

Full wwPDB X-ray Structure Validation Report (i)

Nov 20, 2023 – 09:39 PM JST

PDB ID : 7DO5

Title : Crystal structure of Azotobacter vinelandii L-rhamnose 1-dehydrogenase(apo

-form)

Authors: Yoshiwara, K.; Watanabe, Y.; Watanabe, S.

Deposited on : 2020-12-12

Resolution : 1.84 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at

https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity : 4.02b-467

Mogul : 1.8.5 (274361), CSD as541be (2020)

Xtriage (Phenix) : 1.13

EDS : 2.36

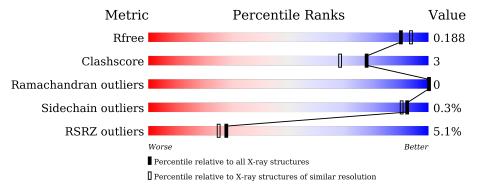
buster-report : 1.1.7 (2018)

Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

 $Refmac \quad : \quad 5.8.0158$

CCP4 : 7.0.044 (Gargrove)

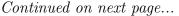
Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X- $RAY\ DIFFRACTION$

The reported resolution of this entry is 1.84 Å.


Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution
Metric	$(\# \mathrm{Entries})$	$(\# ext{Entries}, ext{ resolution range}(ext{Å}))$
R_{free}	130704	4003 (1.86-1.82)
Clashscore	141614	4233 (1.86-1.82)
Ramachandran outliers	138981	4185 (1.86-1.82)
Sidechain outliers	138945	4186 (1.86-1.82)
RSRZ outliers	127900	3957 (1.86-1.82)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	A	267	88%	7% •
1	В	267	6% 89%	9% •
1	С	267	5% 89%	7% •
1	D	267	91%	5% •
1	Е	267	89%	• 7%
1	F	267	88%	9% •

Continued from previous page...

			$\Gamma \circ J \circ \cdots$					
Mol	Chain	Length	Quality of chain					
1	G	267	94%	6%				
1	Н	267	91%	6% •				

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 16027 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Short-chain dehydrogenase/reductase SDR.

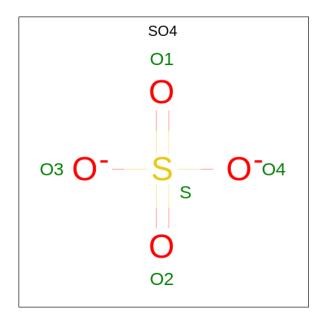
Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace					
1	A	256	Total	С	N	О	S	0	0	0					
1	A	250	1813	1133	327	343	10	0	U						
1	В	В	В	В	D	D	261	Total	С	N	О	S	0	0	0
1					201	1838	1146	337	345	10	0	0	0		
1	С	256	Total	С	N	О	S	0	0	0					
1		250	1803	1124	326	343	10	0	U						
1	D	257	, Total C	С	N	О	S	0	0	0					
1	D	201	1799	1126	323	340	10	U	0	U					
1	F	Е	249	248	Total	С	N	О	S	0	0	0			
1	15	240	1736	1086	314	326	10	0	0						
1	F	257	Total	С	N	О	S	0	0	0					
1	I.	201	1791	1118	324	339	10	0	0						
1	G	266	Total	С	N	О	S	0	0	0					
1	G	200	1874	1168	346	350	10	U	0						
1	П	258	Total C N O S	0	0	0									
1	1 H	290	1811	1130	329	342	10		U	U					

There are 96 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
A	-10	MET	-	initiating methionine	UNP C1DMX5
A	-9	ARG	-	expression tag	UNP C1DMX5
A	-8	GLY	-	expression tag	UNP C1DMX5
A	-7	SER	-	expression tag	UNP C1DMX5
A	-6	HIS	-	expression tag	UNP C1DMX5
A	-5	HIS	-	expression tag	UNP C1DMX5
A	-4	HIS	-	expression tag	UNP C1DMX5
A	-3	HIS	-	expression tag	UNP C1DMX5
A	-2	HIS	-	expression tag	UNP C1DMX5
A	-1	HIS	-	expression tag	UNP C1DMX5
A	0	GLY	_	expression tag	UNP C1DMX5
A	1	SER	-	expression tag	UNP C1DMX5
В	-10	MET	_	initiating methionine	UNP C1DMX5

 $Continued\ from\ previous\ page...$

B B B B	-9 -8 -7	ARG	-	eypression tag	TIME CADMAN
ВВВ		OIN	- expression tag		UNP C1DMX5
В	7	GLY	-	expression tag	UNP C1DMX5
	- 1	SER	-	expression tag	UNP C1DMX5
R	-6	HIS	-	expression tag	UNP C1DMX5
ן ט	-5	HIS	-	expression tag	UNP C1DMX5
В	-4	HIS	-	expression tag	UNP C1DMX5
В	-3	HIS	-	expression tag	UNP C1DMX5
В	-2	HIS	-	expression tag	UNP C1DMX5
В	-1	HIS	-	expression tag	UNP C1DMX5
В	0	GLY	-	expression tag	UNP C1DMX5
В	1	SER	-	expression tag	UNP C1DMX5
С	-10	MET	-	initiating methionine	UNP C1DMX5
С	-9	ARG	_	expression tag	UNP C1DMX5
С	-8	GLY	-	expression tag	UNP C1DMX5
С	-7	SER	-	expression tag	UNP C1DMX5
С	-6	HIS	-	expression tag	UNP C1DMX5
С	-5	HIS	-	expression tag	UNP C1DMX5
С	-4	HIS	-	expression tag	UNP C1DMX5
С	-3	HIS	-	expression tag	UNP C1DMX5
С	-2	HIS	-	expression tag	UNP C1DMX5
С	-1	HIS	-	expression tag	UNP C1DMX5
С	0	GLY	-	expression tag	UNP C1DMX5
С	1	SER	-	expression tag	UNP C1DMX5
D	-10	MET	-	initiating methionine	UNP C1DMX5
D	-9	ARG	-	expression tag	UNP C1DMX5
D	-8	GLY	-	expression tag	UNP C1DMX5
D	-7	SER	-	expression tag	UNP C1DMX5
D	-6	HIS	-	expression tag	UNP C1DMX5
D	-5	HIS	-	expression tag	UNP C1DMX5
D	-4	HIS	-	expression tag	UNP C1DMX5
D	-3	HIS	ı	expression tag	UNP C1DMX5
D	-2	HIS	-	expression tag	UNP C1DMX5
D	-1	HIS	-	expression tag	UNP C1DMX5
D	0	GLY	-	expression tag	UNP C1DMX5
D	1	SER	=	expression tag	UNP C1DMX5
Е	-10	MET	=	initiating methionine	UNP C1DMX5
Е	-9	ARG	-	expression tag	UNP C1DMX5
Е	-8	GLY	-	expression tag	UNP C1DMX5
Е	-7	SER	=	expression tag	UNP C1DMX5
Е	-6	HIS	-	expression tag	UNP C1DMX5
Е	-5	HIS	-	expression tag	UNP C1DMX5
Е	-4	HIS	-	expression tag	UNP C1DMX5


 $Continued\ from\ previous\ page...$

Chain	Residue	Modelled	Actual	Comment	Reference
Е	-3	HIS	_	expression tag	UNP C1DMX5
Е	-2	HIS	-	expression tag	UNP C1DMX5
Е	-1	HIS	-	expression tag	UNP C1DMX5
Е	0	GLY	_	expression tag	UNP C1DMX5
Е	1	SER	_	expression tag	UNP C1DMX5
F	-10	MET	-	initiating methionine	UNP C1DMX5
F	-9	ARG	-	expression tag	UNP C1DMX5
F	-8	GLY	-	expression tag	UNP C1DMX5
F	-7	SER	-	expression tag	UNP C1DMX5
F	-6	HIS	-	expression tag	UNP C1DMX5
F	-5	HIS	-	expression tag	UNP C1DMX5
F	-4	HIS	-	expression tag	UNP C1DMX5
F	-3	HIS	-	expression tag	UNP C1DMX5
F	-2	HIS	-	expression tag	UNP C1DMX5
F	-1	HIS	-	expression tag	UNP C1DMX5
F	0	GLY	-	expression tag	UNP C1DMX5
F	1	SER	_	expression tag	UNP C1DMX5
G	-10	MET	-	initiating methionine	UNP C1DMX5
G	-9	ARG	-	expression tag	UNP C1DMX5
G	-8	GLY	-	expression tag	UNP C1DMX5
G	-7	SER	-	expression tag	UNP C1DMX5
G	-6	HIS	-	expression tag	UNP C1DMX5
G	-5	HIS	-	expression tag	UNP C1DMX5
G	-4	HIS	-	expression tag	UNP C1DMX5
G	-3	HIS	-	expression tag	UNP C1DMX5
G	-2	HIS	-	expression tag	UNP C1DMX5
G	-1	HIS	-	expression tag	UNP C1DMX5
G	0	GLY	-	expression tag	UNP C1DMX5
G	1	SER	-	expression tag	UNP C1DMX5
Н	-10	MET	-	initiating methionine	UNP C1DMX5
Н	-9	ARG	-	expression tag	UNP C1DMX5
H	-8	GLY	-	expression tag	UNP C1DMX5
Н	-7	SER	-	expression tag	UNP C1DMX5
H	-6	HIS	-	expression tag	UNP C1DMX5
H	-5	HIS	-	expression tag	UNP C1DMX5
H	-4	HIS	-	expression tag	UNP C1DMX5
H	-3	HIS	-	expression tag	UNP C1DMX5
H	-2	HIS	-	expression tag	UNP C1DMX5
H	-1	HIS	-	expression tag	UNP C1DMX5
H	0	GLY	-	expression tag	UNP C1DMX5
Н	1	SER	-	expression tag	UNP C1DMX5

 \bullet Molecule 2 is SULFATE ION (three-letter code: SO4) (formula: O₄S) (labeled as "Ligand

of Interest" by depositor).

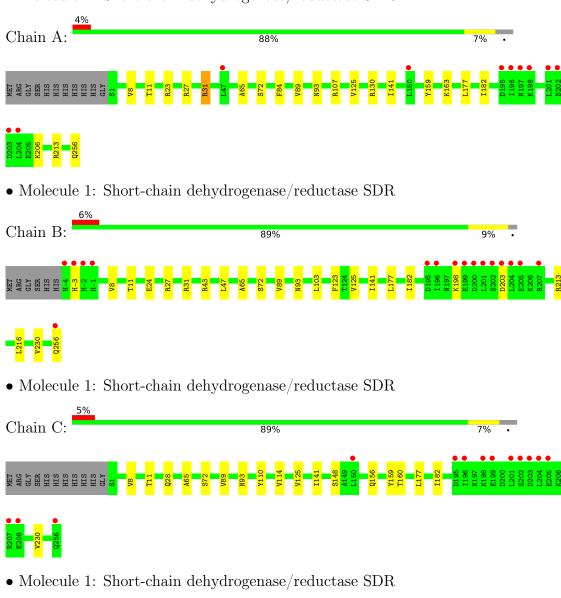
Mol	Chain	Residues	Atoms			ZeroOcc	AltConf
2	A	1	Total 5	O 4	S 1	0	0
2	A	1	Total	О	S	0	0
2	A	1	5 Total	4 O	1 S	0	0
2	В	1	5 Total 5	4 O 4	1 S 1	0	0
2	В	1	Total 5	O 4	S 1	0	0
2	В	1	Total 5	O 4	S 1	0	0
2	С	1	Total 5	O 4	S 1	0	0
2	С	1	Total 5	O 4	S 1	0	0
2	С	1	Total 5	O 4	S 1	0	0
2	D	1	Total 5	O 4	S 1	0	0
2	D	1	Total 5	O 4	S 1	0	0
2	D	1	Total 5	O 4	S 1	0	0
2	Е	1	Total 5	O 4	S 1	0	0

 $Continued\ from\ previous\ page...$

Mol	Chain	Residues	Ato	oms		ZeroOcc	AltConf
2	Е	1	Total	O	S	0	0
_	_	_	5	4	1	, and the second	Ů
2	E	1	Total	Ο	\mathbf{S}	0	0
		-	5	4	1	Ü	
2	F	1	Total	Ο	S	0	0
	1	1	5	4	1	O	
2	F	1	Total	Ο	S	0	0
	1	1	5	4	1	0	U
2	F	1	Total	Ο	\mathbf{S}	0	0
	I.	1	5	4	1	0	U
2	G	1	Total	Ο	S	0	0
	G	1	5	4 1 0	0		
2	G	1	Total	Ο	S	0	0
	G	1	5	4	1	0	U
2	G	1	Total	Ο	\mathbf{S}	0	0
	G	1	5	4	1	0	U
2	Н	1	Total	О	S	0	0
	11	1	5	4	1		U
2	Н	1	Total	О	S	0	0
	11	1	5	4	1		U
2	Н	1	Total	О	S	0	0
	11	1	5	4	1		U

• Molecule 3 is water.

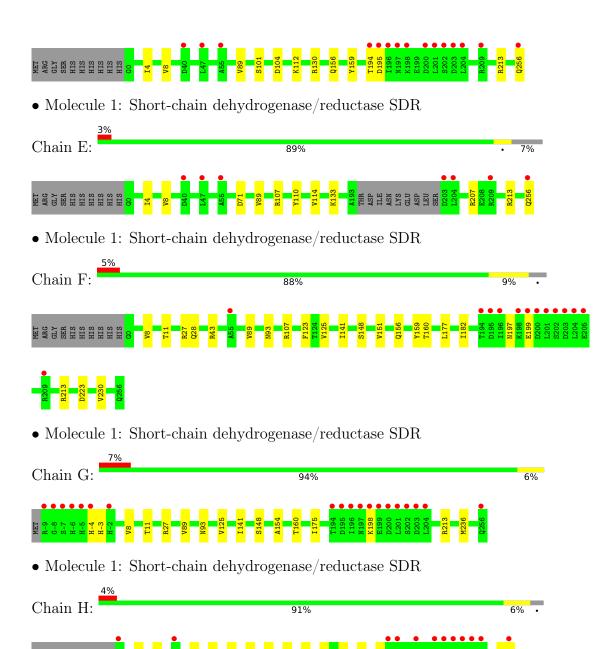
Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	A	161	Total O 161 161	0	0
3	В	194	Total O 194 194	0	0
3	С	205	Total O 205 205	0	0
3	D	163	Total O 163 163	0	0
3	E	175	Total O 175 175	0	0
3	F	169	Total O 169 169	0	0
3	G	191	Total O 191 191	0	0
3	Н	184	Total O 184 184	0	0



Chain D:

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.


• Molecule 1: Short-chain dehydrogenase/reductase SDR

91%

5%

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1	Depositor
Cell constants	75.37Å 81.58Å 91.18Å	Donositor
a, b, c, α , β , γ	80.45° 74.55° 75.20°	Depositor
Resolution (Å)	47.59 - 1.84	Depositor
Resolution (A)	47.57 - 1.84	EDS
% Data completeness	96.4 (47.59-1.84)	Depositor
(in resolution range)	96.5 (47.57-1.84)	EDS
R_{merge}	0.07	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	1.23 (at 1.83Å)	Xtriage
Refinement program	PHENIX 1.14_3260	Depositor
D D.	0.160 , 0.188	Depositor
R, R_{free}	0.159 , 0.188	DCC
R_{free} test set	8540 reflections (5.04%)	wwPDB-VP
Wilson B-factor (Å ²)	26.6	Xtriage
Anisotropy	0.242	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.36, 43.1	EDS
L-test for twinning ²	$ < L >=0.51, < L^2>=0.34$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.97	EDS
Total number of atoms	16027	wwPDB-VP
Average B, all atoms (Å ²)	29.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.72% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: SO4

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles	
IVIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	A	0.34	0/1835	0.52	0/2485
1	В	0.37	0/1863	0.55	0/2525
1	С	0.38	0/1825	0.55	0/2473
1	D	0.36	0/1821	0.52	0/2470
1	Е	0.35	0/1757	0.54	0/2379
1	F	0.35	0/1813	0.52	0/2458
1	G	0.35	0/1901	0.54	0/2576
1	Н	0.36	0/1834	0.52	0/2487
All	All	0.36	0/14649	0.53	0/19853

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	A	1813	0	1835	16	0
1	В	1838	0	1827	15	0
1	С	1803	0	1806	9	0
1	D	1799	0	1808	8	0
1	Е	1736	0	1748	8	0

Continued from previous page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	F	1791	0	1785	15	0
1	G	1874	0	1855	11	0
1	Н	1811	0	1807	11	0
2	A	15	0	0	1	0
2	В	15	0	0	0	0
2	С	15	0	0	0	0
2	D	15	0	0	0	0
2	Ε	15	0	0	0	0
2	F	15	0	0	1	0
2	G	15	0	0	0	0
2	Η	15	0	0	1	0
3	A	161	0	0	5	0
3	В	194	0	0	4	2
3	С	205	0	0	1	1
3	D	163	0	0	1	0
3	Ε	175	0	0	1	0
3	F	169	0	0	3	0
3	G	191	0	0	2	2
3	Н	184	0	0	5	1
All	All	16027	0	14471	84	3

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

All (84) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	$\begin{array}{c} {\rm Interatomic} \\ {\rm distance} \ (\rm \mathring{A}) \end{array}$	Clash overlap (Å)
1:A:23:ARG:NH2	3:A:401:HOH:O	1.85	1.09
1:H:52:GLU:OE1	3:H:401:HOH:O	1.88	0.90
1:G:198:LYS:O	3:G:402:HOH:O	1.91	0.89
1:B:27:ARG:NH1	3:B:401:HOH:O	1.95	0.87
1:F:199:GLU:N	3:F:401:HOH:O	2.09	0.84
1:H:256:GLN:O	3:H:402:HOH:O	2.08	0.70
1:B:203:ASP:OD2	3:B:402:HOH:O	2.12	0.67
1:G:27:ARG:NH1	3:G:401:HOH:O	1.85	0.67
1:H:194:THR:OG1	3:H:403:HOH:O	2.16	0.61
1:A:107:ARG:NH1	3:A:406:HOH:O	2.34	0.60
1:D:4:ILE:HG21	1:E:4:ILE:HG21	1.84	0.60
1:E:71:ASP:OD1	1:F:107:ARG:NH1	2.28	0.58
1:A:130:ARG:HG3	1:B:103:LEU:HD22	1.86	0.58
1:B:8:VAL:HG22	1:B:89:VAL:HB	1.87	0.57

 $Continued\ from\ previous\ page...$

Continued from previous		Interatomic	Clash
Atom-1	Atom-2	${\rm distance}(\mathring{\rm A})$	overlap (Å)
1:F:148:SER:HB3	1:F:160:THR:HG22	1.88	0.56
1:A:256:GLN:NE2	3:A:410:HOH:O	2.39	0.55
1:F:213:ARG:NH1	3:F:404:HOH:O	2.28	0.54
1:B:31:ARG:HD2	3:B:404:HOH:O	2.08	0.54
1:D:130:ARG:NH1	3:D:404:HOH:O	2.41	0.53
1:A:8:VAL:HG22	1:A:89:VAL:HB	1.91	0.53
1:F:11:THR:O	1:F:93:ASN:HB3	2.09	0.52
2:H:302:SO4:O3	3:H:404:HOH:O	2.18	0.52
1:C:8:VAL:HG22	1:C:89:VAL:HB	1.91	0.52
1:D:194:THR:HG22	1:D:195:ASP:H	1.75	0.51
1:C:28:GLN:HG3	1:C:230:VAL:HG11	1.93	0.50
1:F:27:ARG:HB3	1:G:-4:HIS:HB3	1.94	0.50
1:A:125:VAL:HG13	1:A:141:ILE:HD13	1.93	0.50
1:A:11:THR:O	1:A:93:ASN:HB3	2.12	0.49
1:A:213:ARG:HD2	3:C:548:HOH:O	2.13	0.49
1:G:125:VAL:HG13	1:G:141:ILE:HD13	1.94	0.48
1:B:125:VAL:HG13	1:B:141:ILE:HD13	1.95	0.48
1:D:8:VAL:HG22	1:D:89:VAL:HB	1.96	0.48
1:C:125:VAL:HG13	1:C:141:ILE:HD13	1.95	0.48
1:A:31:ARG:NH2	3:A:412:HOH:O	2.47	0.47
1:F:177:LEU:HB3	1:F:182:ILE:HB	1.97	0.47
1:C:11:THR:O	1:C:93:ASN:HB3	2.15	0.47
1:G:-3:HIS:CG	1:G:236:MET:HG2	2.50	0.47
1:G:154:ALA:HB2	1:H:175:ILE:HG22	1.97	0.47
1:H:8:VAL:HG22	1:H:89:VAL:HB	1.97	0.47
1:G:148:SER:HB3	1:G:160:THR:HG22	1.97	0.46
1:B:65:ALA:HB1	1:B:72:SER:HB3	1.96	0.46
1:H:125:VAL:HG13	1:H:141:ILE:HD13	1.97	0.45
1:D:112:LYS:HB3	1:D:112:LYS:HE2	1.73	0.45
1:D:213:ARG:NH2	1:D:256:GLN:HG3	2.31	0.45
1:G:175:ILE:HG22	1:H:154:ALA:HB2	1.99	0.45
1:C:148:SER:HB3	1:C:160:THR:HG22	1.99	0.44
1:H:11:THR:O	1:H:93:ASN:HB3	2.17	0.44
1:A:31:ARG:HG2	1:A:84:PHE:CD1	2.53	0.44
1:B:-3:HIS:HB3	3:B:401:HOH:O	2.17	0.44
1:B:24:GLU:HG3	1:B:230:VAL:HG21	2.00	0.44
1:E:8:VAL:HG22	1:E:89:VAL:HB	1.99	0.44
1:F:28:GLN:HG3	1:F:230:VAL:HG11	2.00	0.44
1:D:156:GLN:HB3	1:D:159:TYR:HB3	2.00	0.43
1:B:213:ARG:HG2	1:B:256:GLN:OE1	2.18	0.43
1:G:8:VAL:HG22	1:G:89:VAL:HB	2.00	0.43

 $Continued\ from\ previous\ page...$

A		Interatomic	Clash
Atom-1	Atom-2	${\rm distance} \ (\mathring{\rm A})$	overlap (Å)
1:E:110:TYR:CZ	1:E:114:VAL:HG21	2.53	0.43
1:H:75:LYS:NZ	3:H:405:HOH:O	2.40	0.43
1:E:256:GLN:HB3	1:G:213:ARG:CZ	2.49	0.42
1:H:177:LEU:HB3	1:H:182:ILE:HB	2.02	0.42
1:F:197:ASN:C	3:F:401:HOH:O	2.57	0.42
1:E:133:LYS:NZ	3:E:401:HOH:O	2.04	0.42
1:D:101:SER:OG	1:D:104:ASP:OD1	2.29	0.42
1:E:213:ARG:NH1	1:E:256:GLN:HG3	2.35	0.42
1:A:27:ARG:NE	3:A:402:HOH:O	2.22	0.41
1:C:156:GLN:HB3	1:C:159:TYR:HB3	2.01	0.41
1:A:206:LYS:NZ	2:A:303:SO4:O3	2.52	0.41
1:F:43:ARG:NH1	2:F:302:SO4:O3	2.41	0.41
1:C:177:LEU:HB3	1:C:182:ILE:HB	2.02	0.41
1:B:11:THR:O	1:B:93:ASN:HB3	2.19	0.41
1:B:177:LEU:HB3	1:B:182:ILE:HB	2.02	0.41
1:F:151:VAL:HG21	1:H:255:LEU:HB2	2.02	0.41
1:G:11:THR:O	1:G:93:ASN:HB3	2.21	0.41
1:F:8:VAL:HG22	1:F:89:VAL:HB	2.03	0.41
1:F:125:VAL:HG13	1:F:141:ILE:HD13	2.01	0.41
1:A:65:ALA:HB1	1:A:72:SER:HB3	2.03	0.41
1:A:107:ARG:HG2	1:B:123:PHE:CZ	2.56	0.41
1:A:159:TYR:CE1	1:A:163:LYS:HD3	2.56	0.41
1:B:43:ARG:O	1:B:47:LEU:HG	2.21	0.41
1:C:65:ALA:HB1	1:C:72:SER:HB3	2.03	0.41
1:C:110:TYR:CZ	1:C:114:VAL:HG21	2.56	0.41
1:A:177:LEU:HB3	1:A:182:ILE:HB	2.03	0.40
1:F:156:GLN:HB3	1:F:159:TYR:HB3	2.03	0.40
1:E:107:ARG:HA	1:F:123:PHE:CZ	2.56	0.40
1:B:216:LEU:HD23	1:B:216:LEU:HA	1.88	0.40

All (3) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

Atom-1	Atom-2	$\begin{array}{c} {\rm Interatomic} \\ {\rm distance} \ ({\rm \AA}) \end{array}$	Clash overlap (Å)
3:B:525:HOH:O	3:G:541:HOH:O[1_466]	1.64	0.56
3:C:556:HOH:O	3:H:532:HOH:O[1_465]	1.67	0.53
3:B:406:HOH:O	3:G:530:HOH:O[1 466]	1.82	0.38

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	A	254/267~(95%)	245 (96%)	9 (4%)	0	100	100
1	В	259/267 (97%)	252 (97%)	7 (3%)	0	100	100
1	С	254/267 (95%)	246 (97%)	8 (3%)	0	100	100
1	D	255/267~(96%)	250 (98%)	5 (2%)	0	100	100
1	E	244/267 (91%)	236 (97%)	8 (3%)	0	100	100
1	F	255/267~(96%)	250 (98%)	5 (2%)	0	100	100
1	G	264/267 (99%)	255 (97%)	9 (3%)	0	100	100
1	Н	256/267 (96%)	248 (97%)	8 (3%)	0	100	100
All	All	2041/2136 (96%)	1982 (97%)	59 (3%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	A	178/196 (91%)	177 (99%)	1 (1%)	86 82
1	В	176/196 (90%)	175 (99%)	1 (1%)	86 82
1	С	175/196 (89%)	175 (100%)	0	100 100
1	D	174/196 (89%)	174 (100%)	0	100 100
1	E	167/196 (85%)	166 (99%)	1 (1%)	86 82
1	F	171/196 (87%)	170 (99%)	1 (1%)	86 82

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
1	G	179/196 (91%)	179 (100%)	0	100	100	
1	Н	174/196 (89%)	174 (100%)	0	100	100	
All	All	1394/1568 (89%)	1390 (100%)	4 (0%)	92	90	

All (4) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	A	31	ARG
1	В	198	LYS
1	Е	207	ARG
1	F	223	ASP

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

24 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Trino	Chain	Dag	Link	В	ond leng	gths	В	ond ang	gles
Mol	Type	Chain	Res	Link	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	SO4	С	301	-	4,4,4	0.19	0	6,6,6	0.17	0
2	SO4	С	302	-	4,4,4	0.15	0	6,6,6	0.10	0
2	SO4	Е	302	-	4,4,4	0.16	0	6,6,6	0.33	0
2	SO4	В	302	-	4,4,4	0.17	0	6,6,6	0.29	0
2	SO4	В	301	-	4,4,4	0.14	0	6,6,6	0.16	0
2	SO4	F	303	-	4,4,4	0.13	0	6,6,6	0.04	0
2	SO4	A	301	-	4,4,4	0.17	0	6,6,6	0.15	0
2	SO4	D	303	_	4,4,4	0.15	0	6,6,6	0.06	0
2	SO4	G	303	-	4,4,4	0.15	0	6,6,6	0.05	0
2	SO4	A	303	-	4,4,4	0.16	0	6,6,6	0.06	0
2	SO4	В	303	-	4,4,4	0.16	0	6,6,6	0.11	0
2	SO4	D	301	-	4,4,4	0.20	0	6,6,6	0.27	0
2	SO4	Н	303	-	4,4,4	0.15	0	6,6,6	0.12	0
2	SO4	С	303	-	4,4,4	0.14	0	6,6,6	0.11	0
2	SO4	Е	303	-	4,4,4	0.14	0	6,6,6	0.05	0
2	SO4	D	302	-	4,4,4	0.15	0	6,6,6	0.15	0
2	SO4	G	301	_	4,4,4	0.17	0	6,6,6	0.17	0
2	SO4	Н	301	_	4,4,4	0.17	0	6,6,6	0.11	0
2	SO4	F	302	_	4,4,4	0.10	0	6,6,6	0.24	0
2	SO4	G	302	-	4,4,4	0.11	0	6,6,6	0.15	0
2	SO4	Е	301	-	4,4,4	0.21	0	6,6,6	0.16	0
2	SO4	A	302	-	4,4,4	0.13	0	6,6,6	0.18	0
2	SO4	Н	302	-	4,4,4	0.13	0	6,6,6	0.11	0
2	SO4	F	301	-	4,4,4	0.11	0	6,6,6	0.07	0

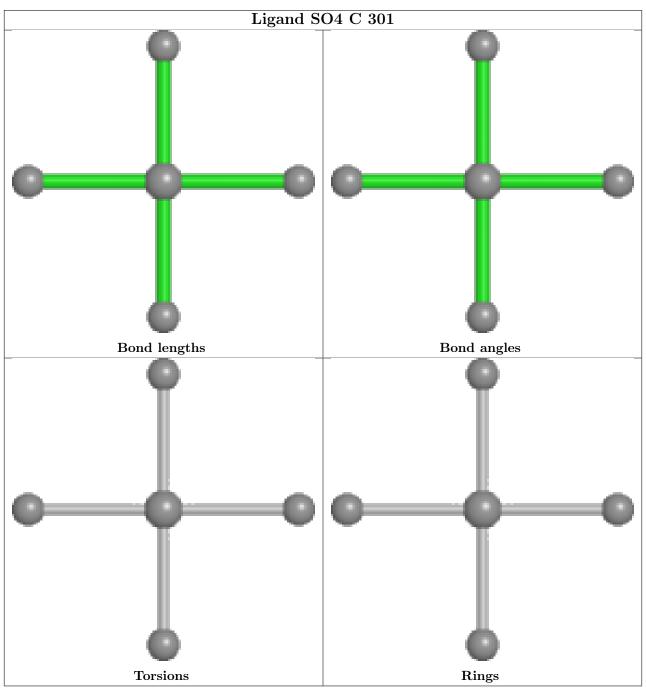
There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

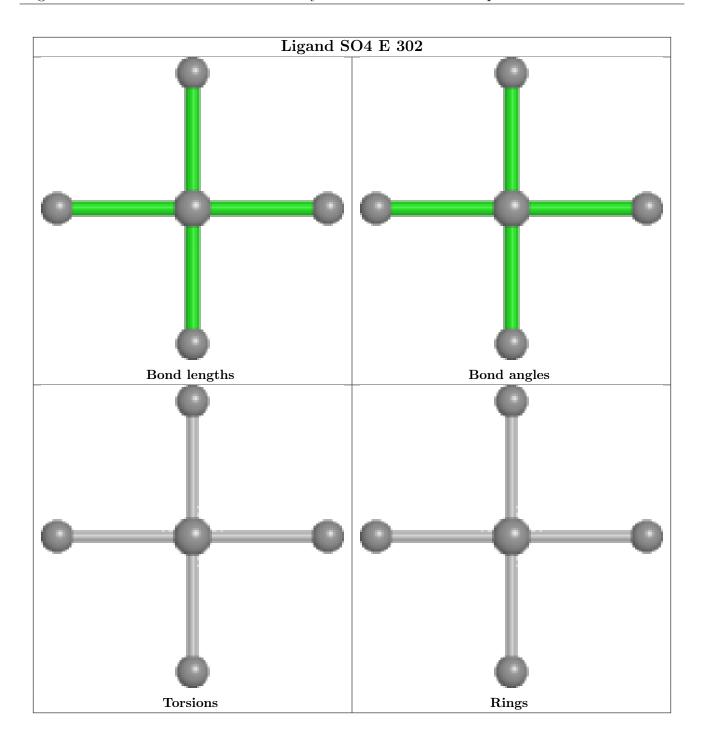
There are no torsion outliers.

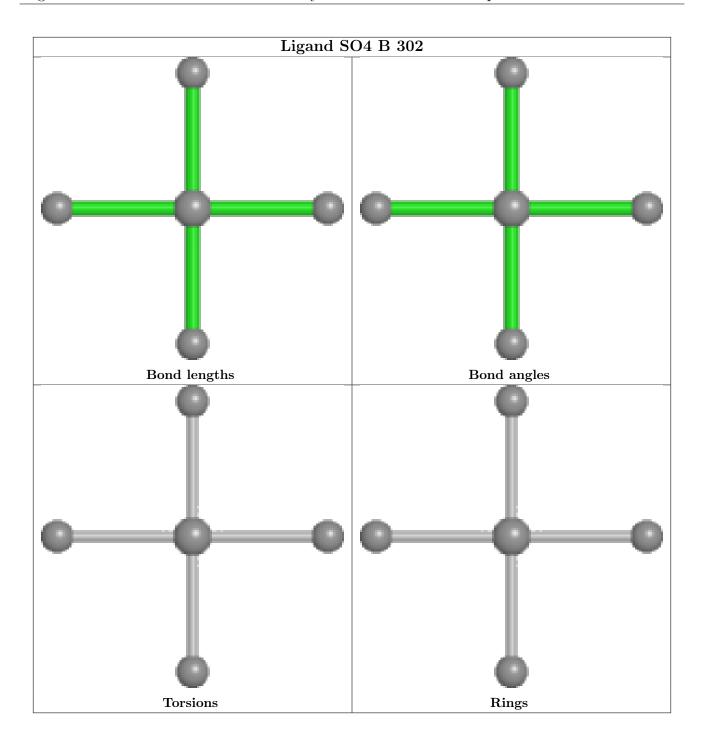
There are no ring outliers.

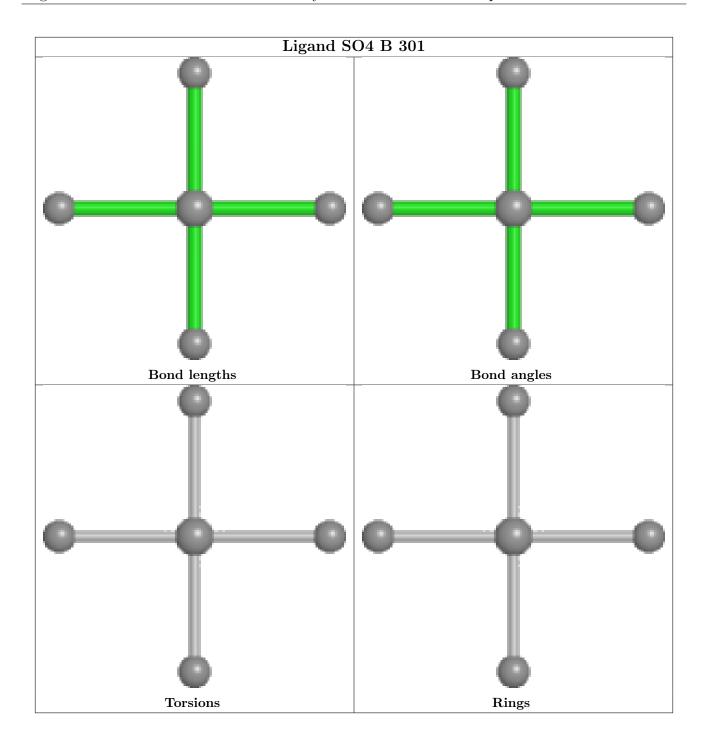

3 monomers are involved in 3 short contacts:

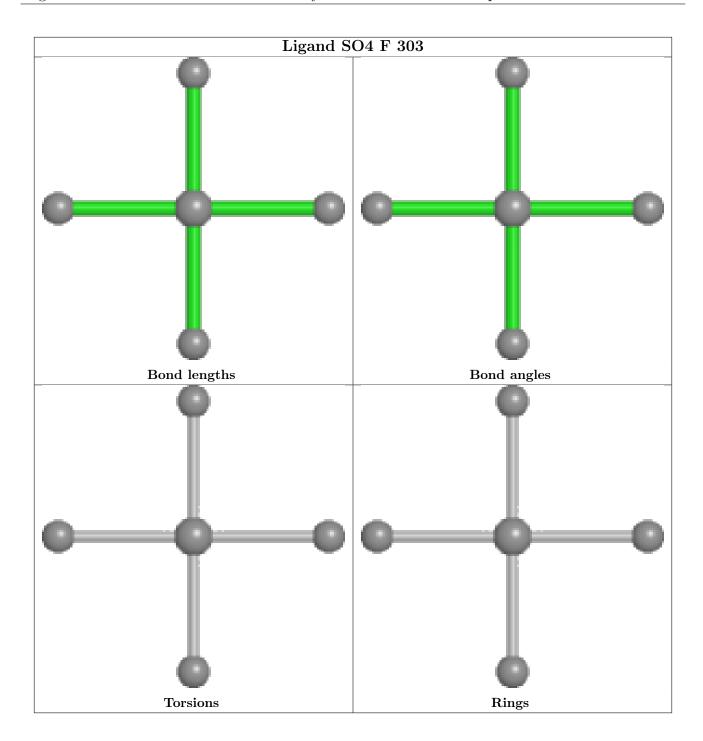
Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	A	303	SO4	1	0
2	F	302	SO4	1	0
2	Н	302	SO4	1	0

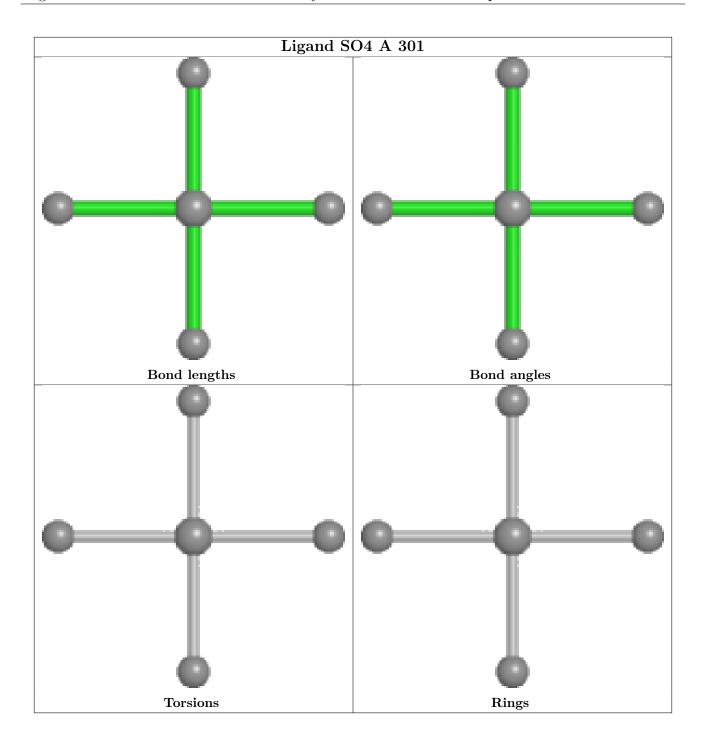
The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will

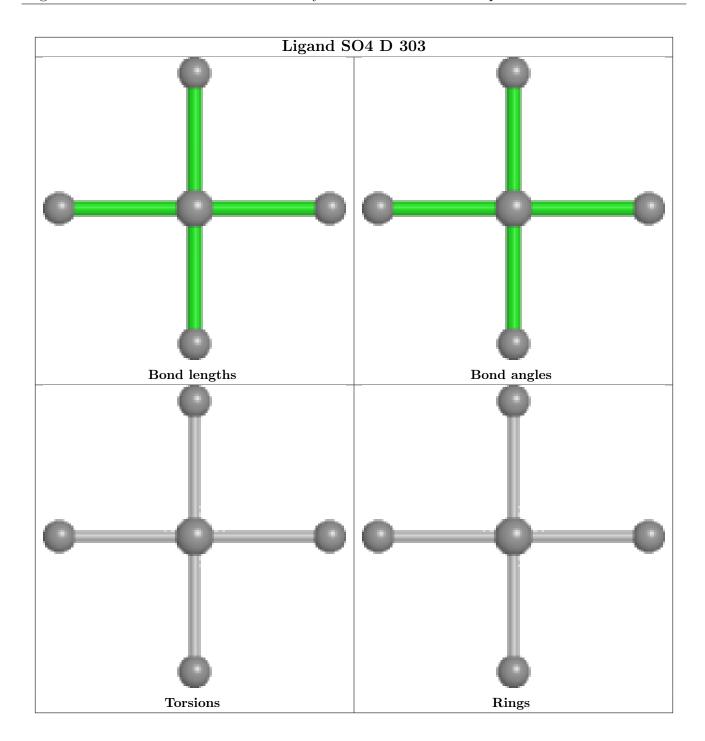

also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

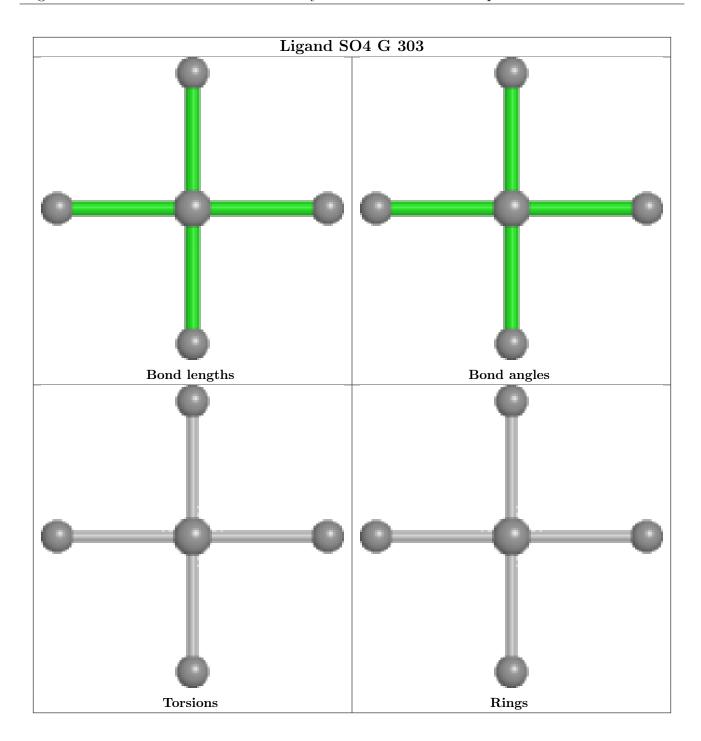


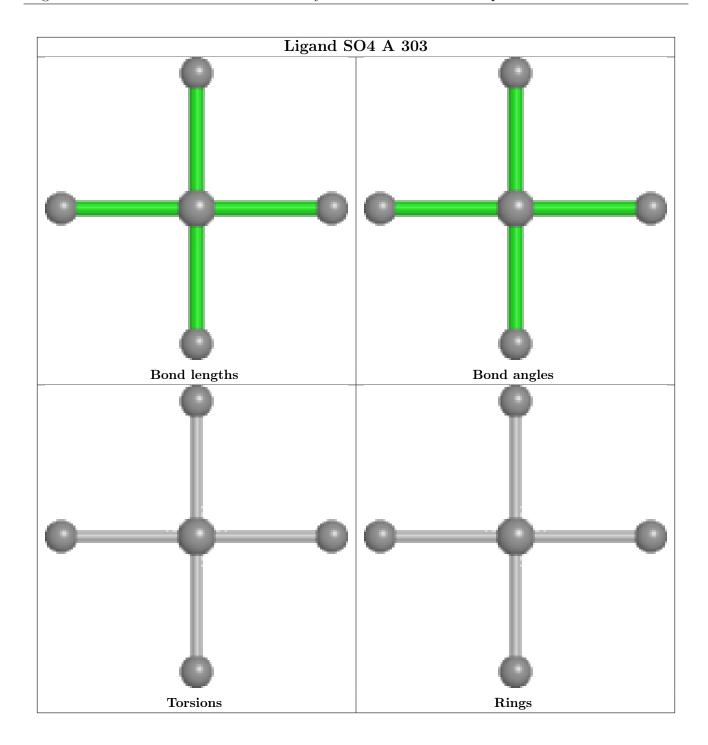


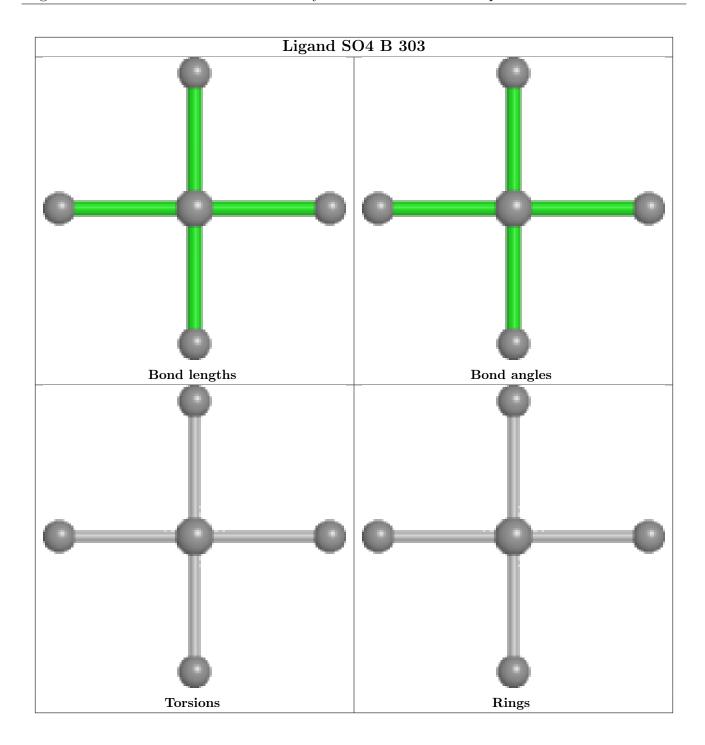


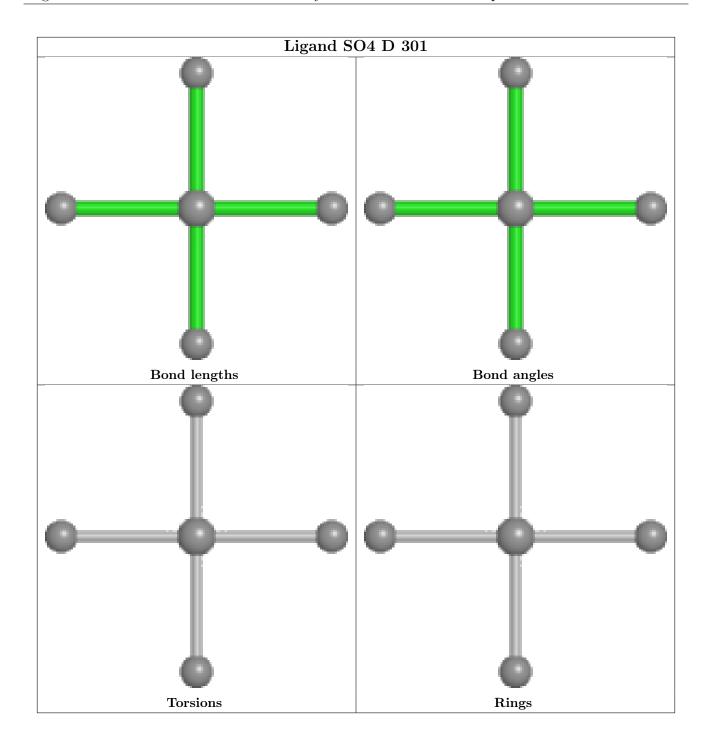


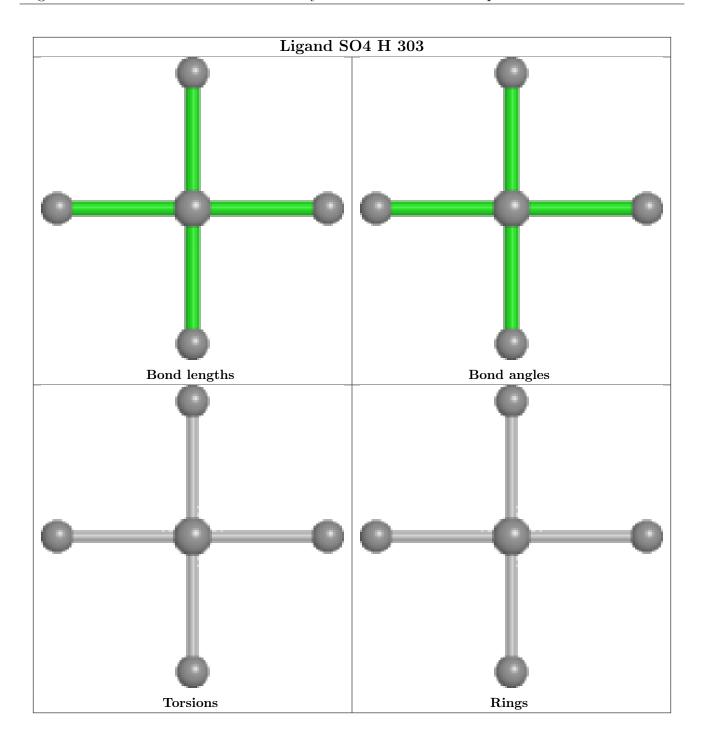


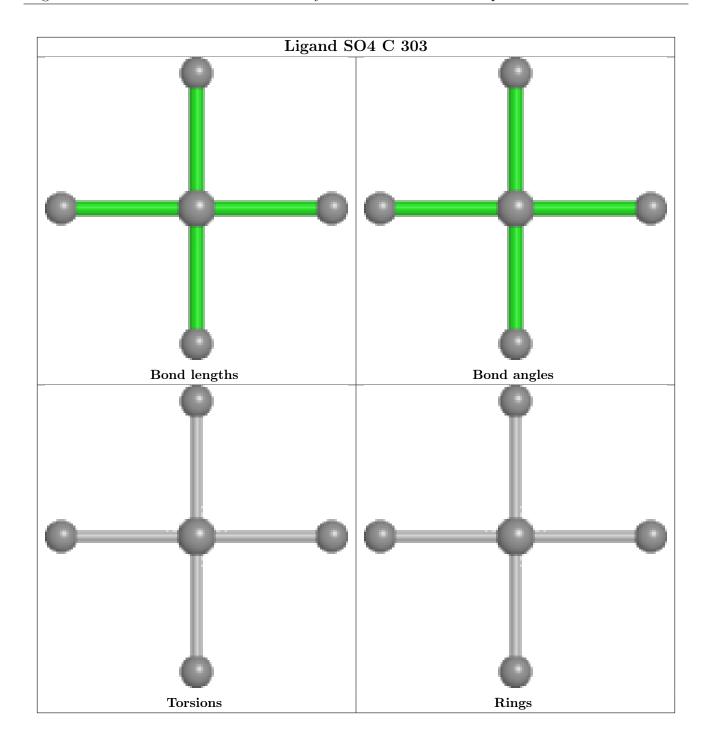


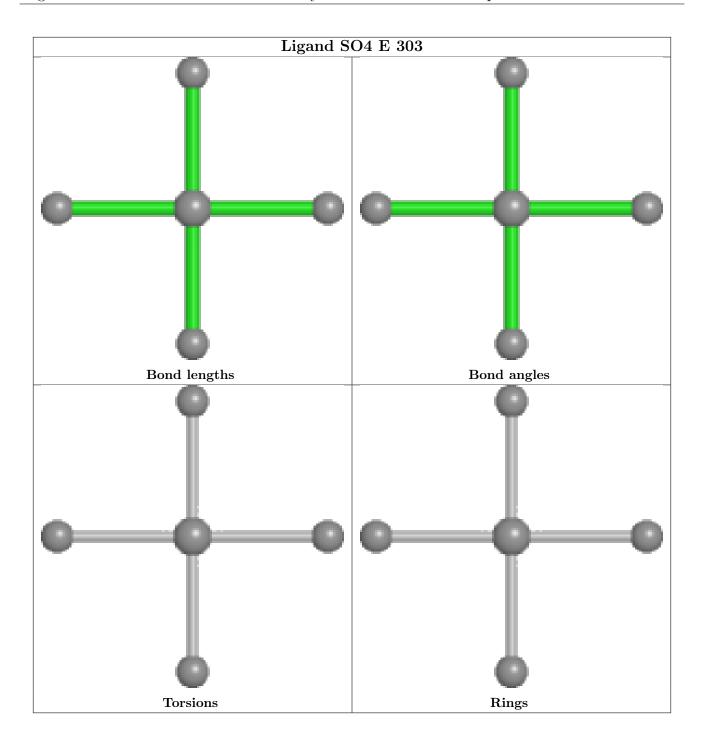


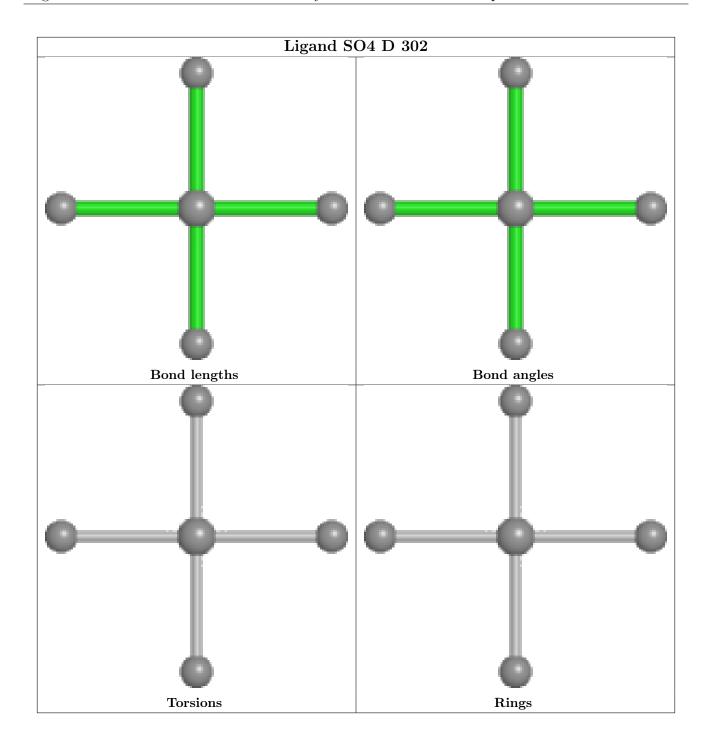


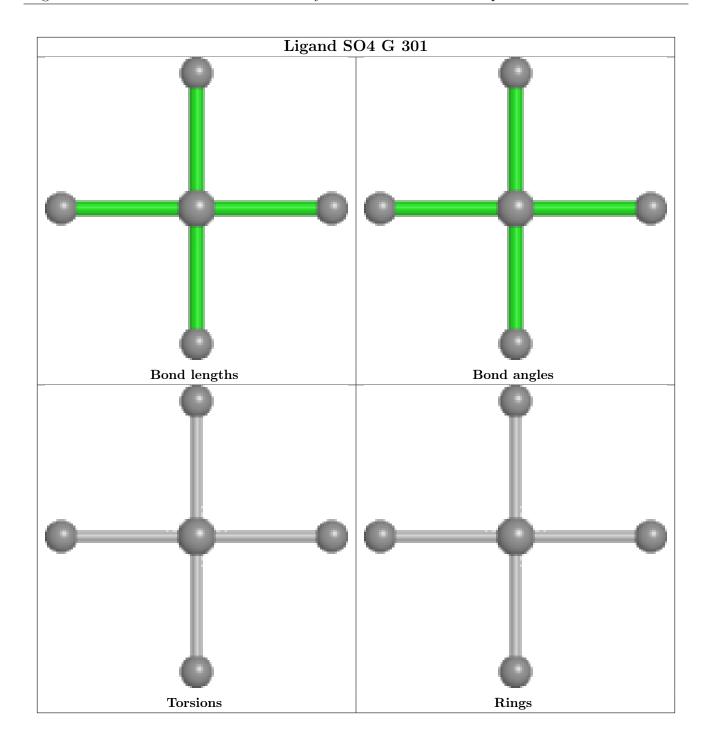


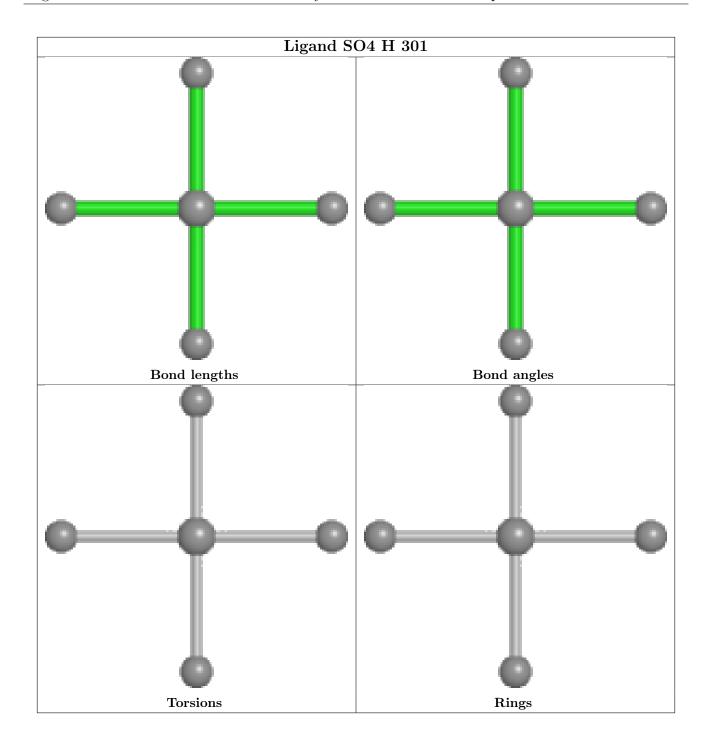


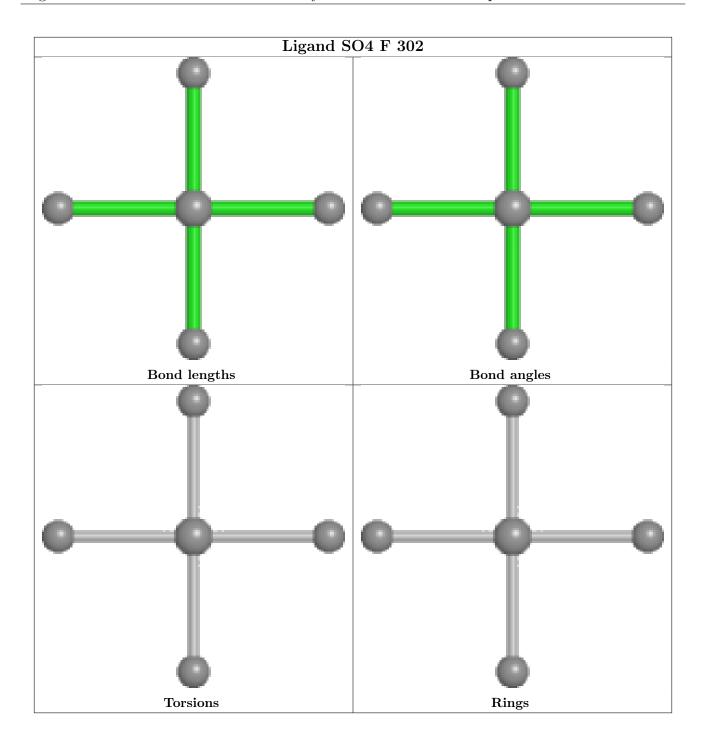


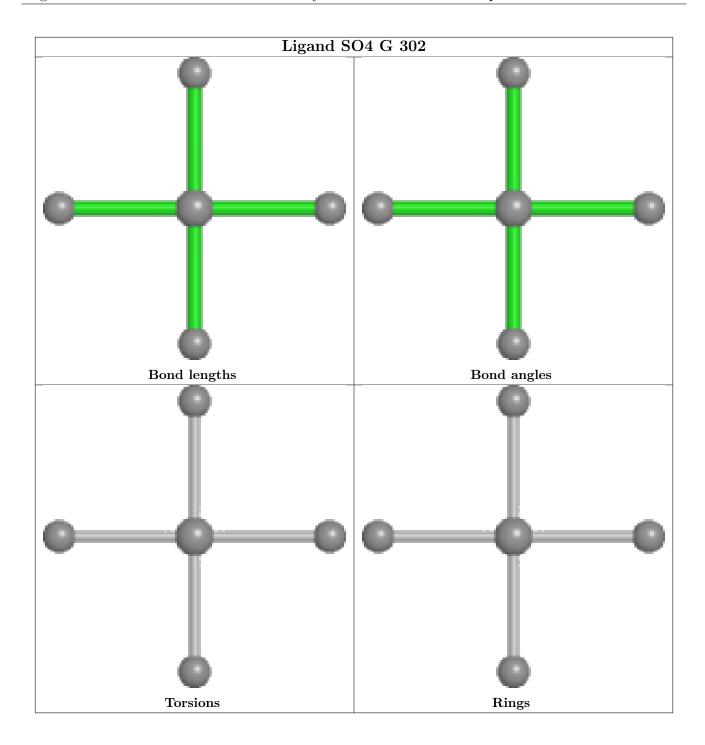


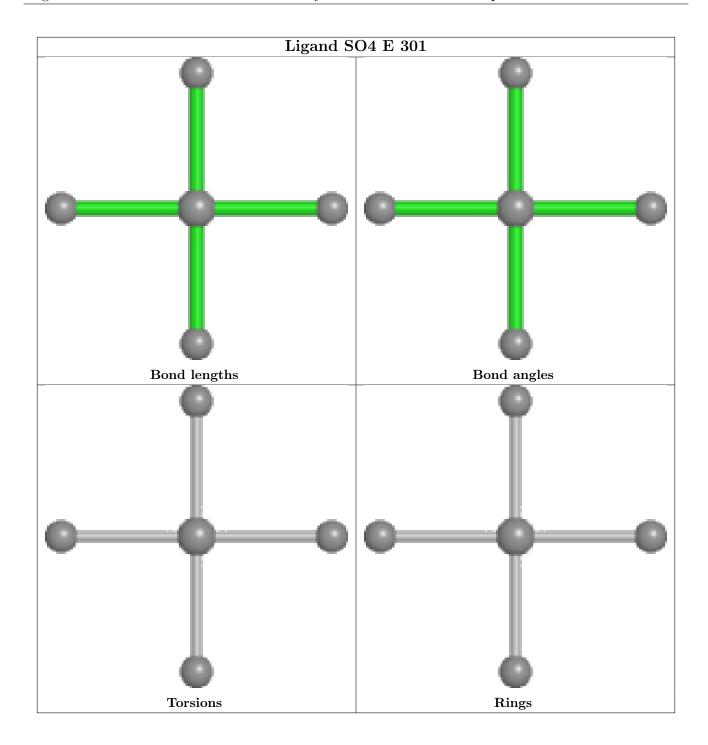


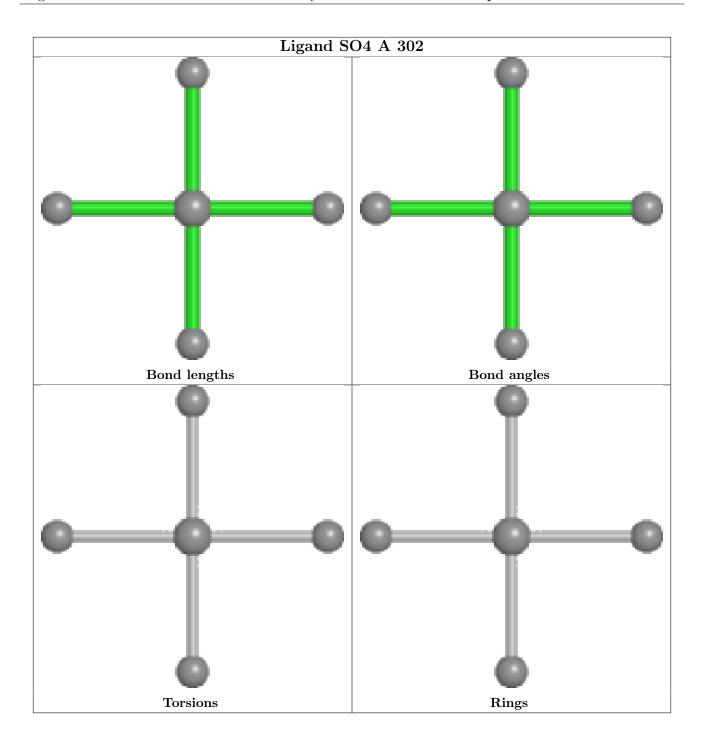


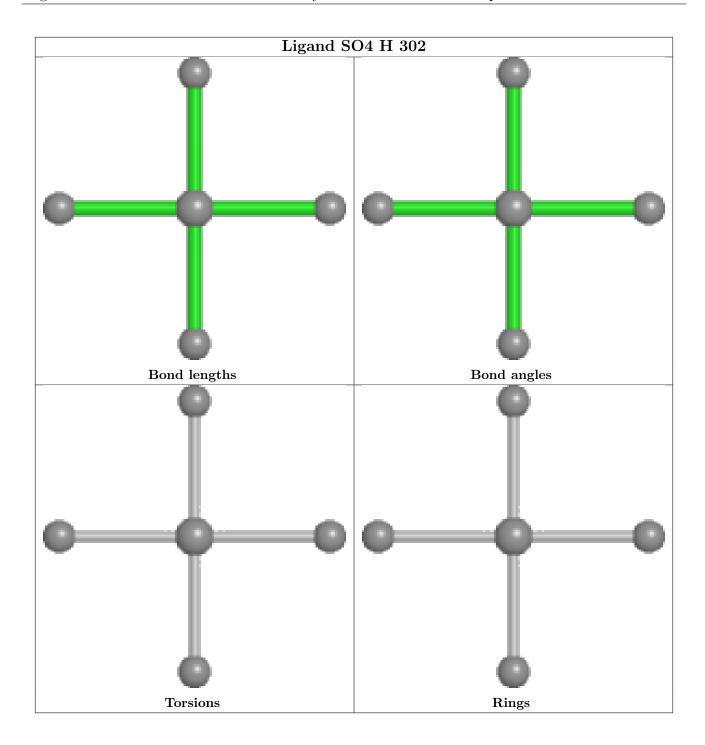


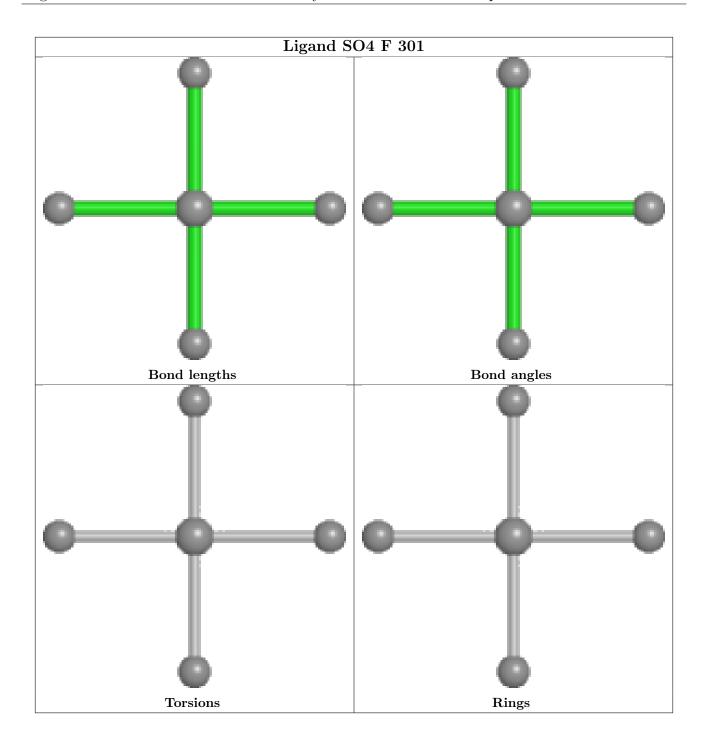












5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ>2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<rsrz></rsrz>	$\#\mathrm{RSRZ}{>}2$	$OWAB(A^2)$	Q < 0.9
1	A	256/267~(95%)	-0.06	10 (3%) 39 36	20, 28, 50, 63	0
1	В	261/267 (97%)	0.01	16 (6%) 21 19	18, 24, 52, 69	0
1	С	256/267 (95%)	-0.14	13 (5%) 28 25	16, 24, 50, 65	0
1	D	257/267 (96%)	0.08	15 (5%) 23 21	20, 26, 52, 61	0
1	E	248/267 (92%)	-0.22	7 (2%) 53 51	19, 26, 42, 60	0
1	F	257/267 (96%)	-0.05	13 (5%) 28 25	20, 27, 53, 72	0
1	G	$266/267 \ (99\%)$	-0.05	19 (7%) 16 14	18, 24, 54, 70	0
1	Н	258/267 (96%)	-0.07	12 (4%) 31 28	19, 25, 48, 64	0
All	All	$2059/2136 \ (96\%)$	-0.06	105 (5%) 28 25	16, 26, 51, 72	0

All (105) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	В	195	ASP	8.2
1	F	201	LEU	7.6
1	D	201	LEU	7.3
1	F	195	ASP	7.1
1	В	198	LYS	6.6
1	Н	202	SER	6.5
1	F	196	ILE	6.5
1	D	194	THR	6.5
1	В	201	LEU	6.3
1	D	204	LEU	6.3
1	В	196	ILE	6.1
1	G	196	ILE	6.1
1	Н	201	LEU	6.1
1	С	204	LEU	5.9
1	A	201	LEU	5.9
1	G	201	LEU	5.7

Continued from previous page...

Mol	nued fron Chain	Res	Type	RSRZ	
1	D	195	ASP	5.7	
1	G	202	SER	5.3	
1	Н	196	ILE	5.3	
1	A	196	ILE	5.2	
1	В	202	SER	5.1	
1	F	204	LEU	5.1	
1	С	195	ASP	5.1	
1	A	202	SER	5.1	
1	F	202	SER	5.0	
1	D	200	ASP	4.8	
1	A	204	LEU	4.8	
1	D	196	ILE	4.8	
1	G	195	ASP	4.8	
1	В	203	ASP	4.8	
1	С	202	SER	4.7	
1	Н	-1	HIS	4.6	
1	В	199	GLU	4.5	
1	G	-5	HIS	4.3	
1	С	203	ASP	3.9	
1	D	197	ASN	3.8	
1	С	201	LEU	3.8	
1	В	-2	HIS	3.7	
1	Н	256	GLN	3.7	
1	G	-8	GLY	3.7	
1	Н	195	ASP	3.7	
1	F	200	ASP	3.7	
1	G	-6	HIS	3.7	
1	G	-7	SER	3.6	
1	В -1		HIS	3.5	
1	G	198	LYS	3.5	
1	C	198	LYS	3.5	
1	G	204	LEU	3.5	
1	D	55	ALA	3.5	
1	D	202	SER	3.4	
1	F	198	LYS	3.4	
1	F	199	GLU	3.3	
1	G	203	ASP	3.2	
1	В	-4	HIS	3.2	
1	A	47	LEU	3.2	
1	Е	40	ASP	3.2	
1	D	256	GLN	3.1	
1	F	203	ASP	3.1	

Continued from previous page...

Mol Chain Res Type RSRZ 1 A 195 ASP 3.0 1 B -3 HIS 3.0 1 C 199 GLU 3.0 1 E 55 ALA 3.0 1 B 256 GLN 2.9 1 H 204 LEU 2.9 1 B 205 GLU 2.9 1 G 196 ILE 2.9 1 G 200 ASP 2.9 1 B 200 ASP 2.9 1 G 256 GLN 2.8 1 E 204 LEU 2.8 1 G 194 THR 2.8 1 G -9 ARG 2.8 1 G -9 ARG 2.8 1 E 256 GLN 2.8	
1 B -3 HIS 3.0 1 C 199 GLU 3.0 1 E 55 ALA 3.0 1 B 256 GLN 2.9 1 H 204 LEU 2.9 1 B 205 GLU 2.9 1 C 196 ILE 2.9 1 G 200 ASP 2.9 1 B 200 ASP 2.9 1 G 256 GLN 2.8 1 E 204 LEU 2.8 1 G 194 THR 2.8 1 H 198 LYS 2.8 1 G -9 ARG 2.8 1 E 256 GLN 2.8	
1 C 199 GLU 3.0 1 E 55 ALA 3.0 1 B 256 GLN 2.9 1 H 204 LEU 2.9 1 B 205 GLU 2.9 1 C 196 ILE 2.9 1 G 200 ASP 2.9 1 B 200 ASP 2.9 1 G 256 GLN 2.8 1 E 204 LEU 2.8 1 G 194 THR 2.8 1 H 198 LYS 2.8 1 G -9 ARG 2.8 1 E 256 GLN 2.8	
1 E 55 ALA 3.0 1 B 256 GLN 2.9 1 H 204 LEU 2.9 1 B 205 GLU 2.9 1 C 196 ILE 2.9 1 G 200 ASP 2.9 1 B 200 ASP 2.9 1 G 256 GLN 2.8 1 E 204 LEU 2.8 1 G 194 THR 2.8 1 H 198 LYS 2.8 1 G -9 ARG 2.8 1 E 256 GLN 2.8	
1 B 256 GLN 2.9 1 H 204 LEU 2.9 1 B 205 GLU 2.9 1 C 196 ILE 2.9 1 G 200 ASP 2.9 1 B 200 ASP 2.9 1 G 256 GLN 2.8 1 E 204 LEU 2.8 1 G 194 THR 2.8 1 H 198 LYS 2.8 1 G -9 ARG 2.8 1 E 256 GLN 2.8	
1 H 204 LEU 2.9 1 B 205 GLU 2.9 1 C 196 ILE 2.9 1 G 200 ASP 2.9 1 B 200 ASP 2.9 1 G 256 GLN 2.8 1 E 204 LEU 2.8 1 G 194 THR 2.8 1 H 198 LYS 2.8 1 G -9 ARG 2.8 1 E 256 GLN 2.8	
1 B 205 GLU 2.9 1 C 196 ILE 2.9 1 G 200 ASP 2.9 1 B 200 ASP 2.9 1 G 256 GLN 2.8 1 E 204 LEU 2.8 1 G 194 THR 2.8 1 H 198 LYS 2.8 1 G -9 ARG 2.8 1 E 256 GLN 2.8	
1 C 196 ILE 2.9 1 G 200 ASP 2.9 1 B 200 ASP 2.9 1 G 256 GLN 2.8 1 E 204 LEU 2.8 1 G 194 THR 2.8 1 H 198 LYS 2.8 1 G -9 ARG 2.8 1 E 256 GLN 2.8	
1 G 200 ASP 2.9 1 B 200 ASP 2.9 1 G 256 GLN 2.8 1 E 204 LEU 2.8 1 G 194 THR 2.8 1 H 198 LYS 2.8 1 G -9 ARG 2.8 1 E 256 GLN 2.8	
1 B 200 ASP 2.9 1 G 256 GLN 2.8 1 E 204 LEU 2.8 1 G 194 THR 2.8 1 H 198 LYS 2.8 1 G -9 ARG 2.8 1 E 256 GLN 2.8	
1 G 256 GLN 2.8 1 E 204 LEU 2.8 1 G 194 THR 2.8 1 H 198 LYS 2.8 1 G -9 ARG 2.8 1 E 256 GLN 2.8	
1 E 204 LEU 2.8 1 G 194 THR 2.8 1 H 198 LYS 2.8 1 G -9 ARG 2.8 1 E 256 GLN 2.8	
1 G 194 THR 2.8 1 H 198 LYS 2.8 1 G -9 ARG 2.8 1 E 256 GLN 2.8	
1 H 198 LYS 2.8 1 G -9 ARG 2.8 1 E 256 GLN 2.8	
1 G -9 ARG 2.8 1 E 256 GLN 2.8	
1 E 256 GLN 2.8	
1 H 200 ASP 2.7	
1 A 203 ASP 2.7	
1 D 40 ASP 2.7	
1 G 197 ASN 2.7	
1 E 203 ASP 2.7	
1 B 204 LEU 2.6	
1 H 203 ASP 2.6	
1 F 209 ARG 2.6	
1 F 205 GLU 2.6	
1 G -2 HIS 2.6	
1 D 198 LYS 2.5	
1 D 203 ASP 2.5	
1 B 207 ARG 2.4	
1 F 194 THR 2.4	
1 H 47 LEU 2.3	
1 A 198 LYS 2.3	
1 C 205 GLU 2.3	
1 A 150 LEU 2.3	
1 A 197 ASN 2.3	
1 C 150 LEU 2.3	
1 C 256 GLN 2.3	
1 G -4 HIS 2.3	\neg
1 D 47 LEU 2.3	\neg
1 E 47 LEU 2.2	\neg
1 G 199 GLU 2.2	\exists
1 H 205 GLU 2.2	\exists

Continued from previous page...

Mol	Chain	Res	Type	RSRZ
1	F	55	ALA	2.1
1	D	209	ARG	2.0
1	Е	209	ARG	2.0
1	С	208	GLU	2.0
1	С	207	ARG	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

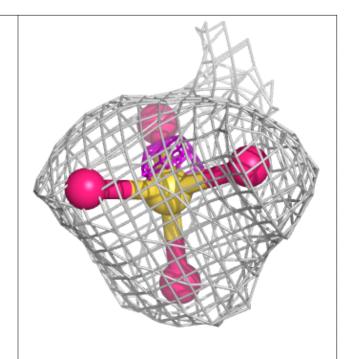
6.3 Carbohydrates (i)

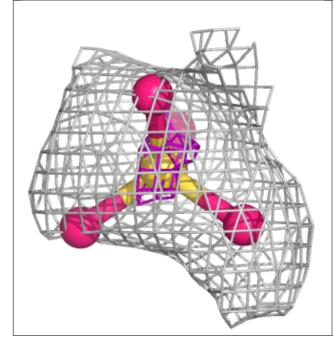
There are no monosaccharides in this entry.

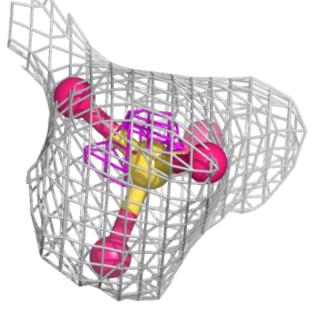
6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

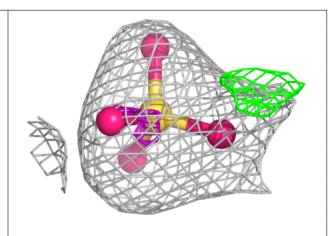
Mol	Type	Chain	Res	Atoms	RSCC	RSR	${f B\text{-}factors}({f \AA}^2)$	Q < 0.9
2	SO4	D	303	5/5	0.88	0.34	69,72,77,81	0
2	SO4	С	303	5/5	0.91	0.29	61,62,68,71	0
2	SO4	D	302	5/5	0.92	0.23	43,51,60,61	0
2	SO4	В	302	5/5	0.92	0.21	41,49,58,58	0
2	SO4	С	302	5/5	0.93	0.26	45,55,61,64	0
2	SO4	A	301	5/5	0.94	0.15	45,50,56,59	0
2	SO4	Е	302	5/5	0.94	0.30	46,52,59,59	0
2	SO4	F	302	5/5	0.94	0.24	44,45,55,56	0
2	SO4	Е	303	5/5	0.96	0.30	57,64,69,73	0
2	SO4	В	303	5/5	0.96	0.23	56,59,63,68	0
2	SO4	F	303	5/5	0.96	0.27	65,69,70,71	0
2	SO4	G	303	5/5	0.96	0.23	62,63,64,70	0
2	SO4	Н	302	5/5	0.96	0.22	45,47,53,56	0
2	SO4	A	303	5/5	0.97	0.19	59,59,63,64	0
2	SO4	G	302	5/5	0.97	0.20	40,47,51,54	0
2	SO4	Н	303	5/5	0.97	0.17	51,57,60,62	0
2	SO4	С	301	5/5	0.99	0.07	32,35,39,41	0
2	SO4	A	302	5/5	0.99	0.08	38,39,39,45	0

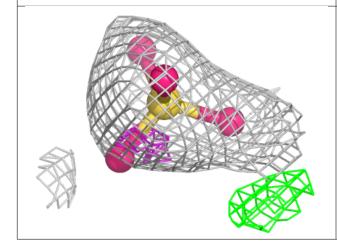

Continued from previous page...

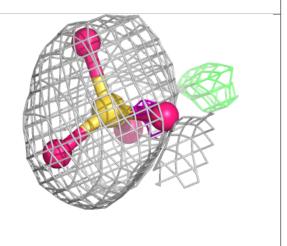

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-}\mathbf{factors}(\mathring{\mathbf{A}}^2)$	Q < 0.9
2	SO4	G	301	5/5	0.99	0.10	30,32,33,39	0
2	SO4	Е	301	5/5	0.99	0.14	36,40,42,46	0
2	SO4	В	301	5/5	0.99	0.09	31,31,38,39	0
2	SO4	Н	301	5/5	0.99	0.08	30,34,38,38	0
2	SO4	D	301	5/5	0.99	0.11	32,38,41,44	0
2	SO4	F	301	5/5	0.99	0.07	34,39,40,41	0


The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

Electron density around SO4 D 303:

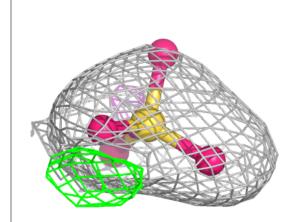


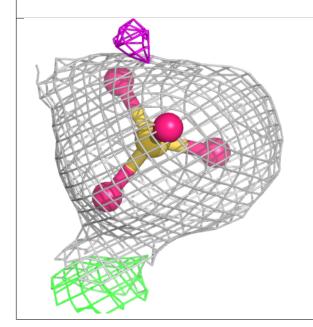


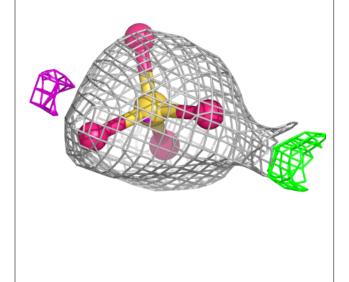


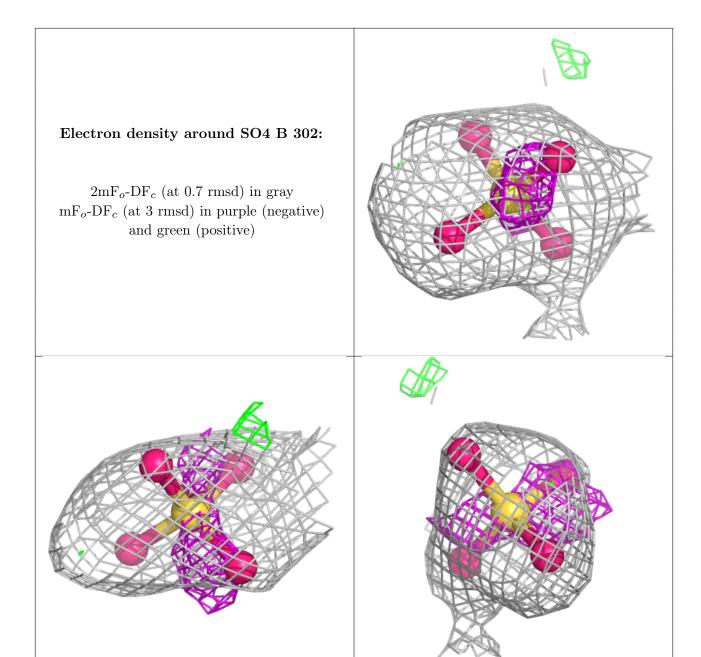
Electron density around SO4 C 303:

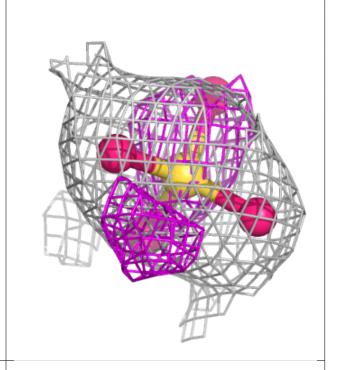
 $2 \mathrm{mF}_o\text{-}\mathrm{DF}_c$ (at 0.7 rmsd) in gray $\mathrm{mF}_o\text{-}\mathrm{DF}_c$ (at 3 rmsd) in purple (negative) and green (positive)

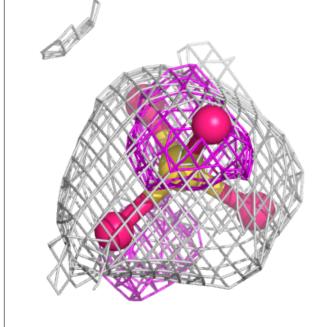


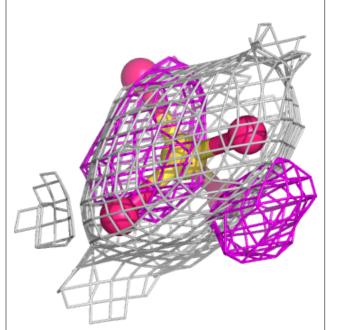





Electron density around SO4 D 302:

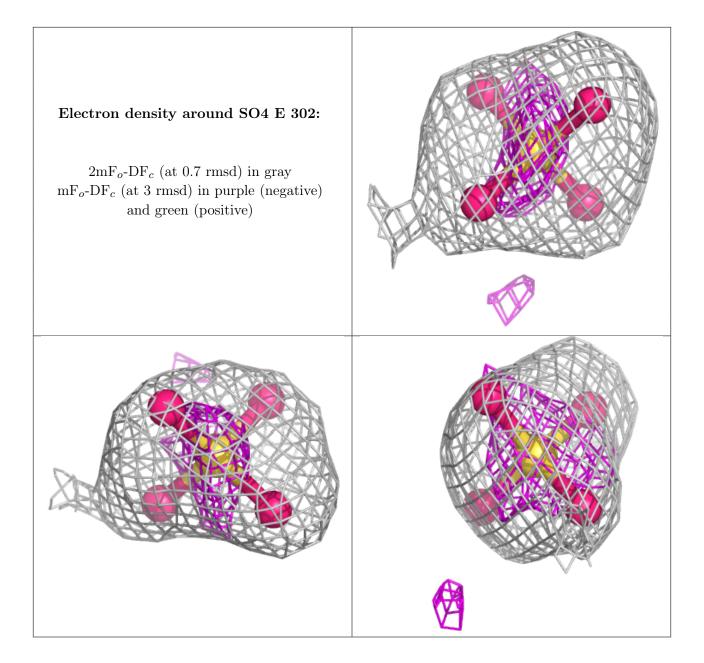




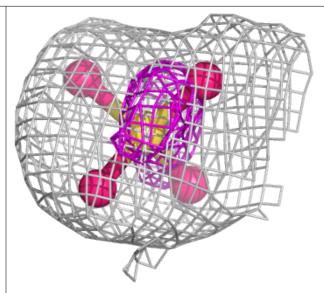


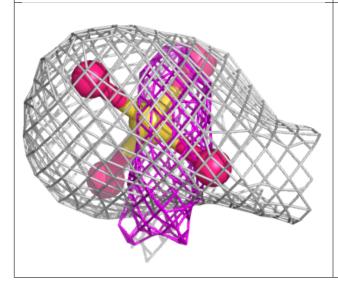
Electron density around SO4 C 302:

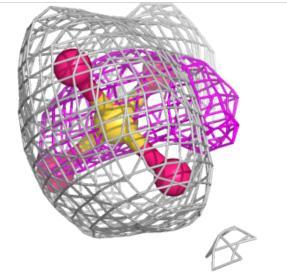
 $2 \mathrm{mF}_o\text{-}\mathrm{DF}_c$ (at 0.7 rmsd) in gray $\mathrm{mF}_o\text{-}\mathrm{DF}_c$ (at 3 rmsd) in purple (negative) and green (positive)



Electron density around SO4 A 301: $2 \mathrm{mF}_o\text{-}\mathrm{DF}_c$ (at 0.7 rmsd) in gray $\mathrm{mF}_{o}\text{-}\mathrm{DF}_{c}$ (at 3 rmsd) in purple (negative) and green (positive)

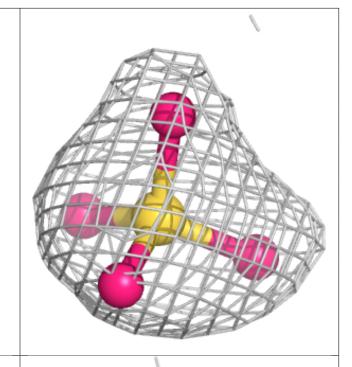


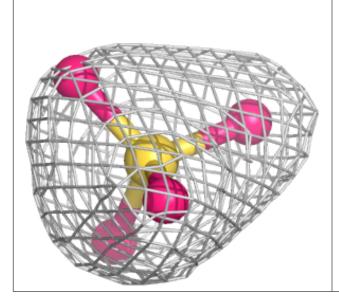


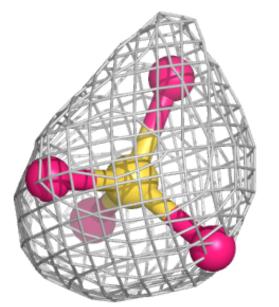


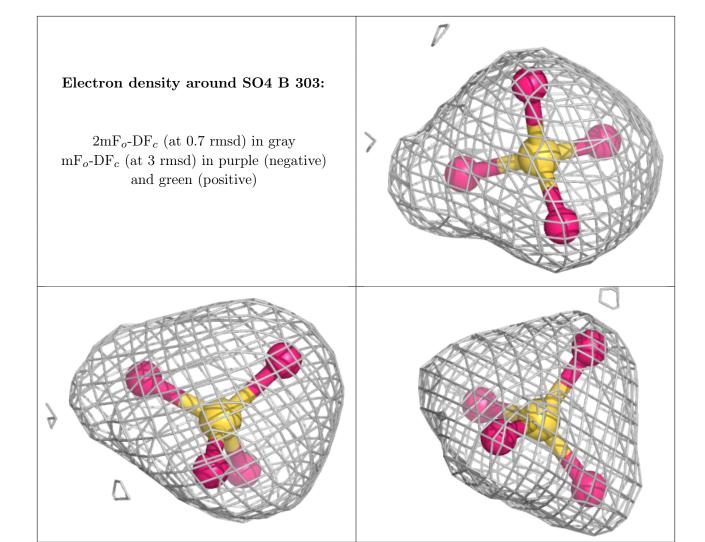
Electron density around SO4 F 302:

 $2 \text{mF}_o\text{-DF}_c$ (at 0.7 rmsd) in gray $\text{mF}_o\text{-DF}_c$ (at 3 rmsd) in purple (negative) and green (positive)

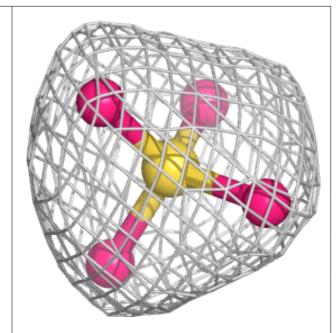


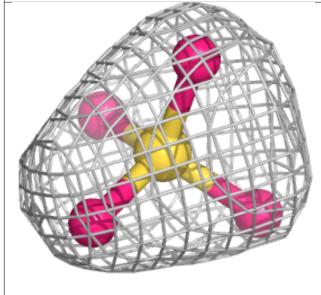


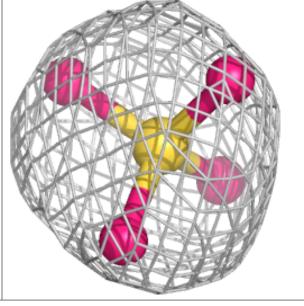


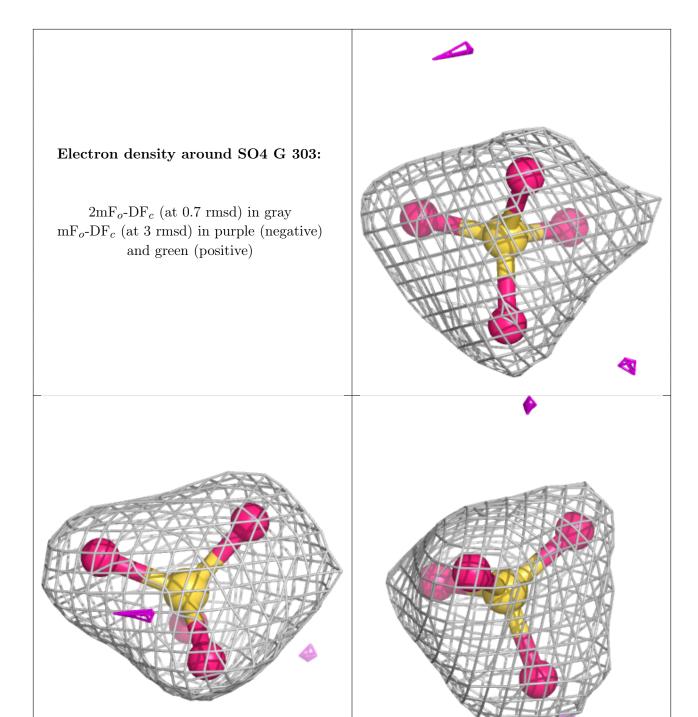


Electron density around SO4 E 303:

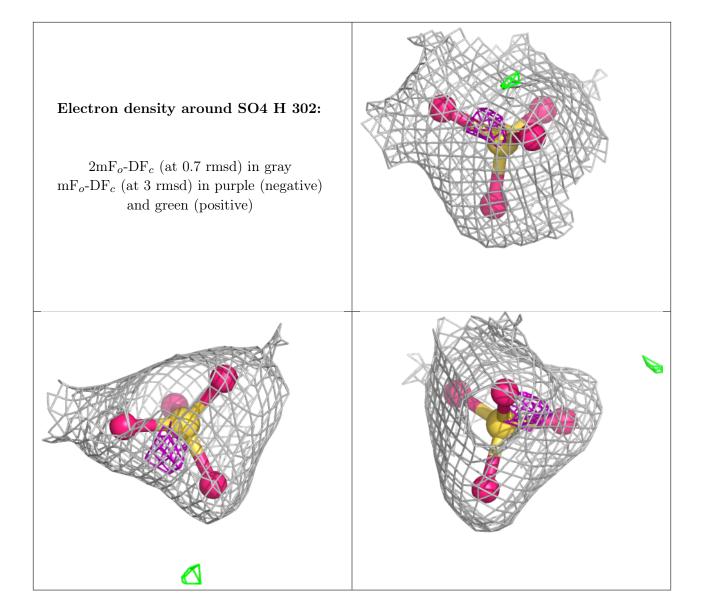


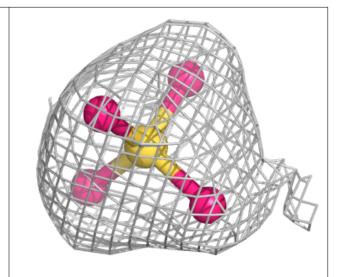


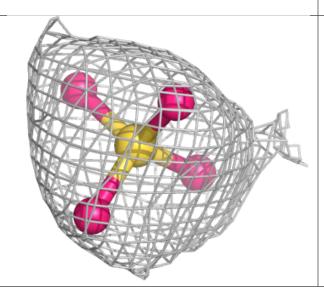


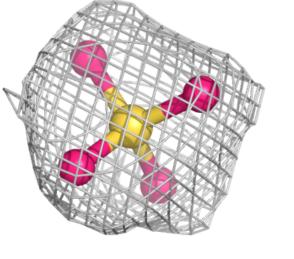

Electron density around SO4 F 303:

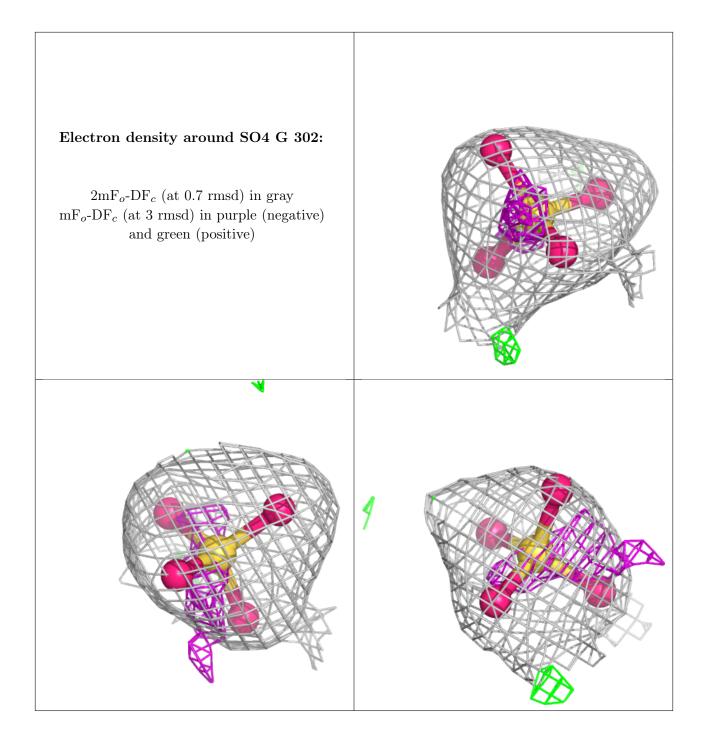
 $2 \text{mF}_o\text{-DF}_c$ (at 0.7 rmsd) in gray $\text{mF}_o\text{-DF}_c$ (at 3 rmsd) in purple (negative) and green (positive)

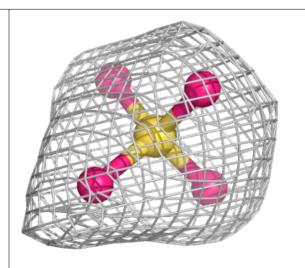


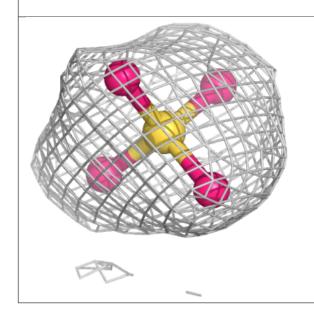


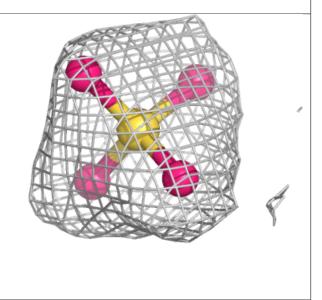


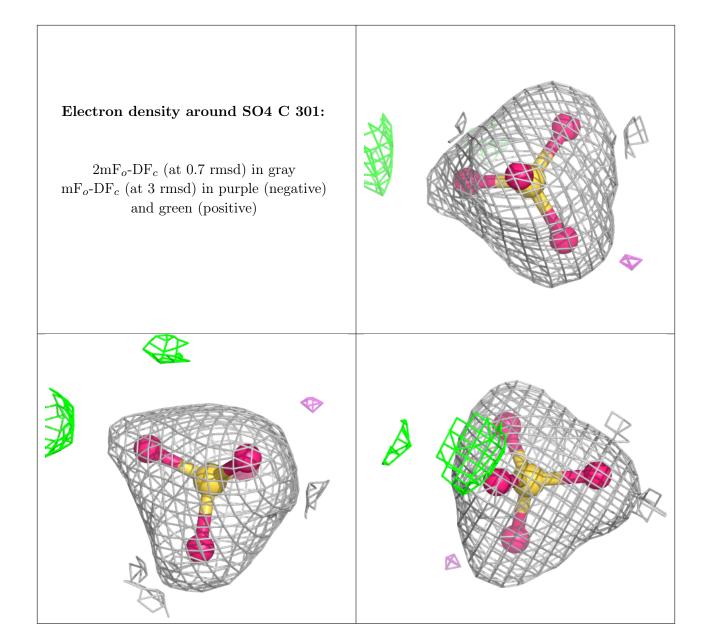


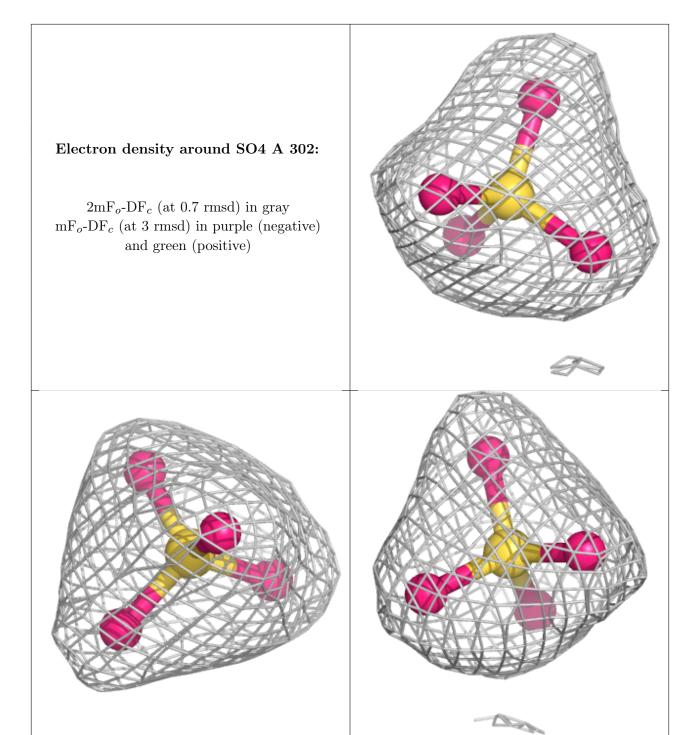

Electron density around SO4 A 303:

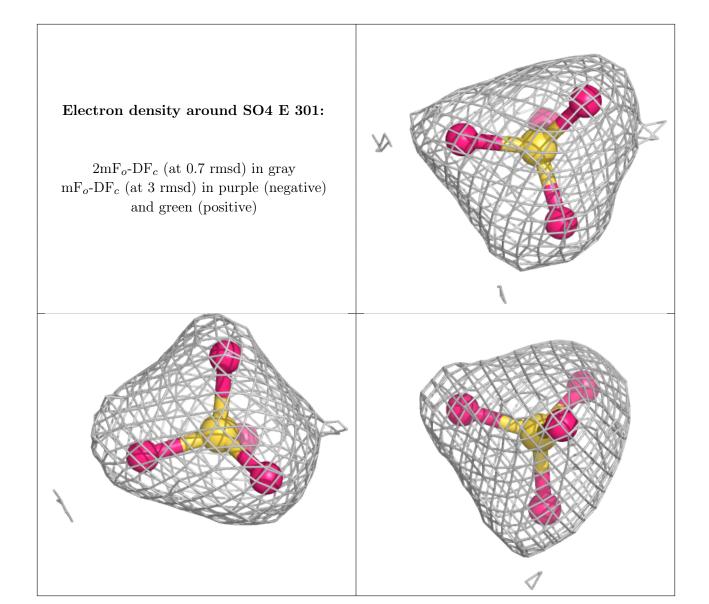


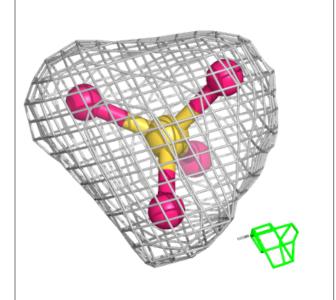


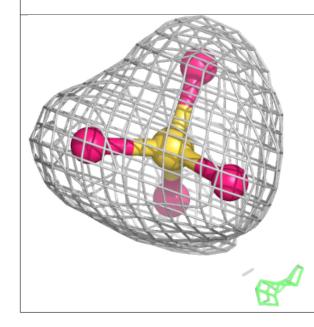


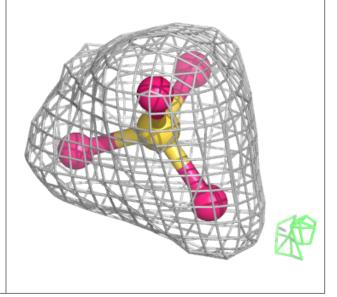

Electron density around SO4 H 303:



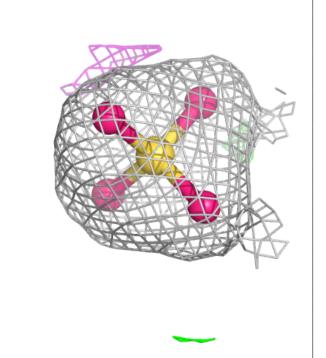


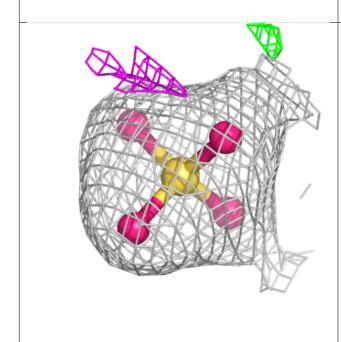


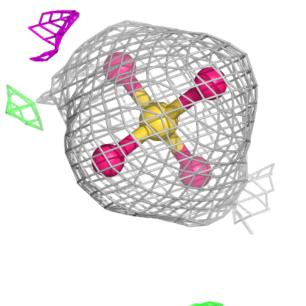




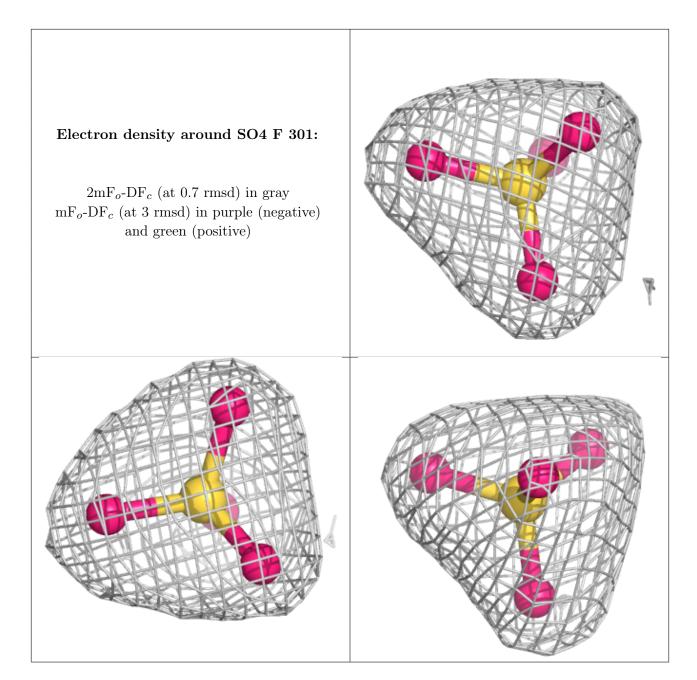
Electron density around SO4 H 301:







Electron density around SO4 D 301:


 $2 \mathrm{mF}_o\text{-}\mathrm{DF}_c$ (at 0.7 rmsd) in gray $\mathrm{mF}_o\text{-}\mathrm{DF}_c$ (at 3 rmsd) in purple (negative) and green (positive)

6.5 Other polymers (i)

There are no such residues in this entry.

