

Full wwPDB X-ray Structure Validation Report (i)

Sep 11, 2023 – 11:58 AM EDT

PDB ID	:	8DGE
Title	:	BoGH13ASus from Bacteroides ovatus
Authors	:	Brown, H.A.; DeVeaux, A.L.; Koropatkin, N.M.
Deposited on	:	2022-06-23
Resolution	:	1.89 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.5 (274361), CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.35.1
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.35.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 1.89 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Matria	Whole archive	Similar resolution
Metric	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$
R_{free}	130704	6207 (1.90-1.90)
Clashscore	141614	6847 (1.90-1.90)
Ramachandran outliers	138981	6760 (1.90-1.90)
Sidechain outliers	138945	6760 (1.90-1.90)
RSRZ outliers	127900	6082 (1.90-1.90)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	738	2% 	7%	·
1	В	738	90%	6%	·
1	С	738	90%	6%	•••
1	D	738	91%	5%	·

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard

residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
5	PEG	А	831	-	-	Х	-

8DGE

2 Entry composition (i)

There are 9 unique types of molecules in this entry. The entry contains 24832 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf	Trace		
1	Δ	707	Total	С	Ν	Ο	\mathbf{S}	0	1	0	
1	Л	101	5661	3612	929	1098	22	0	L	0	
1	В	В	711	Total	С	Ν	Ο	\mathbf{S}	0	3	0
1	D	111	5719	3651	941	1105	22	0	5	0	
1	С	710	Total	С	Ν	Ο	S	0	2	0	
	(12	5721	3650	939	1110	22	0	3	0		
1 D		719	Total	С	Ν	Ο	S	0	1	0	
		(12	5689	3627	931	1109	22	0	1	U	

• Molecule 1 is a protein called Alpha amylase, catalytic domain protein.

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	21	GLY	-	expression tag	UNP A7M087
В	21	GLY	-	expression tag	UNP A7M087
С	21	GLY	-	expression tag	UNP A7M087
D	21	GLY	-	expression tag	UNP A7M087

• Molecule 2 is CALCIUM ION (three-letter code: CA) (formula: Ca).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	1	Total Ca 1 1	0	0
2	В	1	Total Ca 1 1	0	0
2	С	1	Total Ca 1 1	0	0
2	D	1	Total Ca 1 1	0	0

• Molecule 3 is MANGANESE (II) ION (three-letter code: MN) (formula: Mn).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	Total Mn 1 1	0	0
3	В	1	Total Mn 1 1	0	0
3	С	1	Total Mn 1 1	0	0
3	D	1	Total Mn 1 1	0	0

• Molecule 4 is 1,2-ETHANEDIOL (three-letter code: EDO) (formula: $C_2H_6O_2$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	А	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	В	1	$\begin{array}{c ccc} Total & C & O \\ 4 & 2 & 2 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	В	1	$\begin{array}{c cc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	В	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	В	1	$\begin{array}{c ccc} \hline \text{Total} & \text{C} & \text{O} \\ \hline 4 & 2 & 2 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	С	1	$\begin{array}{c cc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	С	1	$\begin{array}{c ccc} \hline \text{Total} & \text{C} & \text{O} \\ \hline 4 & 2 & 2 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 4 2 2 \end{array}$	0	0
4	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0
4	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 4 & 2 & 2 \end{array}$	0	0

• Molecule 5 is DI(HYDROXYETHYL)ETHER (three-letter code: PEG) (formula: $C_4H_{10}O_3$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 7 4 3 \end{array}$	0	0
5	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 7 4 3 \end{array}$	0	0
5	А	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 7 4 3 \end{array}$	0	0
5	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 7 4 3 \end{array}$	0	0
5	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 7 4 3 \end{array}$	0	0
5	В	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 7 4 3 \end{array}$	0	0
5	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 7 4 3 \end{array}$	0	0
5	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 7 4 3 \end{array}$	0	0
5	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 7 & 4 & 3 \end{array}$	0	0
5	D	1	Total C O 7 4 3	0	0

• Molecule 6 is TRIETHYLENE GLYCOL (three-letter code: PGE) (formula: $C_6H_{14}O_4$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	А	1	Total C O 10 6 4	0	0

• Molecule 7 is (4S)-2-METHYL-2,4-PENTANEDIOL (three-letter code: MPD) (formula: $C_6H_{14}O_2$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	С	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{O} \\ 8 & 6 & 2 \end{array}$	0	0
7	С	1	$\begin{array}{ccc} \text{Total} \text{C} \text{O} \\ 8 6 2 \end{array}$	0	0

• Molecule 8 is IMIDAZOLE (three-letter code: IMD) (formula: $C_3H_5N_2$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
8	D	1	$\begin{array}{ccc} \text{Total} & \text{C} & \text{N} \\ 5 & 3 & 2 \end{array}$	0	0
8	D	1	$\begin{array}{ccc} \text{Total} \text{C} \text{N} \\ 5 3 2 \end{array}$	0	0

• Molecule 9 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
9	А	379	Total O 379 379	0	0
9	В	417	Total O 417 417	0	0
9	С	377	Total O 377 377	0	0
9	D	391	Total O 391 391	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Alpha amylase, catalytic domain protein

• Molecule 1: Alpha amylase, catalytic domain protein

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	100.39Å 148.44Å 112.77Å	Deperitor
a, b, c, α , β , γ	90.00° 91.00° 90.00°	Depositor
$\mathbf{P}_{\text{oscolution}}(\hat{\mathbf{A}})$	62.00 - 1.89	Depositor
Resolution (A)	62.00 - 1.89	EDS
% Data completeness	99.6 (62.00-1.89)	Depositor
(in resolution range)	94.8 (62.00-1.89)	EDS
R_{merge}	0.10	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.76 (at 1.90 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.8.0267	Depositor
D D.	0.209 , 0.271	Depositor
Π, Π_{free}	0.214 , 0.274	DCC
R_{free} test set	13119 reflections (5.00%)	wwPDB-VP
Wilson B-factor $(Å^2)$	27.0	Xtriage
Anisotropy	0.451	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.33, 26.1	EDS
L-test for twinning ²	$< L >=0.45, < L^2>=0.28$	Xtriage
Estimated twinning fraction	0.297 for h,-k,-l	Xtriage
F_o, F_c correlation	0.96	EDS
Total number of atoms	24832	wwPDB-VP
Average B, all atoms $(Å^2)$	31.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.96% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: CA, EDO, PEG, MN, PGE, IMD, MPD

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles	
		RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.64	0/5827	0.73	0/7929
1	В	0.65	0/5893	0.73	0/8015
1	С	0.64	0/5895	0.73	0/8023
1	D	0.65	0/5855	0.74	0/7972
All	All	0.65	0/23470	0.73	0/31939

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	5661	0	5257	32	0
1	В	5719	0	5352	25	0
1	С	5721	0	5331	28	1
1	D	5689	0	5284	23	0
2	А	1	0	0	0	0
2	В	1	0	0	0	0
2	С	1	0	0	0	0
2	D	1	0	0	0	0
3	A	1	0	0	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	В	1	0	0	0	0
3	С	1	0	0	0	0
3	D	1	0	0	0	0
4	А	112	0	168	5	0
4	В	88	0	132	0	0
4	С	116	0	174	3	0
4	D	48	0	72	4	0
5	А	21	0	30	4	0
5	В	21	0	30	2	0
5	С	7	0	10	1	0
5	D	21	0	30	0	0
6	А	10	0	14	2	0
7	С	16	0	28	4	0
8	D	10	0	10	0	0
9	А	379	0	0	5	0
9	В	417	0	0	5	0
9	С	377	0	0	4	0
9	D	391	0	0	5	1
All	All	24832	0	21922	111	1

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

All (111) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:641:ARG:NH2	9:D:902:HOH:O	2.11	0.82
1:A:417:TRP:O	5:A:831:PEG:H42	1.83	0.78
1:B:571:ASN:HB2	5:B:825:PEG:H42	1.68	0.76
7:C:834:MPD:H12	7:C:834:MPD:H52	1.69	0.73
1:D:111:LYS:NZ	9:D:903:HOH:O	2.22	0.72
1:B:120:SER:O	9:B:902:HOH:O	2.09	0.70
1:B:606:LYS:NZ	9:B:903:HOH:O	2.25	0.70
1:B:153:ASP:OD2	9:B:901:HOH:O	2.08	0.69
1:A:744:SER:O	9:A:902:HOH:O	2.11	0.68
1:C:663:THR:HG21	7:C:834:MPD:HM1	1.74	0.68
1:A:728:TYR:OH	9:A:901:HOH:O	2.11	0.66
1:A:177:ILE:HG21	1:A:194:MET:HE1	1.80	0.64
1:C:335:MET:HE1	1:C:389:ALA:HB3	1.79	0.64
1:C:735:ASN:HB2	1:C:736:PRO:HD2	1.80	0.64
1:A:581:ASP:O	1:A:641:ARG:NH2	2.31	0.62

		Interatomic	Clash		
Atom-1	Atom-2	distance (\AA)	overlap (Å)		
1:D:68:LYS:NZ	9:D:908:HOH:O	2.33	0.61		
1:D:124:ARG:NH2	1:D:133:THR:O	2.35	0.60		
1:C:735:ASN:HB2	1:C:736:PRO:CD	2.31	0.59		
1:C:758:GLU:O	9:C:901:HOH:O	2.17	0.59		
1:C:735:ASN:CB	1:C:736:PRO:CD	2.82	0.58		
1:C:335:MET:HE1	1:C:389:ALA:CB	2.37	0.55		
1:B:581:ASP:O	1:B:641:ARG:NH1	2.40	0.55		
1:A:153:ASP:HB3	4:A:805:EDO:H21	1.89	0.54		
1:A:170:PRO:HG2	1:A:208:ASP:O	2.09	0.53		
1:C:223:SER:HA	1:C:226:MET:HE2	1.92	0.52		
1:A:727:TRP:HB2	1:A:737:VAL:CG1	2.39	0.52		
1:D:373:LEU:HD22	1:D:469:TYR:CZ	2.45	0.52		
1:D:106:ARG:NH1	9:D:915:HOH:O	2.39	0.51		
1:A:419:THR:H	5:A:831:PEG:H21	1.76	0.50		
1:D:463:LYS:NZ	1:D:467:ASP:OD2	2.45	0.50		
7:C:834:MPD:H53	9:C:1086:HOH:O	2.13	0.49		
1:B:607:GLN:OE1	1:B:748:HIS:HA	2.13	0.49		
1:C:157:LEU:HB3	1:C:167:TRP:CZ2	2.48	0.49		
1:D:630:MET:O	1:D:655:ARG:HG3	2.14	0.48		
1:C:275:LYS:HD3	1:C:287:ALA:HB2	1.95	0.48		
1:C:107:LEU:HB3	1:C:115:TRP:HB3	1.95	0.48		
1:D:107:LEU:HB3	1:D:115:TRP:HB3	1.95	0.48		
1:A:674:ASP:OD2	1:A:703:ASN:ND2	2.46	0.48		
1:B:275:LYS:HD3	1:B:287:ALA:HB2	1.96	0.47		
1:B:572:GLN:HG2	5:B:825:PEG:H41	1.96	0.47		
1:B:83:TYR:CE2	1:B:106:ARG:HD3	2.49	0.47		
1:C:90:ALA:HB2	4:C:821:EDO:H22	1.96	0.47		
1:A:86:SER:O	1:A:95:ALA:HA	2.15	0.47		
1:B:463:LYS:NZ	9:B:925:HOH:O	2.48	0.47		
1:B:68:LYS:HG2	1:B:114:VAL:HG22	1.96	0.46		
1:B:408:ASN:ND2	1:B:445:ASP:OD2	2.49	0.46		
1:A:107:LEU:HB3	1:A:115:TRP:HB3	1.97	0.46		
1:B:373:LEU:HD22	1:B:469:TYR:CZ	2.51	0.45		
1:C:152:TYR:CD2	1:C:422:ASN:HB2	2.51	0.45		
1:D:674:ASP:OD2	1:D:703:ASN:ND2	2.48	0.45		
1:C:373:LEU:HD22	1:C:469:TYR:CZ	2.52	0.45		
1:A:340:TYR:CD1	4:A:825:EDO:H12	2.51	0.45		
1:C:209:CYS:SG	7:C:833:MPD:HM2	2.57	0.45		
1:D:751:ARG:HA	4:D:813:EDO:C2	2.47	0.45		
1:B:45:VAL:CB	1:B:68:LYS:HG3	2.48	0.44		
1:B:52:PHE:HB3	1:B:63:LEU:HD11	2.00	0.44		

		Interatomic	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)		
1:D:82:LEU:HD13	1:D:142:VAL:HG11	1.98	0.44		
1:C:271[B]:GLN:HG3	1:C:292:VAL:O	2.18	0.44		
1:D:697:LEU:HD12	1:D:697:LEU:C	2.38	0.44		
1:C:139:ASN:HA	1:C:154:TYR:O	2.18	0.44		
1:A:157:LEU:HB3	1:A:167:TRP:CZ2	2.53	0.43		
1:C:309:MET:O	1:C:312:LYS:HG3	2.18	0.43		
1:B:119:LEU:N	1:B:119:LEU:HD12	2.33	0.43		
1:C:510:ALA:O	4:C:808:EDO:O1	2.32	0.43		
1:D:192:SER:HA	1:D:240:LEU:O	2.18	0.43		
1:A:373:LEU:HD22	1:A:469:TYR:CZ	2.54	0.43		
1:B:672:HIS:O	1:B:675:LEU:HB2	2.19	0.43		
1:D:751:ARG:HA	4:D:813:EDO:H22	1.99	0.43		
1:B:107:LEU:HB3	1:B:115:TRP:HB3	2.01	0.42		
1:C:338:LEU:N	1:C:339:PRO:CD	2.82	0.42		
1:A:201:ASP:HB2	1:A:427:LYS:O	2.19	0.42		
1:D:303:SER:OG	9:D:901:HOH:O	2.03	0.42		
1:D:515:LYS:NZ	1:D:517:ASP:OD1	2.47	0.42		
1:A:455:LYS:HD3	1:A:503:VAL:HG23	2.01	0.42		
1:B:195:LEU:O	1:B:237:TRP:HA	2.20	0.42		
1:A:418:ASP:HA	5:A:831:PEG:H21	2.01	0.42		
1:A:588:LYS:HD3	4:A:830:EDO:H22	2.02	0.42		
1:A:596:ALA:CB	6:A:834:PGE:H12	2.49	0.42		
1:B:732:GLU:O	1:B:734:GLY:N	2.53	0.42		
1:B:48:ASP:OD2	1:B:70:PRO:HB3	2.19	0.42		
1:B:209:CYS:HB2	1:B:226:MET:HE1	2.00	0.42		
1:C:98:TRP:CE3	5:C:832:PEG:H21	2.55	0.42		
1:A:74:ASN:ND2	9:A:939:HOH:O	2.52	0.42		
1:C:226:MET:HG2	9:C:1099:HOH:O	2.19	0.42		
1:C:335:MET:CE	1:C:389:ALA:CB	2.98	0.42		
1:D:287:ALA:HB3	4:D:805:EDO:H21	2.01	0.41		
1:A:119:LEU:HD12	1:A:119:LEU:N	2.35	0.41		
1:D:92:TRP:CZ2	1:D:139:ASN:HB3	2.56	0.41		
1:A:340:TYR:CE1	4:A:825:EDO:H12	2.55	0.41		
1:A:109:LYS:NZ	9:A:943:HOH:O	2.53	0.41		
1:D:459:LYS:NZ	1:D:506:GLU:OE2	2.44	0.41		
1:C:443:SER:HA	4:C:812:EDO:H22	2.02	0.41		
1:C:218:ASN:ND2	9:C:937:HOH:O	2.53	0.41		
1:D:318:TYR:CZ	1:D:626:GLN:HA	2.56	0.41		
1:A:51:ASN:HB2	1:A:66:THR:HB	2.03	0.41		
1:A:108:LYS:O	1:A:115:TRP:HA	2.20	0.41		
1:A:596:ALA:HB2	6:A:834:PGE:H12	2.03	0.41		

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:202:SER:OG	1:C:427:LYS:HA	2.20	0.41
1:D:752:LEU:H	4:D:813:EDO:H21	1.85	0.41
1:A:162:GLN:HB2	9:A:917:HOH:O	2.20	0.41
1:A:259:ASP:HA	5:A:831:PEG:H32	2.01	0.41
1:A:338:LEU:N	1:A:339:PRO:CD	2.85	0.40
4:A:817:EDO:O1	4:A:827:EDO:H12	2.20	0.40
1:B:209:CYS:HB2	1:B:226:MET:CE	2.51	0.40
1:B:438:GLN:CD	9:B:1068:HOH:O	2.59	0.40
1:C:195:LEU:O	1:C:237:TRP:HA	2.22	0.40
1:C:581:ASP:O	1:C:641:ARG:NH1	2.54	0.40
1:A:170:PRO:HG3	1:A:209:CYS:HB3	2.03	0.40
1:A:71:GLU:HA	1:A:76:TYR:CD1	2.56	0.40
1:B:119:LEU:N	1:B:119:LEU:CD1	2.85	0.40
1:D:82:LEU:HD13	1:D:142:VAL:CG1	2.52	0.40

All (1) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-1 Atom-2		Clash overlap (Å)	
1:C:171:GLN:OE1	9:D:1111:HOH:O[2_655]	2.18	0.02	

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	698/738~(95%)	671 (96%)	25 (4%)	2 (0%)	41	31
1	В	706/738~(96%)	677~(96%)	26 (4%)	3~(0%)	34	24
1	С	709/738~(96%)	679~(96%)	28 (4%)	2 (0%)	41	31
1	D	707/738~(96%)	682 (96%)	25 (4%)	0	100	100
All	All	2820/2952~(96%)	2709 (96%)	104 (4%)	7 (0%)	47	38

Mol	Chain	Res	Type
1	А	757	ALA
1	В	302	TRP
1	С	735	ASN
1	В	304	ALA
1	С	121	SER
1	А	121	SER
1	В	46	LEU

All (7) Ramachandran outliers are listed below:

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
1	А	601/639~(94%)	597~(99%)	4 (1%)	84 84	Ξ	
1	В	610/639~(96%)	602~(99%)	8 (1%)	69 68	}	
1	С	609/639~(95%)	598~(98%)	11 (2%)	59 55)	
1	D	604/639~(94%)	596~(99%)	8 (1%)	69 68))	
All	All	2424/2556~(95%)	2393~(99%)	31 (1%)	71 68	}	

All (31) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	247	GLU
1	А	344	LEU
1	А	557	ASP
1	А	684	TRP
1	В	68	LYS
1	В	106	ARG
1	В	166	ILE
1	В	427[A]	LYS
1	В	427[B]	LYS
1	В	684	TRP
1	В	700	LYS
1	В	741	LYS
1	С	111	LYS

Mol	Chain	Res	Type
1	С	112	ASP
1	С	171	GLN
1	С	178	SER
1	С	335	MET
1	С	356	GLU
1	С	373	LEU
1	С	557[A]	ASP
1	С	557[B]	ASP
1	С	684	TRP
1	С	741	LYS
1	D	46	LEU
1	D	112	ASP
1	D	169	GLU
1	D	180	GLU
1	D	356	GLU
1	D	373	LEU
1	D	624	LEU
1	D	684	TRP

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (12) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	74	ASN
1	В	74	ASN
1	В	149	GLN
1	В	162	GLN
1	В	408	ASN
1	В	693	ASN
1	С	125	HIS
1	С	163	ASN
1	С	689	ASN
1	D	301	GLN
1	D	408	ASN
1	D	672	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 114 ligands modelled in this entry, 8 are monoatomic - leaving 106 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dec	Tink	B	ond leng	gths	E	Bond ang	gles
	Type	Unann	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
5	PEG	А	833	-	6,6,6	0.15	0	$5,\!5,\!5$	0.08	0
4	EDO	А	809	-	3,3,3	0.10	0	2,2,2	0.23	0
5	PEG	В	827	-	6,6,6	0.17	0	$5,\!5,\!5$	0.10	0
4	EDO	В	814	-	3,3,3	0.14	0	2,2,2	0.21	0
4	EDO	С	823	-	3,3,3	0.08	0	2,2,2	0.25	0
5	PEG	А	832	-	6,6,6	0.14	0	$5,\!5,\!5$	0.14	0
4	EDO	А	824	-	3,3,3	0.09	0	2,2,2	0.22	0
5	PEG	В	825	-	6,6,6	0.14	0	$5,\!5,\!5$	0.19	0
4	EDO	D	810	-	3,3,3	0.20	0	2,2,2	0.11	0
4	EDO	В	818	-	3,3,3	0.11	0	2,2,2	0.18	0
4	EDO	С	807	-	3,3,3	0.22	0	2,2,2	0.35	0
4	EDO	А	829	-	3,3,3	0.10	0	2,2,2	0.29	0
4	EDO	А	814	-	3,3,3	0.07	0	2,2,2	0.17	0
4	EDO	D	807	-	3,3,3	0.07	0	2,2,2	0.22	0
4	EDO	А	823	-	3,3,3	0.06	0	2,2,2	0.25	0
4	EDO	В	824	-	3,3,3	0.08	0	2,2,2	0.22	0
4	EDO	А	817	-	3,3,3	0.17	0	2,2,2	0.35	0
5	PEG	А	831	-	6,6,6	0.16	0	$5,\!5,\!5$	0.14	0
4	EDO	А	820	-	3,3,3	0.13	0	2,2,2	0.26	0
4	EDO	D	805	-	3,3,3	0.10	0	2,2,2	0.20	0
4	EDO	А	805	-	3,3,3	0.05	0	2,2,2	0.23	0
4	EDO	С	808	-	3,3,3	0.07	0	2,2,2	0.13	0

Ъ.Г. 1	T		D	T	B	ond leng	$_{ m gths}$	B	ond ang	gles
IVIOI	Type	Chain	Res	Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
4	EDO	С	821	-	3,3,3	0.13	0	$2,\!2,\!2$	0.30	0
4	EDO	С	810	-	3,3,3	0.05	0	2,2,2	0.21	0
4	EDO	С	812	-	3,3,3	0.07	0	$2,\!2,\!2$	0.37	0
4	EDO	В	822	-	3,3,3	0.13	0	2,2,2	0.06	0
5	PEG	С	832	-	6,6,6	0.16	0	$5,\!5,\!5$	0.12	0
4	EDO	В	816	-	3,3,3	0.10	0	$2,\!2,\!2$	0.21	0
4	EDO	А	807	-	3,3,3	0.09	0	$2,\!2,\!2$	0.23	0
4	EDO	В	817	-	3,3,3	0.10	0	$2,\!2,\!2$	0.24	0
4	EDO	С	816	-	3,3,3	0.17	0	$2,\!2,\!2$	0.21	0
4	EDO	С	828	-	3,3,3	0.08	0	$2,\!2,\!2$	0.21	0
4	EDO	D	804	-	3,3,3	0.07	0	$2,\!2,\!2$	0.17	0
6	PGE	А	834	-	9,9,9	0.18	0	8,8,8	0.14	0
4	EDO	С	829	-	3,3,3	0.05	0	$2,\!2,\!2$	0.28	0
4	EDO	С	827	-	3,3,3	0.04	0	2,2,2	0.21	0
4	EDO	С	820	-	3,3,3	0.06	0	2,2,2	0.13	0
4	EDO	В	804	-	3,3,3	0.14	0	2,2,2	0.14	0
5	PEG	D	816	-	6,6,6	0.25	0	$5,\!5,\!5$	0.18	0
4	EDO	А	804	-	3,3,3	0.10	0	2,2,2	0.21	0
4	EDO	С	831	-	3,3,3	0.09	0	2,2,2	0.22	0
4	EDO	А	808	-	3,3,3	0.13	0	2,2,2	0.34	0
4	EDO	А	827	-	3,3,3	0.05	0	2,2,2	0.23	0
4	EDO	В	811	-	3,3,3	0.12	0	2,2,2	0.11	0
4	EDO	С	819	-	3,3,3	0.03	0	2,2,2	0.19	0
4	EDO	В	809	-	3,3,3	0.15	0	2,2,2	0.10	0
4	EDO	А	811	-	3,3,3	0.11	0	2,2,2	0.21	0
4	EDO	В	813	-	3,3,3	0.08	0	2,2,2	0.28	0
4	EDO	В	805	-	3,3,3	0.06	0	2,2,2	0.28	0
4	EDO	С	806	-	3,3,3	0.06	0	2,2,2	0.22	0
4	EDO	А	816	-	3,3,3	0.10	0	2,2,2	0.09	0
4	EDO	С	815	-	3,3,3	0.11	0	2,2,2	0.26	0
8	IMD	D	814	-	3,5,5	0.39	0	$4,\!5,\!5$	0.70	0
4	EDO	А	825	-	3,3,3	0.14	0	2,2,2	0.19	0
4	EDO	В	810	-	3,3,3	0.06	0	2,2,2	0.05	0
4	EDO	А	818	-	3,3,3	0.16	0	2,2,2	0.24	0
4	EDO	D	809	-	3,3,3	0.14	0	2,2,2	0.16	0
4	EDO	В	806	-	3,3,3	0.10	0	2,2,2	0.15	0
7	MPD	С	834	-	7,7,7	0.10	0	9,10,10	0.42	0
4	EDO	C	814	-	3,3,3	0.11	0	2,2,2	0.16	0
4	EDO	D	813	-	3,3,3	0.02	0	2,2,2	0.22	0
4	EDO	D	819	-	3,3,3	0.02	0	2,2,2	0.25	0
4	EDO	А	810	-	3,3,3	0.07	0	$2,\!2,\!2$	0.20	0
4	EDO	D	803	-	3,3,3	0.16	0	$2,\!2,\!2$	0.10	0
4	EDO	А	821	-	3,3,3	0.04	0	2,2,2	0.16	0

Mal	Turne	Chain	Dec	Tink	Bond lengths		Bond angles			
WIOI	туре	Unain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
4	EDO	А	806	-	3, 3, 3	0.07	0	$2,\!2,\!2$	0.10	0
4	EDO	В	819	-	3, 3, 3	0.10	0	$2,\!2,\!2$	0.29	0
4	EDO	А	812	-	3, 3, 3	0.09	0	$2,\!2,\!2$	0.23	0
4	EDO	В	820	-	3, 3, 3	0.09	0	$2,\!2,\!2$	0.29	0
4	EDO	С	830	-	3,3,3	0.07	0	$2,\!2,\!2$	0.28	0
4	EDO	В	815	-	3, 3, 3	0.07	0	$2,\!2,\!2$	0.16	0
4	EDO	В	803	-	3, 3, 3	0.07	0	$2,\!2,\!2$	0.14	0
4	EDO	С	818	-	3, 3, 3	0.14	0	$2,\!2,\!2$	0.30	0
4	EDO	С	817	-	3, 3, 3	0.12	0	$2,\!2,\!2$	0.22	0
4	EDO	А	828	-	3,3,3	0.10	0	$2,\!2,\!2$	0.32	0
4	EDO	В	823	-	3, 3, 3	0.16	0	$2,\!2,\!2$	0.31	0
4	EDO	D	806	-	3, 3, 3	0.13	0	$2,\!2,\!2$	0.32	0
5	PEG	D	815	-	$6,\!6,\!6$	0.15	0	5,5,5	0.14	0
4	EDO	С	813	-	3,3,3	0.19	0	$2,\!2,\!2$	0.29	0
4	EDO	А	815	-	3, 3, 3	0.06	0	$2,\!2,\!2$	0.26	0
4	EDO	В	821	-	3,3,3	0.09	0	$2,\!2,\!2$	0.25	0
4	EDO	В	808	-	3,3,3	0.19	0	$2,\!2,\!2$	0.40	0
4	EDO	С	803	-	3,3,3	0.05	0	$2,\!2,\!2$	0.11	0
4	EDO	В	807	-	3,3,3	0.03	0	$2,\!2,\!2$	0.19	0
7	MPD	С	833	-	7,7,7	0.09	0	$9,\!10,\!10$	0.24	0
4	EDO	С	826	-	3,3,3	0.20	0	$2,\!2,\!2$	0.22	0
5	PEG	D	817	-	$6,\!6,\!6$	0.16	0	$5,\!5,\!5$	0.13	0
4	EDO	D	812	-	3,3,3	0.03	0	$2,\!2,\!2$	0.10	0
8	IMD	D	818	-	$3,\!5,\!5$	0.33	0	4,5,5	0.65	0
4	EDO	А	822	-	3,3,3	0.09	0	$2,\!2,\!2$	0.19	0
4	EDO	А	813	-	3,3,3	0.03	0	$2,\!2,\!2$	0.22	0
4	EDO	А	803	-	3,3,3	0.14	0	$2,\!2,\!2$	0.28	0
4	EDO	С	805	-	3,3,3	0.17	0	$2,\!2,\!2$	0.27	0
4	EDO	А	830	-	3,3,3	0.11	0	$2,\!2,\!2$	0.23	0
4	EDO	С	825	-	3,3,3	0.16	0	$2,\!2,\!2$	0.25	0
4	EDO	D	811	-	3,3,3	0.04	0	$2,\!2,\!2$	0.12	0
4	EDO	А	819	-	3,3,3	0.08	0	$2,\!2,\!2$	0.05	0
4	EDO	С	811	-	3,3,3	0.09	0	$2,\!2,\!2$	0.27	0
4	EDO	D	808	-	3,3,3	0.14	0	2,2,2	0.26	0
4	EDO	С	824	-	3,3,3	0.10	0	2,2,2	0.20	0
4	EDO	C	822	_	3,3,3	0.13	0	2,2,2	0.20	0
4	EDO	A	826	-	3,3,3	0.15	0	2,2,2	0.11	0
4	EDO	В	812	-	$3,\!3,\!3$	0.12	0	$2,\!2,\!2$	0.12	0
5	PEG	В	826	-	6,6,6	0.18	0	$5,\!5,\!5$	0.07	0
4	EDO	С	809	-	$3,\!3,\!3$	0.13	0	$2,\!2,\!2$	0.20	0
4	EDO	C	804	-	3,3,3	0.11	0	$2, \overline{2, 2}$	0.40	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	PEG	А	833	-	-	3/4/4/4	-
4	EDO	А	809	_	-	1/1/1/1	-
5	PEG	В	827	-	-	1/4/4/4	-
4	EDO	В	814	-	-	0/1/1/1	-
4	EDO	С	823	-	-	1/1/1/1	-
5	PEG	А	832	-	-	3/4/4/4	-
4	EDO	А	824	-	_	0/1/1/1	_
5	PEG	В	825	-	_	1/4/4/4	-
4	EDO	D	810	-	-	1/1/1/1	_
4	EDO	В	818	-	-	0/1/1/1	-
4	EDO	С	807	-	-	1/1/1/1	-
4	EDO	А	829	-	-	1/1/1/1	-
4	EDO	А	814	-	-	1/1/1/1	-
4	EDO	D	807	-	-	1/1/1/1	-
4	EDO	А	823	-	-	1/1/1/1	-
4	EDO	В	824	-	-	1/1/1/1	-
4	EDO	А	817	-	-	1/1/1/1	-
5	PEG	А	831	-	-	2/4/4/4	-
4	EDO	А	820	-	-	1/1/1/1	-
4	EDO	D	805	-	-	1/1/1/1	-
4	EDO	А	805	-	-	0/1/1/1	-
4	EDO	С	808	-	-	0/1/1/1	-
4	EDO	С	821	-	-	1/1/1/1	_
4	EDO	С	810	-	-	1/1/1/1	-
4	EDO	С	812	-	-	1/1/1/1	-
4	EDO	В	822	-	-	1/1/1/1	_
5	PEG	С	832	-	-	2/4/4/4	-
4	EDO	В	816	-	-	1/1/1/1	-
4	EDO	А	807	-	-	1/1/1/1	-
4	EDO	В	817	-	-	1/1/1/1	-
4	EDO	С	816	-	-	1/1/1/1	-
4	EDO	С	828	-	-	0/1/1/1	-
4	EDO	D	804	_	-	1/1/1/1	-
6	PGE	А	834	_	-	3/7/7/7	-
4	EDO	С	829	-	-	1/1/1/1	-
4	EDO	С	827	-	-	0/1/1/1	-
4	EDO	С	820	-	-	1/1/1/1	-
4	EDO	В	804	-	-	0/1/1/1	_
5	PEG	D	816	-	-	1/4/4/4	-

centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Continuea from previous page								
	Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
	4	EDO	A	804	-	-	1/1/1/1	-
	4	EDO	C	831	-	-	1/1/1/1	-
	4	EDO	A	808	-	-	1/1/1/1	-
	4	EDO	A	827	-	-	1/1/1/1	-
	4	EDO	В	811	-	-	0/1/1/1	-
	4	EDO	С	819	-	-	1/1/1/1	-
	4	EDO	В	809	-	-	1/1/1/1	-
	4	EDO	A	811	-	-	1/1/1/1	-
	4	EDO	В	813	-	-	1/1/1/1	-
	4	EDO	В	805	-	-	0/1/1/1	-
	4	EDO	С	806	-	-	1/1/1/1	-
	4	EDO	А	816	-	-	1/1/1/1	-
	4	EDO	С	815	-	-	1/1/1/1	-
	8	IMD	D	814	-	-	-	0/1/1/1
	4	EDO	А	825	-	-	1/1/1/1	-
	4	EDO	В	810	-	-	1/1/1/1	-
	4	EDO	А	818	-	-	1/1/1/1	-
	4	EDO	D	809	-	-	1/1/1/1	-
	4	EDO	В	806	-	-	1/1/1/1	-
	7	MPD	С	834	-	-	1/5/5/5	_
	4	EDO	С	814	-	-	0/1/1/1	-
	4	EDO	D	813	-	-	1/1/1/1	-
	4	EDO	D	819	-	-	0/1/1/1	-
	4	EDO	А	810	-	-	1/1/1/1	-
	4	EDO	D	803	-	-	0/1/1/1	-
	4	EDO	А	821	-	-	0/1/1/1	-
	4	EDO	А	806	-	-	0/1/1/1	-
	4	EDO	В	819	-	-	1/1/1/1	-
	4	EDO	А	812	-	-	1/1/1/1	-
	4	EDO	В	820	-	-	1/1/1/1	-
	4	EDO	С	830	-	-	1/1/1/1	-
	4	EDO	В	815	-	-	1/1/1/1	-
	4	EDO	В	803	-	-	0/1/1/1	_
	4	EDO	С	818	_	-	1/1/1/1	_
	4	EDO	С	817	_	_	0/1/1/1	_
	4	EDO	A	828	_	_	1/1/1/1	_
	4	EDO	В	823	-	-	1/1/1/1	_
	4	EDO	D	806	_	_	1/1/1/1	_
	5	PEG	D	815	_	-	$\frac{2}{4}/\frac{4}{4}$	_
	4	EDO	C	813	_	_	1/1/1/1	_
	4	EDO	A	815	_	_	1/1/1/1	_
	4	EDO	R	821	_	_	1/1/1/1	_
	I <u>+</u>				1	1	· · · · · · · ·	1

d fa Cntin

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	EDO	В	808	-	-	0/1/1/1	-
4	EDO	С	803	-	-	1/1/1/1	-
4	EDO	В	807	-	-	0/1/1/1	-
7	MPD	С	833	-	-	0/5/5/5	-
4	EDO	С	826	-	-	1/1/1/1	-
5	PEG	D	817	-	-	0/4/4/4	-
4	EDO	D	812	-	-	0/1/1/1	-
8	IMD	D	818	-	-	-	0/1/1/1
4	EDO	А	822	-	-	1/1/1/1	-
4	EDO	А	813	-	-	1/1/1/1	-
4	EDO	А	803	-	-	1/1/1/1	-
4	EDO	С	805	-	-	0/1/1/1	-
4	EDO	А	830	-	-	1/1/1/1	-
4	EDO	С	825	-	-	1/1/1/1	-
4	EDO	D	811	-	-	0/1/1/1	-
4	EDO	А	819	-	-	1/1/1/1	-
4	EDO	С	811	-	-	1/1/1/1	-
4	EDO	D	808	-	-	1/1/1/1	-
4	EDO	С	824	-	-	1/1/1/1	-
4	EDO	С	822	-	-	1/1/1/1	-
4	EDO	А	826	-	-	1/1/1/1	-
4	EDO	В	812	-	-	1/1/1/1	_
5	PEG	В	826	-	-	2/4/4/4	-
4	EDO	С	809	-	-	1/1/1/1	-
4	EDO	С	804	-	-	1/1/1/1	-

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (90) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
7	С	834	MPD	C2-C3-C4-O4
5	В	826	PEG	O2-C3-C4-O4
5	D	815	PEG	O2-C3-C4-O4
6	А	834	PGE	O1-C1-C2-O2
4	А	825	EDO	O1-C1-C2-O2
4	В	810	EDO	O1-C1-C2-O2
5	В	825	PEG	O2-C3-C4-O4
5	С	832	PEG	O2-C3-C4-O4
5	А	833	PEG	O2-C3-C4-O4

Mol	Chain	Res	Type	Atoms
4	А	808	EDO	O1-C1-C2-O2
4	А	810	EDO	O1-C1-C2-O2
4	А	820	EDO	O1-C1-C2-O2
4	А	829	EDO	O1-C1-C2-O2
4	В	816	EDO	O1-C1-C2-O2
4	В	819	EDO	O1-C1-C2-O2
4	В	823	EDO	O1-C1-C2-O2
4	С	803	EDO	O1-C1-C2-O2
4	С	806	EDO	O1-C1-C2-O2
4	С	823	EDO	O1-C1-C2-O2
4	С	824	EDO	O1-C1-C2-O2
4	С	826	EDO	O1-C1-C2-O2
4	С	829	EDO	O1-C1-C2-O2
4	D	806	EDO	O1-C1-C2-O2
4	D	808	EDO	O1-C1-C2-O2
4	D	809	EDO	O1-C1-C2-O2
4	D	810	EDO	O1-C1-C2-O2
6	А	834	PGE	C6-C5-O3-C4
5	А	831	PEG	O2-C3-C4-O4
5	А	832	PEG	O1-C1-C2-O2
5	В	826	PEG	O1-C1-C2-O2
5	А	832	PEG	O2-C3-C4-O4
5	А	833	PEG	O1-C1-C2-O2
5	D	815	PEG	O1-C1-C2-O2
4	А	827	EDO	O1-C1-C2-O2
4	В	815	EDO	O1-C1-C2-O2
4	В	817	EDO	O1-C1-C2-O2
4	С	816	EDO	O1-C1-C2-O2
4	D	807	EDO	O1-C1-C2-O2
4	A	809	EDO	O1-C1-C2-O2
4	A	813	EDO	O1-C1-C2-O2
4	A	826	EDO	O1-C1-C2-O2
4	A	830	EDO	O1-C1-C2-O2
4	В	813	EDO	O1-C1-C2-O2
4	В	820	EDO	O1-C1-C2-O2
4	С	807	EDO	O1-C1-C2-O2
4	С	809	EDO	O1-C1-C2-O2
4	С	815	EDO	O1-C1-C2-O2
4	С	818	EDO	O1-C1-C2-O2
4	С	819	EDO	O1-C1-C2-O2
4	С	825	EDO	O1-C1-C2-O2
4	D	804	EDO	01-C1-C2-O2

Continued from previous page...

Mol	Chain	Res	Type	Atoms
5	А	831	PEG	O1-C1-C2-O2
5	D	816	PEG	O1-C1-C2-O2
5	С	832	PEG	C4-C3-O2-C2
5	А	832	PEG	C4-C3-O2-C2
4	А	817	EDO	O1-C1-C2-O2
4	С	810	EDO	O1-C1-C2-O2
4	С	813	EDO	O1-C1-C2-O2
4	D	805	EDO	O1-C1-C2-O2
5	В	827	PEG	C1-C2-O2-C3
4	А	807	EDO	O1-C1-C2-O2
4	А	812	EDO	O1-C1-C2-O2
4	А	814	EDO	O1-C1-C2-O2
4	В	812	EDO	O1-C1-C2-O2
4	С	804	EDO	O1-C1-C2-O2
4	С	811	EDO	O1-C1-C2-O2
4	С	812	EDO	O1-C1-C2-O2
4	С	820	EDO	O1-C1-C2-O2
4	С	821	EDO	O1-C1-C2-O2
4	С	830	EDO	O1-C1-C2-O2
4	С	831	EDO	O1-C1-C2-O2
4	А	804	EDO	O1-C1-C2-O2
4	А	816	EDO	O1-C1-C2-O2
4	А	818	EDO	O1-C1-C2-O2
4	А	819	EDO	O1-C1-C2-O2
4	С	822	EDO	O1-C1-C2-O2
5	А	833	PEG	C4-C3-O2-C2
4	А	815	EDO	O1-C1-C2-O2
4	В	806	EDO	01-C1-C2-O2
4	D	813	EDO	01-C1-C2-O2
4	A	803	EDO	O1-C1-C2-O2
4	A	811	EDO	01-C1-C2-O2
4	A	822	EDO	01-C1-C2-O2
4	A	823	EDO	01-C1-C2-O2
4	A	828	EDO	01-C1-C2-O2
4	B	821	EDO	O1-C1-C2-O2
4	B	822	EDO	O1-C1-C2-O2
4	В	824	EDO	O1-C1-C2-O2
6	A	834	PGE	O2-C3-C4-O3
4	В	809	EDO	01-C1-C2-O2

Continued from previous page...

There are no ring outliers.

16 monomers are involved in 25 short contacts:

8DGE

Mol	Chain	\mathbf{Res}	Type	Clashes	Symm-Clashes
5	В	825	PEG	2	0
4	А	817	EDO	1	0
5	А	831	PEG	4	0
4	D	805	EDO	1	0
4	А	805	EDO	1	0
4	С	808	EDO	1	0
4	С	821	EDO	1	0
4	С	812	EDO	1	0
5	С	832	PEG	1	0
6	А	834	PGE	2	0
4	А	827	EDO	1	0
4	А	825	EDO	2	0
7	С	834	MPD	3	0
4	D	813	EDO	3	0
7	C	833	MPD	1	0
4	А	830	EDO	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	< RSRZ >	#RSRZ>2	$OWAB(Å^2)$	Q<0.9
1	А	707/738~(95%)	0.27	17 (2%) 59 62	21, 31, 43, 58	0
1	В	711/738~(96%)	0.28	5 (0%) 87 88	22, 29, 43, 54	0
1	С	712/738~(96%)	0.24	11 (1%) 73 76	22, 30, 43, 53	0
1	D	712/738~(96%)	0.27	8 (1%) 80 82	22, 29, 43, 55	0
All	All	2842/2952~(96%)	0.26	41 (1%) 75 77	21, 30, 43, 58	0

All (41) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	В	167	TRP	5.4
1	А	190	ALA	3.7
1	А	244	THR	3.7
1	А	167	TRP	3.7
1	А	178	SER	3.6
1	D	305	GLY	3.5
1	D	304	ALA	3.3
1	А	305	GLY	3.2
1	В	739	GLY	3.2
1	D	45	VAL	3.1
1	С	306	GLU	3.1
1	С	730	TYR	3.0
1	С	178	SER	3.0
1	С	735	ASN	3.0
1	С	165[A]	PHE	2.9
1	А	756	PHE	2.9
1	А	75	PHE	2.7
1	А	420	PHE	2.6
1	А	110	THR	2.6
1	С	72	GLY	2.6
1	С	702	VAL	2.6

Mol	Chain Res		Type	RSRZ	
1	А	592	TYR	2.5	
1	А	179	GLY	2.5	
1	D	167	TRP	2.5	
1	А	56	ILE	2.5	
1	D	245	ALA	2.5	
1	D	297	PRO	2.4	
1	С	111	LYS	2.4	
1	В	166	ILE	2.3	
1	А	187	ILE	2.3	
1	А	95	ALA	2.2	
1	В	434	VAL	2.2	
1	С	731	LEU	2.2	
1	С	177	ILE	2.2	
1	С	47	HIS	2.1	
1	В	45	VAL	2.1	
1	D	187	ILE	2.1	
1	D	757	ALA	2.1	
1	А	177	ILE	2.1	
1	А	82	LEU	2.1	
1	А	295	THR	2.0	

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-factors}(\mathbf{A}^2)$	Q < 0.9
4	EDO	А	803	4/4	0.51	0.32	$39,\!41,\!41,\!47$	0
4	EDO	С	811	4/4	0.68	0.28	35,39,40,44	0
4	EDO	В	823	4/4	0.69	0.26	43,44,45,46	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
6	PGE	А	834	10/10	0.69	0.25	41,46,48,49	0
4	EDO	С	807	4/4	0.71	0.17	42,46,46,49	0
4	EDO	D	808	4/4	0.72	0.23	34,37,38,40	0
4	EDO	С	818	4/4	0.72	0.25	36,37,37,40	0
4	EDO	А	818	4/4	0.73	0.14	41,44,44,45	0
4	EDO	С	824	4/4	0.73	0.18	36,37,37,40	0
4	EDO	В	815	4/4	0.74	0.18	44,44,47,48	0
4	EDO	С	814	4/4	0.74	0.22	40,41,42,44	0
4	EDO	В	808	4/4	0.75	0.26	36,37,37,38	0
4	EDO	С	831	4/4	0.75	0.15	47,48,48,49	0
4	EDO	А	827	4/4	0.75	0.15	35,38,38,39	0
5	PEG	С	832	7/7	0.75	0.20	41,44,45,46	0
4	EDO	С	809	4/4	0.75	0.18	39,41,42,44	0
4	EDO	D	807	4/4	0.76	0.21	38,39,39,44	0
4	EDO	А	808	4/4	0.76	0.27	41,42,44,47	0
7	MPD	С	834	8/8	0.76	0.35	38,41,44,48	0
4	EDO	В	822	4/4	0.77	0.19	33,35,35,38	0
4	EDO	В	819	4/4	0.77	0.19	39,42,45,50	0
5	PEG	А	833	7/7	0.78	0.26	42,42,44,46	0
4	EDO	А	819	4/4	0.78	0.29	38,39,39,40	0
4	EDO	А	804	4/4	0.78	0.18	40,41,42,44	0
4	EDO	В	817	4/4	0.78	0.20	39,43,44,44	0
5	PEG	А	831	7/7	0.79	0.26	35,39,43,45	0
4	EDO	D	805	4/4	0.80	0.14	36,39,39,43	0
4	EDO	D	806	4/4	0.80	0.17	38,39,39,41	0
4	EDO	В	821	4/4	0.80	0.18	38,39,40,40	0
5	PEG	D	815	7/7	0.80	0.15	39,43,44,44	0
4	EDO	А	813	4/4	0.80	0.27	42,44,46,47	0
4	EDO	D	813	4/4	0.80	0.17	37,39,40,41	0
4	EDO	А	830	4/4	0.81	0.40	34,36,38,40	0
4	EDO	В	818	4/4	0.81	0.21	39,41,43,47	0
4	EDO	А	816	4/4	0.81	0.25	40,42,43,46	0
4	EDO	А	815	4/4	0.81	0.26	37,39,40,41	0
5	PEG	А	832	7/7	0.82	0.23	35,39,45,45	0
4	EDO	А	817	4/4	0.82	0.12	41,41,42,43	0
4	EDO	С	822	4/4	0.82	0.14	38,39,40,41	0
4	EDO	D	809	4/4	0.83	0.28	40,41,41,44	0
4	EDO	A	810	4/4	0.83	0.26	39,40,41,41	0
7	MPD	С	833	8/8	0.83	0.19	37,38,40,42	0
4	EDO	В	824	4/4	0.83	0.14	39,40,42,43	0
5	PEG	D	816	7/7	0.84	0.24	32,37,38,39	0
4	EDO	A	824	4/4	0.84	0.28	35,37,39,40	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
4	EDO	В	805	4/4	0.84	0.37	41,41,41,41	0
4	EDO	А	828	4/4	0.84	0.14	39,39,40,41	0
8	IMD	D	818	5/5	0.84	0.16	33,38,39,39	0
4	EDO	С	813	4/4	0.85	0.40	33,36,36,38	0
4	EDO	С	804	4/4	0.85	0.15	37,37,37,41	0
4	EDO	С	817	4/4	0.85	0.20	38,42,42,43	0
4	EDO	А	829	4/4	0.85	0.29	32,40,42,50	0
4	EDO	А	812	4/4	0.85	0.14	44,45,45,52	0
4	EDO	С	810	4/4	0.85	0.27	35,36,39,43	0
4	EDO	С	830	4/4	0.85	0.27	40,42,42,44	0
4	EDO	А	809	4/4	0.85	0.22	35,37,40,43	0
4	EDO	В	813	4/4	0.86	0.16	42,43,45,47	0
4	EDO	А	823	4/4	0.86	0.23	36,40,42,44	0
4	EDO	С	820	4/4	0.86	0.21	41,42,45,50	0
4	EDO	А	826	4/4	0.86	0.21	33,35,36,37	0
4	EDO	В	811	4/4	0.86	0.17	36,36,37,38	0
4	EDO	С	825	4/4	0.86	0.17	35,35,37,37	0
4	EDO	С	815	4/4	0.86	0.22	36,36,39,40	0
4	EDO	С	816	4/4	0.86	0.19	36,36,37,40	0
4	EDO	D	810	4/4	0.87	0.23	33,37,40,43	0
4	EDO	В	806	4/4	0.87	0.12	33,35,35,36	0
5	PEG	D	817	7/7	0.87	0.18	33,37,40,40	0
4	EDO	А	811	4/4	0.87	0.14	37,39,44,47	0
4	EDO	А	814	4/4	0.87	0.17	40,41,42,44	0
4	EDO	В	812	4/4	0.87	0.20	37,39,40,44	0
4	EDO	А	806	4/4	0.87	0.12	42,45,46,47	0
4	EDO	А	821	4/4	0.88	0.10	$41,\!42,\!45,\!47$	0
4	EDO	В	820	4/4	0.88	0.18	42,42,45,45	0
4	EDO	С	803	4/4	0.88	0.20	$36,\!37,\!38,\!42$	0
4	EDO	С	812	4/4	0.88	0.22	39,41,42,44	0
4	EDO	С	819	4/4	0.88	0.19	31,35,41,41	0
4	EDO	В	807	4/4	0.88	0.18	$35,\!36,\!37,\!42$	0
4	EDO	В	814	4/4	0.88	0.12	36,37,39,44	0
5	PEG	В	826	7/7	0.88	0.17	42,44,46,49	0
4	EDO	D	812	4/4	0.89	0.12	40,40,43,43	0
4	EDO	В	810	4/4	0.89	0.13	42,42,43,44	0
4	EDO	С	827	4/4	0.89	0.16	36,39,43,46	0
4	EDO	В	816	4/4	0.89	0.16	38,40,40,43	0
4	EDO	С	823	4/4	0.89	0.09	41,42,43,44	0
4	EDO	С	805	4/4	0.89	0.14	37,40,40,42	0
4	EDO	D	811	4/4	0.89	0.08	33,38,41,43	0
4	EDO	A	820	4/4	0.90	0.15	38,39,40,42	0

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
4	EDO	D	803	4/4	0.90	0.10	34,34,35,36	0
8	IMD	D	814	5/5	0.90	0.12	37,37,43,44	0
5	PEG	В	825	7/7	0.90	0.34	35,37,39,39	0
5	PEG	В	827	7/7	0.91	0.29	43,44,45,48	0
4	EDO	С	826	4/4	0.91	0.44	35,36,36,36	0
4	EDO	С	806	4/4	0.91	0.14	38,41,42,43	0
4	EDO	С	828	4/4	0.91	0.17	31,34,36,37	0
4	EDO	С	821	4/4	0.91	0.24	31,31,31,34	0
4	EDO	D	819	4/4	0.92	0.12	38,38,38,41	0
4	EDO	А	805	4/4	0.92	0.24	41,43,43,43	0
4	EDO	А	822	4/4	0.92	0.38	34,36,36,38	0
4	EDO	D	804	4/4	0.92	0.15	38,42,45,46	0
4	EDO	С	829	4/4	0.93	0.18	35,37,40,45	0
4	EDO	С	808	4/4	0.93	0.10	33,34,35,35	0
4	EDO	В	809	4/4	0.94	0.17	40,40,41,41	0
4	EDO	А	825	4/4	0.94	0.12	32,33,33,35	0
4	EDO	В	804	4/4	0.94	0.14	31,34,35,39	0
4	EDO	В	803	4/4	0.95	0.08	34,35,35,36	0
4	EDO	А	807	4/4	0.95	0.12	38,38,41,43	0
2	CA	D	801	1/1	0.98	0.07	27,27,27,27	0
3	MN	D	802	1/1	0.98	0.09	30,30,30,30	0
3	MN	С	802	1/1	0.99	0.05	33,33,33,33	0
2	CA	А	801	1/1	0.99	0.10	$25,\!25,\!25,\!25$	0
3	MN	А	802	1/1	0.99	0.03	$35,\!35,\!35,\!35$	0
3	MN	В	802	1/1	0.99	0.03	33,33,33,33	0
2	CA	С	801	1/1	1.00	0.07	28,28,28,28	0
2	CA	В	801	1/1	1.00	0.10	$25,\!25,\!25,\!25$	0

6.5 Other polymers (i)

There are no such residues in this entry.

