PDB ID : 3CSY
Title : Crystal structure of the trimeric prefusion Ebola virus glycoprotein in complex with a neutralizing antibody from a human survivor
Authors : Lee, J.E.; Fusco, M.L.; Hessell, A.J.; Oswald, W.B.; Burton, D.R.; Saphire, E.O.
Deposited on : 2008-04-10
Resolution : 3.40 Å (reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.
We welcome your comments at validation@mail.wwpdb.org
A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp
with specific help available everywhere you see the symbol.

The following versions of software and data (see references) were used in the production of this report:

MolProbity : 4.02b-467
Mogul : 1.7.3 (157068), CSD as539be (2018)
Xtriage (Phenix) : 1.13
EDS : trunk30967
Percentile statistics : 20171227.v01 (using entries in the PDB archive December 27th 2017)
Refmac : 5.8.0158
CCP4 : 7.0 (Gargrove)
Ideal geometry (proteins) : Engh & Huber (2001)
Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP) : trunk30967
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

X-RAY DIFFRACTION

The reported resolution of this entry is 3.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>Similar resolution (#Entries, resolution range(Å))</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{free}</td>
<td>111664</td>
<td>1928 (3.50-3.30)</td>
</tr>
<tr>
<td>Clashscore</td>
<td>122126</td>
<td>2051 (3.50-3.30)</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>120053</td>
<td>2006 (3.50-3.30)</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>120020</td>
<td>2006 (3.50-3.30)</td>
</tr>
<tr>
<td>RSRZ outliers</td>
<td>108989</td>
<td>1827 (3.50-3.30)</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for ≥ 3, 2, 1 and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq 5%$.

The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>63%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33%</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>67%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>30%</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>4%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>70%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26%</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>226</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>69%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27%</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>16%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>69%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27%</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>217</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>76%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21%</td>
</tr>
</tbody>
</table>

Continued on next page...
The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Chirality</th>
<th>Geometry</th>
<th>Clashes</th>
<th>Electron density</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NAG</td>
<td>L</td>
<td>706</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>J</td>
<td>705</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>X</td>
</tr>
</tbody>
</table>
2 Entry composition

There are 7 unique types of molecules in this entry. The entry contains 23539 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called Fab KZ52 heavy chain.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>226</td>
<td>Total C N O S Se</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1687 1059 286 334 4 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>226</td>
<td>Total C N O S Se</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1687 1059 286 334 4 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>226</td>
<td>Total C N O S Se</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1687 1059 286 334 4 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>226</td>
<td>Total C N O S Se</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1687 1059 286 334 4 4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 2 is a protein called Fab KZ52 light chain.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>217</td>
<td>Total C N O S Se</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1682 1056 281 340 4 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>217</td>
<td>Total C N O S Se</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1682 1056 281 340 4 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>217</td>
<td>Total C N O S Se</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1682 1056 281 340 4 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>217</td>
<td>Total C N O S Se</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1682 1056 281 340 4 1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Molecule 3 is a protein called Envelope glycoprotein GP1.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>I</td>
<td>236</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1707 1085 293 325 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>232</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1687 1073 289 321 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>230</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1677 1067 287 319 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>225</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1651 1052 282 313 4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
There are 72 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>16</td>
<td>TYR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>I</td>
<td>17</td>
<td>PRO</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>I</td>
<td>18</td>
<td>TYR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>I</td>
<td>19</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>I</td>
<td>20</td>
<td>VAL</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>I</td>
<td>21</td>
<td>PRO</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>I</td>
<td>22</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>I</td>
<td>23</td>
<td>TYR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>I</td>
<td>24</td>
<td>ALA</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>I</td>
<td>25</td>
<td>ILE</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>I</td>
<td>26</td>
<td>GLU</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>I</td>
<td>27</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>I</td>
<td>28</td>
<td>ARG</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>I</td>
<td>29</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>I</td>
<td>30</td>
<td>ALA</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>I</td>
<td>31</td>
<td>ARG</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>I</td>
<td>42</td>
<td>VAL</td>
<td>THR</td>
<td>ENGINEERED</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>K</td>
<td>16</td>
<td>TYR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>K</td>
<td>17</td>
<td>PRO</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>K</td>
<td>18</td>
<td>TYR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>K</td>
<td>19</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>K</td>
<td>20</td>
<td>VAL</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>K</td>
<td>21</td>
<td>PRO</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>K</td>
<td>22</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>K</td>
<td>23</td>
<td>TYR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>K</td>
<td>24</td>
<td>ALA</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>K</td>
<td>25</td>
<td>ILE</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>K</td>
<td>26</td>
<td>GLU</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>K</td>
<td>27</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>K</td>
<td>28</td>
<td>ARG</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>K</td>
<td>29</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>K</td>
<td>30</td>
<td>ALA</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>K</td>
<td>31</td>
<td>ARG</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>K</td>
<td>42</td>
<td>VAL</td>
<td>THR</td>
<td>ENGINEERED</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>K</td>
<td>230</td>
<td>VAL</td>
<td>THR</td>
<td>ENGINEERED</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>M</td>
<td>16</td>
<td>TYR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>M</td>
<td>17</td>
<td>PRO</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>M</td>
<td>18</td>
<td>TYR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>M</td>
<td>19</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>M</td>
<td>20</td>
<td>VAL</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>M</td>
<td>21</td>
<td>PRO</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>M</td>
<td>22</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>M</td>
<td>23</td>
<td>TYR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>M</td>
<td>24</td>
<td>ALA</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>M</td>
<td>25</td>
<td>ILE</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>M</td>
<td>26</td>
<td>GLU</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>M</td>
<td>27</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>M</td>
<td>28</td>
<td>ARG</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>M</td>
<td>29</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>M</td>
<td>30</td>
<td>ALA</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>M</td>
<td>31</td>
<td>ARG</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>M</td>
<td>42</td>
<td>VAL</td>
<td>THR</td>
<td>ENGINEERED</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>M</td>
<td>230</td>
<td>VAL</td>
<td>THR</td>
<td>ENGINEERED</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>O</td>
<td>16</td>
<td>TYR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>O</td>
<td>17</td>
<td>PRO</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>O</td>
<td>18</td>
<td>TYR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>O</td>
<td>19</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>O</td>
<td>20</td>
<td>VAL</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>O</td>
<td>21</td>
<td>PRO</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>O</td>
<td>22</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>O</td>
<td>23</td>
<td>TYR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>O</td>
<td>24</td>
<td>ALA</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>O</td>
<td>25</td>
<td>ILE</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>O</td>
<td>26</td>
<td>GLU</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>O</td>
<td>27</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>O</td>
<td>28</td>
<td>ARG</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>O</td>
<td>29</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>O</td>
<td>30</td>
<td>ALA</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>O</td>
<td>31</td>
<td>ARG</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>O</td>
<td>42</td>
<td>VAL</td>
<td>THR</td>
<td>ENGINEERED</td>
<td>UNP Q05320</td>
</tr>
<tr>
<td>O</td>
<td>230</td>
<td>VAL</td>
<td>THR</td>
<td>ENGINEERED</td>
<td>UNP Q05320</td>
</tr>
</tbody>
</table>

- Molecule 4 is a protein called Envelope glycoprotein GP2.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Total Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>J</td>
<td>98</td>
<td>C 746</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N 477</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O 130</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S 136</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>L</td>
<td>93</td>
<td>C 727</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N 466</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O 126</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S 132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>95</td>
<td>C 732</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N 469</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O 128</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S 132</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>P</td>
<td>93</td>
<td>C 719</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>N 462</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>O 125</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>S 129</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Molecule 5 is N-ACETYL-D-GLUCOSAMINE (three-letter code: NAG) (formula: C₉H₁₅NO₆).

![NAG](image)

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>I</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0 0</td>
</tr>
<tr>
<td>5</td>
<td>I</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0 0</td>
</tr>
<tr>
<td>5</td>
<td>J</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0 0</td>
</tr>
<tr>
<td>5</td>
<td>J</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0 0</td>
</tr>
<tr>
<td>5</td>
<td>K</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0 0</td>
</tr>
<tr>
<td>5</td>
<td>K</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0 0</td>
</tr>
<tr>
<td>5</td>
<td>L</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0 0</td>
</tr>
<tr>
<td>5</td>
<td>L</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0 0</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0 0</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0 0</td>
</tr>
<tr>
<td>5</td>
<td>N</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0 0</td>
</tr>
<tr>
<td>5</td>
<td>N</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0 0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page…

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>O</td>
<td>1</td>
<td>Total C N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>O</td>
<td>1</td>
<td>Total C N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>P</td>
<td>1</td>
<td>Total C N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>P</td>
<td>1</td>
<td>Total C N O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>P</td>
<td>1</td>
<td>Total C N O</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 6 is BETA-D-MANNOSE (three-letter code: BMA) (formula: C\textsubscript{6}H\textsubscript{12}O\textsubscript{6}).

![BMA structure](image)

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>I</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>L</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>N</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>O</td>
<td>1</td>
<td>Total C O</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page…
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>P</td>
<td>1</td>
<td>Total C O</td>
<td>11 6 5</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 7 is ALPHA-D-MANNOSE (three-letter code: MAN) (formula: C₆H₁₂O₆).
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: Fab KZ52 heavy chain

 Chain A:

- Molecule 1: Fab KZ52 heavy chain

 Chain C:

- Molecule 1: Fab KZ52 heavy chain

 Chain E:
- Molecule 1: Fab KZ52 heavy chain

Chain G:

- Molecule 2: Fab KZ52 light chain

Chain B:

- Molecule 2: Fab KZ52 light chain

Chain D:

- Molecule 2: Fab KZ52 light chain

Chain F:
• Molecule 2: Fab KZ52 light chain

Chain H:

• Molecule 3: Envelope glycoprotein GP1

Chain I:

• Molecule 3: Envelope glycoprotein GP1

Chain K:
Molecule 3: Envelope glycoprotein GP1

Chain M:

Molecule 3: Envelope glycoprotein GP1

Chain O:

Molecule 4: Envelope glycoprotein GP2
- Molecule 4: Envelope glycoprotein GP2

Chain J:

- Molecule 4: Envelope glycoprotein GP2

Chain L:

- Molecule 4: Envelope glycoprotein GP2

Chain N:

- Molecule 4: Envelope glycoprotein GP2

Chain P:
4 Data and refinement statistics

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>H 3 2</td>
<td>Depositor</td>
</tr>
<tr>
<td>Cell constants</td>
<td>273.71Å, 273.71Å, 409.43Å</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>90.00°, 90.00°, 120.00°</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>48.37 – 3.40</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>48.37 – 3.40</td>
<td>EDS</td>
</tr>
<tr>
<td>% Data completeness (in resolution range)</td>
<td>93.4 (48.37-3.40)</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>96.9 (48.37-3.40)</td>
<td>EDS</td>
</tr>
<tr>
<td>R<sub>merge</sub></td>
<td>0.14</td>
<td>Depositor</td>
</tr>
<tr>
<td>R<sub>sym</sub></td>
<td>(Not available)</td>
<td>Depositor</td>
</tr>
<tr>
<td><I/σ(I)><sup>1</sup></td>
<td>1.67 (at 3.40Å)</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Refinement program</td>
<td>PHENIX</td>
<td>Depositor</td>
</tr>
<tr>
<td>R, R<sub>free</sub></td>
<td>0.261 , 0.302</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>0.267 , 0.301</td>
<td>DCC</td>
</tr>
<tr>
<td>R<sub>free</sub> test set</td>
<td>4559 reflections (3.01%)</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Wilson B-factor (Å<sup>2</sup>)</td>
<td>95.5</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Anisotropy</td>
<td>0.075</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Bulk solvent k<sub>sol</sub> (e/Å<sup>3</sup>)</td>
<td>0.33 , 68.4</td>
<td>EDS</td>
</tr>
<tr>
<td>L-test for twinning<sup>2</sup></td>
<td><L> = 0.49, <L<sup>2</sup> > = 0.33</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Estimated twinning fraction</td>
<td>No twinning to report.</td>
<td>Xtriage</td>
</tr>
<tr>
<td>F<sub>a</sub>-Fc correlation</td>
<td>0.89</td>
<td>EDS</td>
</tr>
<tr>
<td>Total number of atoms</td>
<td>23539</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Average B, all atoms (Å<sup>2</sup>)</td>
<td>121.0</td>
<td>wwPDB-VP</td>
</tr>
</tbody>
</table>

Xtriage’s analysis on translational NCS is as follows: *The largest off-origin peak in the Patterson function is 1.98% of the height of the origin peak. No significant pseudotranslation is detected.*

¹Intensities estimated from amplitudes.

²Theoretical values of <L>, <L²> for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.
5 Model quality

5.1 Standard geometry

Bond lengths and bond angles in the following residue types are not validated in this section: BMA, NAG, MAN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0.53</td>
<td>0/1721</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>0.49</td>
<td>1/1721 (0.1%)</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>0.49</td>
<td>1/1721 (0.1%)</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>0.48</td>
<td>0/1721</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0.41</td>
<td>0/1718</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>0.37</td>
<td>0/1718</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>0.42</td>
<td>0/1718</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>0.37</td>
<td>0/1718</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>0.49</td>
<td>0/1743</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>0.44</td>
<td>0/1723</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>0.47</td>
<td>0/1712</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>0.41</td>
<td>0/1686</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>0.54</td>
<td>0/762</td>
</tr>
<tr>
<td>4</td>
<td>L</td>
<td>0.47</td>
<td>0/742</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>0.50</td>
<td>0/747</td>
</tr>
<tr>
<td>4</td>
<td>P</td>
<td>0.49</td>
<td>0/734</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0.46</td>
<td>2/23605 (0.0%)</td>
</tr>
</tbody>
</table>

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>#Chirality outliers</th>
<th>#Planarity outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0</td>
<td>4</td>
</tr>
</tbody>
</table>

All (2) bond length outliers are listed below:
All (1) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>M</td>
<td>265</td>
<td>LYS</td>
<td>N-CA-C</td>
<td>5.20</td>
<td>125.03</td>
<td>111.00</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

All (4) planarity outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>125</td>
<td>ALA</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>55</td>
<td>ASP</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>54</td>
<td>ARG</td>
<td>Peptide</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>536</td>
<td>GLY</td>
<td>Peptide</td>
</tr>
</tbody>
</table>

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>1687</td>
<td>0</td>
<td>1660</td>
<td>78</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>1687</td>
<td>0</td>
<td>1660</td>
<td>51</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>1687</td>
<td>0</td>
<td>1660</td>
<td>59</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>1687</td>
<td>0</td>
<td>1660</td>
<td>53</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1682</td>
<td>0</td>
<td>1638</td>
<td>48</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1682</td>
<td>0</td>
<td>1638</td>
<td>39</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>1682</td>
<td>0</td>
<td>1638</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>1682</td>
<td>0</td>
<td>1638</td>
<td>44</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>1707</td>
<td>0</td>
<td>1548</td>
<td>81</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>1687</td>
<td>0</td>
<td>1540</td>
<td>73</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>1677</td>
<td>0</td>
<td>1535</td>
<td>68</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>1651</td>
<td>0</td>
<td>1520</td>
<td>73</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>746</td>
<td>0</td>
<td>722</td>
<td>41</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L</td>
<td>727</td>
<td>0</td>
<td>712</td>
<td>44</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>732</td>
<td>0</td>
<td>716</td>
<td>39</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>P</td>
<td>719</td>
<td>0</td>
<td>706</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>I</td>
<td>28</td>
<td>0</td>
<td>24</td>
<td>4</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th></th>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>J</td>
<td>28</td>
<td>0</td>
<td>24</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>K</td>
<td>28</td>
<td>0</td>
<td>25</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>L</td>
<td>42</td>
<td>0</td>
<td>37</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>28</td>
<td>0</td>
<td>24</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>N</td>
<td>28</td>
<td>0</td>
<td>24</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>O</td>
<td>28</td>
<td>0</td>
<td>24</td>
<td>6</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>P</td>
<td>42</td>
<td>0</td>
<td>37</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>11</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>11</td>
<td>0</td>
<td>8</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>L</td>
<td>11</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>11</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>N</td>
<td>11</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>O</td>
<td>11</td>
<td>0</td>
<td>10</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>P</td>
<td>11</td>
<td>0</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>J</td>
<td>22</td>
<td>0</td>
<td>20</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>L</td>
<td>22</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>22</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>P</td>
<td>22</td>
<td>0</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>23539</td>
<td>0</td>
<td>22550</td>
<td>750</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 16.

All (750) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:N:563:ASN:ND2</td>
<td>5:N:701:NAG:C1</td>
<td>1.67</td>
<td>1.54</td>
</tr>
<tr>
<td>3:O:257:ASN:HD21</td>
<td>5:O:351:NAG:C1</td>
<td>0.89</td>
<td>1.53</td>
</tr>
<tr>
<td>3:K:257:ASN:ND2</td>
<td>5:K:351:NAG:C1</td>
<td>1.68</td>
<td>1.50</td>
</tr>
<tr>
<td>4:L:563:ASN:ND2</td>
<td>5:L:701:NAG:C1</td>
<td>1.70</td>
<td>1.49</td>
</tr>
<tr>
<td>3:O:257:ASN:ND2</td>
<td>5:O:351:NAG:C1</td>
<td>1.72</td>
<td>1.44</td>
</tr>
<tr>
<td>4:P:563:ASN:ND2</td>
<td>5:P:701:NAG:C1</td>
<td>2.00</td>
<td>1.23</td>
</tr>
<tr>
<td>3:I:257:ASN:CG</td>
<td>5:I:351:NAG:C1</td>
<td>2.28</td>
<td>1.02</td>
</tr>
<tr>
<td>1:A:125:ALA:HB1</td>
<td>1:A:126:PRO:HD3</td>
<td>1.43</td>
<td>0.99</td>
</tr>
<tr>
<td>1:E:93:VAL:HG11</td>
<td>1:E:100(H):PHE:HB3</td>
<td>1.58</td>
<td>0.86</td>
</tr>
<tr>
<td>4:P:561:LEU:O</td>
<td>4:P:565:THR:HG23</td>
<td>1.82</td>
<td>0.79</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:M:48:VAL:HG11</td>
<td>4:N:592:PHE:HA</td>
<td>1.64</td>
<td>0.79</td>
</tr>
<tr>
<td>1:A:35:ASN:OD1</td>
<td>1:A:50:SER:HB3</td>
<td>1.83</td>
<td>0.78</td>
</tr>
<tr>
<td>1:A:125:ALA:CB</td>
<td>1:A:126:PRO:HD3</td>
<td>2.14</td>
<td>0.78</td>
</tr>
<tr>
<td>4:N:563:ASN:CG</td>
<td>5:N:701:NAG:C1</td>
<td>2.51</td>
<td>0.78</td>
</tr>
<tr>
<td>4:N:561:LEU:O</td>
<td>4:N:565:THR:HG23</td>
<td>1.84</td>
<td>0.77</td>
</tr>
<tr>
<td>4:L:561:LEU:O</td>
<td>4:L:565:THR:HG23</td>
<td>1.85</td>
<td>0.75</td>
</tr>
<tr>
<td>1:A:125:ALA:HB1</td>
<td>1:A:126:PRO:CD</td>
<td>2.17</td>
<td>0.75</td>
</tr>
<tr>
<td>4:J:561:LEU:O</td>
<td>4:J:565:THR:HG23</td>
<td>1.86</td>
<td>0.75</td>
</tr>
<tr>
<td>3:O:257:ASN:HD21</td>
<td>5:O:351:NAG:C2</td>
<td>1.95</td>
<td>0.74</td>
</tr>
<tr>
<td>3:O:257:ASN:CG</td>
<td>5:O:351:NAG:C1</td>
<td>2.56</td>
<td>0.74</td>
</tr>
<tr>
<td>4:L:563:ASN:CG</td>
<td>5:L:701:NAG:C1</td>
<td>2.55</td>
<td>0.73</td>
</tr>
<tr>
<td>3:I:80:PRO:HG2</td>
<td>3:I:246:SER:HA</td>
<td>1.70</td>
<td>0.73</td>
</tr>
<tr>
<td>3:I:257:ASN:OD1</td>
<td>5:I:351:NAG:C1</td>
<td>2.36</td>
<td>0.73</td>
</tr>
<tr>
<td>1:E:29:LEU:CD2</td>
<td>1:E:34:MSE:SE</td>
<td>2.87</td>
<td>0.72</td>
</tr>
<tr>
<td>3:K:89:ARG:HG2</td>
<td>3:K:90:SER:N</td>
<td>2.05</td>
<td>0.70</td>
</tr>
<tr>
<td>1:G:29:LEU:CD2</td>
<td>1:G:34:MSE:SE</td>
<td>2.90</td>
<td>0.70</td>
</tr>
<tr>
<td>1:A:100(A):GLY:O</td>
<td>1:A:100(B):TYR:HB3</td>
<td>1.93</td>
<td>0.69</td>
</tr>
<tr>
<td>4:L:563:ASN:ND2</td>
<td>5:L:701:NAG:C2</td>
<td>2.55</td>
<td>0.69</td>
</tr>
<tr>
<td>3:M:80:PRO:HG2</td>
<td>3:M:246:SER:HA</td>
<td>1.75</td>
<td>0.69</td>
</tr>
<tr>
<td>4:P:563:ASN:CG</td>
<td>5:P:701:NAG:C1</td>
<td>2.61</td>
<td>0.69</td>
</tr>
<tr>
<td>3:K:89:ARG:NH1</td>
<td>4:N:536:GLY:HA3</td>
<td>2.08</td>
<td>0.69</td>
</tr>
<tr>
<td>4:J:593:LEU:HD21</td>
<td>4:N:594:LEU:HD23</td>
<td>1.73</td>
<td>0.69</td>
</tr>
<tr>
<td>1:E:100:THR:HG21</td>
<td>1:E:100(B):TYR:CE2</td>
<td>2.28</td>
<td>0.68</td>
</tr>
<tr>
<td>3:K:257:ASN:CG</td>
<td>5:K:351:NAG:C1</td>
<td>2.60</td>
<td>0.68</td>
</tr>
<tr>
<td>3:I:180:VAL:HG23</td>
<td>4:J:562:ALA:HB1</td>
<td>1.73</td>
<td>0.68</td>
</tr>
<tr>
<td>4:L:521:GLN:O</td>
<td>4:L:522:ASP:HB2</td>
<td>1.93</td>
<td>0.68</td>
</tr>
<tr>
<td>1:E:29:LEU:HD22</td>
<td>1:E:34:MSE:SE</td>
<td>2.44</td>
<td>0.67</td>
</tr>
<tr>
<td>3:O:34:PRO:HG2</td>
<td>4:P:565:THR:HG22</td>
<td>1.77</td>
<td>0.66</td>
</tr>
<tr>
<td>1:G:93:VAL:HG11</td>
<td>1:G:100(H):PHE:HB3</td>
<td>1.78</td>
<td>0.66</td>
</tr>
<tr>
<td>1:C:100:THR:HG21</td>
<td>1:C:100(B):TYR:CE2</td>
<td>2.31</td>
<td>0.66</td>
</tr>
<tr>
<td>4:J:594:LEU:HD23</td>
<td>4:L:593:LEU:HD21</td>
<td>1.78</td>
<td>0.65</td>
</tr>
<tr>
<td>1:C:82:MSE:HE1</td>
<td>1:C:109:VAL:HG21</td>
<td>1.79</td>
<td>0.65</td>
</tr>
<tr>
<td>3:K:34:PRO:HG2</td>
<td>4:L:565:THR:HG22</td>
<td>1.78</td>
<td>0.64</td>
</tr>
<tr>
<td>1:E:94:ARG:CZ</td>
<td>1:E:102:ILE:HD12</td>
<td>2.28</td>
<td>0.63</td>
</tr>
<tr>
<td>Atom-1</td>
<td>Atom-2</td>
<td>Interatomic distance (Å)</td>
<td>Clash overlap (Å)</td>
</tr>
<tr>
<td>------------------------------</td>
<td>------------------------------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>4:J:594:LEU:HD22</td>
<td>3:K:57:LEU:HD22</td>
<td>1.80</td>
<td>0.63</td>
</tr>
<tr>
<td>1:G:87:THR:HG23</td>
<td>1:G:110:THR:HA</td>
<td>1.81</td>
<td>0.63</td>
</tr>
<tr>
<td>1:E:52(A):SER:HA</td>
<td>1:E:71:ARG:HZ</td>
<td>2.29</td>
<td>0.62</td>
</tr>
<tr>
<td>1:G:34:MSE:HE3</td>
<td>1:G:94:ARG:HA</td>
<td>1.80</td>
<td>0.62</td>
</tr>
<tr>
<td>2:B:28:ASN:HB3</td>
<td>2:B:30:LYS:HG3</td>
<td>1.80</td>
<td>0.62</td>
</tr>
<tr>
<td>1:A:87:THR:HG23</td>
<td>1:A:110:THR:HA</td>
<td>1.81</td>
<td>0.61</td>
</tr>
<tr>
<td>1:C:150:GLU:HG2</td>
<td>1:C:185:TYR:CE1</td>
<td>2.35</td>
<td>0.61</td>
</tr>
<tr>
<td>1:G:100:THR:HG21</td>
<td>1:G:100(B):TYR:CE2</td>
<td>2.36</td>
<td>0.61</td>
</tr>
<tr>
<td>1:G:94:ARG:HZ</td>
<td>1:G:102:ILE:HD12</td>
<td>2.30</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:30:ILE:HG12</td>
<td>1:A:73:ASN:HB3</td>
<td>1.82</td>
<td>0.61</td>
</tr>
<tr>
<td>1:C:93:VAL:HG11</td>
<td>1:C:100(H):PHE:HB3</td>
<td>1.82</td>
<td>0.61</td>
</tr>
<tr>
<td>2:B:78:LEU:O</td>
<td>2:B:79:GLN:HB2</td>
<td>2.01</td>
<td>0.61</td>
</tr>
<tr>
<td>2:H:140:TYR:CD1</td>
<td>2:H:141:PRO:HA</td>
<td>2.36</td>
<td>0.60</td>
</tr>
<tr>
<td>3:I:97:VAL:HG22</td>
<td>4:J:573:LEU:HD21</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>1:E:87:THR:HG23</td>
<td>1:E:110:THR:HA</td>
<td>1.82</td>
<td>0.60</td>
</tr>
<tr>
<td>4:L:576:THR:HG23</td>
<td>4:L:578:GLU:HG2</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>3:O:80:PRO:HG2</td>
<td>3:O:246:SER:HA</td>
<td>1.84</td>
<td>0.60</td>
</tr>
<tr>
<td>3:I:299:ARG:O</td>
<td>3:I:300:LYS:CB</td>
<td>2.50</td>
<td>0.60</td>
</tr>
<tr>
<td>3:K:182:ALA:HB2</td>
<td>4:L:562:ALA:HA</td>
<td>1.82</td>
<td>0.60</td>
</tr>
<tr>
<td>3:O:97:VAL:HG22</td>
<td>4:P:573:LEU:HD21</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>2:F:80:ALA:HA</td>
<td>2:F:106:ILE:HD11</td>
<td>1.82</td>
<td>0.60</td>
</tr>
<tr>
<td>3:K:180:VAL:HG23</td>
<td>3:I:98:ASN:N</td>
<td>2.17</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:123:PRO:HG2</td>
<td>1:A:225:VAL:HG13</td>
<td>1.82</td>
<td>0.60</td>
</tr>
<tr>
<td>3:I:34:PRO:HG2</td>
<td>4:J:565:THR:HG22</td>
<td>1.84</td>
<td>0.60</td>
</tr>
<tr>
<td>1:E:30:ILE:HG12</td>
<td>1:E:73:ASN:HB3</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:226:GLU:HB3</td>
<td>1:A:227:PRO:HD2</td>
<td>1.83</td>
<td>0.59</td>
</tr>
<tr>
<td>3:O:70:LEU:HB3</td>
<td>3:O:75:VAL:HG21</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>1:E:100(D):MSE:HE3</td>
<td>2:F:92:TYR:O</td>
<td>2.02</td>
<td>0.59</td>
</tr>
<tr>
<td>1:G:11:LEU:HD13</td>
<td>1:G:149:PRO:HG3</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>1:E:36:TRP:O</td>
<td>1:E:48:VAL:HB</td>
<td>2.02</td>
<td>0.59</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:F:78:LEU:O</td>
<td>2:F:79:GLN:HB2</td>
<td>2.04</td>
<td>0.58</td>
</tr>
<tr>
<td>3:I:182:ALA:HB2</td>
<td>4:J:562:ALA:CA</td>
<td>2.33</td>
<td>0.58</td>
</tr>
<tr>
<td>3:K:47:ASP:O</td>
<td>3:K:48:VAL:HB</td>
<td>2.03</td>
<td>0.58</td>
</tr>
<tr>
<td>2:H:77:SER:O</td>
<td>2:H:78:LEU:HB3</td>
<td>2.04</td>
<td>0.58</td>
</tr>
<tr>
<td>2:B:140:TYR:CD1</td>
<td>2:B:141:PRO:HA</td>
<td>2.39</td>
<td>0.58</td>
</tr>
<tr>
<td>4:J:509:PRO:O</td>
<td>4:J:510:LYS:HG3</td>
<td>2.04</td>
<td>0.58</td>
</tr>
<tr>
<td>2:B:175:LEU:HD23</td>
<td>2:B:176:SER:N</td>
<td>2.17</td>
<td>0.58</td>
</tr>
<tr>
<td>2:D:37:GLN:HB2</td>
<td>2:D:47:LEU:HD11</td>
<td>1.85</td>
<td>0.57</td>
</tr>
<tr>
<td>2:D:105:GLU:HB2</td>
<td>2:D:166:GLN:NE2</td>
<td>2.19</td>
<td>0.57</td>
</tr>
<tr>
<td>4:P:560:GLN:O</td>
<td>4:P:563:ASN:HB3</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:126:PRO:HD2</td>
<td>1:A:227:PRO:HA</td>
<td>1.86</td>
<td>0.57</td>
</tr>
<tr>
<td>3:O:180:VAL:HG21</td>
<td>4:P:562:ALA:HB1</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>2:F:145:LYS:HB3</td>
<td>2:F:197:THR:HB</td>
<td>1.87</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:100(G):VAL:HG11</td>
<td>2:D:49:TYR:HB2</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>2:H:4:MSE:HE2</td>
<td>2:H:23:CYS:SG</td>
<td>2.45</td>
<td>0.56</td>
</tr>
<tr>
<td>2:D:15:LEU:HA</td>
<td>2:D:78:LEU:HD23</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:100(G):VAL:HG11</td>
<td>2:B:49:TYR:CB</td>
<td>2.36</td>
<td>0.56</td>
</tr>
<tr>
<td>3:M:175:GLU:HG2</td>
<td>2:D:176:SER:N</td>
<td>2.21</td>
<td>0.56</td>
</tr>
<tr>
<td>2:1:226:GLU:HB3</td>
<td>1:E:227:PRO:HD2</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>3:M:74:GLY:O</td>
<td>3:M:75:VAL:C</td>
<td>2.44</td>
<td>0.56</td>
</tr>
<tr>
<td>3:O:180:VAL:HG23</td>
<td>4:P:562:ALA:HB1</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>2:B:28:ASN:HB3</td>
<td>2:B:30:LYS:CG</td>
<td>2.36</td>
<td>0.55</td>
</tr>
<tr>
<td>1:C:226:GLU:HB3</td>
<td>1:C:227:PRO:HD2</td>
<td>1.87</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:150:GLU:OE1</td>
<td>1:C:151:PRO:HA</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>2:D:77:SER:O</td>
<td>2:D:78:LEU:HB3</td>
<td>2.07</td>
<td>0.55</td>
</tr>
<tr>
<td>2:H:35:TRP:CZ3</td>
<td>2:H:88:CYS:HB3</td>
<td>2.41</td>
<td>0.55</td>
</tr>
<tr>
<td>1:C:100:THR:HG23</td>
<td>4:N:552:ASP:HB3</td>
<td>1.89</td>
<td>0.55</td>
</tr>
<tr>
<td>3:K:36:GLY:O</td>
<td>3:K:185:ILE:HG22</td>
<td>2.05</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:162:ASN:HB2</td>
<td>1:A:165:ALA:HB3</td>
<td>1.87</td>
<td>0.55</td>
</tr>
<tr>
<td>2:D:134:CYS:HB2</td>
<td>2:D:148:TRP:CH2</td>
<td>2.41</td>
<td>0.55</td>
</tr>
<tr>
<td>3:O:215:SER:O</td>
<td>3:O:216:THR:CB</td>
<td>2.54</td>
<td>0.54</td>
</tr>
<tr>
<td>2:B:78:LEU:O</td>
<td>2:B:79:GLN:CB</td>
<td>2.55</td>
<td>0.54</td>
</tr>
<tr>
<td>1:G:82:MSE:HE1</td>
<td>1:G:90:TYR:CZ</td>
<td>2.42</td>
<td>0.54</td>
</tr>
<tr>
<td>3:I:45:VAL:HG21</td>
<td>4:J:504:ILE:HG23</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:4:LEU:HD11</td>
<td>1:A:102:ILE:HG22</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>3:K:57:LEU:HD23</td>
<td>3:K:57:LEU:C</td>
<td>2.28</td>
<td>0.54</td>
</tr>
<tr>
<td>3:K:57:LEU:HD22</td>
<td>4:N:594:LEU:HD22</td>
<td>1.88</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:20:LEU:HG</td>
<td>1:C:82:MSE:HE2</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>3:1:74:GLY:O</td>
<td>3:I:75:VAL:C</td>
<td>2.46</td>
<td>0.54</td>
</tr>
<tr>
<td>3:K:94:PRO:HB3</td>
<td>3:K:169:VAL:HG21</td>
<td>1.88</td>
<td>0.54</td>
</tr>
<tr>
<td>3:K:37:VAL:HA</td>
<td>3:K:185:ILE:CG2</td>
<td>2.37</td>
<td>0.54</td>
</tr>
<tr>
<td>3:O:246:SER:O</td>
<td>3:O:248:PHE:N</td>
<td>2.41</td>
<td>0.54</td>
</tr>
<tr>
<td>3:M:255:GLN:O</td>
<td>3:M:259:THR:HG23</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>3:O:97:VAL:HG12</td>
<td>3:O:98:ASN:N</td>
<td>2.22</td>
<td>0.54</td>
</tr>
<tr>
<td>3:O:45:VAL:HG21</td>
<td>4:P:504:ILE:HG23</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>1:C:52(A):SER:HA</td>
<td>1:C:71:ARG:CZ</td>
<td>2.38</td>
<td>0.54</td>
</tr>
<tr>
<td>2:H:140:TYR:CG</td>
<td>2:H:141:PRO:HA</td>
<td>2.44</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:34:MSE:HE3</td>
<td>1:A:93:VAL:O</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>3:M:220:TYR:CE2</td>
<td>3:M:244:LEU:HD11</td>
<td>2.42</td>
<td>0.53</td>
</tr>
<tr>
<td>2:B:108:ARG:NH1</td>
<td>2:B:111:ALA:HB2</td>
<td>2.38</td>
<td>0.53</td>
</tr>
<tr>
<td>3:M:180:VAL:HG23</td>
<td>4:N:562:ALA:HB1</td>
<td>1.89</td>
<td>0.53</td>
</tr>
<tr>
<td>2:B:108:ARG:NH1</td>
<td>2:B:111:ALA:HB2</td>
<td>2.23</td>
<td>0.53</td>
</tr>
<tr>
<td>4:L:521:GLN:O</td>
<td>4:L:522:ASP:CB</td>
<td>2.56</td>
<td>0.53</td>
</tr>
<tr>
<td>3:M:142:SER:O</td>
<td>3:M:221:GLN:HA</td>
<td>2.09</td>
<td>0.53</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:P:563:ASN:OD1</td>
<td>5:P:701:NAG:C1</td>
<td>2.57</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:11:LEU:HB2</td>
<td>1:E:110:THR:O</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>2:H:78:LEU:O</td>
<td>2:H:79:GLN:HB2</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>4:L:529:LEU:HB3</td>
<td>4:L:532:ILE:HD12</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>2:B:30:LYS:HD2</td>
<td>2:B:50:TRP:CD2</td>
<td>2.43</td>
<td>0.53</td>
</tr>
<tr>
<td>2:H:37:GLN:HB2</td>
<td>2:H:47:LEU:HD11</td>
<td>1.91</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:100(G):VAL:HG11</td>
<td>2:F:49:TYR:HB3</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>3:K:120:GLU:HG2</td>
<td>3:K:172:ARG:HD3</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>3:O:216:THR:O</td>
<td>3:O:216:THR:HG23</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:100(B):TYR:HZ</td>
<td>3:M:42:VAL:HG13</td>
<td>2.44</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:125:ALA:HB1</td>
<td>1:E:126:PRO:CD</td>
<td>2.38</td>
<td>0.52</td>
</tr>
<tr>
<td>1:G:162:ASN:HB2</td>
<td>1:G:165:ALA:HB3</td>
<td>1.90</td>
<td>0.52</td>
</tr>
<tr>
<td>3:M:130:ARG:O</td>
<td>3:M:162:TYR:HB3</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:125:ALA:HB2</td>
<td>1:A:225:VAL:HG11</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>1:G:29:LEU:HD22</td>
<td>1:G:34:MSE:SE</td>
<td>2.60</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:144:VAL:HB</td>
<td>1:C:187:LEU:HB3</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>2:H:15:LEU:HA</td>
<td>2:H:78:LEU:HD23</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>4:P:532:ILE:O</td>
<td>4:P:535:PHE:O</td>
<td>2.28</td>
<td>0.52</td>
</tr>
<tr>
<td>3:I:182:ALA:HB1</td>
<td>4:J:561:LEU:HD23</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>3:I:240:THR:HG21</td>
<td>3:I:267:SER:HZ</td>
<td>1.75</td>
<td>0.52</td>
</tr>
<tr>
<td>3:K:152:ALA:HB3</td>
<td>3:K:170:ILE:HG13</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:33:ARG:NE</td>
<td>1:C:95:GLU:OE2</td>
<td>2.43</td>
<td>0.52</td>
</tr>
<tr>
<td>4:J:576:THR:HG23</td>
<td>4:J:578:GLU:HG2</td>
<td>1.90</td>
<td>0.52</td>
</tr>
<tr>
<td>2:D:30:LYS:HD2</td>
<td>2:D:50:TRP:CD2</td>
<td>2.46</td>
<td>0.51</td>
</tr>
<tr>
<td>1:G:29:LEU:HD21</td>
<td>1:G:34:MSE:SE</td>
<td>2.60</td>
<td>0.51</td>
</tr>
<tr>
<td>3:M:89:ARG:HG2</td>
<td>3:M:90:SER:N</td>
<td>2.25</td>
<td>0.51</td>
</tr>
<tr>
<td>5:O:351:NAG:O4</td>
<td>5:O:352:NAG:C7</td>
<td>2.58</td>
<td>0.51</td>
</tr>
<tr>
<td>3:I:110:ASN:HB3</td>
<td>3:I:140:LYS:HG3</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>3:M:145:GLY:HA3</td>
<td>3:M:225:PHE:H</td>
<td>1.75</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:100(G):VAL:HG11</td>
<td>2:B:49:TYR:HB3</td>
<td>1.91</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:100(G):VAL:HG11</td>
<td>2:D:49:TYR:CB</td>
<td>2.39</td>
<td>0.51</td>
</tr>
<tr>
<td>1:G:108:MSE:CE</td>
<td>1:G:150:GLU:HB2</td>
<td>2.39</td>
<td>0.51</td>
</tr>
<tr>
<td>1:G:150:GLU:HG2</td>
<td>1:G:185:TYR:CE1</td>
<td>2.46</td>
<td>0.51</td>
</tr>
<tr>
<td>2:F:4:MSE:SE</td>
<td>2:F:90:GLN:HB3</td>
<td>2.60</td>
<td>0.51</td>
</tr>
<tr>
<td>3:K:232:TYR:HB3</td>
<td>3:K:244:LEU:HD12</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>3:O:89:ARG:HD3</td>
<td>3:O:90:SER:O</td>
<td>2.10</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:162:ASN:HB2</td>
<td>1:E:165:ALA:HB3</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>2:H:134:CYS:HB2</td>
<td>2:H:148:TRP:CH2</td>
<td>2.46</td>
<td>0.51</td>
</tr>
<tr>
<td>3:O:70:LEU:O</td>
<td>3:O:73:ASN:N</td>
<td>2.44</td>
<td>0.51</td>
</tr>
<tr>
<td>1:C:108:MSE:HE2</td>
<td>1:C:110:THR:OG1</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>2:B:142:ARG:O</td>
<td>2:B:143:GLU:C</td>
<td>2.48</td>
<td>0.51</td>
</tr>
<tr>
<td>2:B:27(E):SER:O</td>
<td>2:B:27(F):SER:OG</td>
<td>2.23</td>
<td>0.50</td>
</tr>
<tr>
<td>3:I:142:SER:O</td>
<td>3:I:221:GLN:HA</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>2:B:91:TYR:HA</td>
<td>2:B:96:LEU:HD22</td>
<td>1.92</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:34:MSE:SE</td>
<td>1:C:94:ARG:HG3</td>
<td>2.62</td>
<td>0.50</td>
</tr>
<tr>
<td>2:F:210:ASN:O</td>
<td>2:F:211:ARG:HB2</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>2:D:140:TYR:CD1</td>
<td>2:D:141:PRO:HA</td>
<td>2.47</td>
<td>0.50</td>
</tr>
<tr>
<td>3:K:162:TYR:CE2</td>
<td>3:K:176:PHE:HB3</td>
<td>2.47</td>
<td>0.50</td>
</tr>
<tr>
<td>3:M:133:PRO:HG2</td>
<td>4:N:518:TRP:CH2</td>
<td>2.46</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:125:ALA:CB</td>
<td>1:A:140:LEU:HB2</td>
<td>2.41</td>
<td>0.50</td>
</tr>
<tr>
<td>3:I:115:LYS:HG3</td>
<td>3:I:119:SER:HB2</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>4:N:517:TYR:CZ</td>
<td>4:N:546:GLY:HA3</td>
<td>2.46</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:125:ALA:HB1</td>
<td>1:E:126:PRO:HD2</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:67:PHE:CZ</td>
<td>1:E:82:MSE:HE2</td>
<td>2.47</td>
<td>0.50</td>
</tr>
<tr>
<td>2:F:140:TYR:CD1</td>
<td>2:F:141:PRO:HA</td>
<td>2.46</td>
<td>0.50</td>
</tr>
<tr>
<td>2:F:54:ARG:HD3</td>
<td>2:F:60:ASP:HA</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:56:TYR:CG</td>
<td>1:A:100(A):GLY:O</td>
<td>2.64</td>
<td>0.50</td>
</tr>
<tr>
<td>1:G:5:LEU:O</td>
<td>1:G:22:CYS:HA</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>4:J:595:GLN:HA</td>
<td>4:J:595:GLN:HE21</td>
<td>1.77</td>
<td>0.50</td>
</tr>
<tr>
<td>3:K:182:ALA:HB2</td>
<td>4:L:562:ALA:CA</td>
<td>2.42</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:141:GLY:HA2</td>
<td>1:A:157:TRP:CH2</td>
<td>2.46</td>
<td>0.50</td>
</tr>
<tr>
<td>2:B:125:LEU:O</td>
<td>2:B:183:LYS:HD2</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:C:87:THR:HG23</td>
<td>1:C:110:THR:HA</td>
<td>1.92</td>
<td>0.50</td>
</tr>
<tr>
<td>4:P:576:THR:HG23</td>
<td>4:P:578:GLU:HG2</td>
<td>1.94</td>
<td>0.50</td>
</tr>
<tr>
<td>2:B:37:GLN:HB2</td>
<td>2:B:47:LEU:HD11</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>3:I:114:LYS:HB3</td>
<td>3:I:118:GLY:O</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>3:M:240:THR:HG22</td>
<td>3:M:267:SER:HB3</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:51:ILE:HG23</td>
<td>1:C:51:ILE:O</td>
<td>2.12</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:100(G):VAL:HG11</td>
<td>2:F:49:TYR:CB</td>
<td>2.42</td>
<td>0.49</td>
</tr>
<tr>
<td>3:K:255:GLN:O</td>
<td>3:K:259:THR:HG23</td>
<td>2.11</td>
<td>0.49</td>
</tr>
<tr>
<td>2:F:78:LEU:O</td>
<td>2:F:79:GLN:CB</td>
<td>2.60</td>
<td>0.49</td>
</tr>
<tr>
<td>2:H:15:LEU:C</td>
<td>2:H:15:LEU:HD23</td>
<td>2.33</td>
<td>0.49</td>
</tr>
<tr>
<td>3:I:259:THR:O</td>
<td>3:I:263:SER:HB3</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>3:I:94:PRO:HD3</td>
<td>3:I:151:PHE:CE1</td>
<td>2.48</td>
<td>0.49</td>
</tr>
<tr>
<td>2:D:54:ARG:HD3</td>
<td>2:D:60:ASP:HA</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>1:G:187:LEU:HG</td>
<td>1:G:188:SER:N</td>
<td>2.27</td>
<td>0.49</td>
</tr>
<tr>
<td>4:J:593:LEU:HB3</td>
<td>4:L:593:LEU:HD13</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:108:MSE:HE2</td>
<td>1:E:110:THR:OG1</td>
<td>2.11</td>
<td>0.49</td>
</tr>
<tr>
<td>1:G:67:PHE:CE1</td>
<td>1:G:82:MSE:HB3</td>
<td>2.47</td>
<td>0.49</td>
</tr>
<tr>
<td>3:I:45:VAL:HG22</td>
<td>4:J:561:LEU:HD13</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>3:K:246:SER:O</td>
<td>3:K:248:PHE:N</td>
<td>2.46</td>
<td>0.49</td>
</tr>
<tr>
<td>3:M:120:GLU:HG2</td>
<td>3:M:172:ARG:NE</td>
<td>2.27</td>
<td>0.49</td>
</tr>
<tr>
<td>4:J:577:THR:HG23</td>
<td>4:L:582:PHE:HE2</td>
<td>1.78</td>
<td>0.49</td>
</tr>
<tr>
<td>1:C:187:LEU:HG</td>
<td>1:C:188:SER:N</td>
<td>2.27</td>
<td>0.49</td>
</tr>
<tr>
<td>1:G:50:SER:OG</td>
<td>1:G:58:HIS:HB2</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>3:I:43:LEU:HD13</td>
<td>4:L:504:ILE:HD11</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:123:PRO:CB</td>
<td>1:A:225:VAL:HG13</td>
<td>2.42</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:11:LEU:HD21</td>
<td>1:E:116:THR:HG22</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>2:H:54:ARG:HD3</td>
<td>2:H:60:ASP:HA</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>4:J:520:THR:O</td>
<td>4:J:521:GLN:CB</td>
<td>2.60</td>
<td>0.49</td>
</tr>
<tr>
<td>3:K:73:ASN:OD1</td>
<td>4:L:559:ARG:HG2</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:213:LYS:HB2</td>
<td>1:A:214:PRO:HD3</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:100(B):TYR:CD1</td>
<td>1:C:100(C):SER:N</td>
<td>2.81</td>
<td>0.48</td>
</tr>
<tr>
<td>2:F:35:TRP:CZ3</td>
<td>2:F:88:CYS:HB3</td>
<td>2.48</td>
<td>0.48</td>
</tr>
<tr>
<td>3:K:94:PRO:O</td>
<td>3:K:95:LYS:HD2</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>2:B:12:ALA:HA</td>
<td>2:B:105:GLU:O</td>
<td>2.12</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:213:LYS:HB2</td>
<td>1:C:214:PRO:HD3</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>2:D:142:ARG:HB2</td>
<td>2:D:173:TYR:CE2</td>
<td>2.49</td>
<td>0.48</td>
</tr>
<tr>
<td>4:J:532:ILE:O</td>
<td>4:J:535:PHE:O</td>
<td>2.31</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:124:LEU:HD11</td>
<td>1:A:143:LEU:HB2</td>
<td>1.95</td>
<td>0.48</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:187:LEU:HG</td>
<td>1:A:188:SER:H</td>
<td>1.77</td>
<td>0.48</td>
</tr>
<tr>
<td>2:D:12:ALA:HA</td>
<td>2:D:105:GLU:O</td>
<td>2.12</td>
<td>0.48</td>
</tr>
<tr>
<td>1:G:226:GLU:HB3</td>
<td>1:G:227:PRO:HD2</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>2:B:211:ARG:HH21</td>
<td>2:B:211:ARG:CG</td>
<td>2.25</td>
<td>0.48</td>
</tr>
<tr>
<td>2:B:8:PRO:HG2</td>
<td>2:B:10:SER:O</td>
<td>2.12</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:100:THR:HG23</td>
<td>4:L:552:ASP:HB3</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>3:K:45:VAL:HG21</td>
<td>4:L:504:ILE:HG23</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:52(A):SER:O</td>
<td>1:E:71:ARG:HD3</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:144:VAL:HB</td>
<td>1:A:187:LEU:HB3</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>2:D:78:LEU:O</td>
<td>2:D:79:GLN:HB2</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>3:O:38:ILE:HG22</td>
<td>3:O:43:LEU:HA</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>2:D:78:LEU:HD21</td>
<td>2:D:106:ILE:HG12</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:222:LYS:HG2</td>
<td>1:E:225:VAL:N</td>
<td>2.29</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:34:MSE:HE3</td>
<td>1:E:94:ARG:CA</td>
<td>2.44</td>
<td>0.47</td>
</tr>
<tr>
<td>1:G:34:MSE:HE3</td>
<td>1:G:93:VAL:O</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:70:SER:O</td>
<td>1:C:78:LEU:HD12</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:G:108:MSE:HE2</td>
<td>1:G:150:GLU:HB2</td>
<td>1.95</td>
<td>0.47</td>
</tr>
<tr>
<td>3:I:94:PRO:O</td>
<td>3:I:95:LYS:HG2</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>4:J:578:GLU:HB3</td>
<td>4:L:582:PHE:CZ</td>
<td>2.49</td>
<td>0.47</td>
</tr>
<tr>
<td>3:K:120:GLU:HG2</td>
<td>3:K:172:ARG:NH2</td>
<td>2.29</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:71:ARG:HH21</td>
<td>1:A:71:ARG:HG3</td>
<td>1.80</td>
<td>0.47</td>
</tr>
<tr>
<td>2:D:47:LEU:HA</td>
<td>2:D:58:VAL:HG21</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:125:ALA:HB2</td>
<td>1:E:225:VAL:CG1</td>
<td>2.44</td>
<td>0.47</td>
</tr>
<tr>
<td>1:G:177:VAL:O</td>
<td>1:G:185:TYR:HA</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:67:PHE:CD1</td>
<td>1:A:67:PHE:N</td>
<td>2.79</td>
<td>0.47</td>
</tr>
<tr>
<td>1:G:114:ALA:HB3</td>
<td>1:G:148:PHE:CE2</td>
<td>2.50</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:B:83:VAL:HG11</td>
<td>2:B:166:GLN:HB3</td>
<td>1.94</td>
<td>0.47</td>
</tr>
<tr>
<td>3:1:115:LYS:HB2</td>
<td>3:1:116:PRO:HD2</td>
<td>1.95</td>
<td>0.47</td>
</tr>
<tr>
<td>2:H:77:SER:O</td>
<td>2:H:78:LEU:CB</td>
<td>2.62</td>
<td>0.47</td>
</tr>
<tr>
<td>3:O:182:ALA:HB2</td>
<td>4:P:562:ALA:HB2</td>
<td>1.95</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:56:TYR:CD2</td>
<td>1:A:100(A):GLY:O</td>
<td>2.68</td>
<td>0.47</td>
</tr>
<tr>
<td>3:O:70:LEU:O</td>
<td>3:O:73:ASN:HB2</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:157:TRP:CZ3</td>
<td>1:A:208:CYS:HB3</td>
<td>2.50</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:100:THR:HG22</td>
<td>1:C:100(A):GLY:H</td>
<td>1.78</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:100:THR:HG22</td>
<td>1:C:100(A):GLY:N</td>
<td>2.30</td>
<td>0.47</td>
</tr>
<tr>
<td>2:H:149:LYS:HB2</td>
<td>2:H:193:ALA:HB3</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:122:PHE:HB3</td>
<td>2:B:121:SER:OG</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>4:L:517:TYR:CZ</td>
<td>4:L:546:GLY:HA3</td>
<td>2.49</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:96:GLY:HA3</td>
<td>1:A:100(F):ASP:OD1</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:71:ARG:NH2</td>
<td>1:E:73:ASN:OD1</td>
<td>2.48</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:34:MSE:HE3</td>
<td>1:E:94:ARG:HA</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>2:H:31:SER:HB2</td>
<td>2:H:51:ALA:HB2</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>4:P:566:THR:O</td>
<td>4:P:567:GLN:C</td>
<td>2.54</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:67:PHE:HB3</td>
<td>1:E:80:LEU:HD11</td>
<td>1.96</td>
<td>0.46</td>
</tr>
<tr>
<td>1:G:100(G):VAL:HG11</td>
<td>2:H:49:TYR:HB3</td>
<td>1.96</td>
<td>0.46</td>
</tr>
<tr>
<td>3:K:186:LEU:HB3</td>
<td>3:K:187:PRO:CD</td>
<td>2.46</td>
<td>0.46</td>
</tr>
<tr>
<td>3:O:182:ALA:HB2</td>
<td>4:P:562:ALA:CA</td>
<td>2.45</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:187:LEU:HG</td>
<td>1:A:188:SER:N</td>
<td>2.30</td>
<td>0.46</td>
</tr>
<tr>
<td>1:G:177:VAL:CG1</td>
<td>2:H:162:SER:HB2</td>
<td>2.45</td>
<td>0.46</td>
</tr>
<tr>
<td>3:K:115:LYS:HA</td>
<td>3:K:145:GLY:O</td>
<td>2.15</td>
<td>0.46</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:H:42:GLN:HG2</td>
<td>2:H:43:PRO:HD2</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>3:I:39:HIS:O</td>
<td>3:I:41:SER:N</td>
<td>2.48</td>
<td>0.46</td>
</tr>
<tr>
<td>3:O:110:ASN:HB3</td>
<td>3:O:140:LYS:HG3</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>2:D:165:GLU:O</td>
<td>2:D:166:GLN:C</td>
<td>2.54</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:119:PRO:HB3</td>
<td>1:E:147:TYR:HB3</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:G:51:ILE:HG13</td>
<td>1:G:57:ILE:HG12</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>3:K:118:GLY:O</td>
<td>3:K:119:SER:O</td>
<td>2.34</td>
<td>0.46</td>
</tr>
<tr>
<td>4:N:532:ILE:O</td>
<td>4:N:533:PRO:C</td>
<td>2.52</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:67:PHE:CE1</td>
<td>1:E:82:MSE:HB3</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>3:I:73:ASN:OD1</td>
<td>4:J:559:ARG:HG2</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>3:I:79:VAL:N</td>
<td>3:I:80:PRO:HD2</td>
<td>2.30</td>
<td>0.46</td>
</tr>
<tr>
<td>3:K:38:ILE:HG22</td>
<td>3:K:43:LEU:HA</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>3:M:45:VAL:HG21</td>
<td>4:N:504:ILE:HG23</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>4:N:549:HIS:C</td>
<td>4:N:555:ILE:HD12</td>
<td>2.36</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:100(G):VAL:HG11</td>
<td>2:B:49:TYR:HB2</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>2:H:137:ASN:N</td>
<td>2:H:138:ASN:C</td>
<td>2.54</td>
<td>0.46</td>
</tr>
<tr>
<td>3:K:136:ARG:HG2</td>
<td>3:K:137:TYR:CE1</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>3:M:38:ILE:HG22</td>
<td>3:M:43:LEU:HA</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:154:VAL:HG22</td>
<td>1:E:210:VAL:HA</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:125:ALA:CB</td>
<td>1:A:126:PRO:CD</td>
<td>2.83</td>
<td>0.46</td>
</tr>
<tr>
<td>2:B:145:LYS:HB3</td>
<td>2:B:197:THR:HB</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:C:63:VAL:HG13</td>
<td>1:C:67:PHE:CG</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>1:G:213:LYS:HB2</td>
<td>1:G:214:PRO:HD3</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>3:M:38:ILE:HG22</td>
<td>3:M:42:VAL:O</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>2:B:134:CYS:HB2</td>
<td>2:B:148:TRP:CH2</td>
<td>2.52</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:123:PRO:HB2</td>
<td>1:C:225:VAL:HG13</td>
<td>1.97</td>
<td>0.45</td>
</tr>
<tr>
<td>1:G:35:ASN:ND2</td>
<td>1:G:100(H):PHE:CE2</td>
<td>2.85</td>
<td>0.45</td>
</tr>
<tr>
<td>2:B:28:ASN:HB2</td>
<td>2:B:30:LYS:H</td>
<td>1.81</td>
<td>0.45</td>
</tr>
<tr>
<td>1:G:100(G):VAL:HG11</td>
<td>2:H:49:TYR:CB</td>
<td>2.46</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:22:CYS:SG</td>
<td>1:C:22:CYS:O</td>
<td>2.74</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:31:ASN:HB2</td>
<td>1:A:32:TYR:CD2</td>
<td>2.52</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:H:205:VAL:HG12</td>
<td>2:H:206:THR:N</td>
<td>2.32</td>
<td>0.45</td>
</tr>
<tr>
<td>3:K:79:VAL:HG21</td>
<td>3:K:220:TYR:CE2</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>2:F:28:ASN:HB3</td>
<td>2:F:30:LYS:CG</td>
<td>2.47</td>
<td>0.45</td>
</tr>
<tr>
<td>3:I:130:ARG:O</td>
<td>3:I:162:TYR:HB3</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:31:ASN:HB2</td>
<td>1:A:32:TYR:CE2</td>
<td>2.52</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:119:PRO:HB3</td>
<td>1:C:147:TYR:HB3</td>
<td>1.97</td>
<td>0.45</td>
</tr>
<tr>
<td>2:D:173:TYR:N</td>
<td>2:D:173:TYR:CD1</td>
<td>2.85</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:150:GLU:HG2</td>
<td>1:E:185:TYR:CE1</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:G:30:ILE:HB12</td>
<td>1:G:73:ASN:HB3</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:213:LYS:N</td>
<td>1:A:214:PRO:CD</td>
<td>2.79</td>
<td>0.45</td>
</tr>
<tr>
<td>1:G:141:GLY:HA3</td>
<td>1:G:190:VAL:HA</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:100(B):TYR:CD1</td>
<td>1:E:100(B):TYR:C</td>
<td>2.90</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:36:TRP:CZ3</td>
<td>1:E:92:CYS:HB3</td>
<td>2.52</td>
<td>0.45</td>
</tr>
<tr>
<td>2:F:142:ARG:O</td>
<td>2:F:143:GLU:C</td>
<td>2.54</td>
<td>0.45</td>
</tr>
<tr>
<td>3:M:259:THR:O</td>
<td>3:M:263:SER:CB</td>
<td>2.65</td>
<td>0.45</td>
</tr>
<tr>
<td>3:O:162:TYR:CE2</td>
<td>3:O:176:PHE:HB3</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:100:THR:HG21</td>
<td>4:J:552:ASP:HB3</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>2:B:47:LEU:HA</td>
<td>2:B:58:VAL:HG21</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>2:D:24:LYS:HA</td>
<td>2:D:69:THR:O</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>2:H:28:ASN:HB3</td>
<td>2:H:30:LYS:CG</td>
<td>2.47</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:36:TRP:CZ3</td>
<td>1:C:92:CYS:HB3</td>
<td>2.52</td>
<td>0.44</td>
</tr>
<tr>
<td>2:D:79:GLN:HA</td>
<td>2:D:79:GLN:OE1</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>2:B:71:PHE:N</td>
<td>2:B:71:PHE:CD2</td>
<td>2.85</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:162:ASN:HB2</td>
<td>1:C:165:ALA:HB3</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:24:ALA:HB3</td>
<td>1:C:76:ASN:ND2</td>
<td>2.32</td>
<td>0.44</td>
</tr>
<tr>
<td>2:D:77:SER:O</td>
<td>2:D:78:LEU:CB</td>
<td>2.64</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:187:LEU:HG</td>
<td>1:E:188:SER:N</td>
<td>2.32</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:100(A):GLY:O</td>
<td>1:A:100(B):TYR:CB</td>
<td>2.64</td>
<td>0.44</td>
</tr>
<tr>
<td>2:D:91:TYR:HA</td>
<td>2:D:96:LEU:CD2</td>
<td>2.47</td>
<td>0.44</td>
</tr>
<tr>
<td>1:G:212:HIS:CD2</td>
<td>1:G:214:PRO:HD2</td>
<td>2.52</td>
<td>0.44</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:O:36:GLY:O</td>
<td>3:O:185:ILE:HG22</td>
<td>2.16</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:59:TYR:CE2</td>
<td>1:C:69:ILE:HG22</td>
<td>2.52</td>
<td>0.44</td>
</tr>
<tr>
<td>4:J:531:TRP:CG</td>
<td>4:N:567:GLN:HG3</td>
<td>2.53</td>
<td>0.44</td>
</tr>
<tr>
<td>4:J:582:PHE:CEZ</td>
<td>4:N:578:GLU:HB3</td>
<td>2.53</td>
<td>0.44</td>
</tr>
<tr>
<td>2:B:14:SER:N</td>
<td>2:B:107:LYS:HB3</td>
<td>2.31</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:82:MSE:CE</td>
<td>1:C:109:VAL:HG21</td>
<td>2.46</td>
<td>0.44</td>
</tr>
<tr>
<td>2:D:13:VAL:CG1</td>
<td>2:D:17:GLU:HB3</td>
<td>2.47</td>
<td>0.44</td>
</tr>
<tr>
<td>3:K:48:VAL:HG11</td>
<td>4:L:592:PHE:HA</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>3:M:133:PRO:C</td>
<td>3:M:134:ARG:HD3</td>
<td>2.38</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:100:THR:HG23</td>
<td>4:L:553:GLY:H</td>
<td>1.83</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:213:LYS:N</td>
<td>1:E:214:PRO:CD</td>
<td>2.81</td>
<td>0.44</td>
</tr>
<tr>
<td>2:F:13:VAL:CG1</td>
<td>2:F:17:GLU:HB3</td>
<td>2.48</td>
<td>0.44</td>
</tr>
<tr>
<td>3:I:126:PRO:O</td>
<td>3:I:127:ASP:C</td>
<td>2.55</td>
<td>0.44</td>
</tr>
<tr>
<td>3:I:221:GLN:HG3</td>
<td>3:I:241:TYR:HE2</td>
<td>1.82</td>
<td>0.44</td>
</tr>
<tr>
<td>3:K:248:PHE:HE1</td>
<td>3:K:252:PHE:CE2</td>
<td>2.35</td>
<td>0.44</td>
</tr>
<tr>
<td>4:L:551:GLN:O</td>
<td>4:L:552:ASP:HB2</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:18:LEU:HD23</td>
<td>1:E:19:ARG:H</td>
<td>1.83</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:36:TRP:CH2</td>
<td>1:E:92:CYS:HB3</td>
<td>2.52</td>
<td>0.44</td>
</tr>
<tr>
<td>2:H:123:GLU:HA</td>
<td>2:H:126:LYS:HE2</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>3:I:220:TYR:CE2</td>
<td>3:I:244:LEU:HD11</td>
<td>2.52</td>
<td>0.44</td>
</tr>
<tr>
<td>3:J:74:GLY:O</td>
<td>3:I:75:VAL:O</td>
<td>2.35</td>
<td>0.44</td>
</tr>
<tr>
<td>3:I:97:VAL:HG23</td>
<td>4:I:573:LEU:HD11</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>3:O:133:PRO:HG2</td>
<td>4:P:518:TRP:CH2</td>
<td>2.53</td>
<td>0.44</td>
</tr>
<tr>
<td>3:O:133:PRO:HG2</td>
<td>4:P:518:TRP:CH2</td>
<td>2.53</td>
<td>0.44</td>
</tr>
<tr>
<td>4:N:576:THR:HG22</td>
<td>4:N:577:THR:N</td>
<td>2.33</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:29:LEU:HD21</td>
<td>1:C:34:MSE:HE2</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>1:G:52(A):SER:HA</td>
<td>1:G:71:ARG:CE</td>
<td>2.48</td>
<td>0.44</td>
</tr>
<tr>
<td>1:G:100(G):VAL:HG21</td>
<td>2:H:46:LEU:HD21</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>4:L:574:ARG:HD3</td>
<td>4:N:542:ILE:HG22</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>2:B:18:ARG:HG3</td>
<td>2:B:19:ALA:N</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:38:ARG:HD2</td>
<td>1:E:48:VAL:CG2</td>
<td>2.47</td>
<td>0.43</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:K:133:PRO:HG2</td>
<td>4:L:518:TRP:CH2</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>3:M:57:LEU:HG</td>
<td>3:M:185:ILE:HD11</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>3:M:246:SER:O</td>
<td>3:M:247:ARG:C</td>
<td>2.56</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:144:VAL:HB</td>
<td>1:E:187:LEU:HB3</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>3:K:90:SER:HB3</td>
<td>3:K:150:ASP:H</td>
<td>1.83</td>
<td>0.43</td>
</tr>
<tr>
<td>3:K:43:LEU:HG</td>
<td>4:L:504:ILE:HD11</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>4:L:592:PHE:O</td>
<td>4:L:595:GLN:HB2</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:12:VAL:HG22</td>
<td>1:C:13:LYS:N</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>2:F:159:SER:HA</td>
<td>2:F:178:THR:O</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>2:H:78:LEU:O</td>
<td>2:H:79:GLN:CB</td>
<td>2.65</td>
<td>0.43</td>
</tr>
<tr>
<td>3:I:97:VAL:CG2</td>
<td>4:J:573:LEU:HD11</td>
<td>2.49</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:124:LEU:HD13</td>
<td>2:B:133:VAL:HG21</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>2:B:158:ASN:ND2</td>
<td>2:B:179:LEU:HD11</td>
<td>2.34</td>
<td>0.43</td>
</tr>
<tr>
<td>2:D:28:ASN:HB3</td>
<td>2:D:30:LYS:CG</td>
<td>2.47</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:213:LYS:HB2</td>
<td>1:E:214:PRO:HD3</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:G:93:VAL:CG1</td>
<td>1:G:100(H):PHE:HB3</td>
<td>2.48</td>
<td>0.43</td>
</tr>
<tr>
<td>3:I:133:PRO:HG2</td>
<td>4:J:518:TRP:CZ3</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>3:K:79:VAL:HB</td>
<td>3:K:80:PRO:HD3</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>4:L:554:LEU:O</td>
<td>4:L:558:LEU:HG</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:94:ARG:CZ</td>
<td>1:A:102:ILE:HD12</td>
<td>2.49</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:36:TRP:NE1</td>
<td>1:A:80:LEU:HB2</td>
<td>2.33</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:100(G):VAL:HG13</td>
<td>2:D:91:TYR:CZ</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:G:123:PRO:O</td>
<td>2:H:121:SER:HB3</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:G:197:SER:HA</td>
<td>1:G:200:THR:HG22</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>3:I:254:LEU:O</td>
<td>3:I:257:ASN:HB3</td>
<td>2.17</td>
<td>0.43</td>
</tr>
<tr>
<td>3:M:185:ILE:HG23</td>
<td>3:M:185:ILE:O</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:99:ALA:HB2</td>
<td>1:C:100(F):ASP:N</td>
<td>2.34</td>
<td>0.43</td>
</tr>
<tr>
<td>4:J:553:GLY:O</td>
<td>4:J:554:LEU:C</td>
<td>2.57</td>
<td>0.43</td>
</tr>
<tr>
<td>3:K:145:GLY:HA3</td>
<td>3:K:225:PHE:H</td>
<td>1.82</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:53:SER:HG</td>
<td>4:N:552:ASP:CG</td>
<td>2.21</td>
<td>0.43</td>
</tr>
<tr>
<td>3:O:86:TRP:CD1</td>
<td>3:O:86:TRP:N</td>
<td>2.85</td>
<td>0.43</td>
</tr>
<tr>
<td>2:B:166:GLN:HG2</td>
<td>2:B:171:SER:HA</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:82:MSE:HE1</td>
<td>1:E:90:TYR:CZ</td>
<td>2.53</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:F:35:TRP:CD2</td>
<td>2:F:73:LEU:HB2</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>2:H:145:LYS:HB3</td>
<td>2:H:197:THR:HB</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>3:I:158:ALA:HB2</td>
<td>5:J:701:NAG:H81</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>3:I:183:PHE:HB3</td>
<td>4:J:585:LEU:HD21</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>3:O:118:GLY:O</td>
<td>3:O:119:SER:C</td>
<td>2.56</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:93:VAL:CG1</td>
<td>1:A:100(H):PHE:HB3</td>
<td>2.49</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:67:PHE:CD1</td>
<td>1:E:67:PHE:N</td>
<td>2.85</td>
<td>0.43</td>
</tr>
<tr>
<td>2:H:50:TRP:O</td>
<td>2:H:51:ALA:HB3</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:100:THR:CG2</td>
<td>4:L:552:ASP:HB3</td>
<td>2.49</td>
<td>0.43</td>
</tr>
<tr>
<td>3:M:224:GLY:O</td>
<td>3:M:230:VAL:HG12</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>3:O:125:ALA:HA</td>
<td>3:O:126:PRO:HD3</td>
<td>1.93</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:124:LEU:CD1</td>
<td>1:A:143:LEU:HB2</td>
<td>2.49</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:125:ALA:CB</td>
<td>1:A:225:VAL:HG11</td>
<td>2.48</td>
<td>0.43</td>
</tr>
<tr>
<td>1:G:213:LYS:N</td>
<td>1:G:214:PRO:CD</td>
<td>2.82</td>
<td>0.43</td>
</tr>
<tr>
<td>3:I:139:HIS:N</td>
<td>3:I:139:HIS:CD2</td>
<td>2.87</td>
<td>0.43</td>
</tr>
<tr>
<td>3:K:94:PRO:HD3</td>
<td>3:K:151:PHE:CE1</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>3:O:154:HIS:CD2</td>
<td>3:O:158:ALA:HB3</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>3:O:152:ALA:HG12</td>
<td>3:I:231:GLU:N</td>
<td>2.34</td>
<td>0.43</td>
</tr>
<tr>
<td>3:O:152:ALA:HB3</td>
<td>3:O:170:I:LE:HG13</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:126:PRO:HG3</td>
<td>1:A:140:LEU:HD13</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:67:PHE:HB3</td>
<td>1:A:80:LEU:HD11</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:121:VAL:HG21</td>
<td>1:C:210:VAL:HG21</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:125:ALA:HB2</td>
<td>1:E:225:VAL:HG13</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>2:F:120:PRO:HG3</td>
<td>2:F:186:TYR:CZ</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>4:L:582:PHE:HE2</td>
<td>4:N:577:THR:HG23</td>
<td>1.83</td>
<td>0.42</td>
</tr>
<tr>
<td>3:K:215:SER:OG</td>
<td>3:K:216:THR:N</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>4:L:570:GLN:HG2</td>
<td>4:N:533:PRO:HD3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:98:ARG:HG2</td>
<td>4:P:506:ASN:HB3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:124:LEU:CD1</td>
<td>2:B:133:VAL:HG21</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:129:PRO:O</td>
<td>2:B:121:SER:HB3</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:2:VAL:HG22</td>
<td>1:C:26:GLY:HA3</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>2:D:150:VAL:HG13</td>
<td>2:D:192:TYR:CE1</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:12:VAL:HG22</td>
<td>1:G:13:LYS:O</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>2:B:28:ASN:OD1</td>
<td>2:B:28:ASN:N</td>
<td>2.48</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:67:PHE:N</td>
<td>1:C:67:PHE:CD1</td>
<td>2.87</td>
<td>0.42</td>
</tr>
<tr>
<td>2:D:137:ASN:O</td>
<td>2:D:138:ASN:C</td>
<td>2.58</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:15:GLY:HA3</td>
<td>1:G:19:ARG:HB2</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:200:THR:HG23</td>
<td>1:E:203:GLN:H</td>
<td>1.84</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:51:ILE:O</td>
<td>1:G:51:ILE:HG23</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>2:H:30:LYS:HD2</td>
<td>2:H:50:TRP:CD2</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>4:J:574:ARG:CZ</td>
<td>4:L:537:PRO:HG2</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:141:GLY:HA3</td>
<td>1:A:189:SER:O</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>2:D:151:ASP:O</td>
<td>2:D:152:ASN:HB2</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>3:K:70:LEU:HB3</td>
<td>3:K:75:VAL:HG21</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>3:M:37:VAL:HG22</td>
<td>3:M:185:ILE:CG2</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>2:B:140:TYR:CG</td>
<td>2:B:141:PRO:HA</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>2:D:105:GLU:HB2</td>
<td>2:D:166:GLN:HE22</td>
<td>1.83</td>
<td>0.42</td>
</tr>
<tr>
<td>2:F:125:LEU:HD23</td>
<td>2:F:130:ALA:HB2</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>2:B:15:LEU:HD23</td>
<td>2:B:15:LEU:C</td>
<td>2.39</td>
<td>0.42</td>
</tr>
<tr>
<td>2:D:210:ASN:O</td>
<td>2:D:211:ARG:HB2</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>2:H:108:ARG:NH2</td>
<td>2:H:111:ALA:HB2</td>
<td>2.33</td>
<td>0.42</td>
</tr>
<tr>
<td>3:I:63:LEU:HB3</td>
<td>4:J:585:LEU:HD13</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>3:M:79:VAL:N</td>
<td>3:M:80:PRO:CD</td>
<td>2.82</td>
<td>0.42</td>
</tr>
<tr>
<td>2:B:91:TYR:HA</td>
<td>2:B:96:LEU:CD2</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:56:TYR:HB2</td>
<td>1:C:100(A):GLY:HA3</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:207:ILE:HG12</td>
<td>1:G:222:LYS:HA</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:12:VAL:HG22</td>
<td>1:A:13:LYS:O</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:32:TYR:N</td>
<td>1:A:32:TYR:CD2</td>
<td>2.87</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:150:GLU:HG2</td>
<td>1:C:185:TYR:CD1</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>2:D:155:GLN:O</td>
<td>2:D:156:SER:HB3</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:33:ARG:HG3</td>
<td>1:G:52:SER:HA</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>4:J:522:ASP:O</td>
<td>4:J:524:GLY:N</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>3:O:38:ILE:HD11</td>
<td>3:O:186:LEU:CD2</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>4:P:509:PRO:O</td>
<td>4:P:510:LYS:HG3</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:108:MSE:HG2</td>
<td>1:C:109:VAL:N</td>
<td>2.34</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:D:28:ASN:HB2</td>
<td>2:D:30:LYS:H</td>
<td>1.85</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:123:PRO:HB3</td>
<td>1:E:225:VAL:HG22</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:30:ILE:H</td>
<td>1:G:30:ILE:HG13</td>
<td>1.73</td>
<td>0.42</td>
</tr>
<tr>
<td>1:G:36:TRP:CH2</td>
<td>1:G:92:CYS:HB3</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>4:L:575:ALA:O</td>
<td>3:M:164:ARG:NH1</td>
<td>2.53</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:24:ALA:HB1</td>
<td>1:A:27:PHE:CE2</td>
<td>2.54</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:7:SER:HB2</td>
<td>1:A:21:SER:OG</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:50:PRO:HG2</td>
<td>2:B:62:PHE:CD1</td>
<td>2.54</td>
<td>0.41</td>
</tr>
<tr>
<td>3:M:94:PRO:HD3</td>
<td>3:M:151:PHE:CE1</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:150:GLU:OE1</td>
<td>1:A:151:PRO:HA</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:71:ARG:NH2</td>
<td>1:A:73:ASN:OD1</td>
<td>2.53</td>
<td>0.41</td>
</tr>
<tr>
<td>2:D:27(D):TYR:CD2</td>
<td>2:D:27(F):SER:HB2</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:G:2:VAL:HG11</td>
<td>1:G:102:ILE:CD1</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>3:I:38:ILE:HD11</td>
<td>3:I:186:LEU:CD2</td>
<td>2.46</td>
<td>0.41</td>
</tr>
<tr>
<td>3:K:78:ASP:O</td>
<td>3:K:79:VAL:C</td>
<td>2.58</td>
<td>0.41</td>
</tr>
<tr>
<td>3:K:79:VAL:N</td>
<td>3:K:80:PRO:CD</td>
<td>2.83</td>
<td>0.41</td>
</tr>
<tr>
<td>3:M:79:VAL:HG21</td>
<td>3:M:220:TYR:CZ</td>
<td>2.54</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:28:THR:HG22</td>
<td>1:A:30:ILE:HG13</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:137:ASN:O</td>
<td>2:B:138:ASN:C</td>
<td>2.59</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:211:ARG:CG</td>
<td>2:B:211:ARG:NH2</td>
<td>2.83</td>
<td>0.41</td>
</tr>
<tr>
<td>2:D:166:GLN:OE1</td>
<td>2:D:171:SER:HB3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:213:LYS:N</td>
<td>1:E:214:PRO:HD2</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:27:PHE:HE1</td>
<td>1:E:29:LEU:HD23</td>
<td>1.85</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:50:TYR:OH</td>
<td>1:E:68:THR:HA</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>3:I:38:ILE:HG22</td>
<td>3:I:43:LEU:HG</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>3:K:97:VAL:HG23</td>
<td>4:L:573:LEU:HD11</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:36:TYR:CE2</td>
<td>2:B:46:LEU:HD13</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:80:ALA:HA</td>
<td>2:B:106:ILE:HD11</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:164:GLY:O</td>
<td>1:E:167:THR:HG23</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>2:H:79:GLN:OE1</td>
<td>2:H:79:GLN:HA</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>3:M:113:ILE:CD1</td>
<td>3:M:225:PHE:CD2</td>
<td>3.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:1:GLU:HB1</td>
<td>1:C:2:VAL:H</td>
<td>1.65</td>
<td>0.41</td>
</tr>
<tr>
<td>2:D:35:TRP:HB2</td>
<td>2:D:48:ILE:HB</td>
<td>2.03</td>
<td>0.41</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:H:13:VAL:CG1</td>
<td>2:H:17:GLU:HB3</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:200:THR:HG23</td>
<td>1:A:203:GLN:H</td>
<td>1.86</td>
<td>0.41</td>
</tr>
<tr>
<td>2:D:138:ASN:H</td>
<td>2:D:138:ASN:HD22</td>
<td>1.68</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:2:VAL:O</td>
<td>1:E:3:GLN:CB</td>
<td>2.69</td>
<td>0.41</td>
</tr>
<tr>
<td>4:L:590:ILE:O</td>
<td>4:L:591:ASP:C</td>
<td>2.58</td>
<td>0.41</td>
</tr>
<tr>
<td>3:M:37:VAL:HG22</td>
<td>3:M:185:ILE:HG21</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>3:M:97:VAL:HG23</td>
<td>4:N:573:LEU:HD11</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:100(D):MSE:HE3</td>
<td>1:A:100(D):MSE:HB3</td>
<td>1.96</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:89:GLN:HB2</td>
<td>2:B:98:PHE:CD2</td>
<td>2.56</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:35:ASN:OD1</td>
<td>1:C:50:SER:CB</td>
<td>2.69</td>
<td>0.41</td>
</tr>
<tr>
<td>2:H:175:LEU:HD23</td>
<td>2:H:176:SER:N</td>
<td>2.35</td>
<td>0.41</td>
</tr>
<tr>
<td>4:J:529:LEU:HB3</td>
<td>4:J:532:ILE:HD12</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>3:M:49:ASP:O</td>
<td>3:M:50:LYS:CB</td>
<td>2.68</td>
<td>0.41</td>
</tr>
<tr>
<td>4:P:565:THR:O</td>
<td>4:P:566:THR:C</td>
<td>2.58</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:34:MSE:SE</td>
<td>1:C:94:ARG:HA</td>
<td>2.70</td>
<td>0.41</td>
</tr>
<tr>
<td>1:G:96:GLY:HA3</td>
<td>1:G:100(F):ASP:OD1</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:G:144:VAL:HB</td>
<td>1:G:187:LEU:HB3</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:G:82(B):SER:OG</td>
<td>1:G:83:ARG:NH2</td>
<td>2.53</td>
<td>0.41</td>
</tr>
<tr>
<td>3:K:78:ASP:C</td>
<td>3:K:80:PRO:HD2</td>
<td>2.41</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:207:ILE:HG12</td>
<td>1:A:222:LYS:HB2</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:140:LEU:O</td>
<td>1:C:191:VAL:HG12</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:6:GLU:HG2</td>
<td>1:C:22:CYS:HB2</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>2:F:91:TYR:HA</td>
<td>2:F:96:LEU:CD2</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>3:K:120:GLU:HG2</td>
<td>3:K:172:ARG:CD</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>3:O:257:ASN:ND2</td>
<td>5:O:351:NAG:C2</td>
<td>2.68</td>
<td>0.41</td>
</tr>
<tr>
<td>4:L:578:GLU:HB3</td>
<td>4:N:582:PHE:CZ</td>
<td>2.56</td>
<td>0.41</td>
</tr>
<tr>
<td>3:M:104:TRP:HE1</td>
<td>4:N:545:GLU:HG3</td>
<td>1.86</td>
<td>0.41</td>
</tr>
<tr>
<td>4:L:593:LEU:HB3</td>
<td>4:N:593:LEU:HD13</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>3:O:182:ALA:HB2</td>
<td>4:P:562:ALA:CB</td>
<td>2.51</td>
<td>0.41</td>
</tr>
<tr>
<td>3:O:66:VAL:CG1</td>
<td>3:O:67:GLY:N</td>
<td>2.84</td>
<td>0.41</td>
</tr>
<tr>
<td>4:P:525:ALA:O</td>
<td>4:P:530:ALA:HB3</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:28:ASN:N</td>
<td>2:B:29:ASN:HB2</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:35:ASN:OD1</td>
<td>1:C:50:SER:HB3</td>
<td>2.20</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:G:94:ARG:CD</td>
<td>1:G:102:ILE:CD1</td>
<td>2.98</td>
<td>0.40</td>
</tr>
<tr>
<td>1:G:190:VAL:HG21</td>
<td>2:H:135:LEU:HD22</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>3:O:45:VAL:HG21</td>
<td>4:P:504:ILE:CG2</td>
<td>2.49</td>
<td>0.40</td>
</tr>
<tr>
<td>1:E:140:LEU:H</td>
<td>1:E:140:LEU:HG21</td>
<td>1.86</td>
<td>0.40</td>
</tr>
<tr>
<td>1:E:22:CYS:SG</td>
<td>1:E:22:CYS:O</td>
<td>2.78</td>
<td>0.40</td>
</tr>
<tr>
<td>2:H:205:VAL:CG1</td>
<td>2:H:206:THR:H</td>
<td>2.84</td>
<td>0.40</td>
</tr>
<tr>
<td>3:I:79:VAL:N</td>
<td>3:I:80:PRO:CD</td>
<td>2.84</td>
<td>0.40</td>
</tr>
<tr>
<td>2:B:118:PHE:HA</td>
<td>2:B:119:PRO:HG13</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>2:H:54:ARG:CD</td>
<td>2:H:60:ASP:HA</td>
<td>2.52</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:114:ALA:HB3</td>
<td>1:A:148:PHE:CE2</td>
<td>2.56</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:125:ALA:HB1</td>
<td>1:A:140:LEU:HB2</td>
<td>2.02</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:2:VAL:HG11</td>
<td>1:A:102:ILE:HD13</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>2:B:15:LEU:HA</td>
<td>2:B:78:LEU:HD23</td>
<td>2.02</td>
<td>0.40</td>
</tr>
<tr>
<td>2:C:67:PHE:N</td>
<td>2:C:67:PHE:HG13</td>
<td>2.19</td>
<td>0.40</td>
</tr>
<tr>
<td>2:H:125:LEU:HD23</td>
<td>2:H:130:ALA:HB2</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>2:D:192:TYR:HB2</td>
<td>2:D:209:PHE:CE1</td>
<td>2.57</td>
<td>0.40</td>
</tr>
<tr>
<td>1:E:174:PHE:HE2</td>
<td>1:E:190:VAL:HG22</td>
<td>1.85</td>
<td>0.40</td>
</tr>
<tr>
<td>3:K:44:GLN:HA</td>
<td>4:L:503:ALA:N</td>
<td>2.36</td>
<td>0.40</td>
</tr>
</tbody>
</table>

There are no symmetry-related clashes.
5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>224/226</td>
<td>192 (86%)</td>
<td>29 (13%)</td>
<td>3 (1%)</td>
<td>13 (1%)</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>224/226</td>
<td>194 (87%)</td>
<td>27 (12%)</td>
<td>3 (1%)</td>
<td>13 (1%)</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>224/226</td>
<td>196 (88%)</td>
<td>26 (12%)</td>
<td>2 (1%)</td>
<td>19 (5%)</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>224/226</td>
<td>202 (90%)</td>
<td>21 (9%)</td>
<td>1 (0%)</td>
<td>36 (73%)</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>215/217</td>
<td>181 (84%)</td>
<td>25 (12%)</td>
<td>9 (4%)</td>
<td>3 (24%)</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>215/217</td>
<td>183 (85%)</td>
<td>25 (12%)</td>
<td>7 (3%)</td>
<td>4 (30%)</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>215/217</td>
<td>183 (85%)</td>
<td>26 (12%)</td>
<td>6 (3%)</td>
<td>5 (33%)</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>215/217</td>
<td>179 (83%)</td>
<td>27 (13%)</td>
<td>9 (4%)</td>
<td>3 (24%)</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>230/334</td>
<td>184 (80%)</td>
<td>33 (14%)</td>
<td>13 (6%)</td>
<td>2 (16%)</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>226/334</td>
<td>184 (81%)</td>
<td>33 (15%)</td>
<td>9 (4%)</td>
<td>3 (25%)</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>222/334</td>
<td>181 (82%)</td>
<td>29 (13%)</td>
<td>12 (5%)</td>
<td>2 (18%)</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>217/334</td>
<td>171 (79%)</td>
<td>26 (12%)</td>
<td>20 (9%)</td>
<td>1 (7%)</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>96/131</td>
<td>80 (83%)</td>
<td>14 (15%)</td>
<td>2 (2%)</td>
<td>8 (40%)</td>
</tr>
<tr>
<td>4</td>
<td>L</td>
<td>89/131</td>
<td>79 (89%)</td>
<td>8 (9%)</td>
<td>2 (2%)</td>
<td>7 (39%)</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>91/131</td>
<td>80 (88%)</td>
<td>10 (11%)</td>
<td>1 (1%)</td>
<td>16 (54%)</td>
</tr>
<tr>
<td>4</td>
<td>P</td>
<td>89/131</td>
<td>74 (83%)</td>
<td>13 (15%)</td>
<td>2 (2%)</td>
<td>7 (39%)</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>3016/3632</td>
<td>2543 (84%)</td>
<td>372 (12%)</td>
<td>101 (3%)</td>
<td>4 (30%)</td>
</tr>
</tbody>
</table>

All (101) Ramachandran outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>100(B)</td>
<td>TYR</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>110</td>
<td>VAL</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>27(F)</td>
<td>SER</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>78</td>
<td>LEU</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>169</td>
<td>LYS</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>27(F)</td>
<td>SER</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>H</td>
<td>27(F)</td>
<td>SER</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>110</td>
<td>VAL</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>138</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>54</td>
<td>ARG</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>71</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>119</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>247</td>
<td>ARG</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>300</td>
<td>LYS</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>521</td>
<td>GLN</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>48</td>
<td>VAL</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>119</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>163</td>
<td>ASP</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>247</td>
<td>ARG</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>49</td>
<td>ASP</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>50</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>54</td>
<td>ARG</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>163</td>
<td>ASP</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>247</td>
<td>ARG</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>265</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>48</td>
<td>VAL</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>50</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>56</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>119</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>214</td>
<td>TYR</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>216</td>
<td>THR</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>238</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>247</td>
<td>ARG</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>272</td>
<td>LYS</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>27(F)</td>
<td>SER</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>138</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>100(C)</td>
<td>SER</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>138</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>156</td>
<td>SER</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>138</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>78</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>40</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>49</td>
<td>ASP</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>75</td>
<td>VAL</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>56</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>75</td>
<td>VAL</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>75</td>
<td>VAL</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>71</td>
<td>GLU</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>O</td>
<td>173</td>
<td>GLY</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>79</td>
<td>GLN</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>142</td>
<td>ARG</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>143</td>
<td>GLU</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>56</td>
<td>SER</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>166</td>
<td>GLN</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>79</td>
<td>GLN</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>166</td>
<td>GLN</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>47</td>
<td>ASP</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>158</td>
<td>ALA</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>301</td>
<td>ILE</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>119</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>40</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>53</td>
<td>CYS</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>305</td>
<td>GLU</td>
</tr>
<tr>
<td>4</td>
<td>P</td>
<td>579</td>
<td>LEU</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>26</td>
<td>SER</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>32</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>100(B)</td>
<td>TYR</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>78</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>100(B)</td>
<td>TYR</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>56</td>
<td>SER</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>204</td>
<td>PRO</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>40</td>
<td>ASN</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>512</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>163</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>125</td>
<td>ALA</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>204</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>146</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>116</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>146</td>
<td>ASP</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>166</td>
<td>GLN</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>523</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>40</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>127</td>
<td>ASP</td>
</tr>
<tr>
<td>4</td>
<td>L</td>
<td>591</td>
<td>ASP</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>71</td>
<td>GLU</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>68</td>
<td>GLY</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>127</td>
<td>ASP</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>57</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>75</td>
<td>VAL</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>148</td>
<td>ALA</td>
</tr>
</tbody>
</table>

Continued on next page...
5.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>175 (92%)</td>
<td>15 (8%)</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>190/186 (102%)</td>
<td>177 (93%)</td>
<td>13 (7%)</td>
<td>17</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>190/186 (102%)</td>
<td>179 (94%)</td>
<td>11 (6%)</td>
<td>22</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>190/186 (102%)</td>
<td>175 (92%)</td>
<td>15 (8%)</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>190/186 (102%)</td>
<td>185 (97%)</td>
<td>6 (3%)</td>
<td>43</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>191/190 (100%)</td>
<td>188 (98%)</td>
<td>3 (2%)</td>
<td>65</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>191/190 (100%)</td>
<td>187 (98%)</td>
<td>4 (2%)</td>
<td>56</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>191/190 (100%)</td>
<td>186 (97%)</td>
<td>5 (3%)</td>
<td>49</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>163/282 (58%)</td>
<td>156 (96%)</td>
<td>7 (4%)</td>
<td>32</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>163/282 (58%)</td>
<td>154 (94%)</td>
<td>9 (6%)</td>
<td>24</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>163/282 (58%)</td>
<td>153 (94%)</td>
<td>10 (6%)</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>162/282 (57%)</td>
<td>152 (94%)</td>
<td>10 (6%)</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>73/110 (66%)</td>
<td>69 (94%)</td>
<td>4 (6%)</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>L</td>
<td>74/110 (67%)</td>
<td>71 (96%)</td>
<td>3 (4%)</td>
<td>33</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>73/110 (66%)</td>
<td>70 (96%)</td>
<td>3 (4%)</td>
<td>33</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>P</td>
<td>72/110 (66%)</td>
<td>69 (96%)</td>
<td>3 (4%)</td>
<td>32</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>2467/3072 (80%)</td>
<td>2346 (95%)</td>
<td>121 (5%)</td>
<td>27</td>
</tr>
</tbody>
</table>

All (121) residues with a non-rotameric sidechain are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>4</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>7</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>11</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>18</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>22</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>38</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>45</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>61</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>71</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>75</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>82</td>
<td>MSE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>92</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>188</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>200</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>209</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>4</td>
<td>MSE</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>18</td>
<td>ARG</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>31</td>
<td>SER</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>129</td>
<td>THR</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>137</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>211</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>3</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>11</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>18</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>22</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>28</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>38</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>45</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>71</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>77</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>92</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>100(C)</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>200</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>209</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>4</td>
<td>MSE</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>137</td>
<td>ASN</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>D</td>
<td>173</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>18</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>22</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>38</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>45</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>71</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>82</td>
<td>MSE</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>83</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>100</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>140</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>200</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>209</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>108</td>
<td>ARG</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>132</td>
<td>VAL</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>137</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>194</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>3</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>11</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>18</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>22</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>34</td>
<td>MSE</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>38</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>45</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>61</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>71</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>75</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>82</td>
<td>MSE</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>92</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>108</td>
<td>MSE</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>188</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>209</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>27(F)</td>
<td>SER</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>60</td>
<td>ASP</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>69</td>
<td>THR</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>137</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>211</td>
<td>ARG</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>69</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>86</td>
<td>TRP</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>89</td>
<td>ARG</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>90</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>106</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>170</td>
<td>ILE</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>I</td>
<td>216</td>
<td>THR</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>523</td>
<td>GLU</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>579</td>
<td>LEU</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>591</td>
<td>ASP</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>595</td>
<td>GLN</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>43</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>69</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>86</td>
<td>TRP</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>89</td>
<td>ARG</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>90</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>95</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>98</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>170</td>
<td>ILE</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>234</td>
<td>PHE</td>
</tr>
<tr>
<td>4</td>
<td>L</td>
<td>516</td>
<td>HIS</td>
</tr>
<tr>
<td>4</td>
<td>L</td>
<td>579</td>
<td>LEU</td>
</tr>
<tr>
<td>4</td>
<td>L</td>
<td>591</td>
<td>ASP</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>32</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>38</td>
<td>ILE</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>39</td>
<td>HIS</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>40</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>57</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>60</td>
<td>THR</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>81</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>90</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>120</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>170</td>
<td>ILE</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>579</td>
<td>LEU</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>586</td>
<td>ASN</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>587</td>
<td>ARG</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>65</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>77</td>
<td>THR</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>78</td>
<td>ASP</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>81</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>86</td>
<td>TRP</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>89</td>
<td>ARG</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>90</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>120</td>
<td>GLU</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>170</td>
<td>ILE</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>234</td>
<td>PHE</td>
</tr>
<tr>
<td>4</td>
<td>P</td>
<td>579</td>
<td>LEU</td>
</tr>
<tr>
<td>4</td>
<td>P</td>
<td>587</td>
<td>ARG</td>
</tr>
</tbody>
</table>

Continued on next page...
Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (5) such sidechains are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>155</td>
<td>GLN</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>110</td>
<td>ASN</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>595</td>
<td>GLN</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>257</td>
<td>ASN</td>
</tr>
<tr>
<td>4</td>
<td>P</td>
<td>563</td>
<td>ASN</td>
</tr>
</tbody>
</table>

5.3.3 RNA

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates

There are no carbohydrates in this entry.

5.6 Ligand geometry

33 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with \(|Z| > 2\) is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>I</td>
<td>351</td>
<td>5</td>
<td>14,14,15</td>
<td>0.75</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>I</td>
<td>352</td>
<td>5,6</td>
<td>14,14,15</td>
<td>0.83</td>
</tr>
</tbody>
</table>
In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. ‘-’ means no outliers of that kind were identified.
<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NAG</td>
<td>I</td>
<td>351</td>
<td>5</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>I</td>
<td>352</td>
<td>5,6</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>6</td>
<td>BMA</td>
<td>I</td>
<td>353</td>
<td>5</td>
<td>-</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>J</td>
<td>701</td>
<td>5</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>J</td>
<td>702</td>
<td>5,6</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>6</td>
<td>BMA</td>
<td>J</td>
<td>703</td>
<td>5,7</td>
<td>-</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>J</td>
<td>704</td>
<td>6</td>
<td>-</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>J</td>
<td>705</td>
<td>6</td>
<td>-</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>K</td>
<td>351</td>
<td>5</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>K</td>
<td>352</td>
<td>5</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>L</td>
<td>701</td>
<td>5</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>L</td>
<td>702</td>
<td>5,6</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>6</td>
<td>BMA</td>
<td>L</td>
<td>703</td>
<td>5,6</td>
<td>-</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>L</td>
<td>704</td>
<td>6</td>
<td>-</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>M</td>
<td>351</td>
<td>5</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>M</td>
<td>352</td>
<td>5,6</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>6</td>
<td>BMA</td>
<td>M</td>
<td>353</td>
<td>5</td>
<td>-</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>N</td>
<td>701</td>
<td>5</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>N</td>
<td>702</td>
<td>5,6</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>6</td>
<td>BMA</td>
<td>N</td>
<td>703</td>
<td>5,6</td>
<td>-</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>N</td>
<td>704</td>
<td>6</td>
<td>-</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>N</td>
<td>705</td>
<td>6</td>
<td>-</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>O</td>
<td>351</td>
<td>5</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>O</td>
<td>352</td>
<td>5,6</td>
<td>-</td>
<td>1/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>6</td>
<td>BMA</td>
<td>O</td>
<td>353</td>
<td>5</td>
<td>-</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>P</td>
<td>701</td>
<td>5</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>P</td>
<td>702</td>
<td>5,6</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>6</td>
<td>BMA</td>
<td>P</td>
<td>703</td>
<td>5,6</td>
<td>-</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>P</td>
<td>704</td>
<td>5,6</td>
<td>-</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>P</td>
<td>705</td>
<td>6</td>
<td>-</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>P</td>
<td>706</td>
<td>7</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
</tbody>
</table>

All (19) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>L</td>
<td>701</td>
<td>NAG</td>
<td>O5-C1</td>
<td>-2.80</td>
<td>1.39</td>
<td>1.43</td>
</tr>
<tr>
<td>5</td>
<td>N</td>
<td>701</td>
<td>NAG</td>
<td>O5-C1</td>
<td>-2.66</td>
<td>1.39</td>
<td>1.43</td>
</tr>
<tr>
<td>7</td>
<td>P</td>
<td>704</td>
<td>MAN</td>
<td>O5-C1</td>
<td>-2.64</td>
<td>1.39</td>
<td>1.43</td>
</tr>
<tr>
<td>5</td>
<td>J</td>
<td>701</td>
<td>NAG</td>
<td>O5-C1</td>
<td>-2.56</td>
<td>1.39</td>
<td>1.43</td>
</tr>
<tr>
<td>5</td>
<td>P</td>
<td>701</td>
<td>NAG</td>
<td>O5-C1</td>
<td>-2.41</td>
<td>1.39</td>
<td>1.43</td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>704</td>
<td>MAN</td>
<td>O5-C1</td>
<td>-2.27</td>
<td>1.40</td>
<td>1.43</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>L</td>
<td>704</td>
<td>MAN</td>
<td>O5-C1</td>
<td>-2.17</td>
<td>1.40</td>
<td>1.43</td>
</tr>
<tr>
<td>5</td>
<td>N</td>
<td>702</td>
<td>NAG</td>
<td>O5-C1</td>
<td>-2.15</td>
<td>1.40</td>
<td>1.43</td>
</tr>
<tr>
<td>6</td>
<td>O</td>
<td>353</td>
<td>BMA</td>
<td>C6-C5</td>
<td>2.09</td>
<td>1.58</td>
<td>1.51</td>
</tr>
<tr>
<td>6</td>
<td>N</td>
<td>703</td>
<td>BMA</td>
<td>C2-C3</td>
<td>2.16</td>
<td>1.55</td>
<td>1.52</td>
</tr>
<tr>
<td>7</td>
<td>P</td>
<td>704</td>
<td>MAN</td>
<td>C2-C3</td>
<td>2.19</td>
<td>1.55</td>
<td>1.52</td>
</tr>
<tr>
<td>6</td>
<td>P</td>
<td>703</td>
<td>BMA</td>
<td>C2-C3</td>
<td>2.28</td>
<td>1.55</td>
<td>1.52</td>
</tr>
<tr>
<td>7</td>
<td>L</td>
<td>705</td>
<td>MAN</td>
<td>C2-C3</td>
<td>2.32</td>
<td>1.55</td>
<td>1.52</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>703</td>
<td>BMA</td>
<td>C6-C5</td>
<td>2.33</td>
<td>1.59</td>
<td>1.51</td>
</tr>
<tr>
<td>6</td>
<td>L</td>
<td>703</td>
<td>BMA</td>
<td>C4-C3</td>
<td>2.44</td>
<td>1.58</td>
<td>1.52</td>
</tr>
<tr>
<td>6</td>
<td>L</td>
<td>703</td>
<td>BMA</td>
<td>C2-C3</td>
<td>2.97</td>
<td>1.56</td>
<td>1.52</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>353</td>
<td>BMA</td>
<td>C2-C3</td>
<td>3.03</td>
<td>1.57</td>
<td>1.52</td>
</tr>
<tr>
<td>6</td>
<td>O</td>
<td>353</td>
<td>BMA</td>
<td>C2-C3</td>
<td>3.61</td>
<td>1.57</td>
<td>1.52</td>
</tr>
</tbody>
</table>

All (90) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>N</td>
<td>701</td>
<td>NAG</td>
<td>C2-N2-C7</td>
<td>-5.50</td>
<td>114.92</td>
<td>122.94</td>
</tr>
<tr>
<td>5</td>
<td>L</td>
<td>701</td>
<td>NAG</td>
<td>C2-N2-C7</td>
<td>-4.63</td>
<td>116.19</td>
<td>122.94</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>352</td>
<td>NAG</td>
<td>O4-C4-C3</td>
<td>-4.18</td>
<td>100.59</td>
<td>110.34</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>703</td>
<td>BMA</td>
<td>C1-C2-C3</td>
<td>-4.02</td>
<td>104.58</td>
<td>109.66</td>
</tr>
<tr>
<td>5</td>
<td>J</td>
<td>702</td>
<td>NAG</td>
<td>C2-N2-C7</td>
<td>-3.92</td>
<td>117.22</td>
<td>122.94</td>
</tr>
<tr>
<td>5</td>
<td>L</td>
<td>701</td>
<td>NAG</td>
<td>O5-C1-C2</td>
<td>-3.45</td>
<td>106.76</td>
<td>111.52</td>
</tr>
<tr>
<td>5</td>
<td>N</td>
<td>701</td>
<td>NAG</td>
<td>O5-C1-C2</td>
<td>-3.36</td>
<td>106.88</td>
<td>111.52</td>
</tr>
<tr>
<td>5</td>
<td>L</td>
<td>701</td>
<td>NAG</td>
<td>C6-C5-C4</td>
<td>-3.25</td>
<td>105.30</td>
<td>112.99</td>
</tr>
<tr>
<td>5</td>
<td>J</td>
<td>702</td>
<td>NAG</td>
<td>O3-C3-C2</td>
<td>-3.12</td>
<td>102.71</td>
<td>109.39</td>
</tr>
<tr>
<td>5</td>
<td>P</td>
<td>701</td>
<td>NAG</td>
<td>C4-C3-C2</td>
<td>-3.02</td>
<td>106.58</td>
<td>111.02</td>
</tr>
<tr>
<td>5</td>
<td>P</td>
<td>701</td>
<td>NAG</td>
<td>C6-C5-C4</td>
<td>-2.65</td>
<td>106.72</td>
<td>112.99</td>
</tr>
<tr>
<td>6</td>
<td>P</td>
<td>703</td>
<td>BMA</td>
<td>O5-C1-C2</td>
<td>-2.64</td>
<td>106.67</td>
<td>110.78</td>
</tr>
<tr>
<td>5</td>
<td>J</td>
<td>702</td>
<td>NAG</td>
<td>O5-C1-C2</td>
<td>-2.46</td>
<td>108.13</td>
<td>111.52</td>
</tr>
<tr>
<td>5</td>
<td>P</td>
<td>701</td>
<td>NAG</td>
<td>C2-N2-C7</td>
<td>-2.44</td>
<td>119.39</td>
<td>122.94</td>
</tr>
<tr>
<td>5</td>
<td>N</td>
<td>702</td>
<td>NAG</td>
<td>O3-C3-C2</td>
<td>-2.42</td>
<td>104.21</td>
<td>109.39</td>
</tr>
<tr>
<td>5</td>
<td>J</td>
<td>701</td>
<td>NAG</td>
<td>O5-C1-C2</td>
<td>-2.34</td>
<td>108.30</td>
<td>111.52</td>
</tr>
<tr>
<td>5</td>
<td>P</td>
<td>701</td>
<td>NAG</td>
<td>O6-C6-C5</td>
<td>-2.25</td>
<td>103.44</td>
<td>111.29</td>
</tr>
<tr>
<td>5</td>
<td>N</td>
<td>702</td>
<td>NAG</td>
<td>C2-N2-C7</td>
<td>-2.17</td>
<td>119.78</td>
<td>122.94</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>703</td>
<td>BMA</td>
<td>O2-C2-C3</td>
<td>-2.07</td>
<td>106.16</td>
<td>110.19</td>
</tr>
<tr>
<td>7</td>
<td>L</td>
<td>704</td>
<td>MAN</td>
<td>C1-C2-C3</td>
<td>-2.04</td>
<td>107.07</td>
<td>109.66</td>
</tr>
<tr>
<td>6</td>
<td>M</td>
<td>353</td>
<td>BMA</td>
<td>C1-C2-C3</td>
<td>-2.04</td>
<td>107.07</td>
<td>109.66</td>
</tr>
<tr>
<td>7</td>
<td>J</td>
<td>704</td>
<td>MAN</td>
<td>O2-C2-C3</td>
<td>-2.04</td>
<td>106.20</td>
<td>110.19</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>703</td>
<td>BMA</td>
<td>C6-C5-C4</td>
<td>-2.04</td>
<td>108.16</td>
<td>112.99</td>
</tr>
<tr>
<td>5</td>
<td>N</td>
<td>701</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>2.02</td>
<td>114.97</td>
<td>112.19</td>
</tr>
<tr>
<td>5</td>
<td>O</td>
<td>352</td>
<td>NAG</td>
<td>C3-C4-C5</td>
<td>2.07</td>
<td>113.95</td>
<td>110.24</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>N</td>
<td>704</td>
<td>MAN</td>
<td>C3-C4-C5</td>
<td>2.08</td>
<td>113.97</td>
<td>110.24</td>
</tr>
<tr>
<td>5</td>
<td>L</td>
<td>702</td>
<td>NAG</td>
<td>C8-C7-N2</td>
<td>2.10</td>
<td>119.77</td>
<td>116.10</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>352</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>2.10</td>
<td>115.08</td>
<td>112.19</td>
</tr>
<tr>
<td>7</td>
<td>J</td>
<td>704</td>
<td>MAN</td>
<td>C1-C2-C3</td>
<td>2.10</td>
<td>112.32</td>
<td>109.66</td>
</tr>
<tr>
<td>7</td>
<td>J</td>
<td>704</td>
<td>MAN</td>
<td>O5-C1-C2</td>
<td>2.16</td>
<td>114.14</td>
<td>110.78</td>
</tr>
<tr>
<td>5</td>
<td>L</td>
<td>702</td>
<td>NAG</td>
<td>O5-C5-C6</td>
<td>2.18</td>
<td>110.60</td>
<td>107.15</td>
</tr>
<tr>
<td>7</td>
<td>L</td>
<td>704</td>
<td>MAN</td>
<td>O2-C2-C1</td>
<td>2.20</td>
<td>113.62</td>
<td>109.17</td>
</tr>
<tr>
<td>7</td>
<td>L</td>
<td>705</td>
<td>MAN</td>
<td>O5-C5-C6</td>
<td>2.27</td>
<td>110.75</td>
<td>107.15</td>
</tr>
<tr>
<td>6</td>
<td>P</td>
<td>703</td>
<td>BMA</td>
<td>C2-C3-C4</td>
<td>2.29</td>
<td>114.85</td>
<td>110.87</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>351</td>
<td>NAG</td>
<td>O5-C1-C2</td>
<td>2.30</td>
<td>114.70</td>
<td>111.52</td>
</tr>
<tr>
<td>7</td>
<td>P</td>
<td>704</td>
<td>MAN</td>
<td>O2-C2-C1</td>
<td>2.37</td>
<td>113.96</td>
<td>109.17</td>
</tr>
<tr>
<td>5</td>
<td>I</td>
<td>352</td>
<td>NAG</td>
<td>C3-C4-C5</td>
<td>2.40</td>
<td>114.54</td>
<td>110.24</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>353</td>
<td>BMA</td>
<td>O5-C1-C2</td>
<td>2.43</td>
<td>114.57</td>
<td>110.78</td>
</tr>
<tr>
<td>5</td>
<td>L</td>
<td>701</td>
<td>NAG</td>
<td>C3-C4-C5</td>
<td>2.46</td>
<td>114.63</td>
<td>110.24</td>
</tr>
<tr>
<td>5</td>
<td>J</td>
<td>701</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>2.46</td>
<td>115.57</td>
<td>112.19</td>
</tr>
<tr>
<td>5</td>
<td>J</td>
<td>702</td>
<td>NAG</td>
<td>O5-C5-C6</td>
<td>2.46</td>
<td>111.04</td>
<td>107.15</td>
</tr>
<tr>
<td>7</td>
<td>P</td>
<td>705</td>
<td>MAN</td>
<td>O2-C2-C1</td>
<td>2.49</td>
<td>114.20</td>
<td>109.17</td>
</tr>
<tr>
<td>5</td>
<td>P</td>
<td>702</td>
<td>NAG</td>
<td>C1-C2-N2</td>
<td>2.50</td>
<td>114.77</td>
<td>110.49</td>
</tr>
<tr>
<td>5</td>
<td>I</td>
<td>352</td>
<td>NAG</td>
<td>O5-C5-C6</td>
<td>2.51</td>
<td>111.11</td>
<td>107.15</td>
</tr>
<tr>
<td>5</td>
<td>L</td>
<td>706</td>
<td>NAG</td>
<td>O5-C1-C2</td>
<td>2.51</td>
<td>114.99</td>
<td>111.52</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>703</td>
<td>BMA</td>
<td>O5-C5-C6</td>
<td>2.52</td>
<td>111.14</td>
<td>107.15</td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>705</td>
<td>MAN</td>
<td>C1-O5-C5</td>
<td>2.53</td>
<td>115.67</td>
<td>112.19</td>
</tr>
<tr>
<td>5</td>
<td>J</td>
<td>702</td>
<td>NAG</td>
<td>C1-C2-N2</td>
<td>2.54</td>
<td>114.83</td>
<td>110.49</td>
</tr>
<tr>
<td>5</td>
<td>L</td>
<td>706</td>
<td>NAG</td>
<td>O3-C3-C2</td>
<td>2.56</td>
<td>114.87</td>
<td>109.39</td>
</tr>
<tr>
<td>6</td>
<td>O</td>
<td>353</td>
<td>BMA</td>
<td>O5-C5-C6</td>
<td>2.57</td>
<td>111.22</td>
<td>107.15</td>
</tr>
<tr>
<td>5</td>
<td>O</td>
<td>352</td>
<td>BMA</td>
<td>O5-C1-C5</td>
<td>2.58</td>
<td>115.73</td>
<td>112.19</td>
</tr>
<tr>
<td>7</td>
<td>L</td>
<td>705</td>
<td>MAN</td>
<td>C1-C2-C3</td>
<td>2.58</td>
<td>112.92</td>
<td>109.66</td>
</tr>
<tr>
<td>7</td>
<td>P</td>
<td>704</td>
<td>MAN</td>
<td>C1-C2-C3</td>
<td>2.59</td>
<td>112.94</td>
<td>109.66</td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>704</td>
<td>MAN</td>
<td>O5-C5-C6</td>
<td>2.60</td>
<td>111.26</td>
<td>107.15</td>
</tr>
<tr>
<td>5</td>
<td>L</td>
<td>702</td>
<td>NAG</td>
<td>C1-C2-N2</td>
<td>2.60</td>
<td>114.92</td>
<td>110.49</td>
</tr>
<tr>
<td>5</td>
<td>L</td>
<td>702</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>2.61</td>
<td>115.78</td>
<td>112.19</td>
</tr>
<tr>
<td>7</td>
<td>N</td>
<td>705</td>
<td>MAN</td>
<td>O5-C5-C6</td>
<td>2.65</td>
<td>111.35</td>
<td>107.15</td>
</tr>
<tr>
<td>5</td>
<td>O</td>
<td>351</td>
<td>NAG</td>
<td>C3-C4-C5</td>
<td>2.78</td>
<td>115.22</td>
<td>110.24</td>
</tr>
<tr>
<td>6</td>
<td>I</td>
<td>353</td>
<td>BMA</td>
<td>O5-C5-C6</td>
<td>2.86</td>
<td>111.68</td>
<td>107.15</td>
</tr>
<tr>
<td>7</td>
<td>L</td>
<td>705</td>
<td>MAN</td>
<td>O3-C3-C2</td>
<td>2.87</td>
<td>115.37</td>
<td>110.04</td>
</tr>
<tr>
<td>7</td>
<td>P</td>
<td>705</td>
<td>MAN</td>
<td>O5-C5-C6</td>
<td>3.03</td>
<td>111.94</td>
<td>107.15</td>
</tr>
<tr>
<td>5</td>
<td>P</td>
<td>702</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>3.26</td>
<td>116.67</td>
<td>112.19</td>
</tr>
<tr>
<td>6</td>
<td>L</td>
<td>703</td>
<td>BMA</td>
<td>O3-C3-C4</td>
<td>3.28</td>
<td>118.01</td>
<td>110.34</td>
</tr>
<tr>
<td>7</td>
<td>L</td>
<td>705</td>
<td>MAN</td>
<td>C1-O5-C5</td>
<td>3.36</td>
<td>116.81</td>
<td>112.19</td>
</tr>
<tr>
<td>5</td>
<td>N</td>
<td>702</td>
<td>NAG</td>
<td>O5-C5-C6</td>
<td>3.40</td>
<td>112.52</td>
<td>107.15</td>
</tr>
<tr>
<td>6</td>
<td>P</td>
<td>703</td>
<td>BMA</td>
<td>C1-O5-C5</td>
<td>3.41</td>
<td>116.87</td>
<td>112.19</td>
</tr>
<tr>
<td>6</td>
<td>L</td>
<td>703</td>
<td>BMA</td>
<td>C1-O5-C5</td>
<td>3.50</td>
<td>117.01</td>
<td>112.19</td>
</tr>
</tbody>
</table>

Continued on next page...
There are no chirality outliers.

All (1) torsion outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>O</td>
<td>352</td>
<td>NAG</td>
<td>O7-C7-N2-C2</td>
<td>5.44</td>
<td>119.67</td>
<td>112.19</td>
</tr>
</tbody>
</table>

There are no ring outliers.

11 monomers are involved in 24 short contacts:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>I</td>
<td>351</td>
<td>NAG</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>J</td>
<td>701</td>
<td>NAG</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>J</td>
<td>703</td>
<td>BMA</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>J</td>
<td>705</td>
<td>MAN</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>K</td>
<td>351</td>
<td>NAG</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>L</td>
<td>701</td>
<td>NAG</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>N</td>
<td>701</td>
<td>NAG</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
5.7 Other polymers

There are no such residues in this entry.

5.8 Polymer linkage issues

There are no chain breaks in this entry.
6 Fit of model and data

6.1 Protein, DNA and RNA chains

In the following table, the column labelled ‘#RSRZ> 2’ contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled ‘Q< 0.9’ lists the number of (and percentage) of residues with an average occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th><RSRZ></th>
<th>#RSRZ>2</th>
<th>OWAB(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>222/226 (98%)</td>
<td>0.64</td>
<td>22 (9%)</td>
<td>7,105,211,230</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>222/226 (98%)</td>
<td>0.44</td>
<td>10 (4%)</td>
<td>33,116,174,196</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>222/226 (98%)</td>
<td>0.41</td>
<td>9 (4%)</td>
<td>37,87,110,158,187</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>222/226 (98%)</td>
<td>0.70</td>
<td>23 (10%)</td>
<td>33,90,116,186,207</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>216/217 (99%)</td>
<td>0.91</td>
<td>35 (16%)</td>
<td>1,87,137,195,219</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>216/217 (99%)</td>
<td>0.63</td>
<td>21 (9%)</td>
<td>8,100,140,162,194</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>216/217 (99%)</td>
<td>0.68</td>
<td>16 (7%)</td>
<td>14,104,123,156,176</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>216/217 (99%)</td>
<td>1.13</td>
<td>46 (21%)</td>
<td>1,101,140,203,234</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>236/334 (70%)</td>
<td>0.34</td>
<td>7 (2%)</td>
<td>50,79,104,139,161</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>232/334 (69%)</td>
<td>0.46</td>
<td>9 (3%)</td>
<td>39,85,118,157,184</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>230/334 (68%)</td>
<td>0.40</td>
<td>6 (2%)</td>
<td>56,84,108,144,172</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>225/334 (67%)</td>
<td>0.55</td>
<td>16 (7%)</td>
<td>16,94,122,159,182</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>98/131 (74%)</td>
<td>0.50</td>
<td>3 (3%)</td>
<td>49,70,98,155,186</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L</td>
<td>93/131 (70%)</td>
<td>0.47</td>
<td>4 (4%)</td>
<td>35,76,106,138,177</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>95/131 (72%)</td>
<td>0.56</td>
<td>5 (5%)</td>
<td>26,69,98,141,183</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>P</td>
<td>93/131 (70%)</td>
<td>0.44</td>
<td>4 (4%)</td>
<td>35,80,105,135,163</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>3054/3632 (84%)</td>
<td>0.59</td>
<td>236 (7%)</td>
<td>13,69,116,179,234</td>
<td>0</td>
</tr>
</tbody>
</table>

All (236) RSRZ outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G</td>
<td>140</td>
<td>LEU</td>
<td>8.2</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>194</td>
<td>CYS</td>
<td>7.7</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>206</td>
<td>TYR</td>
<td>7.6</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>134</td>
<td>CYS</td>
<td>6.0</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>144</td>
<td>ALA</td>
<td>5.7</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>H</td>
<td>186</td>
<td>TYR</td>
<td>5.3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>140</td>
<td>LEU</td>
<td>5.3</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>116</td>
<td>PHE</td>
<td>5.3</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>209</td>
<td>PHE</td>
<td>5.3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>126</td>
<td>PRO</td>
<td>5.1</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>131</td>
<td>SER</td>
<td>5.0</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>192</td>
<td>TYR</td>
<td>5.0</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>126</td>
<td>PRO</td>
<td>4.8</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>181</td>
<td>LEU</td>
<td>4.8</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>209</td>
<td>PHE</td>
<td>4.6</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>106</td>
<td>ILE</td>
<td>4.5</td>
</tr>
<tr>
<td>4</td>
<td>L</td>
<td>526</td>
<td>ALA</td>
<td>4.5</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>181</td>
<td>LEU</td>
<td>4.5</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>133</td>
<td>VAL</td>
<td>4.4</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>128</td>
<td>SER</td>
<td>4.3</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>134</td>
<td>CYS</td>
<td>4.3</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>146</td>
<td>VAL</td>
<td>4.3</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>154</td>
<td>LEU</td>
<td>4.3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>127</td>
<td>SER</td>
<td>4.2</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>196</td>
<td>VAL</td>
<td>4.2</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>115</td>
<td>VAL</td>
<td>4.1</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>210</td>
<td>ASN</td>
<td>4.1</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>206</td>
<td>TYR</td>
<td>4.1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>135</td>
<td>GLY</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>207</td>
<td>LYS</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>152</td>
<td>ASN</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>133</td>
<td>VAL</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>192</td>
<td>TYR</td>
<td>3.9</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>196</td>
<td>VAL</td>
<td>3.9</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>117</td>
<td>ILE</td>
<td>3.9</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>196</td>
<td>SER</td>
<td>3.9</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>522</td>
<td>ASP</td>
<td>3.9</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>145</td>
<td>LYS</td>
<td>3.9</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>152</td>
<td>ASN</td>
<td>3.9</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>256</td>
<td>LEU</td>
<td>3.8</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>187</td>
<td>GLU</td>
<td>3.8</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>154</td>
<td>LEU</td>
<td>3.8</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>130</td>
<td>SER</td>
<td>3.7</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>184</td>
<td>ALA</td>
<td>3.7</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>135</td>
<td>LEU</td>
<td>3.7</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>116</td>
<td>PHE</td>
<td>3.7</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>1</td>
<td>GLU</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>M</td>
<td>262</td>
<td>THR</td>
<td>3.7</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>205</td>
<td>VAL</td>
<td>3.6</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>140</td>
<td>LEU</td>
<td>3.5</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>78</td>
<td>LEU</td>
<td>3.5</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>111</td>
<td>ALA</td>
<td>3.5</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>193</td>
<td>ALA</td>
<td>3.4</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>194</td>
<td>CYS</td>
<td>3.4</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>191</td>
<td>VAL</td>
<td>3.4</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>201</td>
<td>LEU</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>222</td>
<td>LYS</td>
<td>3.3</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>148</td>
<td>TRP</td>
<td>3.3</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>198</td>
<td>LEU</td>
<td>3.3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>154</td>
<td>VAL</td>
<td>3.2</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>258</td>
<td>GLU</td>
<td>3.2</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>130</td>
<td>ALA</td>
<td>3.2</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>183</td>
<td>LYS</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>226</td>
<td>GLU</td>
<td>3.2</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>150</td>
<td>VAL</td>
<td>3.2</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>583</td>
<td>SER</td>
<td>3.2</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>1</td>
<td>GLU</td>
<td>3.2</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>120</td>
<td>PRO</td>
<td>3.1</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>239</td>
<td>LEU</td>
<td>3.1</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>155</td>
<td>GLN</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>143</td>
<td>LEU</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>200</td>
<td>THR</td>
<td>3.1</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>198</td>
<td>HIS</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>198</td>
<td>LEU</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>192</td>
<td>THR</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>156</td>
<td>SER</td>
<td>3.1</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>117</td>
<td>ILE</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>136</td>
<td>GLY</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>177</td>
<td>SER</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>191</td>
<td>VAL</td>
<td>3.0</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>116</td>
<td>PRO</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>112</td>
<td>ALA</td>
<td>3.0</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>122</td>
<td>ASP</td>
<td>2.9</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>208</td>
<td>SER</td>
<td>2.9</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>192</td>
<td>TYR</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>197</td>
<td>SER</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>130</td>
<td>SER</td>
<td>2.9</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>148</td>
<td>TRP</td>
<td>2.9</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>225</td>
<td>PHE</td>
<td>2.9</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>121</td>
<td>SER</td>
<td>2.9</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>178</td>
<td>THR</td>
<td>2.9</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>126</td>
<td>LYS</td>
<td>2.9</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>132</td>
<td>VAL</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>198</td>
<td>LEU</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>166</td>
<td>LEU</td>
<td>2.8</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>524</td>
<td>GLY</td>
<td>2.8</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>180</td>
<td>THR</td>
<td>2.8</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>204</td>
<td>PRO</td>
<td>2.8</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>598</td>
<td>GLY</td>
<td>2.8</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>526</td>
<td>ALA</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>127</td>
<td>SER</td>
<td>2.8</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>148</td>
<td>TRP</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>190</td>
<td>VAL</td>
<td>2.8</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>527</td>
<td>ILE</td>
<td>2.8</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>525</td>
<td>ALA</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>205</td>
<td>THR</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>234</td>
<td>PHE</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>194</td>
<td>PRO</td>
<td>2.7</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>102</td>
<td>THR</td>
<td>2.7</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>146</td>
<td>VAL</td>
<td>2.7</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>147</td>
<td>GLN</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>225</td>
<td>PHE</td>
<td>2.7</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>261</td>
<td>TYR</td>
<td>2.7</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>135</td>
<td>LEU</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>165</td>
<td>ALA</td>
<td>2.7</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>147</td>
<td>GLN</td>
<td>2.7</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>209</td>
<td>PHE</td>
<td>2.6</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>113</td>
<td>PRO</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>3</td>
<td>GLN</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>136</td>
<td>GLY</td>
<td>2.6</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>115</td>
<td>VAL</td>
<td>2.6</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>260</td>
<td>ILE</td>
<td>2.6</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>259</td>
<td>THR</td>
<td>2.6</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>27</td>
<td>GLN</td>
<td>2.6</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>239</td>
<td>LEU</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>100</td>
<td>GLY</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>11</td>
<td>LEU</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>163</td>
<td>SER</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>235</td>
<td>GLU</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>132</td>
<td>VAL</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>146</td>
<td>VAL</td>
<td>2.5</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>F</td>
<td>194</td>
<td>CYS</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>187</td>
<td>GLU</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>191</td>
<td>VAL</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>120</td>
<td>GLU</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>244</td>
<td>LEU</td>
<td>2.5</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>241</td>
<td>TYR</td>
<td>2.4</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>147</td>
<td>GLN</td>
<td>2.4</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>187</td>
<td>GLU</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>141</td>
<td>GLY</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>206</td>
<td>TYR</td>
<td>2.4</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>232</td>
<td>TYR</td>
<td>2.4</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>147</td>
<td>GLN</td>
<td>2.4</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>15</td>
<td>LEU</td>
<td>2.4</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>33</td>
<td>LEU</td>
<td>2.4</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>201</td>
<td>LEU</td>
<td>2.4</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>96</td>
<td>LEU</td>
<td>2.4</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>190</td>
<td>LYS</td>
<td>2.4</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>208</td>
<td>SER</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>140</td>
<td>LEU</td>
<td>2.4</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>2</td>
<td>LEU</td>
<td>2.4</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>96</td>
<td>LEU</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>225</td>
<td>VAL</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>118</td>
<td>PHE</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>139</td>
<td>ALA</td>
<td>2.3</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>261</td>
<td>TYR</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>178</td>
<td>THR</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>198</td>
<td>LEU</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>150</td>
<td>VAL</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>18</td>
<td>ARG</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>186</td>
<td>TYR</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>141</td>
<td>GLY</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>2</td>
<td>LEU</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>166</td>
<td>LEU</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>200</td>
<td>THR</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>24</td>
<td>LYS</td>
<td>2.3</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>140</td>
<td>LYS</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>142</td>
<td>CYS</td>
<td>2.3</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>111</td>
<td>LEU</td>
<td>2.3</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>242</td>
<td>VAL</td>
<td>2.3</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>272</td>
<td>LYS</td>
<td>2.3</td>
</tr>
<tr>
<td>4</td>
<td>L</td>
<td>583</td>
<td>SER</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G</td>
<td>129</td>
<td>LYS</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>146</td>
<td>VAL</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>205</td>
<td>THR</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>124</td>
<td>LEU</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>166</td>
<td>LEU</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>138</td>
<td>ALA</td>
<td>2.3</td>
</tr>
<tr>
<td>4</td>
<td>N</td>
<td>578</td>
<td>GLU</td>
<td>2.2</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>185</td>
<td>ASP</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>133</td>
<td>THR</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>2</td>
<td>VAL</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>267</td>
<td>SER</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>171</td>
<td>VAL</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>232</td>
<td>TYR</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>189</td>
<td>SER</td>
<td>2.2</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>87</td>
<td>TYR</td>
<td>2.2</td>
</tr>
<tr>
<td>4</td>
<td>P</td>
<td>583</td>
<td>SER</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>57</td>
<td>LEU</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>233</td>
<td>LEU</td>
<td>2.2</td>
</tr>
<tr>
<td>4</td>
<td>L</td>
<td>525</td>
<td>ALA</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>145</td>
<td>LYS</td>
<td>2.2</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>210</td>
<td>ASN</td>
<td>2.2</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>114</td>
<td>SER</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>203</td>
<td>GLN</td>
<td>2.2</td>
</tr>
<tr>
<td>4</td>
<td>L</td>
<td>527</td>
<td>ILE</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>203</td>
<td>GLN</td>
<td>2.2</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>113</td>
<td>PRO</td>
<td>2.2</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>149</td>
<td>LYS</td>
<td>2.2</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>267</td>
<td>SER</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>222</td>
<td>LYS</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>175</td>
<td>LEU</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>137</td>
<td>THR</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>73</td>
<td>LEU</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>161</td>
<td>GLU</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>78</td>
<td>LEU</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>87</td>
<td>TYR</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>225</td>
<td>VAL</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>218</td>
<td>ILE</td>
<td>2.1</td>
</tr>
<tr>
<td>4</td>
<td>P</td>
<td>521</td>
<td>GLN</td>
<td>2.1</td>
</tr>
<tr>
<td>4</td>
<td>P</td>
<td>547</td>
<td>LEU</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>79</td>
<td>GLN</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>22</td>
<td>ASN</td>
<td>2.1</td>
</tr>
<tr>
<td>4</td>
<td>P</td>
<td>535</td>
<td>PHE</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>O</td>
<td>241</td>
<td>TYR</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>276</td>
<td>LYS</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>253</td>
<td>LEU</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>149</td>
<td>LYS</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>K</td>
<td>111</td>
<td>LEU</td>
<td>2.1</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>255</td>
<td>GLN</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>153</td>
<td>ALA</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>114</td>
<td>SER</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>172</td>
<td>HIS</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>51</td>
<td>ALA</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>255</td>
<td>GLN</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>112</td>
<td>GLU</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>191</td>
<td>VAL</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>3</td>
<td>GLN</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>168</td>
<td>SER</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>68</td>
<td>GLY</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>76</td>
<td>SER</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>153</td>
<td>ALA</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>13</td>
<td>VAL</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>I</td>
<td>225</td>
<td>PHE</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>202</td>
<td>ARG</td>
<td>2.0</td>
</tr>
</tbody>
</table>

6.2 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates

There are no carbohydrates in this entry.

6.4 Ligands

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95th percentile and maximum values of B factors of atoms in the group. The column labelled ‘Q<0.9’ lists the number of atoms with occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RSCC</th>
<th>RSR</th>
<th>B-factors(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>BMA</td>
<td>O</td>
<td>353</td>
<td>11/12</td>
<td>0.24</td>
<td>0.39</td>
<td>190,190,190,190</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>L</td>
<td>706</td>
<td>14/15</td>
<td>0.61</td>
<td>0.42</td>
<td>173,173,173,173</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RSCC</th>
<th>RSR</th>
<th>B-factors(Å^2)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>BMA</td>
<td>M</td>
<td>353</td>
<td>11/12</td>
<td>0.62</td>
<td>0.30</td>
<td>168,168,168,168</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>J</td>
<td>705</td>
<td>11/12</td>
<td>0.64</td>
<td>0.44</td>
<td>171,171,171,171</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>P</td>
<td>705</td>
<td>11/12</td>
<td>0.67</td>
<td>0.34</td>
<td>174,174,174,174</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>BMA</td>
<td>I</td>
<td>353</td>
<td>11/12</td>
<td>0.70</td>
<td>0.34</td>
<td>172,172,172,172</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>L</td>
<td>705</td>
<td>11/12</td>
<td>0.70</td>
<td>0.29</td>
<td>162,162,162,162</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>K</td>
<td>352</td>
<td>14/15</td>
<td>0.71</td>
<td>0.36</td>
<td>167,167,167,167</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>N</td>
<td>704</td>
<td>11/12</td>
<td>0.76</td>
<td>0.36</td>
<td>132,132,132,132</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>O</td>
<td>352</td>
<td>14/15</td>
<td>0.80</td>
<td>0.30</td>
<td>177,177,177,177</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>O</td>
<td>351</td>
<td>14/15</td>
<td>0.80</td>
<td>0.24</td>
<td>140,140,140,140</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>BMA</td>
<td>L</td>
<td>703</td>
<td>11/12</td>
<td>0.80</td>
<td>0.14</td>
<td>118,118,118,118</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>I</td>
<td>351</td>
<td>14/15</td>
<td>0.83</td>
<td>0.24</td>
<td>115,115,115,115</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>BMA</td>
<td>P</td>
<td>703</td>
<td>11/12</td>
<td>0.83</td>
<td>0.17</td>
<td>154,154,154,154</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>BMA</td>
<td>N</td>
<td>703</td>
<td>11/12</td>
<td>0.83</td>
<td>0.20</td>
<td>140,140,140,140</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>I</td>
<td>352</td>
<td>14/15</td>
<td>0.84</td>
<td>0.31</td>
<td>175,175,175,175</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>K</td>
<td>351</td>
<td>14/15</td>
<td>0.85</td>
<td>0.25</td>
<td>156,156,156,156</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>J</td>
<td>704</td>
<td>11/12</td>
<td>0.85</td>
<td>0.17</td>
<td>148,148,148,148</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>M</td>
<td>351</td>
<td>14/15</td>
<td>0.86</td>
<td>0.21</td>
<td>117,117,117,117</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>P</td>
<td>704</td>
<td>11/12</td>
<td>0.86</td>
<td>0.17</td>
<td>144,144,144,144</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>N</td>
<td>705</td>
<td>11/12</td>
<td>0.88</td>
<td>0.20</td>
<td>148,148,148,148</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>L</td>
<td>702</td>
<td>14/15</td>
<td>0.90</td>
<td>0.20</td>
<td>126,126,126,126</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>N</td>
<td>702</td>
<td>14/15</td>
<td>0.92</td>
<td>0.26</td>
<td>115,115,115,115</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>P</td>
<td>702</td>
<td>14/15</td>
<td>0.92</td>
<td>0.18</td>
<td>116,116,116,116</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>J</td>
<td>702</td>
<td>14/15</td>
<td>0.93</td>
<td>0.16</td>
<td>105,105,105,105</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>L</td>
<td>701</td>
<td>14/15</td>
<td>0.93</td>
<td>0.23</td>
<td>98,98,98,98</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>P</td>
<td>701</td>
<td>14/15</td>
<td>0.93</td>
<td>0.21</td>
<td>97,97,97,97</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>J</td>
<td>701</td>
<td>14/15</td>
<td>0.94</td>
<td>0.22</td>
<td>94,94,94,94</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>N</td>
<td>701</td>
<td>14/15</td>
<td>0.95</td>
<td>0.25</td>
<td>96,96,96,96</td>
<td>0</td>
</tr>
</tbody>
</table>

6.5 Other polymers

There are no such residues in this entry.