.17	125.49	118.42
11	AA	2948	OMC	C1'-N1-C2	3.15	125.45	118.42
11	AA	898	OMU	C5-C4-N3	3.05	119.40	114.84
11	AA	2729	OMU	O4-C4-C5	-3.03	119.82	125.16
11	AA	2724	OMU	O4-C4-C5	-3.03	119.83	125.16
11	AA	2421	OMU	O4-C4-C5	-3.01	119.86	125.16
57	с	1575	G7M	C2-N1-C6	-2.95	119.67	125.10
57	с	1191	B8N	N3-C2-N1	2.93	120.90	116.76
11	AA	2347	OMU	O4-C4-C5	-2.92	120.02	125.16
11	AA	2281	A2M	O4'-C1'-C2'	-2.90	101.55	106.59
11	AA	1888	OMU	O4-C4-C5	-2.89	120.08	125.16
57	с	1269	OMU	O4-C4-C5	-2.87	120.12	125.16
57	с	1191	B8N	O4-C4-N3	-2.86	115.12	119.98
57	с	1773	4AC	O7-C7-N4	-2.86	117.19	121.82
57	с	1280	4AC	O7-C7-N4	-2.83	117.23	121.82
57	с	1280	4AC	C6-C5-C4	2.82	120.42	116.96
57	с	578	OMU	O4-C4-C5	-2.82	120.20	125.16
11	AA	2921	OMU	O4-C4-C5	-2.79	120.26	125.16
11	AA	898	OMU	O4-C4-C5	-2.71	120.39	125.16
57	с	414	OMC	C1'-N1-C6	-2.66	115.04	120.84
11	AA	876	A2M	C1'-N9-C4	2.63	131.26	126.64
11	AA	2256	A2M	O4'-C1'-C2'	-2.63	102.03	106.59
11	AA	1449	A2M	C1'-N9-C4	2.57	131.15	126.64
57	с	1773	4AC	C5-C4-N3	-2.56	118.47	122.59
57	с	1280	4AC	O7-C7-CM7	-2.55	117.32	122.06
11	AA	867	OMG	O6-C6-C5	2.55	129.35	124.37
57	с	1280	4AC	C5-C4-N3	-2.55	118.50	122.59
11	AA	2921	OMU	O2-C2-N1	-2.51	119.45	122.79
11	AA	2948	OMC	C1'-N1-C6	-2.51	115.38	120.84
57	с	1280	4AC	O2-C2-N3	-2.47	118.32	122.33
11	AA	898	OMU	O2-C2-N1	-2.45	119.53	122.79
11	AA	2337	OMC	C1'-N1-C2	2.45	123.88	118.42
57	с	541	A2M	C1'-N9-C4	2.42	130.90	126.64
11	AA	2922	OMG	O6-C6-C5	2.42	129.10	124.37
11	AA	2724	OMU	C1'-N1-C2	2.42	121.95	117.57

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
12	Aa	699	DDE	CAU-CBW-CBI	-2.41	106.43	111.20
11	AA	2256	A2M	O2'-C2'-C1'	2.40	113.84	109.09
57	с	1773	4AC	O7-C7-CM7	-2.39	117.62	122.06
57	с	1773	4AC	C6-C5-C4	2.38	119.87	116.96
57	с	1280	4AC	C1'-N1-C2	2.35	123.67	118.42
11	AA	2280	A2M	C1'-N9-C4	2.33	130.74	126.64
57	с	436	A2M	C1'-N9-C4	2.31	130.71	126.64
11	AA	2288	OMG	O6-C6-C5	2.31	128.89	124.37
57	с	1269	OMU	C1'-N1-C2	2.30	121.73	117.57
57	с	28	A2M	C1'-N9-C4	2.29	130.66	126.64
11	AA	805	OMG	O6-C6-C5	2.28	128.82	124.37
57	с	1428	OMG	O6-C6-C5	2.27	128.80	124.37
11	AA	2619	OMG	O6-C6-C5	2.26	128.79	124.37
11	AA	2220	A2M	C1'-N9-C4	2.26	130.61	126.64
11	AA	2815	OMG	O6-C6-C5	2.26	128.78	124.37
11	AA	908	OMG	O6-C6-C5	2.25	128.77	124.37
11	AA	2142	1MA	N1-C6-N6	2.22	125.42	119.77
57	с	1572	OMG	O6-C6-C5	2.21	128.69	124.37
11	AA	817	A2M	O4'-C1'-C2'	-2.19	102.78	106.59
11	AA	645	1MA	N1-C6-N6	2.18	125.31	119.77
11	AA	2142	1MA	C5-C6-N1	-2.18	110.65	113.90
11	AA	807	A2M	C1'-N9-C4	2.17	130.46	126.64
11	AA	2417	OMU	O2-C2-N1	-2.16	119.92	122.79
11	AA	2421	OMU	O2-C2-N1	-2.14	119.94	122.79
12	Aa	699	DDE	CBW-CBI-NAD	2.13	118.00	115.28
11	AA	2640	A2M	C1'-N9-C4	2.13	130.39	126.64
11	AA	1450	OMG	O6-C6-C5	2.13	128.53	124.37
11	AA	649	A2M	C1'-N9-C4	2.11	130.35	126.64
11	AA	2946	A2M	C1'-N9-C4	2.11	130.34	126.64
57	с	974	A2M	C1'-N9-C4	2.10	130.34	126.64
11	AA	2791	OMG	O6-C6-C5	2.09	128.45	124.37
57	с	578	OMU	O2-C2-N1	-2.07	120.03	122.79
57	с	1191	B8N	C31-N3-C2	2.07	120.77	117.67
11	AA	2793	OMG	O6-C6-C5	2.04	128.36	124.37
11	AA	650	OMC	C1'-N1-C2	2.03	122.94	118.42
57	с	619	A2M	C1'-N9-C4	2.02	130.20	126.64
11	AA	1888	OMU	O2-C2-N1	-2.01	120.11	122.79
57	с	1126	OMG	O6-C6-C5	2.01	128.30	124.37
11	AA	867	OMG	C5-C6-N1	-2.00	110.42	113.95

There are no chirality outliers.

All (125) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
11	AA	649	A2M	C1'-C2'-O2'-CM'
11	AA	663	OMC	C1'-C2'-O2'-CM2
11	AA	805	OMG	C1'-C2'-O2'-CM2
11	AA	807	A2M	C1'-C2'-O2'-CM'
11	AA	898	OMU	C1'-C2'-O2'-CM2
11	AA	908	OMG	C3'-C4'-C5'-O5'
11	AA	1437	OMC	C3'-C4'-C5'-O5'
11	AA	1450	OMG	C3'-C4'-C5'-O5'
11	AA	2220	A2M	C1'-C2'-O2'-CM'
11	AA	2256	A2M	C1'-C2'-O2'-CM'
11	AA	2280	A2M	O4'-C4'-C5'-O5'
11	AA	2337	OMC	C1'-C2'-O2'-CM2
11	AA	2337	OMC	C3'-C4'-C5'-O5'
11	AA	2421	OMU	C1'-C2'-O2'-CM2
11	AA	2640	A2M	C1'-C2'-O2'-CM'
11	AA	2724	OMU	C1'-C2'-O2'-CM2
11	AA	2729	OMU	C1'-C2'-O2'-CM2
11	AA	2793	OMG	C1'-C2'-O2'-CM2
11	AA	2870	5MC	C2'-C1'-N1-C2
11	AA	2870	5MC	C2'-C1'-N1-C6
11	AA	2921	OMU	C1'-C2'-O2'-CM2
11	AA	2922	OMG	C3'-C4'-C5'-O5'
11	AA	2946	A2M	C1'-C2'-O2'-CM'
11	AA	2948	OMC	C1'-C2'-O2'-CM2
11	AA	2959	OMC	C1'-C2'-O2'-CM2
12	Aa	699	DDE	CA-CB-CG-ND1
12	Aa	699	DDE	CA-CB-CG-CD2
12	Aa	699	DDE	CAU-CAT-CE1-NE2
12	Aa	699	DDE	CBI-CBW-NCB-CAB
12	Aa	699	DDE	CBI-CBW-NCB-CAC
12	Aa	699	DDE	CBI-CBW-NCB-CAA
12	Aa	699	DDE	CAU-CBW-NCB-CAB
12	Aa	699	DDE	CAU-CBW-NCB-CAC
12	Aa	699	DDE	CAU-CBW-NCB-CAA
12	Aa	699	DDE	CAT-CAU-CBW-NCB
12	Aa	699	DDE	CE1-CAT-CAU-CBW
57	с	28	A2M	C3'-C4'-C5'-O5'
57	с	414	OMC	C1'-C2'-O2'-CM2
57	с	414	OMC	O4'-C4'-C5'-O5'
57	С	420	A2M	O4'-C4'-C5'-O5'
57	с	420	A2M	C1'-C2'-O2'-CM'
57	С	541	A2M	C4'-C5'-O5'-P
57	с	541	A2M	O4'-C4'-C5'-O5'

EMD-16729,	8CMJ
------------	------

Mol	Chain	Res	Type	Atoms
57	с	541	A2M	C3'-C4'-C5'-O5'
57	с	562	OMG	O4'-C4'-C5'-O5'
57	с	562	OMG	C3'-C4'-C5'-O5'
57	с	619	A2M	O4'-C4'-C5'-O5'
57	с	1191	B8N	O4'-C4'-C5'-O5'
57	С	1191	B8N	C3'-C4'-C5'-O5'
57	с	1191	B8N	C2'-C1'-C5-C6
57	с	1191	B8N	C31-C32-C33-C34
57	с	1191	B8N	C31-C32-C33-N34
57	с	1271	OMG	C1'-C2'-O2'-CM2
57	с	1428	OMG	C1'-C2'-O2'-CM2
57	с	1572	OMG	O4'-C4'-C5'-O5'
11	AA	807	A2M	C3'-C4'-C5'-O5'
11	AA	1450	OMG	O4'-C4'-C5'-O5'
11	AA	2280	A2M	C3'-C4'-C5'-O5'
11	AA	2337	OMC	O4'-C4'-C5'-O5'
11	AA	2946	A2M	O4'-C4'-C5'-O5'
57	с	28	A2M	O4'-C4'-C5'-O5'
57	с	414	OMC	C3'-C4'-C5'-O5'
57	с	619	A2M	C3'-C4'-C5'-O5'
57	с	1572	OMG	C3'-C4'-C5'-O5'
12	Aa	699	DDE	CAT-CAU-CBW-CBI
11	AA	645	1MA	O4'-C4'-C5'-O5'
11	AA	645	1MA	C3'-C4'-C5'-O5'
11	AA	807	A2M	O4'-C4'-C5'-O5'
11	AA	908	OMG	O4'-C4'-C5'-O5'
11	AA	2278	5MC	O4'-C4'-C5'-O5'
11	AA	2922	OMG	O4'-C4'-C5'-O5'
11	AA	2946	A2M	C3'-C4'-C5'-O5'
57	с	420	A2M	C3'-C4'-C5'-O5'
57	с	1428	OMG	O4'-C4'-C5'-O5'
57	с	1269	OMU	C3'-C2'-O2'-CM2
11	AA	1437	OMC	C2'-C1'-N1-C2
57	с	1428	OMG	C3'-C4'-C5'-O5'
11	AA	1437	OMC	O4'-C4'-C5'-O5'
11	AA	1437	OMC	C2'-C1'-N1-C6
11	AA	2278	5MC	C3'-C4'-C5'-O5'
57	с	1280	4AC	O7-C7-N4-C4
57	С	1280	4AC	CM7-C7-N4-C4
57	с	1773	4AC	O7-C7-N4-C4
57	с	1773	4AC	CM7-C7-N4-C4
11	AA	908	OMG	C4'-C5'-O5'-P

EMD-16729,	8CMJ
------------	------

Mol	Chain	Res	Type	Atoms
11	AA	2256	A2M	C4'-C5'-O5'-P
57	с	1280	4AC	C4'-C5'-O5'-P
57	с	1575	G7M	O4'-C4'-C5'-O5'
57	с	1191	B8N	N3-C31-C32-C33
57	с	1782	MA6	C4'-C5'-O5'-P
11	AA	2281	A2M	O4'-C4'-C5'-O5'
11	AA	807	A2M	C4'-C5'-O5'-P
11	AA	1450	OMG	C4'-C5'-O5'-P
57	с	1572	OMG	C4'-C5'-O5'-P
11	AA	2870	5MC	O4'-C1'-N1-C6
57	с	1269	OMU	O4'-C1'-N1-C6
11	AA	2870	5MC	O4'-C1'-N1-C2
57	с	1280	4AC	C2'-C1'-N1-C6
11	AA	2281	A2M	C3'-C2'-O2'-CM'
11	AA	817	A2M	C4'-C5'-O5'-P
57	с	1280	4AC	C2'-C1'-N1-C2
57	с	1269	OMU	C2'-C1'-N1-C6
11	AA	2870	5MC	C4'-C5'-O5'-P
11	AA	2197	OMC	C2'-C1'-N1-C6
57	с	796	A2M	O4'-C4'-C5'-O5'
11	AA	2948	OMC	C2'-C1'-N1-C6
11	AA	2197	OMC	O4'-C1'-N1-C6
57	с	1269	OMU	C2'-C1'-N1-C2
11	AA	650	OMC	O4'-C4'-C5'-O5'
57	с	1280	4AC	C3'-C4'-C5'-O5'
57	с	1191	B8N	O4'-C1'-C5-C6
11	AA	1437	OMC	C4'-C5'-O5'-P
57	с	1269	OMU	O4'-C1'-N1-C2
11	AA	817	A2M	O4'-C4'-C5'-O5'
11	AA	2256	A2M	O4'-C4'-C5'-O5'
11	AA	2948	OMC	O4'-C4'-C5'-O5'
57	с	1126	OMG	C3'-C4'-C5'-O5'
11	AA	2347	OMU	C2'-C1'-N1-C2
11	AA	2948	OMC	C2'-C1'-N1-C2
11	AA	2815	OMG	C3'-C2'-O2'-CM2
11	AA	2281	A2M	C3'-C4'-C5'-O5'
57	с	1575	G7M	C3'-C4'-C5'-O5'
57	с	1773	4AC	C2'-C1'-N1-C2
57	с	28	A2M	C4'-C5'-O5'-P
11	AA	898	OMU	C3'-C4'-C5'-O5'

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 172 ligands modelled in this entry, 171 are monoatomic - leaving 1 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Tink	Bo	ond leng	ths	В	ond ang	les
WIOI	Type	Ullalli	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
84	GTP	Aa	901	82	26,34,34	0.99	1 (3%)	32,54,54	1.59	5 (15%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
84	GTP	Aa	901	82	-	3/18/38/38	0/3/3/3

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
84	Aa	901	GTP	C6-N1	-2.97	1.33	1.37

All (5) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
84	Aa	901	GTP	PB-O3B-PG	-4.43	117.61	132.83
84	Aa	901	GTP	PA-O3A-PB	-4.25	118.25	132.83
84	Aa	901	GTP	C3'-C2'-C1'	3.25	105.86	100.98
84	Aa	901	GTP	C5-C6-N1	2.17	117.79	113.95
84	Aa	901	GTP	C8-N7-C5	2.09	106.97	102.99

There are no chirality outliers.

All (3) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
84	Aa	901	GTP	O4'-C4'-C5'-O5'
84	Aa	901	GTP	C3'-C4'-C5'-O5'
84	Aa	901	GTP	C4'-C5'-O5'-PA

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-16729. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

This section was not generated.

6.2 Central slices (i)

This section was not generated.

6.3 Largest variance slices (i)

This section was not generated.

6.4 Orthogonal standard-deviation projections (False-color) (i)

This section was not generated.

6.5 Orthogonal surface views (i)

This section was not generated.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

This section was not generated.

7.2 Volume estimate versus contour level (i)

This section was not generated.

7.3 Rotationally averaged power spectrum (i)

This section was not generated. The rotationally averaged power spectrum had issues being displayed.

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section was not generated.

