

Full wwPDB X-ray Structure Validation Report (i)

Apr 15, 2024 – 05:00 PM EDT

PDB ID	:	5D13
Title	:	Third PDZ domain (PDZ3) of PSD-95 complexed with CFMOC-KKETEV
		peptide
Authors	:	De, S.; Spaller, M.R.; Olson, R.
Deposited on	:	2015-08-03
Resolution	:	2.15 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.36.1
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.15 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$		
R _{free}	130704	1479 (2.16-2.16)		
Clashscore	141614	1585 (2.16-2.16)		
Ramachandran outliers	138981	$1560 \ (2.16-2.16)$		
Sidechain outliers	138945	1559 (2.16-2.16)		
RSRZ outliers	127900	1456 (2.16-2.16)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	119	84%		16%
1	В	119	% 82%	•	16%
1	С	119	.% 8 2%	•	15%
1	D	119	18%	2%	16%
2	Е	7	100%		

Mol	Chain	Length		Quality of chain	
2	F	7	14%	86%	14%
2	G	7		86%	14%
2	Н	7		100%	
	11	1		100%	
2	Ι	7	29%	71%	

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 5887 atoms, of which 2739 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
1	Δ	100	Total	С	Н	Ν	Ο	0	0	0
1	A	100	1357	440	644	134	139	0	0	0
1	р	100	Total	С	Η	Ν	Ο	0	0	0
1	I D		1447	459	710	136	142	0	0	U
1	C	C 101	Total	С	Η	Ν	Ο	0	0	0
1			1398	450	666	137	145			
1	1 D	100	Total	С	Η	Ν	Ο	0	0	0
	100	1159	399	517	117	126	0	0	0	

• Molecule 1 is a protein called Disks large homolog 4.

There are 72 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	297	GLY	-	expression tag	UNP P31016
А	298	SER	-	expression tag	UNP P31016
А	299	PRO	-	expression tag	UNP P31016
А	300	GLU	-	expression tag	UNP P31016
А	301	PHE	-	expression tag	UNP P31016
А	403	ASN	-	expression tag	UNP P31016
А	404	SER	-	expression tag	UNP P31016
А	405	ARG	-	expression tag	UNP P31016
А	406	VAL	-	expression tag	UNP P31016
А	407	ASP	-	expression tag	UNP P31016
А	408	SER	-	expression tag	UNP P31016
А	409	SER	-	expression tag	UNP P31016
А	410	GLY	-	expression tag	UNP P31016
А	411	ARG	-	expression tag	UNP P31016
А	412	ILE	-	expression tag	UNP P31016
А	413	VAL	-	expression tag	UNP P31016
А	414	THR	-	expression tag	UNP P31016
А	415	ASP	-	expression tag	UNP P31016
В	297	GLY	-	expression tag	UNP P31016
В	298	SER	-	expression tag	UNP P31016
В	299	PRO	-	expression tag	UNP P31016

Chain	Residue	Modelled	Actual	Comment	Reference
В	300	GLU	-	expression tag	UNP P31016
В	301	PHE	_	expression tag	UNP P31016
В	403	ASN	-	expression tag	UNP P31016
В	404	SER	_	expression tag	UNP P31016
В	405	ARG	-	expression tag	UNP P31016
В	406	VAL	-	expression tag	UNP P31016
В	407	ASP	-	expression tag	UNP P31016
В	408	SER	_	expression tag	UNP P31016
В	409	SER	_	expression tag	UNP P31016
В	410	GLY	-	expression tag	UNP P31016
В	411	ARG	-	expression tag	UNP P31016
В	412	ILE	-	expression tag	UNP P31016
В	413	VAL	-	expression tag	UNP P31016
В	414	THR	-	expression tag	UNP P31016
В	415	ASP	-	expression tag	UNP P31016
С	297	GLY	-	expression tag	UNP P31016
С	298	SER	-	expression tag	UNP P31016
С	299	PRO	-	expression tag	UNP P31016
С	300	GLU	-	expression tag	UNP P31016
С	301	PHE	-	expression tag	UNP P31016
С	403	ASN	-	expression tag	UNP P31016
С	404	SER	-	expression tag	UNP P31016
С	405	ARG	-	expression tag	UNP P31016
С	406	VAL	-	expression tag	UNP P31016
С	407	ASP	-	expression tag	UNP P31016
С	408	SER	-	expression tag	UNP P31016
С	409	SER	-	expression tag	UNP P31016
С	410	GLY	-	expression tag	UNP P31016
C	411	ARG	-	expression tag	UNP P31016
C	412	ILE	-	expression tag	UNP P31016
C	413	VAL	-	expression tag	UNP P31016
C	414	THR	-	expression tag	UNP P31016
C	415	ASP	-	expression tag	UNP P31016
D	297	GLY	-	expression tag	UNP P31016
D	298	SER	-	expression tag	UNP P31016
D	299	PRO	-	expression tag	UNP P31016
D	300	GLU	-	expression tag	UNP P31016
D	301	PHE	-	expression tag	UNP P31016
D	403	ASN	-	expression tag	UNP P31016
D	404	SER	-	expression tag	UNP P31016
D	405	ARG	-	expression tag	UNP P31016
D	406	VAL	-	expression tag	UNP P31016

Continued from previous page								
Chain	Residue	Modelled	Actual	Comment	Reference			
D	407	ASP	-	expression tag	UNP P31016			
D	408	SER	-	expression tag	UNP P31016			
D	409	SER	-	expression tag	UNP P31016			
D	410	GLY	-	expression tag	UNP P31016			
D	411	ARG	-	expression tag	UNP P31016			
D	412	ILE	-	expression tag	UNP P31016			
D	413	VAL	-	expression tag	UNP P31016			
D	414	THR	-	expression tag	UNP P31016			
D	415	ASP	-	expression tag	UNP P31016			

• Molecule 2 is a protein called CFMOC-KKETEV peptide.

Mol	Chain	Residues		Atoms			ZeroOcc	AltConf	Trace	
2	C	7	Total	С	Η	Ν	0	0	0	0
2	G	1	120	44	56	$\overline{7}$	13	0	0	0
9	F	7	Total	С	Η	Ν	0	0	0 0	0
	Ľ	1	105	41	45	6	13	0		0
9	Ц	7	Total	С	Η	Ν	0	0	0	0
	11	1	105	41	45	6	13			
0	Б	F 7	Total	С	Η	Ν	0	0	0	0
	2 Г		97	39	41	6	11	0		0
2 I	2	Total	С	Η	Ν	0	0	0	0	
		41	22	15	2	2	0		U	

• Molecule 3 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	6	Total O 6 6	0	0
3	В	24	Total O 24 24	0	0
3	С	19	Total O 19 19	0	0
3	D	2	Total O 2 2	0	0
3	G	5	$\begin{array}{cc} \text{Total} & \text{O} \\ 5 & 5 \end{array}$	0	0
3	Е	2	Total O 2 2	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Disks large homolog 4

56J419 E424 V425

• Molecule 2: CFMOC-KKETEV peptide	
Chain E: 100%	
There are no outlier residues recorded for this chain.	
• Molecule 2: CFMOC-KKETEV peptide	
Chain H: 100%	
There are no outlier residues recorded for this chain.	
• Molecule 2: CFMOC-KKETEV peptide	
Chain F: 86%	14%
€ 651 419 • • • • • • • • • • • • • • • • • • •	
• Molecule 2: CFMOC-KKETEV peptide	
Chain I: 29% 71%	
56.3501 LYS GLU THR ALL VAL	

4 Data and refinement statistics (i)

Property	Value	Source
Space group	Н 3	Depositor
Cell constants	84.94Å 84.94Å 210.19Å	Denesiter
a, b, c, α , β , γ	90.00° 90.00° 120.00°	Depositor
Besolution (Å)	36.50 - 2.15	Depositor
	36.50 - 2.15	EDS
% Data completeness	99.8 (36.50-2.15)	Depositor
(in resolution range)	100.0 (36.50-2.15)	EDS
R _{merge}	0.09	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	2.11 (at 2.16Å)	Xtriage
Refinement program	PHENIX 1.8.4	Depositor
B B c	0.210 , 0.257	Depositor
	0.215 , 0.258	DCC
R_{free} test set	1530 reflections $(4.98%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	43.7	Xtriage
Anisotropy	0.728	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.36, 68.4	EDS
L-test for twinning ²	$< L >=0.50, < L^2>=0.33$	Xtriage
	$0.000 \text{ for } -1/3 + \frac{1}{3} + $	
	0.012 for -2/3 *h- 1/3 *k- 1/3 *l,- 1/3 *h- 2/3 *k+	
	1/3*l,-4/3*h+4/3*k+1/3*l	
	0.000 for $-h,1/3*h-1/3*k-1/3*l,-4/3*h-8/3*k$	
Estimated twinning fraction	$+1/3^{1}$ 0 000 for -h 2/3*h+1/3*k+1/3*l 4/3*h+8/3	Vtriago
	*k-1/3*l	Attrage
	$0.000 \text{ for } 1/3^{*}h+2/3^{*}k-1/3^{*}l,-k,-8/3^{*}h-4/3^{*}$	
	k-1/3*l	
	0.011 for $-1/3$ *h- $2/3$ *k+ $1/3$ *l,- $2/3$ *h- $1/3$ *k-	
	1/3*l,4/3*h-4/3*k-1/3*l	
	0.039 for -h-k,k,-l	
F_o, F_c correlation	0.95	EDS
Total number of atoms	5887	wwPDB-VP
Average B, all atoms (A^2)	81.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 44.21 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 1.5769e-04. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: $56\mathrm{J}$

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Mol Chain		lengths	Bond angles	
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.45	0/724	0.59	0/981
1	В	0.60	0/748	0.69	0/1011
1	С	0.46	0/743	0.63	0/1004
1	D	0.31	0/652	0.54	0/891
2	Ε	0.44	0/42	0.58	0/55
2	F	0.32	0/38	0.44	0/50
2	G	0.69	0/46	0.76	0/59
2	Н	0.29	0/42	0.56	0/55
2	Ι	0.50	0/8	0.65	0/8
All	All	0.47	0/3043	0.62	0/4114

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	713	644	648	0	0
1	В	737	710	711	2	0
1	С	732	666	674	2	0
1	D	642	517	529	12	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	Е	60	45	31	0	0
2	F	56	41	27	2	0
2	G	64	56	42	1	0
2	Н	60	45	31	0	0
2	Ι	26	15	12	0	0
3	А	6	0	0	0	0
3	В	24	0	0	1	0
3	С	19	0	0	1	0
3	D	2	0	0	2	0
3	Ε	2	0	0	0	0
3	G	5	0	0	1	0
All	All	3148	2739	2705	18	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

All (18) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1 Atom-2		distance (\AA)	overlap (Å)
1:D:380:LYS:O	3:D:501:HOH:O	1.94	0.86
1:D:318:ARG:NH1	1:D:383:GLY:O	2.35	0.59
2:G:424:GLU:O	3:G:501:HOH:O	2.17	0.57
1:D:374:GLN:O	1:D:378:ALA:N	2.30	0.52
1:D:371:SER:OG	1:D:374:GLN:HG2	2.12	0.50
1:D:400:PHE:CD2	2:F:419:56J:C11	2.94	0.50
1:D:318:ARG:HD3	1:D:321:THR:C	2.33	0.49
1:B:405:ARG:O	1:B:406:VAL:CB	2.61	0.48
1:C:405:ARG:O	1:C:406:VAL:CB	2.62	0.47
1:D:318:ARG:HH12	1:D:383:GLY:C	2.18	0.47
1:C:319:GLY:N	3:C:601:HOH:O	2.15	0.46
1:D:380:LYS:CA	3:D:501:HOH:O	2.63	0.46
1:D:392:TYR:CE2	1:D:394:PRO:HG3	2.51	0.46
1:D:377:ILE:O	1:D:381:ASN:N	2.51	0.42
1:D:392:TYR:CZ	1:D:394:PRO:HG3	2.54	0.42
2:F:419:56J:C29	2:F:419:56J:C09	2.97	0.41
1:D:386:VAL:HG12	1:D:388:ILE:HG13	2.03	0.40
1:B:309:ARG:HB3	3:B:610:HOH:O	2.21	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	98/119~(82%)	98 (100%)	0	0	100	100
1	В	98/119~(82%)	97~(99%)	1 (1%)	0	100	100
1	С	99/119~(83%)	98~(99%)	1 (1%)	0	100	100
1	D	98/119~(82%)	98 (100%)	0	0	100	100
2	Е	4/7~(57%)	4 (100%)	0	0	100	100
2	F	4/7~(57%)	4 (100%)	0	0	100	100
2	G	4/7~(57%)	4 (100%)	0	0	100	100
2	Н	4/7~(57%)	4 (100%)	0	0	100	100
All	All	409/504~(81%)	407 (100%)	2 (0%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	64/94~(68%)	64 (100%)	0	100	100
1	В	72/94~(77%)	72 (100%)	0	100	100
1	С	68/94~(72%)	68 (100%)	0	100	100
1	D	47/94~(50%)	47 (100%)	0	100	100
2	Ε	4/6~(67%)	4 (100%)	0	100	100
2	F	3/6~(50%)	3 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
2	G	5/6~(83%)	5~(100%)	0	100	100
2	Н	4/6~(67%)	4 (100%)	0	100	100
2	Ι	1/6~(17%)	1 (100%)	0	100	100
All	All	268/406~(66%)	268 (100%)	0	100	100

There are no protein residues with a non-rotameric sidechain to report.

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(Å^2)$	Q < 0.9
1	А	100/119~(84%)	0.24	3 (3%) 50 59	49, 70, 103, 145	0
1	В	100/119~(84%)	0.28	1 (1%) 82 86	39,57,87,106	0
1	С	101/119~(84%)	0.33	1 (0%) 82 86	42, 69, 99, 110	0
1	D	100/119~(84%)	0.94	21 (21%) 1 1	68, 105, 136, 154	0
2	Ε	6/7~(85%)	0.04	0 100 100	64, 72, 84, 101	0
2	F	6/7~(85%)	0.36	1 (16%) 1 2	86, 99, 108, 134	0
2	G	6/7~(85%)	0.06	0 100 100	47, 55, 74, 88	0
2	Н	6/7~(85%)	0.22	0 100 100	70, 84, 104, 119	0
2	Ι	$1/7 \ (14\%)$	-0.51	0 100 100	66, 66, 66, 66	0
All	All	426/511 (83%)	0.43	27 (6%) 20 27	39, 74, 126, 154	0

All (27) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	D	404	SER	5.7
1	D	390	ALA	5.1
1	D	391	GLN	3.8
1	А	402	ALA	3.7
1	В	402	ALA	3.6
1	D	311	PRO	3.6
1	D	307	ILE	3.5
1	D	308	PRO	3.5
1	А	406	VAL	3.5
1	D	330	GLY	3.3
1	D	345	GLY	3.1
1	D	320	SER	2.9
1	С	308	PRO	2.9
1	D	344	GLY	2.9
1	D	331	GLU	2.8

Mol	Chain	Res	Type	RSRZ
1	D	343	ALA	2.8
1	D	332	ASP	2.7
1	D	353	LEU	2.6
1	D	392	TYR	2.5
1	D	396	GLU	2.5
1	D	340	PHE	2.4
1	А	403	ASN	2.4
1	D	400	PHE	2.3
1	D	403	ASN	2.2
1	D	333	GLY	2.1
1	D	397	TYR	2.1
2	F	420	LYS	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

