

# Full wwPDB X-ray Structure Validation Report (i)

#### May 26, 2020 – 02:17 pm BST

| PDB ID                 | : | 6DVI                                                         |
|------------------------|---|--------------------------------------------------------------|
| $\operatorname{Title}$ | : | Wild-type Lactate Monooxygenase from Mycobacterium smegmatis |
| Authors                | : | Kean, K.M.; Karplus, P.A.                                    |
| Deposited on           | : | 2018-06-23                                                   |
| Resolution             | : | 2.30 Å(reported)                                             |
|                        |   |                                                              |

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

| MolProbity                     | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| Xtriage (Phenix)               | : | 1.13                                                               |
| EDS                            | : | 2.11                                                               |
| buster-report                  | : | 1.1.7 (2018)                                                       |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| $\operatorname{Refmac}$        | : | 5.8.0158                                                           |
| CCP4                           | : | 7.0.044  (Gargrove)                                                |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.11                                                               |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 2.30 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | $egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$ | ${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$ |
|-----------------------|----------------------------------------------------------------------|---------------------------------------------------------------------------|
| $R_{free}$            | 130704                                                               | 5042(2.30-2.30)                                                           |
| Clashscore            | 141614                                                               | 5643 (2.30-2.30)                                                          |
| Ramachandran outliers | 138981                                                               | 5575(2.30-2.30)                                                           |
| Sidechain outliers    | 138945                                                               | 5575(2.30-2.30)                                                           |
| RSRZ outliers         | 127900                                                               | 4938 (2.30-2.30)                                                          |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

| Mol | Chain | Length | Quality of | chain        |
|-----|-------|--------|------------|--------------|
| 1   | Δ     | 20.4   | 7%         | 100/         |
| 1   | А     | 594    | 86%        | 13% •        |
|     |       |        | 20%        |              |
| 1   | В     | 394    | 68%        | 26% 5% ·     |
|     |       |        | 4%         |              |
| 1   | С     | 394    | 81%        | 18% •        |
|     |       |        | 53%        |              |
| 1   | D     | 394    | 46%        | 33% 5% • 14% |
|     |       |        | 92%        |              |
| 1   | Ε     | 394    | 73%        | 25% •        |
|     |       |        | 95%        |              |
| 1   | F     | 394    | 74%        | 24% •        |



The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

| Mol | Type | Chain | Res | Chirality | Geometry | Clashes | Electron density |
|-----|------|-------|-----|-----------|----------|---------|------------------|
| 2   | FMN  | Ε     | 401 | -         | -        | -       | Х                |
| 3   | SO4  | В     | 404 | -         | -        | -       | Х                |
| 3   | SO4  | F     | 402 | -         | -        | -       | Х                |



# 2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 19112 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain | Residues |       | At   | oms |     |    | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|------|-----|-----|----|---------|---------|-------|
| 1   | Δ     | 204      | Total | С    | Ν   | Ο   | S  | 0       | 4       | 0     |
|     |       | 394      | 3040  | 1930 | 531 | 566 | 13 | 0       | 4       | 0     |
| 1   | р     | 204      | Total | С    | Ν   | Ο   | S  | 0       | 4       | 0     |
| 1   | D     | 594      | 3036  | 1928 | 529 | 566 | 13 | 0       |         |       |
| 1   | C     | 204      | Total | С    | Ν   | Ο   | S  | 0       | 3       | 0     |
|     |       | 594      | 3028  | 1922 | 524 | 569 | 13 |         |         |       |
| 1   | р     | 338      | Total | С    | Ν   | Ο   | S  | 0       | 2       | 0     |
|     | D     | 000      | 2571  | 1624 | 446 | 487 | 14 |         |         |       |
| 1   | F     | 303      | Total | С    | Ν   | Ο   | S  | 0       | 3       | 0     |
|     |       | 393      | 3018  | 1917 | 526 | 564 | 11 | 0       | 5       | 0     |
| 1   | 1 1   | 202      | Total | С    | Ν   | Ο   | S  | 0       | 1       | 0     |
|     | Г     |          | 3029  | 1925 | 529 | 564 | 11 |         | 4       |       |

• Molecule 1 is a protein called Lactate 2-monooxygenase.

• Molecule 2 is FLAVIN MONONUCLEOTIDE (three-letter code: FMN) (formula:  $C_{17}H_{21}N_4O_9P$ ).





| Mol | Chain | Residues |       | Ato   | $\mathbf{ms}$ |   |       | ZeroOcc | AltConf |       |   |   |   |   |   |   |
|-----|-------|----------|-------|-------|---------------|---|-------|---------|---------|-------|---|---|---|---|---|---|
| 0   | Δ     | 1        | Total | С     | Ν             | Ο | Р     | 0       | 0       |       |   |   |   |   |   |   |
|     | А     | L        | 31    | 17    | 4             | 9 | 1     | 0       | 0       |       |   |   |   |   |   |   |
| 0   | р     | 1        | Total | С     | Ν             | Ο | Р     | 0       | 0       |       |   |   |   |   |   |   |
|     | D     | I        | 31    | 17    | 4             | 9 | 1     | 0       | 0       |       |   |   |   |   |   |   |
| 9   | C     | C        | С     | C     | C             | 1 | Total | С       | Ν       | Ο     | Р | 0 | 0 |   |   |   |
|     | T     | 31       | 17    | 4     | 9             | 1 | 0     | 0       |         |       |   |   |   |   |   |   |
| 2   | П     | Л        | 1     | Total | С             | Ν | Ο     | Р       | 0       | 0     |   |   |   |   |   |   |
|     | D     | T        | 31    | 17    | 4             | 9 | 1     | 0       | 0       |       |   |   |   |   |   |   |
| 9   | Г     | Г        | Г     | Г     | Г             | F | Б     | Б       | F 1     | Total | С | Ν | Ο | Р | 0 | 0 |
|     | 1     | 31       | 17    | 4     | 9             | 1 | 0     | U       |         |       |   |   |   |   |   |   |
|     | 1     | Total    | С     | Ν     | Ο             | Р | 0     | 0       |         |       |   |   |   |   |   |   |
|     |       |          | 31    | 17    | 4             | 9 | 1     | U       |         |       |   |   |   |   |   |   |

 $\bullet\,$  Molecule 3 is SULFATE ION (three-letter code: SO4) (formula:  ${\rm O_4S}).$ 



| Mol | Chain | Residues | Atoms                                                                            | ZeroOcc | AltConf |
|-----|-------|----------|----------------------------------------------------------------------------------|---------|---------|
| 3   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 3   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 3   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 1       |
| 3   | А     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 3   | В     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 3   | В     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$ | 0       | 0       |



Continued from previous page...

| Mol | Chain | Residues | Atoms                                                                                    | ZeroOcc | AltConf |
|-----|-------|----------|------------------------------------------------------------------------------------------|---------|---------|
| 3   | В     | 1        | Total O S<br>5 4 1                                                                       | 0       | 0       |
| 3   | В     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$         | 0       | 0       |
| 3   | В     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$         | 0       | 0       |
| 3   | С     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$         | 0       | 0       |
| 3   | С     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$         | 0       | 0       |
| 3   | С     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$         | 0       | 0       |
| 3   | С     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$         | 0       | 0       |
| 3   | D     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$         | 0       | 0       |
| 3   | D     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$         | 0       | 0       |
| 3   | Е     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$         | 0       | 0       |
| 3   | Е     | 1        | $\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$         | 0       | 0       |
| 3   | F     | 1        | $\begin{array}{c cc} \text{Total} & \text{O} & \text{S} \\ \hline 5 & 4 & 1 \end{array}$ | 0       | 0       |
| 3   | F     | 1        | $\begin{array}{c cc} Total & O & S \\ 5 & 4 & 1 \end{array}$                             | 0       | 0       |

• Molecule 4 is water.

| Mol | Chain | Residues | Atoms                                                            | ZeroOcc | AltConf |
|-----|-------|----------|------------------------------------------------------------------|---------|---------|
| 4   | А     | 461      | Total O<br>461 461                                               | 0       | 3       |
| 4   | В     | 296      | Total         O           296         296                        | 0       | 1       |
| 4   | С     | 276      | Total O<br>276 276                                               | 0       | 0       |
| 4   | D     | 73       | Total O<br>73 73                                                 | 0       | 0       |
| 4   | Е     | 2        | $\begin{array}{cc} \text{Total} & \text{O} \\ 2 & 2 \end{array}$ | 0       | 0       |
| 4   | F     | 1        | Total O<br>1 1                                                   | 0       | 0       |



Chain C:

# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.



81%

• Molecule 1: Lactate 2-monooxygenase



18%

# 181 M0 M87 64 1206 67 1205 64 1206 67 1205 64 7205 64 7206 71 7205 64 7206 71 7207 72 7208 72 722 72 723 72 7242 72 7259 73 7259 73 7259 73 7259 73 7259 73 7259 73 7259 73 7259 73 7259 73 7259 73 7259 73 7259 73 7259 73 7259 73 7259 73 7259 73 7256 78 736 710 738 710 738 713 7318 715 733 715 733 715 733 715 733 715 733 715

#### 

• Molecule 1: Lactate 2-monooxygenase



• Molecule 1: Lactate 2-monooxygenase









# 4 Data and refinement statistics (i)

| Property                                                         | Value                                                    | Source    |
|------------------------------------------------------------------|----------------------------------------------------------|-----------|
| Space group                                                      | P 4 21 2                                                 | Depositor |
| Cell constants                                                   | 148.40Å 148.40Å 272.60Å                                  | Depositor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$                           | $90.00^{\circ}$ $90.00^{\circ}$ $90.00^{\circ}$          | Depositor |
| $\mathbf{Baselution} \left( \overset{\circ}{\mathbf{A}} \right)$ | 77.49 - 2.30                                             | Depositor |
|                                                                  | 77.49 - 2.30                                             | EDS       |
| $\% { m Data \ completeness}$                                    | 91.0 (77.49-2.30)                                        | Depositor |
| (in resolution range $)$                                         | 91.1(77.49-2.30)                                         | EDS       |
| $R_{merge}$                                                      | (Not available)                                          | Depositor |
| $R_{sym}$                                                        | (Not available)                                          | Depositor |
| $< I/\sigma(I) > 1$                                              | $2.51 (at 2.29 \text{\AA})$                              | Xtriage   |
| Refinement program                                               | PHENIX (1.13_2998: ???)                                  | Depositor |
| D D .                                                            | 0.218 , $0.272$                                          | Depositor |
| $\mathbf{n}, \mathbf{n}_{free}$                                  | 0.223 , $0.274$                                          | DCC       |
| $R_{free}$ test set                                              | 12358 reflections $(10.04%)$                             | wwPDB-VP  |
| Wilson B-factor $(Å^2)$                                          | 32.8                                                     | Xtriage   |
| Anisotropy                                                       | 0.033                                                    | Xtriage   |
| Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$                      | 0.31, 62.1                                               | EDS       |
| L-test for $twinning^2$                                          | $ \langle L  \rangle = 0.47, \langle L^2 \rangle = 0.30$ | Xtriage   |
| Estimated twinning fraction                                      | No twinning to report.                                   | Xtriage   |
| $F_o, F_c$ correlation                                           | 0.87                                                     | EDS       |
| Total number of atoms                                            | 19112                                                    | wwPDB-VP  |
| Average B, all atoms $(Å^2)$                                     | 66.0                                                     | wwPDB-VP  |

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.47% of the height of the origin peak. No significant pseudotranslation is detected.

<sup>&</sup>lt;sup>2</sup>Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

# 5 Model quality (i)

# 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: FMN, SO4

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Mol Chain |      | nd lengths     | Bond angles |                 |  |
|-----|-----------|------|----------------|-------------|-----------------|--|
|     | Chain     | RMSZ | # Z  > 5       | RMSZ        | # Z  > 5        |  |
| 1   | А         | 0.93 | 2/3130~(0.1%)  | 0.91        | 4/4262~(0.1%)   |  |
| 1   | В         | 0.84 | 1/3124~(0.0%)  | 0.95        | 9/4252~(0.2%)   |  |
| 1   | С         | 0.80 | 0/3115         | 0.84        | 5/4244~(0.1%)   |  |
| 1   | D         | 0.62 | 0/2638         | 0.80        | 7/3586~(0.2%)   |  |
| 1   | Е         | 0.35 | 0/3106         | 0.51        | 0/4229          |  |
| 1   | F         | 0.35 | 0/3120         | 0.52        | 0/4248          |  |
| All | All       | 0.69 | 3/18233~(0.0%) | 0.78        | 25/24821~(0.1%) |  |

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

| Mol | Chain | #Chirality outliers | #Planarity outliers |
|-----|-------|---------------------|---------------------|
| 1   | А     | 0                   | 2                   |
| 1   | В     | 0                   | 1                   |
| All | All   | 0                   | 3                   |

All (3) bond length outliers are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type | Atoms | Z     | Observed(Å) | $\operatorname{Ideal}(\operatorname{\AA})$ |
|-----|-------|----------------|------|-------|-------|-------------|--------------------------------------------|
| 1   | А     | 287            | CYS  | CB-SG | -6.79 | 1.70        | 1.82                                       |
| 1   | В     | 287            | CYS  | CB-SG | -5.49 | 1.72        | 1.81                                       |
| 1   | А     | 85             | TRP  | CB-CG | -5.33 | 1.40        | 1.50                                       |

All (25) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms    | Z    | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|----------|------|------------------|---------------|
| 1   | В     | 352 | LEU  | CA-CB-CG | 8.34 | 134.49           | 115.30        |
| 1   | D     | 153 | TYR  | CA-CB-CG | 7.97 | 128.54           | 113.40        |



| Mol | Chain | $\mathbf{Res}$ | Type | Atoms     | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|----------------|------|-----------|-------|------------------|---------------|
| 1   | D     | 204            | LEU  | CA-CB-CG  | 6.90  | 131.17           | 115.30        |
| 1   | А     | 107            | ASP  | CB-CG-OD1 | 6.51  | 124.16           | 118.30        |
| 1   | D     | 344            | ARG  | NE-CZ-NH2 | -6.48 | 117.06           | 120.30        |
| 1   | В     | 320            | ASP  | CB-CG-OD1 | 6.46  | 124.12           | 118.30        |
| 1   | А     | 84             | LEU  | CA-CB-CG  | -6.28 | 100.86           | 115.30        |
| 1   | С     | 320            | ASP  | CB-CG-OD1 | 5.97  | 123.67           | 118.30        |
| 1   | D     | 107            | ASP  | CB-CG-OD1 | 5.97  | 123.67           | 118.30        |
| 1   | В     | 242            | LEU  | CB-CG-CD1 | -5.96 | 100.87           | 111.00        |
| 1   | В     | 187            | ARG  | NE-CZ-NH2 | 5.89  | 123.25           | 120.30        |
| 1   | С     | 376            | ASP  | CB-CG-OD1 | 5.83  | 123.54           | 118.30        |
| 1   | В     | 187            | ARG  | NE-CZ-NH1 | -5.81 | 117.39           | 120.30        |
| 1   | С     | 15             | LEU  | CB-CG-CD1 | -5.80 | 101.14           | 111.00        |
| 1   | С     | 187            | ARG  | NE-CZ-NH2 | -5.80 | 117.40           | 120.30        |
| 1   | D     | 153            | TYR  | CB-CG-CD1 | 5.55  | 124.33           | 121.00        |
| 1   | D     | 293            | ARG  | NE-CZ-NH2 | -5.55 | 117.53           | 120.30        |
| 1   | В     | 242            | LEU  | CB-CG-CD2 | 5.54  | 120.41           | 111.00        |
| 1   | D     | 320            | ASP  | CB-CG-OD1 | 5.50  | 123.25           | 118.30        |
| 1   | А     | 37             | LEU  | CB-CG-CD1 | -5.41 | 101.81           | 111.00        |
| 1   | В     | 328            | ASP  | CB-CG-OD1 | -5.21 | 113.61           | 118.30        |
| 1   | В     | 320            | ASP  | CB-CG-OD2 | -5.21 | 113.61           | 118.30        |
| 1   | С     | 346            | TYR  | CA-CB-CG  | 5.21  | 123.31           | 113.40        |
| 1   | А     | 385            | THR  | CA-CB-CG2 | -5.18 | 105.14           | 112.40        |
| 1   | В     | 78             | ARG  | NE-CZ-NH2 | -5.03 | 117.79           | 120.30        |

There are no chirality outliers.

All (3) planarity outliers are listed below:

| Mol | Chain | Res  | Type | Group   |
|-----|-------|------|------|---------|
| 1   | А     | 1[A] | SER  | Peptide |
| 1   | А     | 1[B] | SER  | Peptide |
| 1   | В     | 239  | TRP  | Peptide |

## 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | А     | 3040  | 0        | 2944     | 39      | 0            |



| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | В     | 3036  | 0        | 2949     | 139     | 0            |
| 1   | С     | 3028  | 0        | 2912     | 45      | 0            |
| 1   | D     | 2571  | 0        | 2501     | 135     | 0            |
| 1   | Е     | 3018  | 0        | 2935     | 71      | 0            |
| 1   | F     | 3029  | 0        | 2954     | 77      | 0            |
| 2   | А     | 31    | 0        | 19       | 0       | 0            |
| 2   | В     | 31    | 0        | 19       | 0       | 0            |
| 2   | С     | 31    | 0        | 19       | 2       | 0            |
| 2   | D     | 31    | 0        | 18       | 5       | 0            |
| 2   | Е     | 31    | 0        | 19       | 1       | 0            |
| 2   | F     | 31    | 0        | 19       | 1       | 0            |
| 3   | А     | 20    | 0        | 0        | 0       | 0            |
| 3   | В     | 25    | 0        | 0        | 1       | 0            |
| 3   | С     | 20    | 0        | 0        | 2       | 0            |
| 3   | D     | 10    | 0        | 0        | 0       | 0            |
| 3   | Е     | 10    | 0        | 0        | 1       | 0            |
| 3   | F     | 10    | 0        | 0        | 1       | 0            |
| 4   | А     | 461   | 0        | 0        | 14      | 3            |
| 4   | В     | 296   | 0        | 0        | 14      | 7            |
| 4   | С     | 276   | 0        | 0        | 8       | 2            |
| 4   | D     | 73    | 0        | 0        | 14      | 0            |
| 4   | Е     | 2     | 0        | 0        | 0       | 0            |
| 4   | F     | 1     | 0        | 0        | 0       | 0            |
| All | All   | 19112 | 0        | 17308    | 501     | 11           |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 14.

All (501) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom-1          | Atom-2           | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|-----------------|------------------|-----------------------------|----------------------|
| 1:B:22:LEU:HD22 | 1:B:352:LEU:HD23 | 1.27                        | 1.13                 |
| 3:C:405:SO4:O2  | 4:C:1401:HOH:O   | 1.68                        | 1.08                 |
| 1:B:23:PRO:HB3  | 1:B:28:ASP:HB3   | 1.44                        | 1.00                 |
| 3:B:406:SO4:O4  | 4:B:501[A]:HOH:O | 1.80                        | 0.98                 |
| 1:C:13:GLN:OE1  | 4:C:1402:HOH:O   | 1.81                        | 0.96                 |
| 1:F:63:LYS:NZ   | 3:F:403:SO4:O4   | 2.01                        | 0.94                 |
| 1:D:3:TRP:CZ3   | 1:D:91:ALA:HB2   | 2.04                        | 0.92                 |
| 1:C:314:ASP:OD1 | 4:C:1403:HOH:O   | 1.89                        | 0.90                 |
| 1:A:215:LYS:NZ  | 4:A:501:HOH:O    | 2.06                        | 0.86                 |
| 1:E:183:ILE:O   | 1:E:294:GLN:NE2  | 2.08                        | 0.86                 |



| 6DVI |  |
|------|--|
|------|--|

|                    | puge             | Interatomic  | Clash       |
|--------------------|------------------|--------------|-------------|
| Atom-1             | Atom-2           | distance (Å) | overlap (Å) |
| 1:D:79:ASP:OD2     | 4:D:501:HOH:O    | 1.95         | 0.84        |
| 1:F:226:GLU:O      | 1:F:230:ASP:N    | 2.12         | 0.82        |
| 1:D:328:ASP:OD2    | 4:D:502:HOH:O    | 1.98         | 0.80        |
| 1:B:23:PRO:HB3     | 1:B:28:ASP:CB    | 2.12         | 0.80        |
| 1:C:187:ARG:NH2    | 1:C:294:GLN:OE1  | 2.14         | 0.79        |
| 1:E:275:ARG:NH1    | 1:E:279:ASP:OD2  | 2.15         | 0.79        |
| 1:F:225:ALA:O      | 1:F:229:ARG:N    | 2.16         | 0.78        |
| 1:B:188:PRO:HA     | 1:B:191:LEU:HD12 | 1.65         | 0.78        |
| 1:B:349:GLY:HA2    | 1:B:352:LEU:HD13 | 1.63         | 0.78        |
| 1:B:238:PHE:O      | 1:B:240:HIS:N    | 2.17         | 0.77        |
| 1:B:191:LEU:O      | 1:B:194:SER:OG   | 2.01         | 0.76        |
| 1:B:233:ARG:O      | 1:B:235:ALA:N    | 2.20         | 0.75        |
| 1:B:187:ARG:O      | 1:B:191:LEU:HG   | 1.88         | 0.74        |
| 1:B:38:PRO:HG3     | 1:D:20:PRO:HD2   | 1.69         | 0.74        |
| 1:A:385:THR:OG1    | 4:A:502:HOH:O    | 2.07         | 0.73        |
| 1:F:114:SER:OG     | 1:F:358:ILE:HD13 | 1.89         | 0.73        |
| 1:A:226:GLU:OE2    | 1:A:229:ARG:NH2  | 2.21         | 0.73        |
| 1:C:221:SER:OG     | 1:C:223:VAL:HG13 | 1.89         | 0.73        |
| 1:D:320:ASP:OD2    | 2:D:401:FMN:O3'  | 2.03         | 0.72        |
| 1:D:3:TRP:CH2      | 1:D:91:ALA:HB2   | 2.24         | 0.72        |
| 1:F:319:PHE:HE2    | 1:F:323:ILE:HD11 | 1.55         | 0.71        |
| 1:B:385:THR:OG1    | 1:B:387:ASP:OD1  | 2.08         | 0.71        |
| 1:B:10:ILE:O       | 1:B:10:ILE:HG13  | 1.91         | 0.71        |
| 1:D:21:THR:O       | 1:D:21:THR:HG22  | 1.90         | 0.70        |
| 1:B:173:ASP:OD1    | 4:B:503:HOH:O    | 2.10         | 0.70        |
| 1:B:155:GLU:CB     | 1:B:242:LEU:HD11 | 2.22         | 0.70        |
| 1:B:10:ILE:HG21    | 1:B:24:MET:CE    | 2.22         | 0.70        |
| 1:E:250:GLU:OE1    | 1:E:250:GLU:N    | 2.25         | 0.70        |
| 1:D:313:GLY:O      | 1:F:275:ARG:NH1  | 2.25         | 0.69        |
| 1:F:319:PHE:CE2    | 1:F:323:ILE:HD11 | 2.27         | 0.69        |
| 1:A:29[B]:TRP:CE3  | 1:A:352:LEU:HD12 | 2.28         | 0.69        |
| 1:C:154:PRO:HG3    | 1:C:159:LEU:HD12 | 1.73         | 0.69        |
| 1:D:4:GLY:N        | 1:D:370:ASP:OD2  | 2.26         | 0.69        |
| 1:B:168:GLU:OE1    | 4:B:502:HOH:O    | 2.10         | 0.68        |
| 1:B:10:ILE:HD13    | 1:B:24:MET:HE3   | 1.74         | 0.68        |
| 1:F:208:VAL:O      | 1:F:214:GLN:NE2  | 2.26         | 0.68        |
| 1:B:216:LYS:HA     | 1:B:216:LYS:HE2  | 1.76         | 0.68        |
| 1:F:212:VAL:O      | 1:F:215:LYS:N    | 2.27         | 0.67        |
| 1:A:187[A]:ARG:NH1 | 4:A:510[A]:HOH:O | 2.24         | 0.67        |
| 1:F:255:VAL:O      | 1:F:259:THR:HG22 | 1.94         | 0.67        |
| 1:B:193:ILE:HD11   | 1:B:195:ASN:HB2  | 1.77         | 0.67        |



| Atom-1             | Atom-2           | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|--------------------|------------------|-----------------------------|----------------------|
| 1:D:290:HIS:O      | 1:D:293:ARG:HB2  | 1.94                        | 0.67                 |
| 1:E:164:ILE:HD13   | 1:E:255:VAL:HG13 | 1.78                        | 0.66                 |
| 1:B:18:VAL:HG13    | 1:D:38:PRO:HG2   | 1.77                        | 0.66                 |
| 1:B:386:ILE:HD11   | 4:B:790:HOH:O    | 1.96                        | 0.66                 |
| 1:D:263:VAL:N      | 1:D:283:ASP:OD2  | 2.27                        | 0.66                 |
| 1:B:155:GLU:CB     | 1:B:242:LEU:CD1  | 2.74                        | 0.66                 |
| 1:D:320:ASP:O      | 1:D:321:SER:HB2  | 1.96                        | 0.65                 |
| 1:B:155:GLU:N      | 1:B:242:LEU:HD11 | 2.12                        | 0.65                 |
| 1:A:155:GLU:OE1    | 4:A:503:HOH:O    | 2.13                        | 0.65                 |
| 1:B:22:LEU:HD22    | 1:B:352:LEU:CD2  | 2.16                        | 0.65                 |
| 1:B:239:TRP:HA     | 1:B:239:TRP:CE3  | 2.31                        | 0.65                 |
| 1:B:155:GLU:HB3    | 1:B:242:LEU:CD1  | 2.28                        | 0.64                 |
| 1:B:155:GLU:HB3    | 1:B:242:LEU:HD11 | 1.80                        | 0.64                 |
| 1:E:136:GLU:OE1    | 1:E:136:GLU:N    | 2.30                        | 0.63                 |
| 1:F:84:LEU:HD12    | 1:F:89:TRP:CE2   | 2.33                        | 0.63                 |
| 1:B:18:VAL:HG13    | 1:D:38:PRO:CD    | 2.28                        | 0.63                 |
| 1:D:21:THR:O       | 1:D:22:LEU:HB2   | 1.98                        | 0.63                 |
| 1:B:155:GLU:H      | 1:B:242:LEU:CD1  | 2.12                        | 0.63                 |
| 1:E:255:VAL:O      | 1:E:259:THR:HG22 | 1.98                        | 0.63                 |
| 1:D:304:CYS:O      | 1:D:308:VAL:HG23 | 1.99                        | 0.62                 |
| 1:F:225:ALA:HA     | 1:F:228:LEU:HB3  | 1.81                        | 0.62                 |
| 1:B:193:ILE:HD11   | 1:B:195:ASN:CB   | 2.29                        | 0.62                 |
| 1:B:73:MET:HE3     | 4:B:557:HOH:O    | 1.98                        | 0.62                 |
| 1:D:42:LEU:HD22    | 4:D:510:HOH:O    | 1.99                        | 0.62                 |
| 1:D:6:TYR:O        | 1:D:10:ILE:HD11  | 2.00                        | 0.62                 |
| 1:C:266:LYS:HD2    | 1:C:286:TYR:CE2  | 2.36                        | 0.61                 |
| 1:F:287:CYS:N      | 1:F:318:LEU:O    | 2.31                        | 0.61                 |
| 1:D:3:TRP:HZ3      | 1:D:91:ALA:HB2   | 1.65                        | 0.61                 |
| 1:A:29[B]:TRP:CZ3  | 1:A:352:LEU:HD12 | 2.36                        | 0.61                 |
| 1:B:18:VAL:HG12    | 1:B:19:ALA:N     | 2.16                        | 0.61                 |
| 1:F:83:GLU:OE1     | 1:F:88:THR:OG1   | 2.17                        | 0.60                 |
| 1:D:117:ALA:O      | 1:D:121:THR:HG23 | 2.02                        | 0.60                 |
| 1:B:155:GLU:CA     | 1:B:242:LEU:HD11 | 2.31                        | 0.60                 |
| 1:B:157:ARG:HG2    | 1:B:254:TRP:CH2  | 2.36                        | 0.60                 |
| 1:B:223:VAL:HG11   | 1:B:234:LEU:HD11 | 1.82                        | 0.60                 |
| 1:D:139:ARG:NH2    | 1:D:171:GLY:O    | 2.35                        | 0.60                 |
| 1:E:134:SER:OG     | 1:E:137:ASP:OD2  | 2.18                        | 0.60                 |
| 1:B:189:ARG:O      | 1:B:193:ILE:HG23 | 2.02                        | 0.60                 |
| 1:B:139[B]:ARG:HG2 | 1:B:172:TYR:CE1  | 2.37                        | 0.60                 |
| 1:F:177:ILE:HD11   | 1:F:255:VAL:HG11 | 1.83                        | 0.60                 |
| 1:B:18:VAL:HG13    | 1:D:38:PRO:CG    | 2.31                        | 0.59                 |



| Continued from previou                                         | s page                                           | <b>T</b> 4 •                            |                                                                                  |
|----------------------------------------------------------------|--------------------------------------------------|-----------------------------------------|----------------------------------------------------------------------------------|
| Atom-1                                                         | Atom-2                                           | Interatomic distance $(\hat{A})$        | $\begin{bmatrix} \text{Clash} \\ \text{overlap}(\hat{\mathbf{A}}) \end{bmatrix}$ |
| 1.D.50.GLV.O                                                   | 1.D.189.ARG.NH1                                  | 2.35                                    | 0.50                                                                             |
| <u>1.E.52.GLU.OE2</u>                                          | 1:E:189:ABG:NH2                                  | 2.33                                    | 0.59                                                                             |
| 1.B.10.ILE.HG21                                                | 1.B.109.MRC.HE1                                  | 1.82                                    | 0.59                                                                             |
| 1.D.135.LEU.N                                                  | $1 \cdot D \cdot 206 \cdot \Delta SN \cdot OD1$  | 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 0.59                                                                             |
| 1.B.10.ILE.HD13                                                | 1.B.24.MET.CE                                    | 2.00                                    | 0.59                                                                             |
| $\frac{1.0.10.100}{1.8.21.110}$                                | 4·B·744·HOH·O                                    | 2.02                                    | 0.59                                                                             |
| 1.B.157.ARG.HG2                                                | 1.B.254.TRP.CZ2                                  | 2.01<br>2.37                            | 0.59                                                                             |
| 1.D.97.PRO.0                                                   | $\frac{1.0.294.1101.022}{2.0.401.\text{FMN}.02}$ | 2.51                                    | 0.59                                                                             |
| 1.B.181.THB.HG21                                               | 1.B.290.HIS.CE1                                  | 2.14                                    | 0.59                                                                             |
| $1 \cdot B \cdot 139 [B] \cdot ABG \cdot HG2$                  | $1 \cdot B \cdot 172 \cdot T \times B \cdot C Z$ | 2.30                                    | 0.58                                                                             |
| $1 \cdot D \cdot 139 \cdot \Delta B G \cdot NE$                | 1.D.172.1110.02                                  | 2.50                                    | 0.58                                                                             |
| 1.E.299.LEU.HD21                                               | 1.E.304.CVS.SG                                   | 2.55                                    | 0.58                                                                             |
| 1.D.352.LEU.N                                                  | 1.D.352.LEU.HD12                                 | 2.49                                    | 0.58                                                                             |
| <u>1.C.139.ABG.HG2</u>                                         | 1.0.352.000                                      | 2.10                                    | 0.58                                                                             |
| 1.B.187.ABC.NH2                                                | 1.0.172.1110.02                                  | 2.30                                    | 0.58                                                                             |
| 1.D.39.HIS.HB9                                                 | 1.D.254.0DIV.0D1                                 | 1.86                                    | 0.58                                                                             |
| 1.D.32.III5.IID2                                               | 1.E.330.AI A.HB3                                 | 1.85                                    | 0.53                                                                             |
| 1.D.127.THB.HC22                                               | 1.D.138.II F.HC21                                | 1.85                                    | 0.57                                                                             |
| $\frac{1.D.127.1110.1022}{1.B.200.ARG.NH2}$                    | 4·B·509·HOH·O                                    | 2 31                                    | 0.57                                                                             |
| 1:C:251:ASP:OD1                                                | 4.D.303.11011.0                                  | 2.51                                    | 0.57                                                                             |
| 1.0.251.A51.0D1<br>1.D.385.THB.HC21                            | 4.0.1404.11011.0                                 | 2.17                                    | 0.57                                                                             |
| 1.E.93.PRO.HB3                                                 | 4.D.941.ΠΟΠ.Ο<br>1.F.98.ΔSP.HB3                  | 1.87                                    | 0.57                                                                             |
| 1.F.114.SFR.HC                                                 | 1.F.346.TVB.HF9                                  | 1.57                                    | 0.57                                                                             |
| 1.F.317.VAL.O                                                  | 1.F.338.SEB.N                                    | $\frac{1.52}{2.37}$                     | 0.57                                                                             |
| 1.B.22.LEU.HB3                                                 | 1.B.23.PBO.CD                                    | 2.81                                    | 0.50                                                                             |
| 1.C.266.LVS.HA                                                 | 1.D.25.1 RO.OD                                   | 1.86                                    | 0.50                                                                             |
| $\frac{1.0.200.0110.001}{1.4.9.4 \text{ SN} \cdot \text{OD1}}$ | 4: A : 504: HOH: O                               | 2.18                                    | 0.56                                                                             |
| 1.D.126.U.E.HD11                                               | 4:D:562:HOH:O                                    | 2.10                                    | 0.50                                                                             |
| $\frac{1.0.120.110.11}{1.8.10.11}$                             | $1 \cdot B \cdot 24 \cdot MET \cdot CE$          | 2.00                                    | 0.56                                                                             |
| 1.B.87.LVS.HE3                                                 | 4·B·503·HOH·O                                    | 2.00                                    | 0.56                                                                             |
| 1.D.334.ALA.HB2                                                | 1.D.384.LEU.HG                                   | 1.88                                    | 0.56                                                                             |
| 1.E.155.GLU·N                                                  | 1.E.242.LEU.O                                    | 2.34                                    | 0.56                                                                             |
| 1:D:348:TRP:0                                                  | 1:D:352:LEU·CD1                                  | 2.54                                    | 0.56                                                                             |
| 1:B:196:PHE·CE1                                                | 1:B:198:PHE:CD2                                  | 2.94                                    | 0.55                                                                             |
| 1:D:139·ABG·CZ                                                 | 1:D:171.GIV.0                                    | 2.51                                    | 0.55                                                                             |
| 1:B:10:ILE:CD1                                                 | 1:B:24:MET·HE3                                   | 2.00                                    | 0.55                                                                             |
| 1.D.293.ABG·C7                                                 | 2·D·401·FMN·HM82                                 | 2.37                                    | 0.55                                                                             |
| 1:B:201.GLV.O                                                  | 1:B:232:PRO:HR2                                  | 2.01                                    | 0.55                                                                             |
| 1.D.326.GLV.HA3                                                | 1.D.368.GLU.HB3                                  | 1.88                                    | 0.55                                                                             |
| 1.B.152.TVR.HE1                                                | 1.B.181.THR.HG1                                  | 1.50                                    | 0.55                                                                             |
| 1:B:350·ALA·HR2                                                | 1:B:358·ILE·HD11                                 | 1.88                                    | 0.55                                                                             |
| 1,12,000,111111111111111111111111111111                        |                                                  | 1.00                                    | 0.00                                                                             |

 $C \epsilon$ 

Continued on next page...



| Atom-1                               | Atom-2              | Interatomic $distance \begin{pmatrix} \lambda \\ \lambda \end{pmatrix}$ | Ulash       |
|--------------------------------------|---------------------|-------------------------------------------------------------------------|-------------|
| 1.D.106.CI N.CD                      | 1.D.106.CI N.U      | $\frac{11311100}{2}$                                                    | Overlap (A) |
| 1.D.100.GLN.OD                       | 1.D.100.GLN.II      | 2.10                                                                    | 0.55        |
| 1.D.200.L15.IIA                      | 1.D.200.11 n.nd $3$ | 1.09                                                                    | 0.55        |
| $\frac{1:D:526:A5P:N}{1:A.995:HEEO}$ | 1:D:526:A5P:ODI     | 2.39                                                                    | 0.54        |
| 1:A:280:ILE:U                        | 1:A:517:VAL:HA      | 2.08                                                                    | 0.54        |
| 1 D 155 CLU OD1                      | 1:0:159:LEU:0       | 2.08                                                                    | 0.54        |
| 1:B:155:GLU:UE1                      | 1:B:240:HIS:ND1     | 2.30                                                                    | 0.54        |
| 1:B:387:A5P:OD1                      | 1:B:387:ASP:N       | 2.41                                                                    | 0.54        |
| 1:B:210:LYS:0                        | 1:B:210:LY S:HD3    | 2.07                                                                    | 0.54        |
| 1:B:241:GLY:0                        | 1:B:243:PHE:N       | 2.40                                                                    | 0.54        |
| 1:C:161:GLU:OE2                      | 1:C:165:ARG:NH2     | 2.41                                                                    | 0.53        |
| I:E:67:LEU:HDII                      | 1:E:378:TYR:CE2     | 2.43                                                                    | 0.53        |
| 1:F:215:LYS:O                        | 1:F:215:LYS:HG3     | 2.07                                                                    | 0.53        |
| 1:A:56:ARG:HD3                       | 4:A:849:HOH:O       | 2.08                                                                    | 0.53        |
| 1:B:10:ILE:HD12                      | 1:B:24:MET:HE2      | 1.91                                                                    | 0.53        |
| 1:B:190:ASP:O                        | 1:B:194:SER:HA      | 2.08                                                                    | 0.53        |
| 1:D:0:MET:O                          | 1:D:2:ASN:N         | 2.39                                                                    | 0.53        |
| 1:B:64:HIS:HA                        | 1:B:392:THR:OG1     | 2.09                                                                    | 0.53        |
| 1:D:111:ASP:OD1                      | 1:D:111:ASP:N       | 2.36                                                                    | 0.53        |
| 1:E:130:LEU:HD13                     | 1:E:198:PHE:CE1     | 2.44                                                                    | 0.53        |
| 1:F:164:ILE:HD13                     | 1:F:255:VAL:HG13    | 1.91                                                                    | 0.53        |
| 1:C:29[B]:TRP:CZ3                    | 1:C:349:GLY:HA2     | 2.44                                                                    | 0.53        |
| 1:E:196:PHE:O                        | 1:E:200:ARG:NH1     | 2.41                                                                    | 0.53        |
| 1:B:156:ASP:H                        | 1:B:242:LEU:HD21    | 1.74                                                                    | 0.53        |
| 1:F:44:TYR:O                         | 1:F:187[B]:ARG:NH2  | 2.41                                                                    | 0.53        |
| 1:A:92:PRO:HG3                       | 1:A:381:LEU:HD11    | 1.91                                                                    | 0.53        |
| :F:181[B]:THR:HG22                   | 1:F:294:GLN:HG3     | 1.91                                                                    | 0.53        |
| 1:B:240:HIS:O                        | 1:B:243:PHE:N       | 2.42                                                                    | 0.53        |
| 1:D:274:ALA:HB2                      | 1:D:308:VAL:HG13    | 1.90                                                                    | 0.53        |
| 1:D:93:MET:CE                        | 1:D:366:LEU:HD13    | 2.39                                                                    | 0.53        |
| 1:D:3:TRP:CZ3                        | 1:D:91:ALA:CB       | 2.88                                                                    | 0.53        |
| 1:F:212:VAL:HA                       | 1:F:215:LYS:HB3     | 1.91                                                                    | 0.52        |
| 1:B:285:ILE:O                        | 1:B:317:VAL:HA      | 2.10                                                                    | 0.52        |
| 1:D:122:GLY:O                        | 1:D:124:PRO:HD3     | 2.09                                                                    | 0.52        |
| 1:D:66:GLY:O                         | 1:D:390:ARG:N       | 2.42                                                                    | 0.52        |
| 1:E:58:ASN:OD1                       | 1:E:300:PRO:HA      | 2.09                                                                    | 0.52        |
| 1:D:348:TRP:O                        | 1:D:352:LEU:HD12    | 2.10                                                                    | 0.52        |
| 1:E:150:GLN:HA                       | 1:E:176:VAL:HB      | 1.91                                                                    | 0.52        |
| 1:D:162:SER:OG                       | 1:D:210:ASP:OD2     | 2.12                                                                    | 0.52        |
| 1:B:238:PHE:O                        | 1:B:239:TRP:C       | 2.47                                                                    | 0.52        |
| 1:B:243:PHE:O                        | 1:B:243:PHE:CD1     | 2.64                                                                    | 0.52        |
| 1:D:318:LEU:HD21                     | 4:D:562:HOH:O       | 2.10                                                                    | 0.51        |

 $\sim$ 



| Atom 1              | Atom 2              | Interatomic  | Clash       |
|---------------------|---------------------|--------------|-------------|
|                     | Atom-2              | distance (Å) | overlap (Å) |
| 1:D:50:GLY:O        | 1:D:189:ARG:NH2     | 2.43         | 0.51        |
| 1:B:320:ASP:O       | 1:B:321:SER:HB2     | 2.10         | 0.51        |
| 1:D:128:SER:HA      | 1:D:150:GLN:OE1     | 2.10         | 0.51        |
| 1:D:32:HIS:CB       | 1:D:352:LEU:HD21    | 2.40         | 0.51        |
| 1:D:187:ARG:NH2     | 1:D:293:ARG:HG2     | 2.25         | 0.51        |
| 1:E:111:ASP:OD2     | 1:E:132:VAL:N       | 2.39         | 0.51        |
| 1:A:29[B]:TRP:HZ3   | 1:A:352:LEU:HB2     | 1.75         | 0.51        |
| 1:D:115:ALA:HA      | 1:D:118:SER:HB3     | 1.93         | 0.51        |
| 1:E:256:ARG:NH2     | 1:E:281:GLY:O       | 2.43         | 0.51        |
| 1:A:181:THR:HG22    | 1:A:181:THR:O       | 2.09         | 0.51        |
| 1:D:177:ILE:HD12    | 1:D:263:VAL:HG13    | 1.92         | 0.51        |
| 1:D:32:HIS:HB3      | 1:D:352:LEU:HG      | 1.92         | 0.51        |
| 1:E:185:GLY:N       | 1:E:294:GLN:OE1     | 2.27         | 0.51        |
| 1:F:228:LEU:HD13    | 1:F:235:ALA:HB2     | 1.92         | 0.51        |
| 1:D:55:GLN:OE1      | 1:D:344:ARG:NH2     | 2.43         | 0.51        |
| 1:E:205:THR:HA      | 1:E:208[A]:VAL:HG22 | 1.93         | 0.51        |
| 1:F:217:PHE:CE2     | 1:F:235:ALA:HB2     | 2.45         | 0.51        |
| 1:B:237:ASP:O       | 1:B:238:PHE:C       | 2.50         | 0.50        |
| 1:E:130:LEU:HD13    | 1:E:198:PHE:CZ      | 2.47         | 0.50        |
| 1:F:245:HIS:NE2     | 1:F:251:ASP:OD2     | 2.44         | 0.50        |
| 1:A:307:GLU:OE1     | 4:A:505:HOH:O       | 2.20         | 0.50        |
| 1:B:193:ILE:CD1     | 1:B:195:ASN:HB2     | 2.40         | 0.50        |
| 1:D:344:ARG:HD3     | 2:D:401:FMN:O2P     | 2.12         | 0.50        |
| 1:E:8:ASN:N         | 1:E:8:ASN:OD1       | 2.44         | 0.50        |
| 1:F:179:LEU:HD11    | 1:F:265:LEU:HB3     | 1.92         | 0.50        |
| 1:F:89:TRP:HB3      | 1:F:91:ALA:O        | 2.11         | 0.50        |
| 1:B:185:GLY:HA3     | 1:B:294:GLN:O       | 2.11         | 0.50        |
| 1:B:223:VAL:O       | 1:B:224:GLU:CG      | 2.59         | 0.50        |
| 2:C:401:FMN:O4'     | 2:C:401:FMN:H9      | 2.12         | 0.50        |
| 1:E:80:LEU:HB3      | 1:E:92:PRO:HD3      | 1.93         | 0.50        |
| 1:B:196:PHE:CE1     | 1:B:198:PHE:HD2     | 2.28         | 0.50        |
| 1:D:139:ARG:HB2     | 1:D:172:TYR:CZ      | 2.46         | 0.50        |
| 1:D:44:TYR:CD1      | 1:D:190:ASP:HB3     | 2.47         | 0.50        |
| 1:E:179:LEU:HD11    | 1:E:265:LEU:HB3     | 1.93         | 0.50        |
| 1:E:305:LEU:HB3     | 1:E:306:PRO:HD3     | 1.93         | 0.50        |
| 1:F:181[B]:THR:HG21 | 1:F:290:HIS:CE1     | 2.47         | 0.50        |
| 1:B:38:PRO:HG3      | 1:D:20:PRO:CD       | 2.41         | 0.50        |
| 1:F:67:LEU:HD11     | 1:F:378:TYR:CE2     | 2.47         | 0.50        |
| 1:B:137:ASP:OD2     | 4:B:504:HOH:O       | 2.19         | 0.50        |
| 1:B:18:VAL:HG12     | 1:B:19:ALA:H        | 1.77         | 0.49        |
| 1:D:93:MET:HE1      | 1:D:366:LEU:HD13    | 1.93         | 0.49        |



| Atom 1              | Atom 2              | Interatomic                | Clash       |
|---------------------|---------------------|----------------------------|-------------|
| Atom-1              | Atom-2              | ${ m distance}~({ m \AA})$ | overlap (Å) |
| 1:B:181:THR:CG2     | 1:B:290:HIS:CE1     | 2.94                       | 0.49        |
| 1:C:122:GLY:O       | 1:C:124:PRO:HD3     | 2.12                       | 0.49        |
| 1:E:167:ALA:O       | 1:E:172:TYR:HB2     | 2.12                       | 0.49        |
| 1:B:323[B]:ILE:HG13 | 1:B:340[B]:VAL:CG1  | 2.42                       | 0.49        |
| 1:C:344:ARG:HD3     | 2:C:401:FMN:C8M     | 2.43                       | 0.49        |
| 1:E:329:VAL:HG13    | 1:E:340[A]:VAL:HG21 | 1.94                       | 0.49        |
| 1:E:3:TRP:HD1       | 1:E:80:LEU:HD22     | 1.76                       | 0.49        |
| 1:B:188:PRO:CA      | 1:B:191:LEU:HD12    | 2.38                       | 0.49        |
| 1:D:334:ALA:HB3     | 1:D:389:LEU:HD11    | 1.95                       | 0.49        |
| 1:D:285:ILE:O       | 1:D:317:VAL:HA      | 2.13                       | 0.49        |
| 1:F:266:LYS:HA      | 1:F:286:TYR:HB3     | 1.94                       | 0.49        |
| 1:A:126:ILE:HG12    | 1:A:148:TYR:HB2     | 1.95                       | 0.49        |
| 1:E:290:HIS:NE2     | 3:E:403:SO4:O2      | 2.44                       | 0.49        |
| 1:E:193:ILE:CD1     | 1:E:195:ASN:HB2     | 2.43                       | 0.49        |
| 1:C:159:LEU:HD11    | 1:C:163:PHE:CE2     | 2.48                       | 0.49        |
| 1:F:228:LEU:HD13    | 1:F:235:ALA:CB      | 2.43                       | 0.49        |
| 1:C:29[B]:TRP:CE3   | 1:C:352:LEU:HD12    | 2.48                       | 0.49        |
| 1:D:79:ASP:HB3      | 1:D:380:ASN:HB3     | 1.95                       | 0.49        |
| 1:A:1[A]:SER:O      | 4:A:504:HOH:O       | 2.18                       | 0.48        |
| 1:D:265:LEU:HD11    | 1:D:282:VAL:HG21    | 1.94                       | 0.48        |
| 1:E:305:LEU:HD13    | 1:E:319:PHE:HD1     | 1.77                       | 0.48        |
| 1:B:197:PRO:O       | 1:B:200:ARG:N       | 2.37                       | 0.48        |
| 1:B:213:PHE:HE1     | 1:B:228:LEU:CD2     | 2.25                       | 0.48        |
| 1:C:187:ARG:NH2     | 3:C:402:SO4:O2      | 2.32                       | 0.48        |
| 1:F:319:PHE:CD2     | 1:F:332:ALA:HB1     | 2.48                       | 0.48        |
| 1:B:380:ASN:OD1     | 1:B:383:GLU:HG3     | 2.13                       | 0.48        |
| 1:E:158:ASP:O       | 1:E:212:VAL:HG21    | 2.13                       | 0.48        |
| 1:C:305:LEU:HB3     | 1:C:306:PRO:HD3     | 1.95                       | 0.48        |
| 1:D:29:TRP:CD2      | 1:D:361:VAL:HG22    | 2.48                       | 0.48        |
| 1:E:288:SER:OG      | 1:E:320:ASP:OD1     | 2.21                       | 0.48        |
| 1:F:158:ASP:O       | 1:F:212:VAL:HG21    | 2.13                       | 0.48        |
| 1:F:229:ARG:NH1     | 1:F:230:ASP:OD1     | 2.46                       | 0.48        |
| 1:B:187:ARG:O       | 1:B:191:LEU:CG      | 2.59                       | 0.48        |
| 1:E:98:ILE:HG22     | 1:E:101:ILE:N       | 2.29                       | 0.48        |
| 1:A:193:ILE:HG13    | 1:A:195:ASN:HB2     | 1.94                       | 0.48        |
| 1:D:278:VAL:HG21    | 1:D:312:SER:HA      | 1.95                       | 0.48        |
| 1:D:338:SER:O       | 1:D:339:ALA:HB2     | 2.14                       | 0.48        |
| 1:D:379:ARG:HB3     | 4:D:530:HOH:O       | 2.12                       | 0.48        |
| 1:B:0:MET:O         | 1:B:0:MET:SD        | 2.72                       | 0.48        |
| 1:D:161:GLU:O       | 1:D:165:ARG:HB2     | 2.14                       | 0.48        |
| 1:D:320:ASP:C       | 1:D:320:ASP:OD1     | 2.53                       | 0.48        |



| 6DVI |  |
|------|--|
|------|--|

|                    |                   | Interatomic  | Clash       |
|--------------------|-------------------|--------------|-------------|
| Atom-1             | Atom-2            | distance (Å) | overlap (Å) |
| 1:E:320:ASP:OD1    | 1:E:320:ASP:C     | 2.52         | 0.48        |
| 1:B:228:LEU:HD12   | 1:B:232:PRO:HA    | 1.95         | 0.47        |
| 1:B:22:LEU:HB3     | 1:B:23:PRO:HD2    | 1.96         | 0.47        |
| 1:D:182:TRP:CE3    | 1:D:183:ILE:HB    | 2.49         | 0.47        |
| 1:E:181:THR:HG21   | 1:E:290:HIS:CE1   | 2.49         | 0.47        |
| 1:E:98:ILE:HG23    | 2:E:401:FMN:C6    | 2.43         | 0.47        |
| 1:B:223:VAL:O      | 1:B:224:GLU:HG2   | 2.13         | 0.47        |
| 1:E:3:TRP:CD1      | 1:E:80:LEU:HD22   | 2.49         | 0.47        |
| 1:A:29[B]:TRP:CZ3  | 1:A:349:GLY:HA2   | 2.49         | 0.47        |
| 1:D:124:PRO:HB3    | 1:D:146:PRO:O     | 2.15         | 0.47        |
| 1:E:41:VAL:O       | 1:E:45:VAL:HG23   | 2.15         | 0.47        |
| 1:C:318:LEU:HD22   | 1:C:339:ALA:HB3   | 1.97         | 0.47        |
| 1:D:342:ILE:O      | 1:D:346:TYR:CE2   | 2.68         | 0.47        |
| 1:D:348:TRP:HA     | 1:D:348:TRP:CE3   | 2.49         | 0.47        |
| 1:F:277:ALA:HB1    | 1:F:282:VAL:HG21  | 1.96         | 0.47        |
| 1:B:233:ARG:O      | 1:B:234:LEU:C     | 2.53         | 0.47        |
| 1:B:240:HIS:O      | 1:B:241:GLY:C     | 2.52         | 0.47        |
| 1:D:348:TRP:HA     | 1:D:348:TRP:HE3   | 1.79         | 0.47        |
| 1:E:305:LEU:HD13   | 1:E:319:PHE:CD1   | 2.49         | 0.47        |
| 1:A:154:PRO:HD2    | 1:A:160:ALA:HB2   | 1.97         | 0.47        |
| 1:C:4:GLY:O        | 1:C:7:GLU:HG2     | 2.14         | 0.47        |
| 1:E:111:ASP:N      | 1:E:111:ASP:OD1   | 2.44         | 0.47        |
| 1:F:305:LEU:HB3    | 1:F:306:PRO:HD3   | 1.95         | 0.47        |
| 1:B:111:ASP:OD1    | 1:B:111:ASP:N     | 2.48         | 0.47        |
| 1:F:67:LEU:HD11    | 1:F:378:TYR:CZ    | 2.49         | 0.47        |
| 1:A:242:LEU:HD12   | 1:A:242:LEU:C     | 2.34         | 0.47        |
| 1:A:313:GLY:O      | 4:A:506:HOH:O     | 2.20         | 0.47        |
| 1:D:342:ILE:O      | 1:D:346:TYR:CD2   | 2.68         | 0.47        |
| 1:B:13:GLN:O       | 1:B:16:VAL:HG13   | 2.14         | 0.47        |
| 1:B:323[A]:ILE:CD1 | 1:B:340[A]:VAL:HB | 2.45         | 0.47        |
| 1:C:355:SER:HB3    | 4:C:1626:HOH:O    | 2.15         | 0.47        |
| 1:A:278:VAL:HG22   | 1:A:315:THR:HG21  | 1.97         | 0.47        |
| 1:B:50:GLY:O       | 1:B:188:PRO:HG2   | 2.15         | 0.47        |
| 1:B:217:PHE:CE2    | 1:B:223:VAL:CG2   | 2.98         | 0.46        |
| 1:D:44:TYR:HD1     | 1:D:190:ASP:HB3   | 1.80         | 0.46        |
| 1:D:369:ALA:O      | 1:D:373:MET:HG3   | 2.15         | 0.46        |
| 1:D:93:MET:SD      | 1:D:342:ILE:HD11  | 2.55         | 0.46        |
| 1:F:215:LYS:O      | 1:F:215:LYS:CG    | 2.62         | 0.46        |
| 1:D:85:TRP:NE1     | 1:D:283:ASP:O     | 2.46         | 0.46        |
| 1:D:314:ASP:C      | 1:D:314:ASP:OD1   | 2.53         | 0.46        |
| 1:E:26:TYR:CZ      | 1:E:324:ARG:HD2   | 2.51         | 0.46        |



| A 4 1             |                     | Interatomic  | Clash       |
|-------------------|---------------------|--------------|-------------|
| Atom-1            | Atom-2              | distance (Å) | overlap (Å) |
| 1:E:329:VAL:HG22  | 1:E:340[A]:VAL:HG21 | 1.97         | 0.46        |
| 1:E:120:ARG:NH2   | 1:E:355:SER:OG      | 2.35         | 0.46        |
| 1:F:159:LEU:CA    | 1:F:212:VAL:HG11    | 2.45         | 0.46        |
| 1:C:159:LEU:C     | 1:C:159:LEU:HD13    | 2.36         | 0.46        |
| 1:C:26:TYR:CZ     | 1:C:324:ARG:HD2     | 2.51         | 0.46        |
| 1:C:52:GLU:HA     | 4:C:1556:HOH:O      | 2.16         | 0.46        |
| 1:E:154:PRO:HA    | 1:E:243:PHE:O       | 2.15         | 0.46        |
| 1:D:261:MET:HA    | 1:D:261:MET:CE      | 2.45         | 0.46        |
| 1:F:323:ILE:HD12  | 1:F:340:VAL:HG11    | 1.98         | 0.46        |
| 1:C:83[A]:GLU:OE1 | 4:C:1405:HOH:O      | 2.20         | 0.46        |
| 1:D:187:ARG:N     | 1:D:188:PRO:HD3     | 2.31         | 0.46        |
| 1:A:35:GLN:HA     | 4:A:517:HOH:O       | 2.15         | 0.46        |
| 1:B:13:GLN:O      | 1:B:17:GLY:N        | 2.48         | 0.46        |
| 1:D:68:MET:O      | 1:D:378:TYR:OH      | 2.23         | 0.46        |
| 1:E:187:ARG:HH12  | 1:E:293:ARG:CZ      | 2.28         | 0.46        |
| 1:B:18:VAL:HG11   | 1:D:41:VAL:HG21     | 1.97         | 0.46        |
| 1:C:159:LEU:HD11  | 1:C:163:PHE:CZ      | 2.51         | 0.46        |
| 1:C:29[B]:TRP:HZ2 | 1:C:360:HIS:HD2     | 1.64         | 0.46        |
| 1:D:150:GLN:HA    | 1:D:176:VAL:HB      | 1.97         | 0.46        |
| 1:D:70:ARG:HG3    | 4:D:520:HOH:O       | 2.16         | 0.46        |
| 1:F:242:LEU:HD12  | 1:F:242:LEU:C       | 2.36         | 0.46        |
| 1:B:18:VAL:O      | 1:B:19:ALA:C        | 2.54         | 0.45        |
| 1:B:92:PRO:HG3    | 1:B:381:LEU:HD11    | 1.98         | 0.45        |
| 1:E:299:LEU:HD12  | 1:E:300:PRO:HD2     | 1.96         | 0.45        |
| 1:B:234:LEU:HD13  | 1:B:234:LEU:C       | 2.36         | 0.45        |
| 1:C:356:LYS:HD2   | 4:C:1567:HOH:O      | 2.16         | 0.45        |
| 1:E:94:PHE:O      | 1:E:341:GLY:HA2     | 2.17         | 0.45        |
| 1:D:63:LYS:NZ     | 4:D:504:HOH:O       | 2.28         | 0.45        |
| 1:F:190:ASP:HB3   | 1:F:195:ASN:O       | 2.17         | 0.45        |
| 1:C:84:LEU:HD12   | 1:C:89:TRP:CD2      | 2.52         | 0.45        |
| 1:D:6:TYR:CE1     | 1:D:363:ARG:HD2     | 2.51         | 0.45        |
| 1:B:204:LEU:HD22  | 1:B:207:TYR:CD2     | 2.52         | 0.45        |
| 1:E:52:GLU:OE2    | 1:E:189:ARG:NE      | 2.46         | 0.45        |
| 1:F:226:GLU:O     | 1:F:229:ARG:N       | 2.50         | 0.45        |
| 1:A:0:MET:O       | 1:A:2:ASN:N         | 2.50         | 0.45        |
| 1:D:163:PHE:HE1   | 1:D:166:ARG:HH12    | 1.65         | 0.45        |
| 1:D:180:ASP:C     | 1:D:180:ASP:OD1     | 2.55         | 0.45        |
| 1:F:94:PHE:O      | 1:F:341:GLY:HA2     | 2.17         | 0.45        |
| 1:B:260:LYS:HD2   | 4:B:619:HOH:O       | 2.16         | 0.45        |
| 1:C:285:ILE:O     | 1:C:317:VAL:HA      | 2.17         | 0.45        |
| 1:D:313:GLY:O     | 1:D:314:ASP:HB3     | 2.15         | 0.45        |



|--|

|                                                                                          | 5 page                                     | Interatomic             | Clash      |
|------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------|------------|
| Atom-1                                                                                   | Atom-2                                     | distance $(\text{\AA})$ | overlan(Å) |
| 1.F.198.PHE.HB2                                                                          | 1.F.239.TBP.CH2                            | 2.52                    | 0.45       |
| 1:B:29:TBP:CZ3                                                                           | 1:B:361:VAL:HG13                           | 2.52                    | 0.13       |
| 1.F.265.LEU.HD11                                                                         | $1 \cdot F \cdot 282 \cdot VAL \cdot HG21$ | 2.02                    | 0.11       |
| 1.D.5.ASP.0                                                                              | 1.D.367.ALA.HB2                            | 2.00                    | 0.11       |
| 1.D.371.LEU.O                                                                            | 1.D.375.VAL:HG23                           | 2.17                    | 0.11       |
| 1.B.196.PHE.HE1                                                                          | 1.B.198.PHE.CE2                            | 2.11                    | 0.11       |
| 1.B.31.ALA.O                                                                             | 1.B.35.GLN·HG2                             | 2.33                    | 0.11       |
| 1.E.52.GLU.CD                                                                            | 1.E.189.ABG.HH21                           | 2.11                    | 0.11       |
| 1.E.02.0E0.0E                                                                            | 1.E.100.IM00.IM21                          | 2.18                    | 0.44       |
| $1 \cdot F \cdot 231 \cdot ASN \cdot O$                                                  | 1.F.233.ABG.N                              | 2.10                    | 0.44       |
| 1.F.8.ASN.OD1                                                                            | 1.F.8.ASN.N                                | 2.00                    | 0.11       |
| 1.B.77.GLU.OE1                                                                           | 4·B·505·HOH·O                              | 2.45                    | 0.44       |
| 1.D.71.MET.O                                                                             | 1.D.72.LEU.C                               | 2.21                    | 0.44       |
| $\frac{1.\text{D}.71.\text{MBT.O}}{1.\text{E}\cdot320\cdot\Delta\text{SP}\cdot\text{O}}$ | 1.E.321.SEB.CB                             | 2.55                    | 0.44       |
| 1.D.975.ABC.HD3                                                                          | 1.E.321.5ER.OD                             | 1.00                    | 0.44       |
| 1.D.275.ARG.IID5                                                                         | 1.D.151.I FU.HA                            | 1.33<br>9.17            | 0.44       |
| 1.D.129.THR.OGI                                                                          | 1.D.101.DEU.IIA                            | 2.17                    | 0.44       |
| 1.E.01.ALA.HB1                                                                           | 1.D.21.1III.O                              | 2.00                    | 0.44       |
| 1.B.91.ALA.IID1                                                                          | 4.B.652.HOH.O                              | 2.00                    | 0.44       |
| 1.D.195.ILE.IIG22                                                                        | 4.D.052.IIOII.O                            | 2.17                    | 0.44       |
| 1.0.0.MET.O                                                                              | 1.0.0.ME1.5D                               | 2.10                    | 0.44       |
| 1.1.1.106.DUF.CD2                                                                        | 1.1.245.1115.11D2                          | 2.50                    | 0.44       |
| 1.A.190.F HE.CD2                                                                         | 1.A.199.LEU.IIG                            | 2.32                    | 0.44       |
| 1.D.99.GL1.OA                                                                            | 1.D.130.DE0.HD2                            | 2.40                    | 0.44       |
| 1.1.04.DEU.IID12                                                                         | $1.1.09.1 \text{ M} \cdot 0.002$           | 2.55                    | 0.44       |
| 1.A.575.MET.IID5                                                                         | 1.A.576.11R.O                              | 2.10                    | 0.44       |
|                                                                                          | 4.A.304.IIOII.O                            | 2.21                    | 0.44       |
| 1.D.139[D].AnG.UG                                                                        | $\frac{1.0.172.1110.0E1}{1.0.920.TDD.CA}$  | 3.01                    | 0.44       |
| 1.D.239.1 RF.OE3                                                                         | 1.D.239.1 RF.CA                            | 3.00                    | 0.44       |
| 1.E.240.III5.U                                                                           | 1.C.240.III5.CG                            | 2.10                    | 0.44       |
| 1.0.205.11IN.IIA                                                                         | 1.0.206.VAL.IIG22                          | 2.00                    | 0.43       |
| $1.E.170.1\Pi \Pi.\Pi \Lambda$ $1.D.100.\Lambda \text{SD}.\Omega$                        | 1.D.104.CED.CA                             | 1.99                    | 0.45       |
| 1.A.191.TUD.OC1                                                                          | 1.D.194.5ER.OA                             | 2.00 2.70               | 0.43       |
| 1.A.101.111A.UG1                                                                         | 1.A.290.III5.0E1                           | 2.10                    | 0.43       |
| 1.A.109.AnG.HD3                                                                          | 4.A.001.HOH.O                              | 2.10                    | 0.45       |
| $1:A:20:1 \text{ In:} \bigcirc \mathbb{D}2$                                              | 1.A.324.AnG.HD2                            | 2.55                    | 0.45       |
| 1.D.102.101:029                                                                          |                                            |                         | 0.40       |
| 1.D.343.GL1.U                                                                            | 1.D.344:AKG:U                              | 2.01<br>0.52            | 0.40       |
| 1:D:3:1KP:OZZ                                                                            | 1:D:300:LEU:HD23                           | <u> </u>                | 0.43       |
| 1.F. 43.5EK.UG                                                                           | 1.F.109:AKG:U                              | 2.30                    | 0.43       |
| 1.D.205.//JD (D                                                                          | 1:B:109:LEU:HB2                            | 1.99                    | 0.43       |
| 1:B:385:THK:UB                                                                           | 1:B:387:A5P:OD1                            | 2.00                    | 0.43       |



| Atom 1           | Atom 2            | Interatomic  | Clash       |
|------------------|-------------------|--------------|-------------|
| Atom-1           | Atom-2            | distance (Å) | overlap (Å) |
| 1:E:91:ALA:HB1   | 1:E:366:LEU:CD2   | 2.47         | 0.43        |
| 1:F:113:ALA:HB1  | 1:F:355:SER:HB2   | 1.99         | 0.43        |
| 1:F:320:ASP:O    | 1:F:321:SER:HB2   | 2.18         | 0.43        |
| 1:B:89:TRP:CD2   | 1:B:124:PRO:HG2   | 2.54         | 0.43        |
| 1:B:16:VAL:O     | 1:B:16:VAL:HG22   | 2.18         | 0.43        |
| 1:B:241:GLY:C    | 1:B:243:PHE:H     | 2.21         | 0.43        |
| 1:C:220:HIS:O    | 1:C:220:HIS:CG    | 2.71         | 0.43        |
| 1:C:104:CYS:O    | 1:C:351:ALA:HA    | 2.19         | 0.43        |
| 1:C:335:MET:HA   | 1:C:386:ILE:HD12  | 1.99         | 0.43        |
| 1:D:77:GLU:OE2   | 4:D:503:HOH:O     | 2.21         | 0.43        |
| 1:E:67:LEU:HD22  | 1:E:330:VAL:HG11  | 2.01         | 0.43        |
| 1:F:159:LEU:N    | 1:F:212:VAL:HG11  | 2.33         | 0.43        |
| 1:A:152:TYR:HE1  | 1:A:181:THR:HB    | 1.83         | 0.43        |
| 1:D:83:GLU:HG2   | 1:D:88:THR:OG1    | 2.18         | 0.43        |
| 1:D:3:TRP:HZ3    | 1:D:91:ALA:CA     | 2.32         | 0.43        |
| 1:A:226:GLU:HA   | 1:A:229:ARG:HG2   | 2.00         | 0.43        |
| 1:B:193:ILE:CG1  | 1:B:195:ASN:HB2   | 2.49         | 0.43        |
| 1:B:34:GLN:HB2   | 4:B:573:HOH:O     | 2.19         | 0.43        |
| 1:D:139:ARG:HG2  | 1:D:170:ALA:O     | 2.18         | 0.43        |
| 1:D:210:ASP:OD1  | 1:D:212:VAL:N     | 2.51         | 0.43        |
| 1:D:305:LEU:HD22 | 1:D:319:PHE:CD1   | 2.53         | 0.43        |
| 1:D:98:ILE:HG23  | 2:D:401:FMN:HM73  | 2.01         | 0.43        |
| 1:F:24:MET:SD    | 1:F:360:HIS:NE2   | 2.91         | 0.43        |
| 1:F:254:TRP:CZ2  | 1:F:258:ILE:HD13  | 2.54         | 0.43        |
| 2:F:401:FMN:N1   | 2:F:401:FMN:O2'   | 2.48         | 0.43        |
| 1:A:199:LEU:HD22 | 4:A:731:HOH:O     | 2.19         | 0.43        |
| 1:E:269:GLN:OE1  | 1:E:301:ALA:HA    | 2.19         | 0.43        |
| 1:D:71:MET:O     | 1:D:73:MET:N      | 2.52         | 0.42        |
| 1:E:89:TRP:CD2   | 1:E:124:PRO:HG2   | 2.54         | 0.42        |
| 1:E:177:ILE:HD11 | 1:E:255:VAL:HG11  | 2.01         | 0.42        |
| 1:B:23:PRO:CB    | 1:B:28:ASP:CB     | 2.89         | 0.42        |
| 1:F:4:GLY:HA3    | 1:F:371:LEU:HD21  | 2.01         | 0.42        |
| 1:A:26:TYR:HA    | 1:A:29[A]:TRP:CE3 | 2.54         | 0.42        |
| 1:A:320:ASP:OD1  | 1:A:320:ASP:C     | 2.57         | 0.42        |
| 1:B:154:PRO:HG3  | 1:B:159:LEU:HD13  | 2.02         | 0.42        |
| 1:D:179:LEU:HD12 | 4:D:505:HOH:O     | 2.18         | 0.42        |
| 1:D:0:MET:HE2    | 1:D:3:TRP:HA      | 2.01         | 0.42        |
| 1:F:127:THR:HG21 | 1:F:172:TYR:OH    | 2.19         | 0.42        |
| 1:A:294:GLN:OE1  | 4:A:507[B]:HOH:O  | 2.22         | 0.42        |
| 1:B:181:THR:HG21 | 1:B:290:HIS:HE1   | 1.82         | 0.42        |
| 1:C:102:ALA:HA   | 1:C:110:GLY:N     | 2.35         | 0.42        |



| Atom-1                             | Atom-2                                  | Interatomic  | Clash       |
|------------------------------------|-----------------------------------------|--------------|-------------|
| 1.0.055 1141.0                     |                                         | distance (A) | overlap (A) |
| 1:C:255:VAL:O                      | 1:C:259:THR:HG22                        | 2.20         | 0.42        |
| 1:B:10:1LE:CD1                     | 1:B:24:MET:HE2                          | 2.48         | 0.42        |
| 1:B:329:VAL:O                      | 1:B:333:LEU:HG                          | 2.19         | 0.42        |
| 1:C:181:THR:OG1                    | 1:C:294:GLN:HG3                         | 2.19         | 0.42        |
| 1:D:135:LEU:HD22                   | 1:D:149:PHE:CE1                         | 2.55         | 0.42        |
| 1:F:175:LEU:O                      | 1:F:264:ILE:N                           | 2.48         | 0.42        |
| 1:A:26:TYR:CZ                      | 1:A:324:ARG:HD2                         | 2.54         | 0.42        |
| 1:A:187[A]:ARG:HH21                | 1:A:294:GLN:HG2                         | 1.84         | 0.42        |
| 1:B:382:LYS:HG2                    | 4:B:671:HOH:O                           | 2.19         | 0.42        |
| 1:D:10:ILE:HD13                    | 1:D:360:HIS:CE1                         | 2.55         | 0.42        |
| 1:D:83:GLU:CG                      | 1:D:88:THR:OG1                          | 2.68         | 0.42        |
| 1:E:26:TYR:HA                      | 1:E:29:TRP:HB2                          | 2.01         | 0.42        |
| 1:B:78:ARG:HE                      | 1:B:370:ASP:CG                          | 2.23         | 0.42        |
| 1:E:62:PHE:O                       | 1:E:331:LYS:NZ                          | 2.42         | 0.42        |
| 1:B:18:VAL:CG1                     | 1:B:19:ALA:N                            | 2.82         | 0.42        |
| 1:C:157:ARG:HG3                    | 1:C:254:TRP:CH2                         | 2.54         | 0.42        |
| 1:E:289:ASN:O                      | 1:E:290:HIS:CB                          | 2.68         | 0.42        |
| 1:F:211:PRO:HA                     | 1:F:214:GLN:HB2                         | 2.01         | 0.42        |
| 1:C:277:ALA:O                      | 1:C:280:SER:HB2                         | 2.19         | 0.41        |
| 1:D:4:GLY:HA2                      | 1:D:367:ALA:HA                          | 2.01         | 0.41        |
| 1:D:99:GLY:HA2                     | 1:D:130:LEU:HB2                         | 2.02         | 0.41        |
| 1:E:127:THR:O                      | 1:E:127:THR:HG23                        | 2.20         | 0.41        |
| 1:E:320:ASP:O                      | 1:E:321:SER:HB2                         | 2.19         | 0.41        |
| 1:F:47:GLY:O                       | 1:F:187[B]:ARG:NH1                      | 2.52         | 0.41        |
| 1:B:223:VAL:HG21                   | 1:B:234:LEU:HG                          | 2.01         | 0.41        |
| 1:B:154:PRO:HB2                    | 1:B:242:LEU:HG                          | 2.03         | 0.41        |
| 1:E:155:GLU:HB2                    | 1:E:242:LEU:HA                          | 2.02         | 0.41        |
| 1:F:139:ARG:HG2                    | 1:F:172:TYR:CE2                         | 2.55         | 0.41        |
| 1:F:139:ARG:HG2                    | 1:F:172:TYR:CZ                          | 2.56         | 0.41        |
| 1:B:93:MET:O                       | 1:B:124:PRO:HD2                         | 2.20         | 0.41        |
| 1:D:127:THR:HG21                   | 1:D:172:TYR:OH                          | 2.20         | 0.41        |
| 1:D:265:LEU:CD1                    | 1:D:282:VAL:HG21                        | 2.49         | 0.41        |
| 1:F:160:ALA:O                      | 1:F:163:PHE:N                           | 2.54         | 0.41        |
| 1:F:205:THR:O                      | 1:F:205:THR:HG22                        | 2.19         | 0.41        |
| 1:F:332:ALA:HB3                    | 1:F:340:VAL:HG21                        | 2.01         | 0.41        |
| 1:B:223:VAL:O                      | 1:B:224:GLU:OE1                         | 2.38         | 0.41        |
| 1:B:320:ASP:0                      | 1:B:321:SEB·CB                          | 2.67         | 0.11        |
| 1:E:379:ARG·HB2                    | 1:E:379:ARG·CZ                          | 2.01         | 0.11        |
| <u>1.B.188.PRO.O</u>               | $1 \cdot B \cdot 192 \cdot THR \cdot N$ | 2.10         | 0.11        |
| 1.B.9/0.HIS.O                      | 1.B.9/3.PHF.HR3                         | <u> </u>     | 0.41        |
| 1.D.240.IIID.U<br>1.D.84.I FILUD91 | 1.D.245.1 IID.IID5                      | 2.21         | 0.41        |



| Atom 1              | Atom 2              | Interatomic  | Clash       |
|---------------------|---------------------|--------------|-------------|
| Atom-1              | Atom-2              | distance (Å) | overlap (Å) |
| 1:D:50:GLY:O        | 1:D:189:ARG:CZ      | 2.69         | 0.41        |
| 1:F:154:PRO:CB      | 1:F:242:LEU:O       | 2.68         | 0.41        |
| 1:D:278:VAL:HG12    | 1:F:279:ASP:OD1     | 2.21         | 0.41        |
| 1:F:95:PHE:CZ       | 1:F:358:ILE:HG22    | 2.56         | 0.41        |
| 1:B:30:GLU:O        | 1:B:31:ALA:C        | 2.58         | 0.41        |
| 1:C:161:GLU:O       | 1:C:165:ARG:HG3     | 2.21         | 0.41        |
| 1:D:100:VAL:HB      | 1:D:103:LEU:HD12    | 2.02         | 0.41        |
| 1:F:94:PHE:HE1      | 1:F:286:TYR:OH      | 2.04         | 0.41        |
| 1:C:23:PRO:HB2      | 1:C:29[A]:TRP:CD1   | 2.55         | 0.41        |
| 1:D:331:LYS:NZ      | 4:D:512:HOH:O       | 2.47         | 0.41        |
| 1:D:361:VAL:O       | 1:D:365:LEU:HG      | 2.21         | 0.41        |
| 1:B:57:ALA:HB1      | 1:B:300:PRO:HG3     | 2.02         | 0.41        |
| 1:D:2:ASN:O         | 1:D:2:ASN:CG        | 2.59         | 0.41        |
| 1:D:333:LEU:HD13    | 1:D:381:LEU:CD2     | 2.50         | 0.41        |
| 1:E:161:GLU:O       | 1:E:164:ILE:N       | 2.54         | 0.41        |
| 1:D:70:ARG:CG       | 4:D:520:HOH:O       | 2.68         | 0.41        |
| 1:E:323:ILE:HD12    | 1:E:340[B]:VAL:HG11 | 2.03         | 0.41        |
| 1:B:199:LEU:HD23    | 1:B:199:LEU:HA      | 1.85         | 0.41        |
| 1:C:78:ARG:HA       | 1:C:379:ARG:O       | 2.21         | 0.41        |
| 1:D:6:TYR:HE2       | 1:D:360:HIS:HD1     | 1.67         | 0.41        |
| 1:F:130[B]:LEU:HD13 | 1:F:198:PHE:CZ      | 2.55         | 0.41        |
| 1:D:7:GLU:OE2       | 1:D:371:LEU:CD1     | 2.69         | 0.41        |
| 1:E:147:ALA:N       | 1:E:173:ASP:OD2     | 2.48         | 0.41        |
| 1:F:124:PRO:HB3     | 1:F:146:PRO:O       | 2.20         | 0.41        |
| 1:B:188:PRO:O       | 1:B:191:LEU:N       | 2.53         | 0.40        |
| 1:B:272[B]:ASP:OD1  | 1:B:275:ARG:NE      | 2.43         | 0.40        |
| 1:B:372:ILE:O       | 1:B:376:ASP:HB2     | 2.21         | 0.40        |
| 1:C:82:VAL:HG13     | 1:C:89:TRP:HB2      | 2.02         | 0.40        |
| 1:A:111:ASP:N       | 1:A:111:ASP:OD1     | 2.53         | 0.40        |
| 1:B:126:ILE:HG12    | 1:B:148:TYR:HB2     | 2.03         | 0.40        |
| 1:C:330:VAL:HG13    | 1:C:384:LEU:HD21    | 2.02         | 0.40        |
| 1:D:29:TRP:CE3      | 1:D:361:VAL:HG22    | 2.56         | 0.40        |
| 1:D:37:LEU:HB2      | 4:D:510:HOH:O       | 2.21         | 0.40        |
| 1:B:372:ILE:HD13    | 1:B:372:ILE:HG21    | 1.89         | 0.40        |
| 1:F:182:TRP:CE2     | 1:F:246:SER:OG      | 2.61         | 0.40        |
| 1:B:152:TYR:O       | 1:B:154:PRO:HD3     | 2.21         | 0.40        |
| 1:D:183:ILE:HG23    | 1:D:183:ILE:O       | 2.22         | 0.40        |

All (11) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.



| Atom-1         | Atom-2                | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|----------------|-----------------------|-----------------------------|----------------------|
| 4:B:786:HOH:O  | 4:B:791:HOH:O[4_455]  | 1.94                        | 0.26                 |
| 4:B:734:HOH:O  | 4:B:787:HOH:O[3_555]  | 1.95                        | 0.25                 |
| 4:A:750:HOH:O  | 4:A:819:HOH:O[3_545]  | 2.04                        | 0.16                 |
| 4:C:1415:HOH:O | 4:C:1453:HOH:O[3_545] | 2.07                        | 0.13                 |
| 4:A:554:HOH:O  | 4:A:633:HOH:O[3_545]  | 2.07                        | 0.13                 |
| 4:B:578:HOH:O  | 4:B:729:HOH:O[3_555]  | 2.08                        | 0.12                 |
| 4:B:688:HOH:O  | 4:B:732:HOH:O[3_555]  | 2.09                        | 0.11                 |
| 4:C:1446:HOH:O | 4:C:1578:HOH:O[4_555] | 2.09                        | 0.11                 |
| 4:B:718:HOH:O  | 4:B:769:HOH:O[4_455]  | 2.09                        | 0.11                 |
| 4:A:774:HOH:O  | 4:B:661:HOH:O[7_555]  | 2.15                        | 0.05                 |
| 4:B:727:HOH:O  | 4:B:751:HOH:O[4_455]  | 2.16                        | 0.04                 |

### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed        | Favoured   | Allowed  | Outliers | Perce | $\mathbf{ntiles}$ |
|-----|-------|-----------------|------------|----------|----------|-------|-------------------|
| 1   | А     | 396/394~(100%)  | 385~(97%)  | 8 (2%)   | 3 (1%)   | 19    | 23                |
| 1   | В     | 396/394~(100%)  | 360 (91%)  | 27 (7%)  | 9 (2%)   | 6     | 5                 |
| 1   | С     | 395/394~(100%)  | 385~(98%)  | 8 (2%)   | 2 (0%)   | 29    | 35                |
| 1   | D     | 334/394~(85%)   | 295 (88%)  | 28 (8%)  | 11 (3%)  | 4     | 2                 |
| 1   | Е     | 394/394~(100%)  | 365~(93%)  | 24 (6%)  | 5 (1%)   | 12    | 12                |
| 1   | F     | 395/394~(100%)  | 360 (91%)  | 34 (9%)  | 1 (0%)   | 41    | 50                |
| All | All   | 2310/2364~(98%) | 2150 (93%) | 129 (6%) | 31 (1%)  | 12    | 12                |

All (31) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 321 | SER  |
| 1   | В     | 13  | GLN  |
| 1   | В     | 224 | GLU  |
| 1   | В     | 234 | LEU  |
| 1   | В     | 239 | TRP  |



| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | В     | 321  | SER  |
| 1   | С     | 321  | SER  |
| 1   | D     | 20   | PRO  |
| 1   | D     | 22   | LEU  |
| 1   | D     | 72   | LEU  |
| 1   | D     | 313  | GLY  |
| 1   | D     | 321  | SER  |
| 1   | Е     | 321  | SER  |
| 1   | В     | 226  | GLU  |
| 1   | А     | 1[A] | SER  |
| 1   | А     | 1[B] | SER  |
| 1   | С     | 221  | SER  |
| 1   | D     | 182  | TRP  |
| 1   | D     | 214  | GLN  |
| 1   | Е     | 290  | HIS  |
| 1   | Е     | 353  | GLY  |
| 1   | F     | 321  | SER  |
| 1   | В     | 18   | VAL  |
| 1   | В     | 221  | SER  |
| 1   | D     | 1    | SER  |
| 1   | D     | 339  | ALA  |
| 1   | Е     | 224  | GLU  |
| 1   | D     | 314  | ASP  |
| 1   | В     | 188  | PRO  |
| 1   | Е     | 110  | GLY  |
| 1   | D     | 10   | ILE  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed       | Rotameric Outliers |          | Percentiles |  |  |
|-----|-------|----------------|--------------------|----------|-------------|--|--|
| 1   | А     | 307/305~(101%) | 296~(96%)          | 11 (4%)  | 35 49       |  |  |
| 1   | В     | 307/305~(101%) | 281 (92%)          | 26 (8%)  | 10 13       |  |  |
| 1   | С     | 305/305~(100%) | 296~(97%)          | 9(3%)    | 41 57       |  |  |
| 1   | D     | 260/305~(85%)  | 226 (87%)          | 34 (13%) | 4 4         |  |  |



| Mol | Chain | Analysed Rotameric Outliers |            | Perce    | entiles |    |
|-----|-------|-----------------------------|------------|----------|---------|----|
| 1   | Ε     | 306/305~(100%)              | 295~(96%)  | 11 (4%)  | 35      | 49 |
| 1   | F     | 307/305~(101%)              | 296~(96%)  | 11 (4%)  | 35      | 49 |
| All | All   | 1792/1830~(98%)             | 1690 (94%) | 102 (6%) | 20      | 28 |

Continued from previous page...

All (102) residues with a non-rotameric side chain are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type |
|-----|-------|----------------|------|
| 1   | А     | 0              | MET  |
| 1   | А     | 78             | ARG  |
| 1   | А     | 83             | GLU  |
| 1   | А     | 139            | ARG  |
| 1   | А     | 153            | TYR  |
| 1   | А     | 157            | ARG  |
| 1   | А     | 224            | GLU  |
| 1   | А     | 226            | GLU  |
| 1   | А     | 286            | TYR  |
| 1   | А     | 344            | ARG  |
| 1   | А     | 379            | ARG  |
| 1   | В     | 0              | MET  |
| 1   | В     | 7              | GLU  |
| 1   | В     | 10             | ILE  |
| 1   | В     | 13             | GLN  |
| 1   | В     | 21             | THR  |
| 1   | В     | 24             | MET  |
| 1   | В     | 83             | GLU  |
| 1   | В     | 133            | SER  |
| 1   | В     | 139[A]         | ARG  |
| 1   | В     | 139[B]         | ARG  |
| 1   | В     | 140            | LYS  |
| 1   | В     | 155            | GLU  |
| 1   | В     | 157            | ARG  |
| 1   | В     | 159            | LEU  |
| 1   | В     | 193            | ILE  |
| 1   | В     | 198            | PHE  |
| 1   | В     | 216            | LYS  |
| 1   | В     | 218            | LYS  |
| 1   | В     | 229            | ARG  |
| 1   | В     | 239            | TRP  |
| 1   | В     | 260            | LYS  |
| 1   | В     | 286            | TYR  |
| 1   | В     | 316            | PRO  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | В     | 344 | ARG  |
| 1   | В     | 346 | TYR  |
| 1   | В     | 352 | LEU  |
| 1   | С     | 133 | SER  |
| 1   | С     | 152 | TYR  |
| 1   | С     | 162 | SER  |
| 1   | С     | 224 | GLU  |
| 1   | С     | 242 | LEU  |
| 1   | С     | 286 | TYR  |
| 1   | С     | 344 | ARG  |
| 1   | С     | 382 | LYS  |
| 1   | С     | 387 | ASP  |
| 1   | D     | 0   | MET  |
| 1   | D     | 3   | TRP  |
| 1   | D     | 6   | TYR  |
| 1   | D     | 8   | ASN  |
| 1   | D     | 10  | ILE  |
| 1   | D     | 18  | VAL  |
| 1   | D     | 22  | LEU  |
| 1   | D     | 60  | GLU  |
| 1   | D     | 72  | LEU  |
| 1   | D     | 78  | ARG  |
| 1   | D     | 106 | GLN  |
| 1   | D     | 144 | ASP  |
| 1   | D     | 153 | TYR  |
| 1   | D     | 157 | ARG  |
| 1   | D     | 165 | ARG  |
| 1   | D     | 180 | ASP  |
| 1   | D     | 183 | ILE  |
| 1   | D     | 187 | ARG  |
| 1   | D     | 203 | CYS  |
| 1   | D     | 204 | LEU  |
| 1   | D     | 205 | THR  |
| 1   | D     | 215 | LYS  |
| 1   | D     | 261 | MET  |
| 1   | D     | 286 | TYR  |
| 1   | D     | 293 | ARG  |
| 1   | D     | 299 | LEU  |
| 1   | D     | 314 | ASP  |
| 1   | D     | 320 | ASP  |
| 1   | D     | 321 | SER  |
| 1   | D     | 325 | THR  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | D     | 328 | ASP  |
| 1   | D     | 346 | TYR  |
| 1   | D     | 366 | LEU  |
| 1   | D     | 387 | ASP  |
| 1   | Е     | 8   | ASN  |
| 1   | Е     | 25  | SER  |
| 1   | Е     | 78  | ARG  |
| 1   | Е     | 111 | ASP  |
| 1   | Е     | 139 | ARG  |
| 1   | Е     | 152 | TYR  |
| 1   | Е     | 226 | GLU  |
| 1   | Е     | 246 | SER  |
| 1   | Е     | 286 | TYR  |
| 1   | Е     | 294 | GLN  |
| 1   | Е     | 344 | ARG  |
| 1   | F     | 8   | ASN  |
| 1   | F     | 139 | ARG  |
| 1   | F     | 153 | TYR  |
| 1   | F     | 157 | ARG  |
| 1   | F     | 215 | LYS  |
| 1   | F     | 229 | ARG  |
| 1   | F     | 286 | TYR  |
| 1   | F     | 328 | ASP  |
| 1   | F     | 344 | ARG  |
| 1   | F     | 346 | TYR  |
| 1   | F     | 387 | ASP  |

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

#### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

#### 5.5 Carbohydrates (i)

There are no carbohydrates in this entry.



# 5.6 Ligand geometry (i)

25 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Tune | Chain | Dog    | Tink | Bond lengths   |      | Bond angles |             |      |                      |
|-----|------|-------|--------|------|----------------|------|-------------|-------------|------|----------------------|
|     | туре | Unam  | nes    |      | Counts         | RMSZ | # Z  > 2    | Counts      | RMSZ | # Z  > 2             |
| 3   | SO4  | С     | 404    | -    | 4,4,4          | 0.40 | 0           | $6,\!6,\!6$ | 0.53 | 0                    |
| 3   | SO4  | D     | 403    | -    | 4,4,4          | 0.41 | 0           | 6,6,6       | 0.57 | 0                    |
| 3   | SO4  | С     | 403    | -    | 4, 4, 4        | 0.13 | 0           | $6,\!6,\!6$ | 0.70 | 0                    |
| 3   | SO4  | А     | 404[A] | -    | $4,\!4,\!4$    | 0.25 | 0           | $6,\!6,\!6$ | 0.39 | 0                    |
| 2   | FMN  | В     | 401    | -    | $31,\!33,\!33$ | 2.45 | 8 (25%)     | 40,50,50    | 2.74 | <mark>9 (22%)</mark> |
| 2   | FMN  | D     | 401    | -    | 31,33,33       | 2.70 | 10 (32%)    | 40,50,50    | 2.59 | 10 (25%)             |
| 3   | SO4  | В     | 405    | -    | 4,4,4          | 0.15 | 0           | $6,\!6,\!6$ | 0.10 | 0                    |
| 2   | FMN  | Е     | 401    | -    | 31,33,33       | 2.49 | 5 (16%)     | 40,50,50    | 2.16 | 10 (25%)             |
| 3   | SO4  | В     | 404    | -    | 4,4,4          | 0.14 | 0           | 6,6,6       | 0.44 | 0                    |
| 3   | SO4  | В     | 406    | -    | 4,4,4          | 0.53 | 0           | $6,\!6,\!6$ | 0.88 | 0                    |
| 2   | FMN  | А     | 401    | -    | 31,33,33       | 2.28 | 8 (25%)     | 40,50,50    | 2.44 | 10 (25%)             |
| 3   | SO4  | В     | 402    | -    | 4,4,4          | 0.33 | 0           | $6,\!6,\!6$ | 0.51 | 0                    |
| 3   | SO4  | F     | 403    | -    | 4,4,4          | 0.11 | 0           | 6,6,6       | 0.47 | 0                    |
| 3   | SO4  | А     | 402    | -    | 4,4,4          | 0.28 | 0           | 6,6,6       | 0.97 | 0                    |
| 3   | SO4  | А     | 405    | -    | 4,4,4          | 0.28 | 0           | $6,\!6,\!6$ | 0.36 | 0                    |
| 3   | SO4  | D     | 402    | -    | $4,\!4,\!4$    | 0.24 | 0           | $6,\!6,\!6$ | 0.71 | 0                    |
| 2   | FMN  | С     | 401    | -    | $31,\!33,\!33$ | 2.13 | 7 (22%)     | 40,50,50    | 2.79 | 9 (22%)              |
| 3   | SO4  | F     | 402    | -    | 4,4,4          | 0.14 | 0           | $6,\!6,\!6$ | 0.14 | 0                    |
| 3   | SO4  | Ε     | 403    | -    | 4, 4, 4        | 0.14 | 0           | $6,\!6,\!6$ | 0.20 | 0                    |
| 3   | SO4  | В     | 403    | -    | 4, 4, 4        | 0.42 | 0           | $6,\!6,\!6$ | 0.66 | 0                    |
| 3   | SO4  | A     | 403    | _    | 4,4,4          | 0.60 | 0           | 6,6,6       | 0.94 | 0                    |
| 3   | SO4  | С     | 402    | -    | 4,4,4          | 0.24 | 0           | 6,6,6       | 0.65 | 0                    |
| 3   | SO4  | E     | 402    | -    | 4,4,4          | 0.14 | 0           | 6,6,6       | 0.16 | 0                    |
| 2   | FMN  | F     | 401    | -    | 31,33,33       | 2.18 | 6 (19%)     | 40,50,50    | 2.27 | 8 (20%)              |
| 3   | SO4  | C     | 405    | -    | 4,4,4          | 0.22 | 0           | $6,\!6,\!6$ | 0.22 | 0                    |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.



| Mol | Type | Chain | $\mathbf{Res}$ | Link | Chirals | Torsions   | Rings   |
|-----|------|-------|----------------|------|---------|------------|---------|
| 2   | FMN  | С     | 401            | -    | -       | 1/18/18/18 | 0/3/3/3 |
| 2   | FMN  | А     | 401            | -    | -       | 5/18/18/18 | 0/3/3/3 |
| 2   | FMN  | Е     | 401            | -    | -       | 1/18/18/18 | 0/3/3/3 |
| 2   | FMN  | В     | 401            | -    | -       | 1/18/18/18 | 0/3/3/3 |
| 2   | FMN  | F     | 401            | -    | -       | 4/18/18/18 | 0/3/3/3 |
| 2   | FMN  | D     | 401            | -    | -       | 5/18/18/18 | 0/3/3/3 |

All (44) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms   | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|---------|-------|-------------|----------|
| 2   | Е     | 401 | FMN  | C4A-C10 | 10.88 | 1.49        | 1.38     |
| 2   | D     | 401 | FMN  | C4A-C10 | 10.14 | 1.49        | 1.38     |
| 2   | F     | 401 | FMN  | C4A-C10 | 9.23  | 1.48        | 1.38     |
| 2   | В     | 401 | FMN  | C4A-C10 | 9.11  | 1.47        | 1.38     |
| 2   | А     | 401 | FMN  | C4A-C10 | 8.47  | 1.47        | 1.38     |
| 2   | С     | 401 | FMN  | C4A-C10 | 8.42  | 1.47        | 1.38     |
| 2   | D     | 401 | FMN  | C9A-N10 | 5.27  | 1.45        | 1.38     |
| 2   | D     | 401 | FMN  | C4-C4A  | 5.15  | 1.50        | 1.41     |
| 2   | А     | 401 | FMN  | C4-C4A  | 5.01  | 1.50        | 1.41     |
| 2   | В     | 401 | FMN  | C4A-N5  | 4.55  | 1.39        | 1.33     |
| 2   | Е     | 401 | FMN  | C4-C4A  | 4.53  | 1.49        | 1.41     |
| 2   | В     | 401 | FMN  | C10-N1  | 4.48  | 1.39        | 1.33     |
| 2   | F     | 401 | FMN  | C4-C4A  | 4.04  | 1.48        | 1.41     |
| 2   | D     | 401 | FMN  | C8-C7   | 3.98  | 1.50        | 1.40     |
| 2   | С     | 401 | FMN  | C4-C4A  | 3.75  | 1.47        | 1.41     |
| 2   | Е     | 401 | FMN  | C9A-C5A | 3.71  | 1.50        | 1.42     |
| 2   | В     | 401 | FMN  | C9A-C5A | 3.66  | 1.49        | 1.42     |
| 2   | Е     | 401 | FMN  | C8-C7   | 3.49  | 1.49        | 1.40     |
| 2   | В     | 401 | FMN  | C8-C7   | 3.37  | 1.49        | 1.40     |
| 2   | F     | 401 | FMN  | C9A-C5A | 3.26  | 1.49        | 1.42     |
| 2   | F     | 401 | FMN  | C8-C7   | 3.24  | 1.49        | 1.40     |
| 2   | А     | 401 | FMN  | C1'-N10 | -3.06 | 1.45        | 1.48     |
| 2   | В     | 401 | FMN  | C4-C4A  | 3.03  | 1.46        | 1.41     |
| 2   | С     | 401 | FMN  | C6-C5A  | -2.96 | 1.37        | 1.41     |
| 2   | В     | 401 | FMN  | C6-C5A  | -2.84 | 1.37        | 1.41     |
| 2   | В     | 401 | FMN  | C9A-N10 | 2.83  | 1.42        | 1.38     |
| 2   | D     | 401 | FMN  | C10-N1  | 2.80  | 1.36        | 1.33     |
| 2   | С     | 401 | FMN  | C9A-C5A | 2.79  | 1.48        | 1.42     |
| 2   | Е     | 401 | FMN  | C9A-N10 | 2.78  | 1.42        | 1.38     |
| 2   | A     | 401 | FMN  | C9-C9A  | -2.76 | 1.35        | 1.40     |
| 2   | D     | 401 | FMN  | C1'-N10 | -2.75 | 1.45        | 1.48     |
| 2   | А     | 401 | FMN  | C6-C5A  | -2.72 | 1.37        | 1.41     |
| 2   | D     | 401 | FMN  | C9A-C5A | 2.68  | 1.47        | 1.42     |



| Mol | Chain | $\mathbf{Res}$ | Type | $\mathbf{Atoms}$ | Z     | Observed(A) | Ideal(Å) |
|-----|-------|----------------|------|------------------|-------|-------------|----------|
| 2   | С     | 401            | FMN  | C2-N1            | -2.51 | 1.33        | 1.38     |
| 2   | С     | 401            | FMN  | C9A-N10          | 2.50  | 1.41        | 1.38     |
| 2   | А     | 401            | FMN  | C9A-C5A          | 2.35  | 1.47        | 1.42     |
| 2   | С     | 401            | FMN  | C8-C7            | 2.34  | 1.46        | 1.40     |
| 2   | F     | 401            | FMN  | C6-C5A           | -2.28 | 1.38        | 1.41     |
| 2   | F     | 401            | FMN  | C9A-N10          | 2.26  | 1.41        | 1.38     |
| 2   | А     | 401            | FMN  | C5'-C4'          | 2.24  | 1.55        | 1.51     |
| 2   | А     | 401            | FMN  | C2-N3            | -2.08 | 1.34        | 1.38     |
| 2   | D     | 401            | FMN  | C4A-N5           | 2.07  | 1.36        | 1.33     |
| 2   | D     | 401            | FMN  | C4-N3            | 2.01  | 1.36        | 1.33     |
| 2   | D     | 401            | FMN  | P-O5'            | 2.00  | 1.66        | 1.60     |

All (56) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms       | Z     | $\mathbf{Observed}(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|---------------------------|---------------|
| 2   | С     | 401 | FMN  | C4-N3-C2    | 10.90 | 124.34                    | 115.14        |
| 2   | А     | 401 | FMN  | C4-N3-C2    | 9.87  | 123.48                    | 115.14        |
| 2   | В     | 401 | FMN  | C4-N3-C2    | 9.63  | 123.28                    | 115.14        |
| 2   | В     | 401 | FMN  | C4-C4A-C10  | -8.63 | 114.24                    | 119.95        |
| 2   | D     | 401 | FMN  | C4-N3-C2    | 8.48  | 122.31                    | 115.14        |
| 2   | F     | 401 | FMN  | C4-N3-C2    | 8.15  | 122.02                    | 115.14        |
| 2   | Е     | 401 | FMN  | C4-N3-C2    | 7.46  | 121.44                    | 115.14        |
| 2   | D     | 401 | FMN  | O4'-C4'-C5' | 6.98  | 125.61                    | 109.92        |
| 2   | В     | 401 | FMN  | C10-C4A-N5  | 6.95  | 126.07                    | 121.26        |
| 2   | С     | 401 | FMN  | C9A-N10-C10 | -6.76 | 113.06                    | 121.91        |
| 2   | F     | 401 | FMN  | C4-C4A-C10  | -5.69 | 116.19                    | 119.95        |
| 2   | Е     | 401 | FMN  | C1'-N10-C9A | 5.68  | 122.76                    | 118.29        |
| 2   | С     | 401 | FMN  | C4-C4A-C10  | -5.62 | 116.23                    | 119.95        |
| 2   | F     | 401 | FMN  | C9A-N10-C10 | -5.60 | 114.57                    | 121.91        |
| 2   | А     | 401 | FMN  | C4-C4A-C10  | -5.43 | 116.35                    | 119.95        |
| 2   | D     | 401 | FMN  | C4A-N5-C5A  | 5.26  | 122.03                    | 116.77        |
| 2   | С     | 401 | FMN  | C1'-N10-C9A | 4.96  | 122.19                    | 118.29        |
| 2   | D     | 401 | FMN  | O4'-C4'-C3' | -4.78 | 97.49                     | 109.10        |
| 2   | D     | 401 | FMN  | C4A-C4-N3   | -4.72 | 116.98                    | 123.43        |
| 2   | С     | 401 | FMN  | C4A-C4-N3   | -4.67 | 117.05                    | 123.43        |
| 2   | А     | 401 | FMN  | C9A-N10-C10 | -4.40 | 116.15                    | 121.91        |
| 2   | В     | 401 | FMN  | C1'-N10-C9A | 4.31  | 121.68                    | 118.29        |
| 2   | F     | 401 | FMN  | C1'-N10-C9A | 4.19  | 121.59                    | 118.29        |
| 2   | А     | 401 | FMN  | C4A-C10-N10 | -4.11 | 116.08                    | 120.30        |
| 2   | Е     | 401 | FMN  | C9A-N10-C10 | -4.10 | 116.54                    | 121.91        |
| 2   | Е     | 401 | FMN  | C4-C4A-C10  | -4.01 | 117.30                    | 119.95        |
| 2   | F     | 401 | FMN  | C4-C4A-N5   | 3.76  | 122.90                    | 118.60        |



| Mol | Chain | $\mathbf{Res}$ | Type | Atoms       | Z     | $\mathbf{Observed}(^{o})$ | $\mathbf{Ideal}(^{o})$ |
|-----|-------|----------------|------|-------------|-------|---------------------------|------------------------|
| 2   | С     | 401            | FMN  | C4-C4A-N5   | 3.63  | 122.75                    | 118.60                 |
| 2   | D     | 401            | FMN  | C1'-N10-C9A | 3.59  | 121.12                    | 118.29                 |
| 2   | В     | 401            | FMN  | C5A-C9A-N10 | 3.57  | 120.30                    | 117.72                 |
| 2   | Е     | 401            | FMN  | C4A-C4-N3   | -3.53 | 118.60                    | 123.43                 |
| 2   | В     | 401            | FMN  | C4A-C10-N10 | -3.52 | 116.69                    | 120.30                 |
| 2   | Е     | 401            | FMN  | C1'-C2'-C3' | 3.39  | 119.26                    | 109.79                 |
| 2   | F     | 401            | FMN  | C4A-C4-N3   | -3.34 | 118.87                    | 123.43                 |
| 2   | А     | 401            | FMN  | C4A-C4-N3   | -3.33 | 118.87                    | 123.43                 |
| 2   | D     | 401            | FMN  | C1'-C2'-C3' | 3.19  | 118.70                    | 109.79                 |
| 2   | Е     | 401            | FMN  | C4A-N5-C5A  | 3.16  | 119.93                    | 116.77                 |
| 2   | D     | 401            | FMN  | O3'-C3'-C4' | -3.08 | 101.37                    | 108.81                 |
| 2   | Е     | 401            | FMN  | C5A-C9A-N10 | 3.06  | 119.93                    | 117.72                 |
| 2   | А     | 401            | FMN  | C4-C4A-N5   | 2.91  | 121.92                    | 118.60                 |
| 2   | В     | 401            | FMN  | C9A-N10-C10 | -2.90 | 118.11                    | 121.91                 |
| 2   | С     | 401            | FMN  | O5'-P-O1P   | -2.90 | 98.34                     | 106.47                 |
| 2   | А     | 401            | FMN  | O2'-C2'-C3' | 2.88  | 116.09                    | 109.10                 |
| 2   | А     | 401            | FMN  | O2'-C2'-C1' | -2.68 | 103.13                    | 109.59                 |
| 2   | А     | 401            | FMN  | C9A-C5A-N5  | -2.49 | 118.47                    | 122.36                 |
| 2   | С     | 401            | FMN  | C10-C4A-N5  | -2.35 | 119.63                    | 121.26                 |
| 2   | D     | 401            | FMN  | C4A-C10-N10 | -2.32 | 117.91                    | 120.30                 |
| 2   | Е     | 401            | FMN  | O3P-P-O2P   | 2.23  | 116.17                    | 107.64                 |
| 2   | F     | 401            | FMN  | C4A-N5-C5A  | 2.23  | 119.00                    | 116.77                 |
| 2   | Е     | 401            | FMN  | C1'-N10-C10 | 2.21  | 120.38                    | 118.41                 |
| 2   | В     | 401            | FMN  | C4A-C4-N3   | -2.20 | 120.42                    | 123.43                 |
| 2   | А     | 401            | FMN  | C4A-N5-C5A  | 2.20  | 118.97                    | 116.77                 |
| 2   | F     | 401            | FMN  | O3P-P-O2P   | 2.18  | 115.97                    | 107.64                 |
| 2   | С     | 401            | FMN  | O3P-P-O1P   | 2.11  | 118.92                    | 110.68                 |
| 2   | D     | 401            | FMN  | C4-C4A-C10  | -2.09 | 118.56                    | 119.95                 |
| 2   | В     | 401            | FMN  | O3P-P-O1P   | 2.04  | 118.68                    | 110.68                 |

There are no chirality outliers.

All (17) torsion outliers are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type | Atoms           |
|-----|-------|----------------|------|-----------------|
| 2   | D     | 401            | FMN  | C3'-C4'-C5'-O5' |
| 2   | D     | 401            | FMN  | O4'-C4'-C5'-O5' |
| 2   | D     | 401            | FMN  | C5'-O5'-P-O2P   |
| 2   | D     | 401            | FMN  | C5'-O5'-P-O3P   |
| 2   | А     | 401            | FMN  | O3'-C3'-C4'-C5' |
| 2   | А     | 401            | FMN  | C2'-C3'-C4'-O4' |
| 2   | F     | 401            | FMN  | C3'-C4'-C5'-O5' |
| 2   | А     | 401            | FMN  | O3'-C3'-C4'-O4' |



| Mol | Chain | Res | Type | Atoms           |
|-----|-------|-----|------|-----------------|
| 2   | D     | 401 | FMN  | C5'-O5'-P-O1P   |
| 2   | В     | 401 | FMN  | C4'-C5'-O5'-P   |
| 2   | А     | 401 | FMN  | C4'-C5'-O5'-P   |
| 2   | С     | 401 | FMN  | C4'-C5'-O5'-P   |
| 2   | F     | 401 | FMN  | O4'-C4'-C5'-O5' |
| 2   | А     | 401 | FMN  | C2'-C3'-C4'-C5' |
| 2   | Е     | 401 | FMN  | C4'-C5'-O5'-P   |
| 2   | F     | 401 | FMN  | C4'-C5'-O5'-P   |
| 2   | F     | 401 | FMN  | C2'-C3'-C4'-O4' |

Continued from previous page...

There are no ring outliers.

9 monomers are involved in 14 short contacts:

| Mol | Chain | Res | Type | Clashes | Symm-Clashes |
|-----|-------|-----|------|---------|--------------|
| 2   | D     | 401 | FMN  | 5       | 0            |
| 2   | Е     | 401 | FMN  | 1       | 0            |
| 3   | В     | 406 | SO4  | 1       | 0            |
| 3   | F     | 403 | SO4  | 1       | 0            |
| 2   | С     | 401 | FMN  | 2       | 0            |
| 3   | Е     | 403 | SO4  | 1       | 0            |
| 3   | С     | 402 | SO4  | 1       | 0            |
| 2   | F     | 401 | FMN  | 1       | 0            |
| 3   | С     | 405 | SO4  | 1       | 0            |

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.
























# 5.7 Other polymers (i)

There are no such residues in this entry.

# 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Fit of model and data (i)

## 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain | Analysed        | <RSRZ $>$ | #RSRZ>2        | $\mathbf{OWAB}(\mathbf{\AA}^2)$ | $\mathbf{Q}{<}0.9$ |
|-----|-------|-----------------|-----------|----------------|---------------------------------|--------------------|
| 1   | А     | 394/394~(100%)  | 0.90      | 28 (7%) 16 21  | 14,  23,  36,  66               | 0                  |
| 1   | В     | 394/394~(100%)  | 1.37      | 77~(19%) 1 1   | 20,  34,  93,  156              | 0                  |
| 1   | С     | 394/394~(100%)  | 0.78      | 14 (3%) 42 49  | 20,  32,  49,  98               | 0                  |
| 1   | D     | 338/394~(85%)   | 2.79      | 209 (61%) 0 0  | 52, 72, 109, 173                | 0                  |
| 1   | Ε     | 393/394~(99%)   | 5.36      | 362 (92%) 0 0  | 84, 102, 146, 207               | 393~(100%)         |
| 1   | F     | 393/394~(99%)   | 6.06      | 375 (95%) 0 0  | 102, 116, 166, 236              | 393~(100%)         |
| All | All   | 2306/2364~(97%) | 2.88      | 1065~(46%) 0 0 | 14, 59, 136, 236                | 786 (34%)          |

All (1065) RSRZ outliers are listed below:

| Mol | Chain | Res    | Type | RSRZ |
|-----|-------|--------|------|------|
| 1   | Е     | 138    | ILE  | 44.5 |
| 1   | Е     | 227    | GLY  | 23.2 |
| 1   | F     | 108    | GLY  | 22.7 |
| 1   | Е     | 254    | TRP  | 19.6 |
| 1   | F     | 23     | PRO  | 18.0 |
| 1   | Е     | 351    | ALA  | 17.8 |
| 1   | F     | 219    | ALA  | 17.7 |
| 1   | F     | 223    | VAL  | 17.5 |
| 1   | F     | 226    | GLU  | 16.3 |
| 1   | Е     | 223    | VAL  | 16.1 |
| 1   | F     | 122    | GLY  | 15.7 |
| 1   | F     | 204[A] | LEU  | 15.6 |
| 1   | F     | 179    | LEU  | 15.4 |
| 1   | Е     | 336    | GLY  | 15.3 |
| 1   | F     | 138    | ILE  | 15.1 |
| 1   | Е     | 202    | LEU  | 14.8 |
| 1   | F     | 298    | GLY  | 14.6 |
| 1   | F     | 212    | VAL  | 14.4 |
| 1   | F     | 221    | SER  | 14.1 |



| Mol | Chain | Res    | Type | RSRZ |
|-----|-------|--------|------|------|
| 1   | Е     | 203    | CYS  | 13.9 |
| 1   | F     | 160    | ALA  | 13.7 |
| 1   | F     | 228    | LEU  | 13.6 |
| 1   | F     | 216    | LYS  | 13.6 |
| 1   | F     | 217    | PHE  | 13.5 |
| 1   | Е     | 36     | ALA  | 13.3 |
| 1   | F     | 239    | TRP  | 13.1 |
| 1   | Е     | 208[A] | VAL  | 13.0 |
| 1   | F     | 57     | ALA  | 12.7 |
| 1   | Е     | 372    | ILE  | 12.2 |
| 1   | F     | 137    | ASP  | 12.2 |
| 1   | Е     | 364    | SER  | 12.2 |
| 1   | F     | 345    | PRO  | 12.2 |
| 1   | Е     | 228    | LEU  | 12.1 |
| 1   | Е     | 241    | GLY  | 12.0 |
| 1   | E     | 159    | LEU  | 12.0 |
| 1   | Е     | 221    | SER  | 12.0 |
| 1   | D     | 14     | GLY  | 11.9 |
| 1   | Е     | 255    | VAL  | 11.8 |
| 1   | F     | 213    | PHE  | 11.7 |
| 1   | F     | 49     | SER  | 11.7 |
| 1   | F     | 315    | THR  | 11.6 |
| 1   | F     | 76     | THR  | 11.5 |
| 1   | E     | 91     | ALA  | 11.5 |
| 1   | F     | 112    | ALA  | 11.5 |
| 1   | F     | 143    | GLY  | 11.5 |
| 1   | F     | 197    | PRO  | 11.5 |
| 1   | F     | 230    | ASP  | 11.3 |
| 1   | F     | 277    | ALA  | 11.3 |
| 1   | E     | 257    | SER  | 11.2 |
| 1   | F     | 115    | ALA  | 11.1 |
| 1   | F     | 19     | ALA  | 11.1 |
| 1   | F     | 227    | GLY  | 11.1 |
| 1   | F     | 269    | GLN  | 11.0 |
| 1   | F     | 164    | ILE  | 11.0 |
| 1   | E     | 264    | ILE  | 10.9 |
| 1   | E     | 333    | LEU  | 10.9 |
| 1   | F     | 107    | ASP  | 10.9 |
| 1   | E     | 235    | ALA  | 10.9 |
| 1   | E     | 277    | ALA  | 10.8 |
| 1   | F     | 75     | ALA  | 10.8 |
| 1   | E     | 222    | GLY  | 10.7 |



| $\alpha \cdots $ | e    |          |      |
|------------------|------|----------|------|
| Continued 1      | trom | previous | page |

| Mol | Chain  | Res        | Type       | RSRZ |
|-----|--------|------------|------------|------|
| 1   | F      | 69         | PRO        | 10.7 |
| 1   | F      | 224        | GLU        | 10.6 |
| 1   | F      | 6          | TYR        | 10.5 |
| 1   | В      | 228        | LEU        | 10.5 |
| 1   | F      | 378        | TYR        | 10.4 |
| 1   | F      | 308        | VAL        | 10.4 |
| 1   | Ε      | 346        | TYR        | 10.4 |
| 1   | Ε      | 7          | GLU        | 10.4 |
| 1   | Ε      | 134        | SER        | 10.4 |
| 1   | Ε      | 142        | ALA        | 10.3 |
| 1   | F      | 210        | ASP        | 10.3 |
| 1   | F      | 244        | GLY        | 10.3 |
| 1   | F      | 126        | ILE        | 10.3 |
| 1   | F      | 84         | LEU        | 10.2 |
| 1   | F      | 220        | HIS        | 10.2 |
| 1   | F      | 99         | GLY        | 10.1 |
| 1   | F      | 225        | ALA        | 10.1 |
| 1   | F      | 92         | PRO        | 10.1 |
| 1   | E      | 213        | PHE        | 10.1 |
| 1   | E      | 252        | ILE        | 10.1 |
| 1   | F      | 149        | PHE        | 10.0 |
| 1   | E      | 240        | HIS        | 10.0 |
| 1   | E      | 308        | VAL        | 9.9  |
| 1   | E      | 217        | PHE        | 9.9  |
| 1   | E      | 156        | ASP        | 9.9  |
| 1   | D      | 21         | THR        | 9.9  |
| 1   | E      | 112        | ALA        | 9.8  |
| 1   | F      | 355        | SER        | 9.8  |
| 1   | E      | 137        | ASP        | 9.8  |
| 1   | F      | 39         | PRO        | 9.8  |
|     |        | 94         | PHE        | 9.7  |
|     |        | 358        |            | 9.7  |
|     |        | 250        | GLU        | 9.6  |
|     | F T    | 282        | VAL        | 9.6  |
|     | E      | 246        | SER<br>TUD | 9.5  |
|     | F      | 205        | THK        | 9.5  |
|     | F      | 301        | VAL        | 9.5  |
|     | E<br>F | 151        | LEU        | 9.4  |
|     | E<br>D | 170        | VAL        | 9.4  |
|     |        | 159        | LEU        | 9.4  |
|     |        | 352<br>112 |            | 9.3  |
|     | E      | 113        | ALA        | 9.3  |



| 505 |     | 9.2 |
|-----|-----|-----|
| 265 | LEU | 9.1 |
| 215 | LYS | 9.1 |
| 231 | ASN | 9.0 |
| 254 | TRP | 9.0 |
| 74  | ALA | 9.0 |
| 347 | ALA | 9.0 |
| 234 | LEU | 9.0 |
| 183 | ILE | 8.9 |
| 37  | LEU | 8.9 |
| 279 | ASP | 8.9 |
| 93  | MET | 8.9 |
| 340 | VAL | 8.8 |
| 154 | PRO | 8.8 |
| 40  | GLY | 8.8 |
| 186 | TRP | 8.8 |

Type | RSRZ

Continued from previous page... Mol Chain

 $\mathbf{Res}$ 

| 1 | Е | 160 | ALA | 9.3 |
|---|---|-----|-----|-----|
| 1 | Е | 158 | ASP | 9.3 |
| 1 | Е | 363 | ARG | 9.3 |
| 1 | F | 81  | SER | 9.3 |
| 1 | F | 290 | HIS | 9.3 |
| 1 | Е | 212 | VAL | 9.2 |
| 1 | F | 372 | ILE | 9.2 |
| 1 | Е | 23  | PRO | 9.2 |
| 1 | Е | 45  | VAL | 9.2 |
| 1 | F | 139 | ARG | 9.2 |
| 1 | F | 365 | LEU | 9.2 |
| 1 | F | 265 | LEU | 9.1 |
| 1 | F | 215 | LYS | 9.1 |
| 1 | В | 231 | ASN | 9.0 |
| 1 | F | 254 | TRP | 9.0 |
| 1 | Е | 74  | ALA | 9.0 |
| 1 | Е | 347 | ALA | 9.0 |
| 1 | Е | 234 | LEU | 9.0 |
| 1 | Е | 183 | ILE | 8.9 |
| 1 | Е | 37  | LEU | 8.9 |
| 1 | D | 279 | ASP | 8.9 |
| 1 | F | 93  | MET | 8.9 |
| 1 | F | 340 | VAL | 8.8 |
| 1 | F | 154 | PRO | 8.8 |
| 1 | F | 40  | GLY | 8.8 |
| 1 | F | 186 | TRP | 8.8 |
| 1 | F | 162 | SER | 8.7 |
| 1 | Е | 278 | VAL | 8.7 |
| 1 | D | 274 | ALA | 8.7 |
| 1 | Е | 103 | LEU | 8.7 |
| 1 | Е | 224 | GLU | 8.6 |
| 1 | F | 176 | VAL | 8.6 |
| 1 | F | 259 | THR | 8.6 |
| 1 | Ε | 253 | ASP | 8.6 |
| 1 | F | 193 | ILE | 8.6 |
| 1 | F | 218 | LYS | 8.6 |
| 1 | Е | 114 | SER | 8.5 |
| 1 | Е | 93  | MET | 8.5 |
| 1 | Е | 274 | ALA | 8.5 |
| 1 | Е | 312 | SER | 8.4 |
| 1 | Е | 152 | TYR | 8.4 |
| 1 | F | 127 | THR | 8.4 |



| Mol | Chain | Res    | Type | RSRZ |
|-----|-------|--------|------|------|
| 1   | F     | 22     | LEU  | 8.4  |
| 1   | Е     | 218    | LYS  | 8.4  |
| 1   | В     | 225    | ALA  | 8.4  |
| 1   | Е     | 141    | HIS  | 8.3  |
| 1   | F     | 371    | LEU  | 8.3  |
| 1   | F     | 117    | ALA  | 8.2  |
| 1   | F     | 274    | ALA  | 8.2  |
| 1   | F     | 181[A] | THR  | 8.2  |
| 1   | Е     | 207    | TYR  | 8.2  |
| 1   | F     | 148    | TYR  | 8.2  |
| 1   | F     | 207    | TYR  | 8.2  |
| 1   | F     | 264    | ILE  | 8.1  |
| 1   | В     | 198    | PHE  | 8.1  |
| 1   | Е     | 263    | VAL  | 8.0  |
| 1   | В     | 236    | ALA  | 8.0  |
| 1   | F     | 38     | PRO  | 8.0  |
| 1   | F     | 42     | LEU  | 8.0  |
| 1   | F     | 130[A] | LEU  | 8.0  |
| 1   | Е     | 165    | ARG  | 8.0  |
| 1   | F     | 286    | TYR  | 8.0  |
| 1   | Е     | 206    | ASN  | 8.0  |
| 1   | F     | 248    | THR  | 8.0  |
| 1   | F     | 242    | LEU  | 8.0  |
| 1   | F     | 377    | GLY  | 8.0  |
| 1   | F     | 161    | GLU  | 8.0  |
| 1   | F     | 163    | PHE  | 8.0  |
| 1   | Е     | 129    | THR  | 7.9  |
| 1   | Е     | 239    | TRP  | 7.9  |
| 1   | F     | 102    | ALA  | 7.9  |
| 1   | F     | 357    | GLY  | 7.9  |
| 1   | F     | 188    | PRO  | 7.8  |
| 1   | F     | 87     | LYS  | 7.8  |
| 1   | Е     | 281    | GLY  | 7.8  |
| 1   | F     | 24     | MET  | 7.8  |
| 1   | Е     | 350    | ALA  | 7.7  |
| 1   | Е     | 115    | ALA  | 7.6  |
| 1   | E     | 161    | GLU  | 7.6  |
| 1   | F     | 214    | GLN  | 7.6  |
| 1   | F     | 184    | PHE  | 7.6  |
| 1   | D     | 164    | ILE  | 7.6  |
| 1   | E     | 211    | PRO  | 7.6  |
| 1   | В     | 238    | PHE  | 7.6  |



| Conti | nued fron | ı previou        | s page |      |
|-------|-----------|------------------|--------|------|
| Mol   | Chain     | Res              | Type   | RSRZ |
| 1     | F         | 198              | PHE    | 7.6  |
| 1     | Е         | 85               | TRP    | 7.6  |
| 1     | Е         | 191              | LEU    | 7.6  |
| 1     | Е         | 216              | LYS    | 7.6  |
| 1     | F         | 333              | LEU    | 7.6  |
| 1     | F         | 156              | ASP    | 7.5  |
| 1     | F         | 260              | LYS    | 7.5  |
| 1     | F         | 142              | ALA    | 7.5  |
| 1     | Е         | 204              | LEU    | 7.5  |
| 1     | F         | 171              | GLY    | 7.5  |
| 1     | F         | 349              | GLY    | 7.5  |
| 1     | D         | 177              | ILE    | 7.5  |
| 1     | F         | 65               | TRP    | 7.5  |
| 1     | F         | 120              | ARG    | 7.4  |
| 1     | Е         | 332              | ALA    | 7.4  |
| 1     | F         | 203              | CYS    | 7.4  |
| 1     | Е         | 140              | LYS    | 7.4  |
| 1     | F         | 316              | PRO    | 7.4  |
| 1     | Е         | 268              | ILE    | 7.3  |
| 1     | Ε         | 10               | ILE    | 7.3  |
| 1     | F         | 141              | HIS    | 7.3  |
| 1     | F         | 196              | PHE    | 7.3  |
| 1     | Ε         | 226              | GLU    | 7.3  |
| 1     | F         | 323              | ILE    | 7.3  |
| 1     | F         | 311              | ALA    | 7.3  |
| 1     | F         | 384              | LEU    | 7.3  |
| 1     | Е         | 232              | PRO    | 7.2  |
| 1     | F         | 175              | LEU    | 7.2  |
| 1     | E         | 118              | SER    | 7.2  |
| 1     | F         | 278              | VAL    | 7.2  |
| 1     | F         | 256              | ARG    | 7.2  |
| 1     | F         | 350              | ALA    | 7.2  |
| 1     | F         | 255              | VAL    | 7.2  |
| 1     | F         | 267              | GLY    | 7.2  |
| 1     | F         | 153              | TYR    | 7.1  |
| 1     | D         | 301              | ALA    | 7.1  |
| 1     | E         | 41               | VAL    | 7.1  |
| 1     | F         | 91               | ALA    | 7.1  |
| 1     | E         | 167              | ALA    | 7.1  |
| 1     | F         | 95               | PHE    | 7.1  |
| 1     | F         | $28\overline{1}$ | GLY    | 7.1  |
| 1     | F         | 379              | ARG    | 7.1  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | Е     | 84  | LEU  | 7.1  |
| 1   | Е     | 367 | ALA  | 7.1  |
| 1   | F     | 113 | ALA  | 7.1  |
| 1   | D     | 308 | VAL  | 7.1  |
| 1   | F     | 240 | HIS  | 7.1  |
| 1   | Е     | 3   | TRP  | 7.1  |
| 1   | Е     | 294 | GLN  | 7.1  |
| 1   | F     | 253 | ASP  | 7.1  |
| 1   | Е     | 238 | PHE  | 7.0  |
| 1   | Е     | 139 | ARG  | 7.0  |
| 1   | В     | 197 | PRO  | 7.0  |
| 1   | Е     | 214 | GLN  | 7.0  |
| 1   | F     | 26  | TYR  | 7.0  |
| 1   | F     | 327 | ALA  | 7.0  |
| 1   | D     | 18  | VAL  | 7.0  |
| 1   | F     | 362 | ALA  | 7.0  |
| 1   | Е     | 177 | ILE  | 7.0  |
| 1   | F     | 376 | ASP  | 6.9  |
| 1   | D     | 22  | LEU  | 6.9  |
| 1   | Е     | 215 | LYS  | 6.8  |
| 1   | F     | 167 | ALA  | 6.8  |
| 1   | Е     | 43  | SER  | 6.8  |
| 1   | Ε     | 94  | PHE  | 6.8  |
| 1   | F     | 252 | ILE  | 6.8  |
| 1   | F     | 44  | TYR  | 6.8  |
| 1   | F     | 334 | ALA  | 6.8  |
| 1   | В     | 217 | PHE  | 6.7  |
| 1   | Ε     | 102 | ALA  | 6.7  |
| 1   | Е     | 210 | ASP  | 6.7  |
| 1   | F     | 235 | ALA  | 6.7  |
| 1   | F     | 125 | TYR  | 6.7  |
| 1   | F     | 231 | ASN  | 6.7  |
| 1   | F     | 104 | CYS  | 6.7  |
| 1   | Е     | 31  | ALA  | 6.7  |
| 1   | F     | 45  | VAL  | 6.7  |
| 1   | F     | 97  | PRO  | 6.7  |
| 1   | D     | 6   | TYR  | 6.6  |
| 1   | D     | 15  | LEU  | 6.6  |
| 1   | F     | 172 | TYR  | 6.6  |
| 1   | Е     | 199 | LEU  | 6.6  |
| 1   | D     | 20  | PRO  | 6.6  |
| 1   | F     | 183 | ILE  | 6.6  |



Type | RSRZ

| ΗR            | 6.5 |  |
|---------------|-----|--|
| ΥR            | 6.5 |  |
| EU            | 6.4 |  |
| $\mathrm{ET}$ | 6.4 |  |
| LY            | 6.4 |  |
| LY            | 6.4 |  |
| EU            | 6.4 |  |
| IR            | 64  |  |

Continued from previous page...MolChainResType

| 1 | Е | 25     | SER | 6.5 |
|---|---|--------|-----|-----|
| 1 | F | 59     | VAL | 6.5 |
| 1 | F | 335    | MET | 6.5 |
| 1 | Ε | 258    | ILE | 6.5 |
| 1 | В | 21     | THR | 6.5 |
| 1 | Е | 233    | ARG | 6.5 |
| 1 | Ε | 104    | CYS | 6.5 |
| 1 | D | 121    | THR | 6.5 |
| 1 | F | 152    | TYR | 6.5 |
| 1 | Ε | 135    | LEU | 6.4 |
| 1 | Ε | 335    | MET | 6.4 |
| 1 | F | 50     | GLY | 6.4 |
| 1 | F | 12     | GLY | 6.4 |
| 1 | F | 72     | LEU | 6.4 |
| 1 | Ε | 209    | THR | 6.4 |
| 1 | F | 268    | ILE | 6.4 |
| 1 | F | 229    | ARG | 6.4 |
| 1 | D | 75     | ALA | 6.4 |
| 1 | F | 145    | THR | 6.4 |
| 1 | F | 182    | TRP | 6.3 |
| 1 | D | 334    | ALA | 6.3 |
| 1 | F | 271    | PRO | 6.3 |
| 1 | D | 91     | ALA | 6.3 |
| 1 | Ε | 373    | MET | 6.3 |
| 1 | F | 246    | SER | 6.3 |
| 1 | Ε | 145    | THR | 6.3 |
| 1 | Е | 173    | ASP | 6.3 |
| 1 | Ε | 310    | LYS | 6.2 |
| 1 | D | 155    | GLU | 6.2 |
| 1 | E | 249    | TRP | 6.2 |
| 1 | E | 229    | ARG | 6.2 |
| 1 | F | 173    | ASP | 6.2 |
| 1 | D | 115    | ALA | 6.2 |
| 1 | D | 151    | LEU | 6.2 |
| 1 | D | 207    | TYR | 6.2 |
| 1 | E | 365    | LEU | 6.2 |
| 1 | D | 0      | MET | 6.2 |
| 1 | E | 87     | LYS | 6.2 |
| 1 | E | 302    | LEU | 6.2 |
| 1 | D | 278    | VAL | 6.2 |
| 1 | F | 187[A] | ARG | 6.1 |
| 1 | D | 152    | TYR | 6.1 |



| $\alpha \cdot \cdot \cdot \cdot$ | e    | •        |      |
|----------------------------------|------|----------|------|
| Continued                        | from | previous | page |

| Mol | Chain | $\mathbf{Res}$ | Type | RSRZ |
|-----|-------|----------------|------|------|
| 1   | Е     | 6              | TYR  | 6.1  |
| 1   | F     | 222            | GLY  | 6.1  |
| 1   | F     | 353            | GLY  | 6.1  |
| 1   | Е     | 97             | PRO  | 6.1  |
| 1   | F     | 318            | LEU  | 6.1  |
| 1   | F     | 380            | ASN  | 6.1  |
| 1   | Е     | 22             | LEU  | 6.1  |
| 1   | Е     | 121            | THR  | 6.1  |
| 1   | F     | 208            | VAL  | 6.1  |
| 1   | F     | 319            | PHE  | 6.0  |
| 1   | Е     | 261            | MET  | 6.0  |
| 1   | Е     | 76             | THR  | 6.0  |
| 1   | Е     | 219            | ALA  | 6.0  |
| 1   | Е     | 225            | ALA  | 5.9  |
| 1   | Е     | 201            | GLY  | 5.9  |
| 1   | F     | 383            | GLU  | 5.9  |
| 1   | F     | 114            | SER  | 5.9  |
| 1   | F     | 330            | VAL  | 5.9  |
| 1   | D     | 4              | GLY  | 5.9  |
| 1   | Е     | 111            | ASP  | 5.9  |
| 1   | F     | 158            | ASP  | 5.9  |
| 1   | Е     | 236            | ALA  | 5.9  |
| 1   | Е     | 166            | ARG  | 5.9  |
| 1   | F     | 302            | LEU  | 5.8  |
| 1   | F     | 73             | MET  | 5.8  |
| 1   | D     | 81             | SER  | 5.8  |
| 1   | F     | 128            | SER  | 5.8  |
| 1   | Е     | 366            | LEU  | 5.8  |
| 1   | F     | 209            | THR  | 5.8  |
| 1   | Е     | 16             | VAL  | 5.8  |
| 1   | F     | 270            | HIS  | 5.8  |
| 1   | Е     | 362            | ALA  | 5.8  |
| 1   | F     | 177            | ILE  | 5.8  |
| 1   | F     | 343            | GLY  | 5.8  |
| 1   | Е     | 65             | TRP  | 5.7  |
| 1   | Е     | 318            | LEU  | 5.7  |
| 1   | Е     | 384            | LEU  | 5.7  |
| 1   | Е     | 256            | ARG  | 5.7  |
| 1   | Е     | 116            | GLN  | 5.7  |
| 1   | D     | 184            | PHE  | 5.7  |
| 1   | Е     | 220            | HIS  | 5.7  |
| 1   | F     | 85             | TRP  | 5.7  |



Mol

1

1

1

1

1

1

1

1

1

1

1 1

1

1 1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

1

| 151 | LÉU | 5.6 |
|-----|-----|-----|
| 0   | MET | 5.6 |
| 133 | SER | 5.6 |
| 180 | ASP | 5.6 |
| 100 | VAL | 5.6 |
| 4   | GLY | 5.6 |
| 174 | GLY | 5.6 |
| 42  | LEU | 5.5 |
| 234 | LEU | 5.5 |
| 129 | THR | 5.5 |
| 317 | VAL | 5.5 |
| 332 | ALA | 5.5 |
| 165 | ARG | 5.5 |
| 9   | GLU | 5.5 |

5.5

5.5

5.5

5.5

5.5

5.5

5.5

5.5

5.5

5.4

5.4

5.4

5.4

5.4

5.4

5.4

5.4

5.4

5.3

Continued from previous page...

 $\operatorname{Res}$ 

164

286

200

237

175

237

290

100

282

172

332

382

377

257

84

27

317

68

74

310

389

225

234

285

386

275

243

110

TYR

ALA

LYS

GLY

SER

LEU

ALA

VAL

MET

ALA

LYS

LEU

ALA

LEU

ILE

ILE

ARG

PHE

Type

ILE

TYR

ARG

ASP

LEU

ASP

HIS

VAL

VAL

RSRZ

5.7

5.7

5.7

5.7

5.7

5.6

5.6

5.6

5.6

Chain

Е

Е

F

Е

Е

F

Е

F

Е

F

С

Е F

Е

F F

Е

F

F

F

D

F F

Е

F

Е

Е

F

D

F

Е

F

F

F

Е

С

В

F

F

Е

Е

Е



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | F     | 98  | ILE  | 5.3  |
| 1   | Е     | 259 | THR  | 5.3  |
| 1   | Е     | 392 | THR  | 5.3  |
| 1   | Е     | 271 | PRO  | 5.3  |
| 1   | Е     | 248 | THR  | 5.3  |
| 1   | Е     | 361 | VAL  | 5.3  |
| 1   | Е     | 205 | THR  | 5.3  |
| 1   | В     | 22  | LEU  | 5.3  |
| 1   | Е     | 247 | VAL  | 5.3  |
| 1   | F     | 46  | ALA  | 5.3  |
| 1   | F     | 109 | HIS  | 5.3  |
| 1   | Е     | 98  | ILE  | 5.3  |
| 1   | Е     | 179 | LEU  | 5.3  |
| 1   | Е     | 345 | PRO  | 5.2  |
| 1   | F     | 294 | GLN  | 5.2  |
| 1   | F     | 140 | LYS  | 5.2  |
| 1   | В     | 0   | MET  | 5.2  |
| 1   | F     | 392 | THR  | 5.2  |
| 1   | F     | 238 | PHE  | 5.2  |
| 1   | F     | 1   | SER  | 5.2  |
| 1   | F     | 373 | MET  | 5.1  |
| 1   | D     | 126 | ILE  | 5.1  |
| 1   | Е     | 83  | GLU  | 5.1  |
| 1   | F     | 37  | LEU  | 5.1  |
| 1   | Е     | 390 | ARG  | 5.1  |
| 1   | Е     | 29  | TRP  | 5.1  |
| 1   | Е     | 339 | ALA  | 5.1  |
| 1   | F     | 303 | ASP  | 5.1  |
| 1   | F     | 304 | CYS  | 5.1  |
| 1   | Е     | 170 | ALA  | 5.1  |
| 1   | F     | 276 | ARG  | 5.1  |
| 1   | F     | 80  | LEU  | 5.1  |
| 1   | Е     | 117 | ALA  | 5.1  |
| 1   | Е     | 81  | SER  | 5.1  |
| 1   | F     | 291 | GLY  | 5.1  |
| 1   | Е     | 319 | PHE  | 5.1  |
| 1   | D     | 374 | ALA  | 5.1  |
| 1   | Е     | 334 | ALA  | 5.1  |
| 1   | Е     | 82  | VAL  | 5.1  |
| 1   | F     | 309 | VAL  | 5.1  |
| 1   | Е     | 28  | ASP  | 5.0  |

Continued from previous page...

ALA Continued on next page...

5.0

131

F

1



| Mol | Chain | $\mathbf{Res}$ | Type | RSRZ |
|-----|-------|----------------|------|------|
| 1   | D     | 122            | GLY  | 5.0  |
| 1   | F     | 13             | GLN  | 5.0  |
| 1   | Е     | 380            | ASN  | 5.0  |
| 1   | D     | 163            | PHE  | 5.0  |
| 1   | Е     | 61             | ALA  | 5.0  |
| 1   | Е     | 107            | ASP  | 5.0  |
| 1   | F     | 202            | LEU  | 5.0  |
| 1   | Ε     | 71             | MET  | 4.9  |
| 1   | Ε     | 153            | TYR  | 4.9  |
| 1   | В     | 229            | ARG  | 4.9  |
| 1   | D     | 85             | TRP  | 4.9  |
| 1   | Е     | 283            | ASP  | 4.9  |
| 1   | F     | 194            | SER  | 4.9  |
| 1   | F     | 337            | ALA  | 4.9  |
| 1   | Е     | 162            | SER  | 4.9  |
| 1   | D     | 304            | CYS  | 4.9  |
| 1   | F     | 10             | ILE  | 4.9  |
| 1   | Ε     | 149            | PHE  | 4.9  |
| 1   | D     | 211            | PRO  | 4.9  |
| 1   | F     | 199            | LEU  | 4.9  |
| 1   | D     | 204            | LEU  | 4.8  |
| 1   | F     | 245            | HIS  | 4.8  |
| 1   | Ε     | 2              | ASN  | 4.8  |
| 1   | D     | 159            | LEU  | 4.8  |
| 1   | Ε     | 231            | ASN  | 4.8  |
| 1   | Ε     | 262            | PRO  | 4.8  |
| 1   | Е     | 72             | LEU  | 4.8  |
| 1   | F     | 314            | ASP  | 4.8  |
| 1   | F     | 2              | ASN  | 4.8  |
| 1   | F     | 31             | ALA  | 4.8  |
| 1   | F     | 306            | PRO  | 4.8  |
| 1   | E     | 265            | LEU  | 4.8  |
| 1   | В     | 18             | VAL  | 4.8  |
| 1   | F     | 247            | VAL  | 4.8  |
| 1   | F     | 287            | CYS  | 4.8  |
| 1   | F     | 342            | ILE  | 4.8  |
| 1   | D     | 94             | PHE  | 4.7  |
| 1   | E     | 260            | LYS  | 4.7  |
| 1   | F     | 11             | TYR  | 4.7  |
| 1   | E     | 120            | ARG  | 4.7  |
| 1   | F     | 385            | THR  | 4.7  |
| 1   | E     | 20             | PRO  | 4.7  |



1

| IIR | 4.0 |
|-----|-----|
| VAL | 4.6 |
| VAL | 4.6 |
| ASP | 4.6 |
| ILE | 4.6 |
| ARG | 4.6 |
| GLY | 4.6 |
| SER | 4.6 |
| GLY | 4.6 |
| ILE | 4.5 |
| SEB | 4.5 |

Continued from previous page... Mol Chain Res

13

Е

Type

GLN

RSRZ

4.7

| 1 | Ε | 230    | ASP | 4.7 |
|---|---|--------|-----|-----|
| 1 | Ε | 80     | LEU | 4.7 |
| 1 | Е | 127    | THR | 4.7 |
| 1 | Е | 180    | ASP | 4.7 |
| 1 | Е | 330    | VAL | 4.7 |
| 1 | Е | 307    | GLU | 4.7 |
| 1 | D | 49     | SER | 4.6 |
| 1 | Е | 26     | TYR | 4.6 |
| 1 | D | 16     | VAL | 4.6 |
| 1 | В | 16     | VAL | 4.6 |
| 1 | Ε | 144    | ASP | 4.6 |
| 1 | В | 193    | ILE | 4.6 |
| 1 | F | 157    | ARG | 4.6 |
| 1 | Ε | 86     | GLY | 4.6 |
| 1 | Е | 280[A] | SER | 4.6 |
| 1 | F | 185    | GLY | 4.6 |
| 1 | В | 10     | ILE | 4.5 |
| 1 | Ε | 321    | SER | 4.5 |
| 1 | D | 101    | ILE | 4.5 |
| 1 | Ε | 128    | SER | 4.5 |
| 1 | Ε | 132    | VAL | 4.5 |
| 1 | F | 3      | TRP | 4.5 |
| 1 | D | 162    | SER | 4.5 |
| 1 | Ε | 279    | ASP | 4.5 |
| 1 | D | 3      | TRP | 4.5 |
| 1 | D | 125    | TYR | 4.5 |
| 1 | D | 102    | ALA | 4.4 |
| 1 | D | 362    | ALA | 4.4 |
| 1 | F | 90     | ALA | 4.4 |
| 1 | D | 280    | SER | 4.4 |
| 1 | D | 90     | ALA | 4.4 |
| 1 | D | 92     | PRO | 4.4 |
| 1 | E | 30     | GLU | 4.4 |
| 1 | E | 325    | THR | 4.4 |
| 1 | В | 226    | GLU | 4.4 |
| 1 | Е | 27     | ALA | 4.4 |
| 1 | F | 16     | VAL | 4.4 |
| 1 | Е | 357    | GLY | 4.4 |
| 1 | F | 66     | GLY | 4.4 |
| 1 | D | 167    | ALA | 4.4 |
| 1 | F | 263    | VAL | 4.4 |



| Mal   | Chain | <b>P</b>   | <b>T</b> | DCD7      |
|-------|-------|------------|----------|-----------|
| 10101 |       | <b>nes</b> |          |           |
| 1     |       | 182        |          | 4.4       |
| 1     | D     | 382        | LYS      | 4.4       |
| 1     |       | 127        | THR      | 4.4       |
| 1     | F     | 393        | ARG      | 4.4       |
| 1     | D     | 160        | ALA      | 4.4       |
| 1     | F     | 20         | PRO      | 4.3       |
| 1     | F     | 360        | HIS      | 4.3       |
| 1     | F     | 58         | ASN      | 4.3       |
| 1     | E     | 385        | THR      | 4.3       |
| 1     | E     | 370        | ASP      | 4.3       |
| 1     | Е     | 163        | PHE      | 4.3       |
| 1     | D     | 42         | LEU      | 4.3       |
| 1     | В     | 17         | GLY      | 4.3       |
| 1     | F     | 119        | ALA      | 4.3       |
| 1     | F     | 8          | ASN      | 4.3       |
| 1     | Е     | 184        | PHE      | 4.3       |
| 1     | В     | 237        | ASP      | 4.3       |
| 1     | D     | 170        | ALA      | 4.3       |
| 1     | D     | 158        | ASP      | 4.3       |
| 1     | D     | 183        | ILE      | 4.2       |
| 1     | Е     | 186        | TRP      | 4.2       |
| 1     | D     | 173        | ASP      | 4.2       |
| 1     | F     | 295        | ALA      | 4.2       |
| 1     | F     | 258        | ILE      | 4.2       |
| 1     | Е     | 96         | ALA      | 4.2       |
| 1     | D     | 385        | THR      | 4.2       |
| 1     | F     | 211        | PRO      | 4.2       |
| 1     | D     | 268        | ILE      | 4.2       |
| 1     | Е     | 155        | GLU      | 4.2       |
| 1     | F     | 351        | ALA      | 4.2       |
| 1     | F     | 364        | SER      | 4.2       |
| 1     | Е     | 21         | THR      | 4.2       |
| 1     | D     | 13         | GLN      | 4.2       |
| 1     | F     | 388        | ALA      | 4.2       |
| 1     | D     | 373        | MET      | 4.2       |
| 1     | Е     | 124        | PRO      | 4.2       |
| 1     | F     | 135        | LEU      | 4.2       |
| 1     | E     | 329        | VAL      | 4.2       |
| 1     | F     | 329        | VAL      | 4.2       |
| 1     | D     | 272        | ASP      | 4 2       |
| - 1   | F     | 356        | LYS      | 4 2       |
| 1     | B     | 240        | HIS      | 4 1       |
| -     |       |            |          | 1 <b></b> |



| Mol | Chain | Res   | Type | RSRZ |
|-----|-------|-------|------|------|
| 1   | D     | 333   | LEU  | 4.1  |
| 1   | Е     | 62    | PHE  | 4.1  |
| 1   | D     | 298   | GLY  | 4.1  |
| 1   | Е     | 311   | ALA  | 4.1  |
| 1   | F     | 144   | ASP  | 4.1  |
| 1   | D     | 37    | LEU  | 4.1  |
| 1   | Е     | 69    | PRO  | 4.1  |
| 1   | В     | 15    | LEU  | 4.1  |
| 1   | F     | 206   | ASN  | 4.1  |
| 1   | D     | 19    | ALA  | 4.1  |
| 1   | Е     | 378   | TYR  | 4.1  |
| 1   | F     | 18    | VAL  | 4.1  |
| 1   | E     | 323   | ILE  | 4.1  |
| 1   | Е     | 304   | CYS  | 4.1  |
| 1   | F     | 272   | ASP  | 4.1  |
| 1   | F     | 110   | GLY  | 4.1  |
| 1   | Е     | 77    | GLU  | 4.1  |
| 1   | F     | 293   | ARG  | 4.1  |
| 1   | Е     | 18    | VAL  | 4.1  |
| 1   | F     | 367   | ALA  | 4.1  |
| 1   | Ε     | 38    | PRO  | 4.1  |
| 1   | F     | 320   | ASP  | 4.1  |
| 1   | А     | 29[A] | TRP  | 4.1  |
| 1   | В     | 207   | TYR  | 4.1  |
| 1   | Ε     | 316   | PRO  | 4.0  |
| 1   | F     | 29    | TRP  | 4.0  |
| 1   | F     | 233   | ARG  | 4.0  |
| 1   | F     | 86    | GLY  | 4.0  |
| 1   | F     | 89    | TRP  | 4.0  |
| 1   | E     | 305   | LEU  | 4.0  |
| 1   | D     | 327   | ALA  | 4.0  |
| 1   | D     | 154   | PRO  | 4.0  |
| 1   | F     | 17    | GLY  | 4.0  |
| 1   | D     | 118   | SER  | 4.0  |
| 1   | E     | 11    | TYR  | 4.0  |
| 1   | F     | 15    | LEU  | 4.0  |
| 1   | D     | 353   | GLY  | 4.0  |
| 1   | D     | 208   | VAL  | 4.0  |
| 1   | E     | 287   | CYS  | 4.0  |
| 1   | D     | 275   | ARG  | 4.0  |
| 1   | E     | 270   | HIS  | 4.0  |
| 1   | D     | 182   | TRP  | 4.0  |



| )9 | VAL | 5.9 |
|----|-----|-----|
| 93 | ARG | 3.9 |
| 09 | VAL | 3.9 |
| 69 | GLU | 3.9 |
| 15 | THR | 3.9 |
| 12 | VAL | 3.9 |
| 36 | ALA | 3.9 |
| 81 | LEU | 3.9 |
| 68 | GLU | 3.9 |
| 88 | PRO | 3.9 |
| 04 | CYS | 3.8 |
| 50 | GLN | 3.8 |

Continued from previous page...MolChainResTypeRSRZ

| 1 | В | 211 | PRO | 4.0 |
|---|---|-----|-----|-----|
| 1 | F | 283 | ASP | 4.0 |
| 1 | Е | 136 | GLU | 4.0 |
| 1 | F | 375 | VAL | 4.0 |
| 1 | Е | 353 | GLY | 3.9 |
| 1 | F | 78  | ARG | 3.9 |
| 1 | D | 282 | VAL | 3.9 |
| 1 | F | 51  | ASP | 3.9 |
| 1 | В | 190 | ASP | 3.9 |
| 1 | Ε | 59  | VAL | 3.9 |
| 1 | Е | 293 | ARG | 3.9 |
| 1 | Е | 309 | VAL | 3.9 |
| 1 | F | 169 | GLU | 3.9 |
| 1 | Ε | 315 | THR | 3.9 |
| 1 | D | 212 | VAL | 3.9 |
| 1 | F | 236 | ALA | 3.9 |
| 1 | F | 381 | LEU | 3.9 |
| 1 | Ε | 168 | GLU | 3.9 |
| 1 | В | 188 | PRO | 3.9 |
| 1 | D | 104 | CYS | 3.8 |
| 1 | F | 150 | GLN | 3.8 |
| 1 | F | 348 | TRP | 3.8 |
| 1 | Ε | 328 | ASP | 3.8 |
| 1 | F | 347 | ALA | 3.8 |
| 1 | F | 305 | LEU | 3.8 |
| 1 | D | 386 | ILE | 3.8 |
| 1 | Ε | 51  | ASP | 3.8 |
| 1 | F | 118 | SER | 3.8 |
| 1 | Е | 130 | LEU | 3.8 |
| 1 | D | 17  | GLY | 3.8 |
| 1 | E | 19  | ALA | 3.8 |
| 1 | E | 147 | ALA | 3.8 |
| 1 | F | 325 | THR | 3.8 |
| 1 | E | 200 | ARG | 3.8 |
| 1 | F | 321 | SER | 3.8 |
| 1 | F | 35  | GLN | 3.8 |
| 1 | D | 286 | TYR | 3.8 |
| 1 | D | 376 | ASP | 3.7 |
| 1 | D | 27  | ALA | 3.7 |
| 1 | F | 136 | GLU | 3.7 |
| 1 | F | 382 | LYS | 3.7 |
| 1 | E | 89  | TRP | 3.7 |



1 1

| 349 | GLY | 3.7 |
|-----|-----|-----|
| 326 | GLY | 3.7 |
| 338 | SER | 3.7 |
| 150 | GLN | 3.7 |
| 149 | PHE | 3.7 |
| 267 | GLY | 3.7 |
| 156 | ASP | 3.6 |
| 114 | SER | 3.6 |
| 170 | ALA | 3.6 |
| 280 | SER | 3.6 |
| 339 | ALA | 3.6 |
| 307 | GLU | 3.6 |
| 195 | ASN | 3.6 |
| 381 | LEU | 3.6 |
| 11  | TYR | 3.6 |
| 2.4 | TUD | 2.0 |

Continued from previous page... Mol Chain

F

F

F

 $\mathbf{Res}$ 

288

262

Type

SER

PRO

RSRZ

3.7

3.7

| 1 | F | 36     | ALA | 3.7 |
|---|---|--------|-----|-----|
| 1 | F | 289    | ASN | 3.7 |
| 1 | D | 100    | VAL | 3.7 |
| 1 | Е | 101    | ILE | 3.7 |
| 1 | Е | 340[A] | VAL | 3.7 |
| 1 | Е | 12     | GLY | 3.7 |
| 1 | F | 48     | GLY | 3.7 |
| 1 | F | 331    | LYS | 3.7 |
| 1 | Е | 349    | GLY | 3.7 |
| 1 | F | 326    | GLY | 3.7 |
| 1 | F | 338    | SER | 3.7 |
| 1 | Е | 150    | GLN | 3.7 |
| 1 | D | 149    | PHE | 3.7 |
| 1 | D | 267    | GLY | 3.7 |
| 1 | D | 156    | ASP | 3.6 |
| 1 | D | 114    | SER | 3.6 |
| 1 | F | 170    | ALA | 3.6 |
| 1 | F | 280    | SER | 3.6 |
| 1 | F | 339    | ALA | 3.6 |
| 1 | F | 307    | GLU | 3.6 |
| 1 | F | 195    | ASN | 3.6 |
| 1 | D | 381    | LEU | 3.6 |
| 1 | D | 11     | TYR | 3.6 |
| 1 | Ε | 24     | MET | 3.6 |
| 1 | Ε | 360    | HIS | 3.6 |
| 1 | Ε | 187    | ARG | 3.6 |
| 1 | F | 14     | GLY | 3.6 |
| 1 | Ε | 383    | GLU | 3.6 |
| 1 | F | 7      | GLU | 3.6 |
| 1 | E | 338    | SER | 3.6 |
| 1 | F | 358    | ILE | 3.6 |
| 1 | D | 132    | VAL | 3.6 |
| 1 | D | 349    | GLY | 3.6 |
| 1 | F | 103    | LEU | 3.6 |
| 1 | D | 153    | TYR | 3.6 |
| 1 | F | 52     | GLU | 3.5 |
| 1 | Е | 342    | ILE | 3.5 |
| 1 | D | 38     | PRO | 3.5 |
| 1 | Е | 53     | HIS | 3.5 |
| 1 | В | 196    | PHE | 3.5 |



1 1

1

1

Е

F

314

190

|   | 1 |       | 1   |     |  |
|---|---|-------|-----|-----|--|
| 1 | D | 309   | VAL | 3.5 |  |
| 1 | D | 148   | TYR | 3.5 |  |
| 1 | D | 283   | ASP | 3.5 |  |
| 1 | D | 64    | HIS | 3.5 |  |
| 1 | F | 266   | LYS | 3.5 |  |
| 1 | Е | 143   | GLY | 3.5 |  |
| 1 | F | 25    | SER | 3.5 |  |
| 1 | Е | 79    | ASP | 3.5 |  |
| 1 | Е | 193   | ILE | 3.5 |  |
| 1 | Е | 299   | LEU | 3.5 |  |
| 1 | Е | 66    | GLY | 3.5 |  |
| 1 | Е | 197   | PRO | 3.4 |  |
| 1 | D | 270   | HIS | 3.4 |  |
| 1 | Е | 272   | ASP | 3.4 |  |
| 1 | D | 138   | ILE | 3.4 |  |
| 1 | F | 178   | THR | 3.4 |  |
| 1 | F | 299   | LEU | 3.4 |  |
| 1 | Е | 119   | ALA | 3.4 |  |
| 1 | Е | 295   | ALA | 3.4 |  |
| 1 | Е | 251   | ASP | 3.4 |  |
| 1 | С | 220   | HIS | 3.4 |  |
| 1 | D | 302   | LEU | 3.4 |  |
| 1 | Е | 381   | LEU | 3.4 |  |
| 1 | Е | 327   | ALA | 3.4 |  |
| 1 | D | 172   | TYR | 3.4 |  |
| 1 | F | 60    | GLU | 3.4 |  |
| 1 | F | 79    | ASP | 3.4 |  |
| 1 | D | 305   | LEU | 3.4 |  |
| 1 | С | 29[A] | TRP | 3.4 |  |
| 1 | Е | 64    | HIS | 3.4 |  |
| 1 | F | 32    | HIS | 3.4 |  |
| 1 | F | 297   | GLY | 3.3 |  |
| 1 | F | 166   | ARG | 3.3 |  |
| 1 | F | 21    | THR | 3.3 |  |
| 1 | D | 68    | MET | 3.3 |  |
| 1 | D | 142   | ALA | 3.3 |  |
| 1 | F | 34    | GLN | 3.3 |  |
| 1 | D | 131   | ALA | 3.3 |  |

Continued from previous page... Mol Chain

F

D

 $\mathbf{Res}$ 

243

82

Type

PHE

VAL

RSRZ

3.5

3.5

ASP Continued on next page...

ASP

3.3

3.3



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | F     | 275 | ARG  | 3.3  |
| 1   | Е     | 90  | ALA  | 3.3  |
| 1   | Е     | 267 | GLY  | 3.3  |
| 1   | D     | 365 | LEU  | 3.3  |
| 1   | Е     | 188 | PRO  | 3.3  |
| 1   | Е     | 198 | PHE  | 3.3  |
| 1   | D     | 315 | THR  | 3.3  |
| 1   | Е     | 297 | GLY  | 3.2  |
| 1   | А     | 65  | TRP  | 3.2  |
| 1   | D     | 261 | MET  | 3.2  |
| 1   | Е     | 15  | LEU  | 3.2  |
| 1   | D     | 54  | THR  | 3.2  |
| 1   | В     | 200 | ARG  | 3.2  |
| 1   | В     | 230 | ASP  | 3.2  |
| 1   | F     | 28  | ASP  | 3.2  |
| 1   | F     | 105 | ALA  | 3.2  |
| 1   | В     | 232 | PRO  | 3.2  |
| 1   | F     | 389 | LEU  | 3.2  |
| 1   | D     | 323 | ILE  | 3.2  |
| 1   | F     | 346 | TYR  | 3.2  |
| 1   | В     | 192 | THR  | 3.2  |
| 1   | D     | 96  | ALA  | 3.2  |
| 1   | D     | 318 | LEU  | 3.2  |
| 1   | Е     | 379 | ARG  | 3.2  |
| 1   | F     | 146 | PRO  | 3.2  |
| 1   | Е     | 40  | GLY  | 3.2  |
| 1   | Е     | 284 | GLY  | 3.2  |
| 1   | D     | 276 | ARG  | 3.2  |
| 1   | D     | 76  | THR  | 3.2  |
| 1   | D     | 176 | VAL  | 3.2  |
| 1   | F     | 55  | GLN  | 3.2  |
| 1   | E     | 48  | GLY  | 3.2  |
| 1   | E     | 356 | LYS  | 3.2  |
| 1   | D     | 325 | THR  | 3.1  |
| 1   | D     | 321 | SER  | 3.1  |
| 1   | D     | 166 | ARG  | 3.1  |
| 1   | E     | 17  | GLY  | 3.1  |
| 1   | E     | 368 | GLU  | 3.1  |
| 1   | F     | 249 | TRP  | 3.1  |
| 1   | D     | 135 | LEU  | 3.1  |
| 1   | D     | 299 | LEU  | 3.1  |
| 1   | Е     | 52  | GLU  | 3.1  |



| Mol | Chain | Res    | Type | RSRZ |
|-----|-------|--------|------|------|
| 1   | F     | 232    | PRO  | 3.1  |
| 1   | Е     | 34     | GLN  | 3.1  |
| 1   | D     | 105    | ALA  | 3.1  |
| 1   | В     | 20     | PRO  | 3.1  |
| 1   | Е     | 126    | ILE  | 3.1  |
| 1   | D     | 351    | ALA  | 3.1  |
| 1   | С     | 255    | VAL  | 3.1  |
| 1   | А     | 0      | MET  | 3.1  |
| 1   | D     | 80     | LEU  | 3.1  |
| 1   | D     | 306    | PRO  | 3.1  |
| 1   | В     | 323[A] | ILE  | 3.1  |
| 1   | D     | 144    | ASP  | 3.0  |
| 1   | D     | 181    | THR  | 3.0  |
| 1   | В     | 25     | SER  | 3.0  |
| 1   | D     | 88     | THR  | 3.0  |
| 1   | E     | 298    | GLY  | 3.0  |
| 1   | F     | 322    | GLY  | 3.0  |
| 1   | D     | 5      | ASP  | 3.0  |
| 1   | F     | 116    | GLN  | 3.0  |
| 1   | В     | 195    | ASN  | 3.0  |
| 1   | F     | 292    | GLY  | 3.0  |
| 1   | D     | 370    | ASP  | 3.0  |
| 1   | Ε     | 73     | MET  | 3.0  |
| 1   | F     | 251    | ASP  | 3.0  |
| 1   | Е     | 245    | HIS  | 3.0  |
| 1   | D     | 213    | PHE  | 3.0  |
| 1   | D     | 123    | VAL  | 3.0  |
| 1   | D     | 281    | GLY  | 3.0  |
| 1   | F     | 241    | GLY  | 3.0  |
| 1   | F     | 279    | ASP  | 3.0  |
| 1   | В     | 8      | ASN  | 3.0  |
| 1   | E     | 8      | ASN  | 3.0  |
| 1   | В     | 233    | ARG  | 3.0  |
| 1   | E     | 291    | GLY  | 3.0  |
| 1   | F     | 30     | GLU  | 3.0  |
| 1   | D     | 111    | ASP  | 3.0  |
| 1   | D     | 277    | ALA  | 3.0  |
| 1   | E     | 75     | ALA  | 3.0  |
| 1   | D     | 264    | ILE  | 3.0  |
| 1   | F     | 106    | GLN  | 3.0  |
| 1   | E     | 196    | PHE  | 2.9  |
| 1   | D     | 1      | SER  | 2.9  |



Mol

1 1

1

1

1

1

1

1

1

| D | 311  | ALA | 2.9 |
|---|------|-----|-----|
| А | 1[A] | SER | 2.9 |
| D | 338  | SER | 2.9 |
| F | 83   | GLU | 2.9 |
| F | 64   | HIS | 2.9 |
| F | 370  | ASP | 2.9 |
| D | 186  | TRP | 2.9 |
| В | 299  | LEU | 2.9 |
| F | 301  | ALA | 2.9 |
| D | 178  | THR | 2.8 |
| Е | 355  | SER | 2.8 |
| F | 67   | LEU | 2.8 |
| В | 11   | TYR | 2.8 |
| F | 133  | SER | 2.8 |
| С | 223  | VAL | 2.8 |
| В | 305  | LEU | 2.8 |
| D | 369  | ALA | 2.8 |
| F | 300  | PRO | 2.8 |
| Ε | 99   | GLY | 2.8 |
| Е | 194  | SER | 2.8 |
| F | 88   | THR | 2.8 |
| Ε | 375  | VAL | 2.8 |
| D | 67   | LEU | 2.8 |
| Ε | 300  | PRO | 2.8 |
| А | 304  | CYS | 2.8 |
| Ε | 108  | GLY | 2.8 |
| Е | 348  | TRP | 2.8 |
| В | 219  | ALA | 2.8 |

Continued from previous page...

Res

31

33

313

377

132

179

1

49

Type

ALA

ALA

GLY

GLY

VAL

LEU

SER

SER

RSRZ

2.9

2.9

2.9

2.9

2.9

2.9

2.9

2.9

Chain

D

D

D

D

F

D

Е

Е

Е

F

F

F

В

Е

1

1

1

1

1

1

PRO Continued on next page...

GLY

GLY

THR

ARG

GLN

2.8

2.8

2.8

2.8

2.8

2.7

292

313

121

344

35

306



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | D     | 150 | GLN  | 2.7  |
| 1   | F     | 56  | ARG  | 2.7  |
| 1   | В     | 351 | ALA  | 2.7  |
| 1   | Е     | 322 | GLY  | 2.7  |
| 1   | В     | 389 | LEU  | 2.7  |
| 1   | Е     | 32  | HIS  | 2.7  |
| 1   | F     | 62  | PHE  | 2.7  |
| 1   | D     | 352 | LEU  | 2.7  |
| 1   | F     | 191 | LEU  | 2.7  |
| 1   | F     | 71  | MET  | 2.7  |
| 1   | В     | 212 | VAL  | 2.7  |
| 1   | F     | 82  | VAL  | 2.7  |
| 1   | В     | 302 | LEU  | 2.7  |
| 1   | В     | 384 | LEU  | 2.7  |
| 1   | D     | 206 | ASN  | 2.7  |
| 1   | Е     | 296 | ASN  | 2.7  |
| 1   | E     | 303 | ASP  | 2.7  |
| 1   | В     | 67  | LEU  | 2.7  |
| 1   | В     | 189 | ARG  | 2.7  |
| 1   | D     | 140 | LYS  | 2.7  |
| 1   | А     | 322 | GLY  | 2.7  |
| 1   | D     | 262 | PRO  | 2.6  |
| 1   | D     | 316 | PRO  | 2.6  |
| 1   | Е     | 376 | ASP  | 2.6  |
| 1   | D     | 147 | ALA  | 2.6  |
| 1   | F     | 61  | ALA  | 2.6  |
| 1   | F     | 53  | HIS  | 2.6  |
| 1   | D     | 45  | VAL  | 2.6  |
| 1   | E     | 67  | LEU  | 2.6  |
| 1   | D     | 113 | ALA  | 2.6  |
| 1   | D     | 53  | HIS  | 2.6  |
| 1   | В     | 322 | GLY  | 2.6  |
| 1   | D     | 66  | GLY  | 2.6  |
| 1   | D     | 161 | GLU  | 2.6  |
| 1   | В     | 353 | GLY  | 2.6  |
| 1   | E     | 242 | LEU  | 2.6  |
| 1   | E     | 154 | PRO  | 2.6  |
| 1   | D     | 136 | GLU  | 2.6  |
| 1   | F     | 168 | GLU  | 2.6  |
| 1   | D     | 32  | HIS  | 2.6  |
| 1   | D     | 379 | ARG  | 2.6  |
| 1   | E     | 331 | LYS  | 2.6  |



| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 1   | D     | 350 | ALA  | 2.6  |
| 1   | F     | 33  | ALA  | 2.6  |
| 1   | F     | 324 | ARG  | 2.6  |
| 1   | В     | 199 | LEU  | 2.6  |
| 1   | D     | 175 | LEU  | 2.6  |
| 1   | Е     | 92  | PRO  | 2.6  |
| 1   | D     | 361 | VAL  | 2.6  |
| 1   | F     | 387 | ASP  | 2.6  |
| 1   | D     | 61  | ALA  | 2.6  |
| 1   | D     | 354 | GLY  | 2.6  |
| 1   | Е     | 388 | ALA  | 2.6  |
| 1   | А     | 203 | CYS  | 2.5  |
| 1   | D     | 103 | LEU  | 2.5  |
| 1   | D     | 210 | ASP  | 2.5  |
| 1   | D     | 171 | GLY  | 2.5  |
| 1   | Е     | 386 | ILE  | 2.5  |
| 1   | D     | 384 | LEU  | 2.5  |
| 1   | Е     | 33  | ALA  | 2.5  |
| 1   | Е     | 57  | ALA  | 2.5  |
| 1   | Е     | 285 | ILE  | 2.5  |
| 1   | D     | 28  | ASP  | 2.5  |
| 1   | А     | 45  | VAL  | 2.5  |
| 1   | D     | 335 | MET  | 2.5  |
| 1   | F     | 41  | VAL  | 2.5  |
| 1   | В     | 203 | CYS  | 2.5  |
| 1   | F     | 96  | ALA  | 2.5  |
| 1   | Е     | 269 | GLN  | 2.5  |
| 1   | D     | 141 | HIS  | 2.5  |
| 1   | E     | 39  | PRO  | 2.5  |
| 1   | E     | 14  | GLY  | 2.5  |
| 1   | D     | 77  | GLU  | 2.5  |
| 1   | F     | 134 | SER  | 2.5  |
| 1   | D     | 29  | TRP  | 2.5  |
| 1   | D     | 39  | PRO  | 2.5  |
| 1   | D     | 290 | HIS  | 2.5  |
| 1   | В     | 13  | GLN  | 2.5  |
| 1   | D     | 383 | GLU  | 2.4  |
| 1   | A     | 229 | ARG  | 2.4  |
| 1   | E     | 9   | GLU  | 2.4  |
| 1   | E     | 371 | LEU  | 2.4  |
| 1   | В     | 325 | THR  | 2.4  |
| 1   | Ε     | 181 | THR  | 2.4  |



| Mol | Chain | $\mathbf{Res}$ | Type | RSRZ |
|-----|-------|----------------|------|------|
| 1   | Е     | 44             | TYR  | 2.4  |
| 1   | Е     | 387            | ASP  | 2.4  |
| 1   | Е     | 352            | LEU  | 2.4  |
| 1   | F     | 336            | GLY  | 2.4  |
| 1   | F     | 296            | ASN  | 2.4  |
| 1   | В     | 335            | MET  | 2.4  |
| 1   | D     | 12             | GLY  | 2.4  |
| 1   | F     | 341            | GLY  | 2.4  |
| 1   | D     | 51             | ASP  | 2.4  |
| 1   | D     | 112            | ALA  | 2.4  |
| 1   | В     | 309            | VAL  | 2.4  |
| 1   | Е     | 148            | TYR  | 2.4  |
| 1   | F     | 354            | GLY  | 2.4  |
| 1   | A     | 388            | ALA  | 2.4  |
| 1   | В     | 300            | PRO  | 2.4  |
| 1   | А     | 392            | THR  | 2.4  |
| 1   | В     | 243            | PHE  | 2.4  |
| 1   | Е     | 326            | GLY  | 2.3  |
| 1   | В     | 186            | TRP  | 2.3  |
| 1   | В     | 242            | LEU  | 2.3  |
| 1   | Е     | 68             | MET  | 2.3  |
| 1   | В     | 102            | ALA  | 2.3  |
| 1   | F     | 359            | GLU  | 2.3  |
| 1   | А     | 305            | LEU  | 2.3  |
| 1   | В     | 202            | LEU  | 2.3  |
| 1   | В     | 235            | ALA  | 2.3  |
| 1   | Е     | 131            | ALA  | 2.3  |
| 1   | Е     | 374            | ALA  | 2.3  |
| 1   | В     | 205            | THR  | 2.3  |
| 1   | В     | 224            | GLU  | 2.3  |
| 1   | D     | 185            | GLY  | 2.3  |
| 1   | E     | 106            | GLN  | 2.3  |
| 1   | D     | 320            | ASP  | 2.3  |
| 1   | F     | 5              | ASP  | 2.3  |
| 1   | В     | 54             | THR  | 2.3  |
| 1   | В     | 221            | SER  | 2.3  |
| 1   | В     | 65             | TRP  | 2.3  |
| 1   | A     | 309            | VAL  | 2.3  |
| 1   | В     | 223            | VAL  | 2.3  |
| 1   | Е     | 391            | PRO  | 2.3  |
| 1   | F     | 273            | ASP  | 2.3  |
| 1   | В     | 350            | ALA  | 2.3  |



| Mol | Chain | $\mathbf{Res}$ | Type | RSRZ |
|-----|-------|----------------|------|------|
| 1   | D     | 312            | SER  | 2.3  |
| 1   | А     | 42             | LEU  | 2.2  |
| 1   | D     | 129            | THR  | 2.2  |
| 1   | D     | 375            | VAL  | 2.2  |
| 1   | Е     | 169            | GLU  | 2.2  |
| 1   | А     | 61             | ALA  | 2.2  |
| 1   | D     | 117            | ALA  | 2.2  |
| 1   | D     | 336            | GLY  | 2.2  |
| 1   | С     | 260            | LYS  | 2.2  |
| 1   | Е     | 123            | VAL  | 2.2  |
| 1   | А     | 193            | ILE  | 2.2  |
| 1   | Е     | 393            | ARG  | 2.2  |
| 1   | А     | 375            | VAL  | 2.2  |
| 1   | А     | 62             | PHE  | 2.2  |
| 1   | Е     | 341            | GLY  | 2.2  |
| 1   | В     | 19             | ALA  | 2.2  |
| 1   | D     | 392            | THR  | 2.2  |
| 1   | Е     | 301            | ALA  | 2.2  |
| 1   | А     | 371            | LEU  | 2.2  |
| 1   | А     | 389            | LEU  | 2.2  |
| 1   | С     | 37             | LEU  | 2.2  |
| 1   | D     | 106            | GLN  | 2.2  |
| 1   | F     | 391            | PRO  | 2.2  |
| 1   | D     | 303            | ASP  | 2.2  |
| 1   | D     | 388            | ALA  | 2.2  |
| 1   | F     | 101            | ILE  | 2.2  |
| 1   | В     | 306            | PRO  | 2.2  |
| 1   | D     | 145            | THR  | 2.2  |
| 1   | А     | 10             | ILE  | 2.2  |
| 1   | A     | 98             | ILE  | 2.2  |
| 1   | A     | 384            | LEU  | 2.2  |
| 1   | E     | 5              | ASP  | 2.2  |
| 1   | E     | 289            | ASN  | 2.1  |
| 1   | A     | 329            | VAL  | 2.1  |
| 1   | С     | 204            | LEU  | 2.1  |
| 1   | D     | 389            | LEU  | 2.1  |
| 1   | С     | 353            | GLY  | 2.1  |
| 1   | F     | 77             | GLU  | 2.1  |
| 1   | D     | 372            | ILE  | 2.1  |
| 1   | A     | 300            | PRO  | 2.1  |
| 1   | Е     | 70             | ARG  | 2.1  |
| 1   | D     | 169            | GLU  | 2.1  |



| Mol | Chain | $\mathbf{Res}$ | Type | RSRZ |
|-----|-------|----------------|------|------|
| 1   | D     | 317            | VAL  | 2.1  |
| 1   | Е     | 63             | LYS  | 2.1  |
| 1   | D     | 62             | PHE  | 2.1  |
| 1   | Е     | 58             | ASN  | 2.1  |
| 1   | Е     | 343            | GLY  | 2.1  |
| 1   | D     | 287            | CYS  | 2.1  |
| 1   | Е     | 266            | LYS  | 2.1  |
| 1   | F     | 390            | ARG  | 2.1  |
| 1   | В     | 14             | GLY  | 2.1  |
| 1   | С     | 227            | GLY  | 2.1  |
| 1   | В     | 169            | GLU  | 2.1  |
| 1   | А     | 348            | TRP  | 2.1  |
| 1   | Е     | 324            | ARG  | 2.1  |
| 1   | С     | 59             | VAL  | 2.1  |
| 1   | Е     | 47             | GLY  | 2.1  |
| 1   | С     | 84             | LEU  | 2.1  |
| 1   | Е     | 359            | GLU  | 2.1  |
| 1   | D     | 24[A]          | MET  | 2.1  |
| 1   | D     | 2              | ASN  | 2.1  |
| 1   | Е     | 46             | ALA  | 2.1  |
| 1   | Е     | 174            | GLY  | 2.1  |
| 1   | D     | 34             | GLN  | 2.0  |
| 1   | Е     | 273            | ASP  | 2.0  |
| 1   | В     | 191            | LEU  | 2.0  |
| 1   | F     | 261            | MET  | 2.0  |
| 1   | Е     | 60             | GLU  | 2.0  |
| 1   | F     | 328            | ASP  | 2.0  |
| 1   | F     | 63             | LYS  | 2.0  |
| 1   | В     | 371            | LEU  | 2.0  |
| 1   | С     | 302            | LEU  | 2.0  |
| 1   | D     | 205            | THR  | 2.0  |
| 1   | D     | 288            | SER  | 2.0  |
| 1   | D     | 189            | ARG  | 2.0  |
| 1   | Е     | 157            | ARG  | 2.0  |
| 1   | D     | 310            | LYS  | 2.0  |
| 1   | А     | 196            | PHE  | 2.0  |
| 1   | А     | 299            | LEU  | 2.0  |
| 1   | F     | 374            | ALA  | 2.0  |

Continued from previous page...

## 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.



#### 6.3 Carbohydrates (i)

There are no carbohydrates in this entry.

#### 6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median,  $95^{th}$  percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

| Mol | Type | Chain | Res    | Atoms | RSCC | RSR  | $\mathbf{B}	ext{-factors}(\mathbf{A}^2)$ | Q<0.9 |
|-----|------|-------|--------|-------|------|------|------------------------------------------|-------|
| 2   | FMN  | Е     | 401    | 31/31 | 0.48 | 0.48 | $65,\!86,\!106,\!116$                    | 31    |
| 3   | SO4  | F     | 402    | 5/5   | 0.61 | 0.50 | 83,86,113,120                            | 5     |
| 3   | SO4  | Е     | 402    | 5/5   | 0.68 | 0.39 | 110,112,131,140                          | 5     |
| 2   | FMN  | F     | 401    | 31/31 | 0.68 | 0.32 | $68,\!92,\!102,\!107$                    | 31    |
| 3   | SO4  | В     | 404    | 5/5   | 0.73 | 0.44 | 53,61,74,83                              | 5     |
| 3   | SO4  | В     | 406    | 5/5   | 0.74 | 0.17 | 44,45,52,73                              | 0     |
| 3   | SO4  | С     | 405    | 5/5   | 0.74 | 0.29 | 32,43,47,64                              | 5     |
| 2   | FMN  | D     | 401    | 31/31 | 0.77 | 0.24 | 26,42,52,57                              | 0     |
| 3   | SO4  | А     | 404[A] | 5/5   | 0.81 | 0.36 | 30,33,62,68                              | 5     |
| 3   | SO4  | Е     | 403    | 5/5   | 0.85 | 0.21 | 85,89,116,119                            | 5     |
| 2   | FMN  | А     | 401    | 31/31 | 0.91 | 0.21 | $9,\!15,\!21,\!22$                       | 0     |
| 2   | FMN  | В     | 401    | 31/31 | 0.91 | 0.20 | $12,\!22,\!29,\!35$                      | 0     |
| 2   | FMN  | С     | 401    | 31/31 | 0.92 | 0.18 | $16,\!24,\!32,\!34$                      | 0     |
| 3   | SO4  | F     | 403    | 5/5   | 0.92 | 0.17 | $48,\!65,\!69,\!74$                      | 5     |
| 3   | SO4  | А     | 405    | 5/5   | 0.93 | 0.19 | $60,\!62,\!64,\!74$                      | 5     |
| 3   | SO4  | D     | 403    | 5/5   | 0.94 | 0.14 | $39,\!54,\!69,\!72$                      | 0     |
| 3   | SO4  | В     | 405    | 5/5   | 0.94 | 0.15 | $94,\!98,\!110,\!115$                    | 0     |
| 3   | SO4  | С     | 404    | 5/5   | 0.96 | 0.20 | $52,\!55,\!60,\!70$                      | 0     |
| 3   | SO4  | D     | 402    | 5/5   | 0.97 | 0.23 | $45,\!47,\!52,\!56$                      | 0     |
| 3   | SO4  | А     | 402    | 5/5   | 0.98 | 0.18 | $28,\!33,\!40,\!40$                      | 0     |
| 3   | SO4  | A     | 403    | 5/5   | 0.99 | 0.20 | 24,25,27,27                              | 0     |
| 3   | SO4  | C     | 402    | 5/5   | 0.99 | 0.21 | $27,\!32,\!39,\!5\overline{3}$           | 0     |
| 3   | SO4  | В     | 402    | 5/5   | 0.99 | 0.17 | $3\overline{3,40,47,49}$                 | 0     |
| 3   | SO4  | C     | 403    | 5/5   | 0.99 | 0.17 | $3\overline{3,}34,50,51$                 | 0     |
| 3   | SO4  | В     | 403    | 5/5   | 0.99 | 0.18 | 29,33,38,39                              | 0     |

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.
























## 6.5 Other polymers (i)

There are no such residues in this entry.

