

Nov 11, 2024 – 03:01 PM JST

PDB ID	:	7DX2
EMDB ID	:	EMD-30893
Title	:	Trypsin-digested S protein of SARS-CoV-2 D614G mutant
Authors	:	Yan, R.H.; Zhang, Y.Y.; Li, Y.N.; Ye, F.F.; Guo, Y.Y.; Xia, L.; Zhong, X.Y.;
		Chi, X.M.; Zhou, Q.
Deposited on	:	2021-01-18
Resolution	:	3.30 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
Mogul	:	1.8.5 (274361), CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.30 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain				
1	А	1283	50%	21%	5%	24%	
			11%				
1	В	1283	51%	20%	•	24%	
1	C	1000	13%				
	C	1283	50%	20%	5%	24%	
	D	2	50%				
2	D	2		100%			
_	-	_		100%			
2	E	2	50%		50%		
_	-						
2	F	2		100%			
_							
2	G	2	50%		50%		
			50%				
2	Н	2	50%		50%		

Mol	Chain	Length	Quality of chain				
2	Ι	2	50% 50%				
2	J	2	50% 50%				
2	Κ	2	50% 50% 50%				
2	L	2	100% 50% 50%				
2	М	2	50%				
2	Ν	2	50% 50%				
2	О	2	50% 50%				
2	Р	2	100%				
2	Q	2	100%				
2	R	2	100%				
2	S	2	100% 50% 50%				
2	Т	2	50% 50%				
2	U	2	50% 50%				
2	V	2	100%				
2	W	2	50% 50%				
2	Х	2	100%				
2	Y	2	100%				

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 23740 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms				AltConf	Trace	
1 A	Δ	072	Total	С	Ν	Ο	\mathbf{S}	0	0
1	Л	912	7586	4844	1263	1445	34	0	
1	В	071	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0
1		971	7580	4841	1262	1443	34	0	0
1	С	C 071	Total	С	Ν	Ο	\mathbf{S}	0	0
	U	971	7580	4841	1262	1443	34	0	0

• Molecule 1 is a protein called Spike glycoprotein.

There are 39	discrepancies	between	the modelled	and	reference	sequences:
1 I I I I I I I I I I	and opanoios	000000000000000000000000000000000000000	uno mouomou	and	1010101100	boquonoos.

Chain	Residue	Modelled	Actual	Comment	Reference
А	614	GLY	ASP	engineered mutation	UNP P0DTC2
А	986	PRO	LYS	engineered mutation	UNP P0DTC2
А	987	PRO	VAL	engineered mutation	UNP P0DTC2
А	1274	LEU	-	expression tag	UNP P0DTC2
А	1275	GLU	-	expression tag	UNP P0DTC2
А	1276	ASP	-	expression tag	UNP P0DTC2
А	1277	TYR	-	expression tag	UNP P0DTC2
А	1278	LYS	-	expression tag	UNP P0DTC2
А	1279	ASP	-	expression tag	UNP P0DTC2
А	1280	ASP	-	expression tag	UNP P0DTC2
А	1281	ASP	-	expression tag	UNP P0DTC2
A	1282	ASP	-	expression tag	UNP P0DTC2
А	1283	LYS	-	expression tag	UNP P0DTC2
В	614	GLY	ASP	engineered mutation	UNP P0DTC2
В	986	PRO	LYS	engineered mutation	UNP P0DTC2
В	987	PRO	VAL	engineered mutation	UNP P0DTC2
В	1274	LEU	-	expression tag	UNP P0DTC2
В	1275	GLU	-	expression tag	UNP P0DTC2
В	1276	ASP	-	expression tag	UNP P0DTC2
В	1277	TYR	-	expression tag	UNP P0DTC2
В	1278	LYS	-	expression tag	UNP P0DTC2
В	1279	ASP	-	expression tag	UNP P0DTC2
В	1280	ASP	-	expression tag	UNP P0DTC2
В	1281	ASP	-	expression tag	UNP P0DTC2

Chain	Residue	Modelled	Actual	Comment	Reference
В	1282	ASP	-	expression tag	UNP P0DTC2
В	1283	LYS	-	expression tag	UNP P0DTC2
С	614	GLY	ASP	engineered mutation	UNP P0DTC2
С	986	PRO	LYS	engineered mutation	UNP P0DTC2
С	987	PRO	VAL	engineered mutation	UNP P0DTC2
С	1274	LEU	-	expression tag	UNP P0DTC2
С	1275	GLU	-	expression tag	UNP P0DTC2
С	1276	ASP	-	expression tag	UNP P0DTC2
С	1277	TYR	-	expression tag	UNP P0DTC2
С	1278	LYS	-	expression tag	UNP P0DTC2
С	1279	ASP	-	expression tag	UNP P0DTC2
С	1280	ASP	-	expression tag	UNP P0DTC2
С	1281	ASP	-	expression tag	UNP P0DTC2
С	1282	ASP	-	expression tag	UNP P0DTC2
С	1283	LYS	-	expression tag	UNP P0DTC2

• Molecule 2 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-a cetamido-2-deoxy-beta-D-glucopyranose.

Mol	Chain	Residues	Atoms	AltConf	Trace
2	D	2	Total C N O 28 16 2 10	0	0
2	Е	2	Total C N O 28 16 2 10	0	0
2	F	2	Total C N O 28 16 2 10	0	0
2	G	2	Total C N O 28 16 2 10	0	0
2	Н	2	Total C N O 28 16 2 10	0	0
2	Ι	2	Total C N O 28 16 2 10	0	0
2	J	2	Total C N O 28 16 2 10	0	0
2	K	2	Total C N O 28 16 2 10	0	0
2	L	2	Total C N O 28 16 2 10	0	0

Mol	Chain	Residues	Atoms	AltConf	Trace
0	М	0	Total C N O	0	0
	IVI	Ζ	28 16 2 10	0	0
0	N	0	Total C N O	0	0
	IN	2	28 16 2 10	0	0
0	0	2	Total C N O	0	0
	0	2	28 16 2 10	0	0
9	D	9	Total C N O	0	0
	T	2	28 16 2 10	0	0
2	0	9	Total C N O	0	0
2	Ŷ	2	28 16 2 10	0	0
2	R	2	Total C N O	0	0
	10		28 16 2 10	0	0
2	S	2	Total C N O	0	0
	2	2	28 16 2 10	0	0
2	Т	2	Total C N O	0	0
			28 16 2 10	0	
2	IJ	2	Total C N O	0	
	0		28 16 2 10	0	0
2	V	2	Total C N O	0	0
	v		28 16 2 10	0	0
2	W	2	Total C N O	0	0
	vv		28 16 2 10	0	0
2	2 X	2	Total C N O	0	0
			28 16 2 10	0	0
2	Y	2	Total C N O	0	0
			28 16 2 10	0	U

• Molecule 3 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	A	ton	ns		AltConf		
9	٨	1	Total	С	Ν	Ο	0		
3	A	1	14	8	1	5	0		
3	Λ	1	Total	С	Ν	Ο	0		
0	Л	1	14	8	1	5	0		
3	Δ	1	Total	С	Ν	0	0		
0	11	1	14	8	1	5	0		
3	А	1	Total	С	Ν	Ο	0		
		1	14	8	1	5	0		
3	А	1	Total	С	Ν	Ο	0		
		1	14	8	1	5	0		
3	А	1	Total	С	Ν	Ο	0		
		1	14	8	1	5	Ŭ		
3	А	1	Total	С	Ν	Ο	0		
		_	14	8	1	5			
3	А	1	Total	С	Ν	Ο	0		
		-	14	8	1	5			
3	А	1	Total	С	Ν	Ο	0		
		-	14	8	1	5			
3	В	1	Total	С	Ν	Ο	0		
		-	14	8	1	5	Ŭ		
3	В	1	Total	С	Ν	Ο	0		
		-	14	8	1	5			
3	В	1	Total	С	Ν	Ο	0		
		-	14	8	1	5	Ŭ		
3	В	1	Total	С	Ν	Ο	0		
	-	-	14	8	1	5	, in the second		
3	В	1	Total	С	Ν	0	0		
	D	D	D		14	8	1	5	

Mol	Chain	Residues	A	ton	ns		AltConf
9	D	1	Total	С	Ν	Ο	0
3	D	L	14	8	1	5	0
3	В	1	Total	С	Ν	Ο	0
0	D	T	14	8	1	5	0
3	В	1	Total	С	Ν	Ο	0
0	D	1	14	8	1	5	0
3	В	1	Total	С	Ν	Ο	0
0	D	1	14	8	1	5	0
3	В	1	Total	С	Ν	Ο	0
	D	1	14	8	1	5	0
3	С	1	Total	С	Ν	Ο	0
		1	14	8	1	5	0
3	С	1	Total	С	Ν	Ο	0
		-	14	8	1	5	Ŭ
3	С	1	Total	С	Ν	Ο	0
		_	14	8	1	5	Ŭ
3	С	1	Total	С	Ν	Ο	0
		_	14	8	1	5	
3	С	1	Total	С	Ν	0	0
		-	14	8	1	5	
3	С	1	Total	С	Ν	0	0
		-	14	8	1	5	Ŭ
3	С	1	Total	C	Ν	0 _	0
	Ŭ	-	14	8	1	5	, č
3	С	1	Total	С	Ν	0	0
		÷	14	8	1	5	U

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Spike glycoprotein

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

_	50%		
Chain D:	100%		
NAG1 NAG2			
• Molecule	2: 2-acetamido-2-deoxy-beta-D-gluco	pyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
opyranose			

		100%	
Chain E:	50%	50%	
MAGI NAG2			
		WORLDWIDE	

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

100%

Chain F:

NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc opyranose

Chain G:	50%	50%	i -
NAG1 NAG2			
• Molecule 2: opyranose	2-acetamido-2-deoxy-beta-D	-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
	50%		
Chain H:	50%	50%	
NAG1			
• Molecule 2: opyranose	2-acetamido-2-deoxy-beta-D	-glucopyranose-(1-4)-2-acetamid	o-2-deoxy-beta-D-gluc
Chain I:	F.0%	F.0%	

Chain I: 50% 50% • Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain J:	50%	50%
NAG1 NAG2		

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	50%	
Chain K:	50%	50%
NAG NAG		

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

_	100%	
Chain L:	50% 50%	
NAG1		
• Molecule opyranose	2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido	o-2-deoxy-beta-D-glu
Chain M:	50%	
•		
NAG1 NAG2		
• Molecule opyranose	2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido	o-2-deoxy-beta-D-glue
Chain N:	50% 50%	
NAG1 NAG2		
• Molecule opyranose	2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido	o-2-deoxy-beta-D-gluo
Chain O:	50% 50%	
NAG1 NAG2		
• Molecule opyranose	2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido	o-2-deoxy-beta-D-gluo
Chain P:	100%	
NAG1 NAG2		
• Molecule opyranose	2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido	o-2-deoxy-beta-D-gluo
Chain Or	50%	
Unam Q:	100%	
NAG1		
• Molecule opyranose	2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido	o-2-deoxy-beta-D-gluo

100% Chain R: 100%

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

	100%		
Chain S:	50%	50%	
NAG1			

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

_	50%		
Chain T:	50%	50%	
•			
NAG1 NAG2			

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

α · T		
Chain U:	50%	50%

NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain V:	10	00%
NAG2 NAG2		
• Molecule opyranose	2: 2-acetamido-2-deoxy-beta-I	D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc
	50%	_
Chain W:	50%	50%
NAG1		
• Molecule opyranose	2: 2-acetamido-2-deoxy-beta-I	D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-gluc

Chain X:

100%

NAG1 NAG2

• Molecule 2: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain Y:

100%

NAG1 NAG2

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	166876	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	Not provided	
Maximum defocus (nm)	Not provided	
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor
Maximum map value	0.125	Depositor
Minimum map value	-0.058	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.004	Depositor
Recommended contour level	0.02	Depositor
Map size (Å)	313.056, 313.056, 313.056	wwPDB
Map dimensions	288, 288, 288	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.087, 1.087, 1.087	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond lengths		Bond angles	
		RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.58	0/7753	0.56	0/10546
1	В	0.58	0/7747	0.55	0/10538
1	С	0.58	0/7747	0.54	0/10538
All	All	0.58	0/23247	0.55	0/31622

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	7586	0	7407	327	0
1	В	7580	0	7403	377	0
1	С	7580	0	7405	417	0
2	D	28	0	25	0	0
2	Е	28	0	25	3	0
2	F	28	0	25	0	0
2	G	28	0	25	1	0
2	Н	28	0	25	1	0
2	Ι	28	0	25	0	0
2	J	28	0	25	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	К	28	0	25	1	0
2	L	28	0	25	3	0
2	М	28	0	25	0	0
2	N	28	0	25	0	0
2	0	28	0	25	0	0
2	Р	28	0	25	1	0
2	Q	28	0	25	0	0
2	R	28	0	25	0	0
2	S	28	0	25	3	0
2	Т	28	0	25	1	0
2	U	28	0	25	0	0
2	V	28	0	25	0	0
2	W	28	0	25	1	0
2	Х	28	0	25	2	0
2	Y	28	0	25	0	0
3	A	126	0	117	4	0
3	В	140	0	129	8	0
3	С	112	0	104	4	0
All	All	23740	0	23115	1036	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 22.

All (1036) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic	Clash
Atom-1	At0111-2	distance $(Å)$	overlap (Å)
1:C:329:PHE:CE1	1:C:528:LYS:HG2	1.38	1.56
3:B:1409:NAG:O4	3:B:1410:NAG:C1	1.63	1.46
1:C:388:ASN:HB3	1:C:527:PRO:CG	1.43	1.45
1:C:388:ASN:HB3	1:C:527:PRO:CD	1.42	1.43
1:B:329:PHE:CE2	1:B:528:LYS:HG2	1.65	1.30
1:A:703:ASN:HB2	1:B:787:GLN:OE1	1.28	1.30
1:C:388:ASN:CA	1:C:527:PRO:HD2	1.70	1.22
1:B:323:THR:O	1:B:324:GLU:HG2	1.33	1.21
1:C:654:GLU:HG3	1:C:693:ILE:CG2	1.69	1.21
1:C:388:ASN:CB	1:C:527:PRO:HD2	1.72	1.19
1:C:654:GLU:HG3	1:C:693:ILE:HG22	1.26	1.17
1:B:327:VAL:HG23	1:B:531:THR:HG22	1.24	1.17
1:A:340:GLU:OE2	1:A:356:LYS:HE2	1.47	1.13
1:B:332:ILE:HG21	1:B:361:CYS:HA	1.18	1.13
1:C:388:ASN:CB	1:C:527:PRO:CD	2.26	1.13

	had page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:340:GLU:OE2	1:C:356:LYS:HE2	1.47	1.12
1:C:523:THR:HG22	1:C:524:VAL:H	0.98	1.12
1:B:562:PHE:CE2	1:C:41:LYS:HD2	1.84	1.12
1:A:523:THR:HG22	1:A:524:VAL:H	0.98	1.11
1:C:329:PHE:CE1	1:C:528:LYS:CG	2.33	1.11
1:B:329:PHE:HD1	1:B:330:PRO:HD2	1.10	1.11
1:A:40:ASP:HB2	1:C:519:HIS:CE1	1.87	1.10
1:A:41:LYS:HD2	1:C:562:PHE:CD2	1.86	1.10
1:B:748:GLU:HG3	1:B:981:LEU:HD21	1.32	1.10
1:B:520:ALA:HB1	1:B:521:PRO:HD2	1.35	1.09
1:B:523:THR:HG22	1:B:524:VAL:H	0.98	1.08
1:B:392:PHE:HB3	1:B:517:LEU:HD21	1.34	1.08
1:C:520:ALA:HB1	1:C:521:PRO:HD2	1.35	1.07
1:B:332:ILE:HG21	1:B:361:CYS:CA	1.85	1.07
1:A:295:PRO:HB2	1:A:608:VAL:HG11	1.32	1.06
1:A:980:ILE:O	1:A:984:LEU:HB2	1.54	1.06
1:C:388:ASN:CB	1:C:527:PRO:CG	2.32	1.06
1:A:520:ALA:HB1	1:A:521:PRO:HD2	1.35	1.05
1:C:392:PHE:HB3	1:C:517:LEU:HD21	1.34	1.05
1:B:562:PHE:CD2	1:C:41:LYS:HD2	1.90	1.05
1:B:987:PRO:HG3	1:C:427:ASP:OD2	1.56	1.05
1:C:332:ILE:HG22	1:C:333:THR:N	1.62	1.04
1:C:332:ILE:CG2	1:C:333:THR:H	1.64	1.04
1:A:392:PHE:HB3	1:A:517:LEU:HD21	1.35	1.04
1:C:662:CYS:HB2	1:C:697:MET:HE3	1.39	1.04
1:B:392:PHE:HB3	1:B:517:LEU:CD2	1.87	1.03
1:C:392:PHE:HB3	1:C:517:LEU:CD2	1.88	1.03
1:A:392:PHE:HB3	1:A:517:LEU:CD2	1.88	1.03
1:C:523:THR:HG22	1:C:524:VAL:N	1.73	1.03
1:C:328:ARG:O	1:C:329:PHE:CD1	2.12	1.03
1:B:316:SER:O	1:B:317:ASN:ND2	1.90	1.02
1:B:327:VAL:HG23	1:B:531:THR:CG2	1.90	1.02
1:B:329:PHE:CD1	1:B:330:PRO:HD2	1.95	1.02
1:B:403:ARG:NH1	1:B:505:TYR:HE1	1.58	1.01
3:B:1409:NAG:C4	3:B:1410:NAG:C1	2.38	1.01
1:C:403:ARG:NH1	1:C:505:TYR:HE1	1.58	1.01
1:B:332:ILE:CG2	1:B:361:CYS:HA	1.90	1.00
1:C:44:ARG:O	1:C:283:GLY:HA2	1.61	1.00
1:C:388:ASN:HA	1:C:527:PRO:HD2	1.40	1.00
1:B:44:ARG:O	1:B:283:GLY:HA2	1.61	1.00
1:A:523:THR:HG22	1:A:524:VAL:N	1.73	1.00

	juo puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:392:PHE:CB	1:B:517:LEU:HD21	1.91	1.00
1:A:392:PHE:CB	1:A:517:LEU:HD21	1.91	0.99
1:A:403:ARG:NH1	1:A:505:TYR:HE1	1.58	0.99
1:A:978:ASN:O	1:A:982:SER:HB3	1.61	0.99
1:C:674:TYR:CZ	1:C:690:GLN:N	2.31	0.99
1:B:523:THR:HG22	1:B:524:VAL:N	1.73	0.99
1:B:748:GLU:CG	1:B:981:LEU:HD21	1.91	0.99
1:C:388:ASN:HB3	1:C:527:PRO:HD2	1.27	0.99
1:C:392:PHE:CB	1:C:517:LEU:HD21	1.91	0.99
1:C:811:LYS:HB2	1:C:812:PRO:CD	1.91	0.98
1:C:327:VAL:HG12	1:C:328:ARG:H	1.27	0.98
1:A:44:ARG:O	1:A:283:GLY:HA2	1.61	0.97
1:C:674:TYR:CE1	1:C:690:GLN:N	2.33	0.97
1:B:316:SER:C	1:B:317:ASN:HD22	1.67	0.97
1:C:328:ARG:O	1:C:329:PHE:HD1	1.44	0.97
1:A:523:THR:CG2	1:A:524:VAL:H	1.77	0.97
1:C:329:PHE:CZ	1:C:528:LYS:HG2	1.98	0.97
1:C:346:ARG:NH2	1:C:347:PHE:O	1.98	0.97
1:B:523:THR:CG2	1:B:524:VAL:H	1.77	0.96
1:C:403:ARG:NH1	1:C:505:TYR:CE1	2.33	0.96
1:C:523:THR:CG2	1:C:524:VAL:H	1.77	0.96
1:B:346:ARG:NH2	1:B:347:PHE:O	1.98	0.96
1:A:403:ARG:NH1	1:A:505:TYR:CE1	2.33	0.96
1:A:654:GLU:HG3	1:A:693:ILE:HG22	1.45	0.96
1:B:403:ARG:NH1	1:B:505:TYR:CE1	2.33	0.95
1:A:346:ARG:NH2	1:A:347:PHE:O	1.98	0.95
1:C:295:PRO:HB2	1:C:608:VAL:HG11	1.47	0.94
1:B:532:ASN:HD22	1:B:533:LEU:H	1.03	0.94
1:A:703:ASN:OD1	1:B:789:TYR:HE1	1.50	0.94
1:C:332:ILE:HG22	1:C:333:THR:H	0.78	0.93
1:B:519:HIS:CE1	1:C:40:ASP:HB2	2.04	0.92
1:C:811:LYS:HB2	1:C:812:PRO:HD2	1.50	0.92
1:A:319:ARG:HH21	1:A:319:ARG:HG3	1.35	0.91
1:B:320:VAL:HG23	1:B:591:SER:O	1.70	0.91
1:C:319:ARG:HH21	1:C:319:ARG:HG3	1.35	0.90
1:A:41:LYS:HD2	1:C:562:PHE:HD2	1.32	0.90
1:B:519:HIS:HD1	1:C:41:LYS:HG2	1.36	0.90
1:A:318:PHE:CE1	1:A:620:VAL:O	2.25	0.89
1:C:654:GLU:O	1:C:693:ILE:HG22	1.74	0.88
1:A:332:ILE:CG2	1:A:362:VAL:HG11	2.02	0.88
1:C:388:ASN:HB3	1:C:527:PRO:HG2	1.52	0.88

	hi o	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:588:THR:OG1	1:C:589:PRO:HD2	1.74	0.88
1:A:41:LYS:HD2	1:C:562:PHE:CE2	2.09	0.87
1:C:45:SER:O	1:C:47:VAL:HG22	1.75	0.87
1:C:393:THR:O	1:C:523:THR:HG21	1.75	0.86
1:B:45:SER:O	1:B:47:VAL:HG22	1.75	0.86
1:C:357:ARG:HE	1:C:394:ASN:ND2	1.71	0.86
1:B:46:SER:HA	1:B:279:TYR:O	1.76	0.86
1:A:985:ASP:HB2	1:A:987:PRO:HD2	1.56	0.86
1:C:329:PHE:CD1	1:C:528:LYS:HG2	2.10	0.86
1:A:520:ALA:HB1	1:A:521:PRO:CD	2.06	0.85
1:A:46:SER:HA	1:A:279:TYR:O	1.76	0.85
1:A:729:VAL:HG13	1:A:1059:GLY:HA2	1.57	0.85
1:B:329:PHE:CE2	1:B:528:LYS:CG	2.57	0.85
1:A:45:SER:O	1:A:47:VAL:HG22	1.75	0.85
1:A:392:PHE:CD2	1:A:517:LEU:HD21	2.11	0.85
1:A:565:PHE:O	1:B:42:VAL:HA	1.76	0.85
1:A:983:ARG:HG2	1:C:382:VAL:HB	1.59	0.85
1:B:520:ALA:HB1	1:B:521:PRO:CD	2.06	0.85
1:C:392:PHE:CD2	1:C:517:LEU:HD21	2.11	0.85
1:C:520:ALA:HB1	1:C:521:PRO:CD	2.06	0.85
1:A:393:THR:O	1:A:523:THR:HG21	1.75	0.85
1:B:331:ASN:C	1:B:332:ILE:HD13	1.96	0.85
1:C:46:SER:HA	1:C:279:TYR:O	1.76	0.85
1:B:393:THR:O	1:B:523:THR:HG21	1.76	0.84
1:A:985:ASP:OD1	1:A:988:GLU:HB2	1.77	0.84
1:B:519:HIS:ND1	1:C:41:LYS:HG2	1.91	0.84
1:C:388:ASN:HB3	1:C:527:PRO:HG3	1.57	0.84
1:B:332:ILE:HG22	1:B:333:THR:H	1.43	0.84
1:B:392:PHE:CD2	1:B:517:LEU:HD21	2.11	0.84
1:C:516:GLU:O	1:C:517:LEU:HD22	1.78	0.84
1:B:516:GLU:O	1:B:517:LEU:HD22	1.78	0.83
1:B:327:VAL:CG2	1:B:531:THR:CG2	2.55	0.83
1:C:323:THR:O	1:C:324:GLU:HG2	1.78	0.83
1:A:703:ASN:OD1	1:B:789:TYR:CE1	2.32	0.83
1:A:41:LYS:CD	1:C:562:PHE:HD2	1.90	0.83
1:B:901:GLN:HE21	1:B:905:ARG:HE	1.26	0.82
1:C:528:LYS:O	1:C:529:LYS:HE2	1.80	0.82
1:A:516:GLU:O	1:A:517:LEU:HD22	1.78	0.82
1:A:978:ASN:O	1:A:982:SER:CB	2.28	0.82
1:C:901:GLN:HE21	1:C:905:ARG:HE	1.27	0.81
1:B:562:PHE:HD2	1:C:41:LYS:CE	1.93	0.81

	had page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:562:PHE:CD2	1:C:41:LYS:CD	2.63	0.80
1:A:983:ARG:CG	1:C:382:VAL:HB	2.11	0.80
1:B:357:ARG:NH2	1:C:230:PRO:CG	2.43	0.80
1:B:323:THR:C	1:B:324:GLU:HG2	2.00	0.80
1:B:562:PHE:HE2	1:C:41:LYS:HD2	1.43	0.80
1:C:357:ARG:HG3	1:C:396:TYR:CE1	2.17	0.80
1:B:532:ASN:HD22	1:B:533:LEU:N	1.78	0.79
1:B:748:GLU:N	1:B:748:GLU:OE2	2.14	0.79
1:A:41:LYS:HB3	1:C:563:GLN:HA	1.64	0.79
1:A:707:TYR:HB2	1:B:883:THR:HG23	1.65	0.79
1:C:388:ASN:CB	1:C:527:PRO:HG2	2.11	0.79
1:A:390:LEU:HD23	1:A:391:CYS:H	1.49	0.78
1:C:392:PHE:O	1:C:523:THR:HB	1.83	0.78
1:C:390:LEU:HD23	1:C:391:CYS:H	1.49	0.78
1:C:335:LEU:HA	1:C:362:VAL:HB	1.67	0.77
1:B:392:PHE:O	1:B:523:THR:HB	1.83	0.77
1:A:392:PHE:O	1:A:523:THR:HB	1.83	0.77
1:A:361:CYS:SG	1:A:524:VAL:HG21	2.25	0.77
1:B:519:HIS:CE1	1:C:41:LYS:H	2.03	0.77
1:C:528:LYS:C	1:C:529:LYS:HG2	2.02	0.77
1:B:675:GLN:O	1:B:690:GLN:HG3	1.84	0.77
1:A:41:LYS:CE	1:C:562:PHE:HD2	1.98	0.76
1:A:388:ASN:OD1	1:A:527:PRO:HD3	1.85	0.76
1:C:403:ARG:HH11	1:C:505:TYR:HE1	1.32	0.76
1:A:41:LYS:CD	1:C:562:PHE:CD2	2.64	0.76
1:B:358:ILE:HG22	1:B:359:SER:H	1.49	0.76
1:B:390:LEU:HD23	1:B:391:CYS:H	1.49	0.76
1:A:403:ARG:HH11	1:A:505:TYR:HE1	1.32	0.76
1:B:403:ARG:HH11	1:B:505:TYR:HE1	1.33	0.76
1:B:562:PHE:CD2	1:C:41:LYS:CE	2.69	0.76
1:A:422:ASN:HD21	1:A:454:ARG:H	1.32	0.76
1:A:985:ASP:CB	1:A:987:PRO:HD2	2.15	0.76
1:B:569:ILE:HG13	1:C:47:VAL:HG11	1.66	0.75
1:C:361:CYS:SG	1:C:524:VAL:HG21	2.25	0.75
1:A:826:VAL:HG13	1:A:1057:PRO:HG2	1.68	0.75
1:B:318:PHE:O	1:B:319:ARG:HG2	1.84	0.75
1:A:1125:ASN:H	1:A:1125:ASN:HD22	1.33	0.75
1:B:357:ARG:HB3	1:B:396:TYR:CD1	2.22	0.75
1:A:335:LEU:HA	1:A:362:VAL:HB	1.67	0.75
1:A:703:ASN:CB	1:B:787:GLN:OE1	2.23	0.75
1:C:654:GLU:CG	1:C:693:ILE:CG2	2.61	0.75

	Juo puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:735:SER:OG	1:C:859:THR:CG2	2.34	0.75
1:C:422:ASN:HD21	1:C:454:ARG:H	1.32	0.75
1:B:592:PHE:CE2	1:C:854:LYS:HE3	2.22	0.75
1:A:295:PRO:CB	1:A:608:VAL:HG11	2.13	0.74
1:A:388:ASN:OD1	1:A:527:PRO:CD	2.36	0.74
1:C:674:TYR:HD1	1:C:691:SER:O	1.71	0.74
1:C:357:ARG:HE	1:C:394:ASN:HD21	1.36	0.74
1:A:47:VAL:O	1:A:49:HIS:N	2.20	0.74
1:B:357:ARG:HH22	1:C:230:PRO:CG	2.00	0.74
1:C:47:VAL:O	1:C:49:HIS:N	2.20	0.74
1:C:334:ASN:O	1:C:362:VAL:HB	1.87	0.74
1:B:47:VAL:O	1:B:49:HIS:N	2.20	0.74
1:B:743:CYS:SG	1:B:749:CYS:C	2.67	0.74
1:A:319:ARG:HG3	1:A:319:ARG:NH2	2.03	0.73
1:B:422:ASN:HD21	1:B:454:ARG:H	1.32	0.73
1:B:326:ILE:O	1:B:327:VAL:HG13	1.89	0.73
1:B:333:THR:OG1	1:B:334:ASN:N	2.21	0.73
1:B:356:LYS:HG2	1:B:357:ARG:H	1.50	0.73
1:A:391:CYS:HA	1:A:525:CYS:HB3	1.71	0.73
1:A:986:PRO:N	1:A:987:PRO:HD2	2.04	0.73
1:B:357:ARG:NH2	1:C:230:PRO:HG3	2.04	0.73
1:B:391:CYS:HA	1:B:525:CYS:HB3	1.71	0.73
1:C:327:VAL:HG12	1:C:328:ARG:N	2.01	0.73
1:C:811:LYS:CB	1:C:812:PRO:CD	2.66	0.73
1:A:392:PHE:HD2	1:A:517:LEU:HD21	1.53	0.73
1:A:985:ASP:C	1:A:987:PRO:HD2	2.08	0.73
1:B:334:ASN:H	1:B:334:ASN:ND2	1.86	0.73
1:B:363:ALA:HB3	1:B:526:GLY:HA2	1.71	0.72
1:C:319:ARG:HG3	1:C:319:ARG:NH2	2.03	0.72
1:A:551:VAL:HB	1:A:588:THR:HG22	1.72	0.72
1:B:973:ILE:HG12	1:B:992:GLN:HE21	1.53	0.72
1:B:1142:GLN:HG3	1:B:1143:PRO:HD3	1.71	0.72
1:C:406:GLU:CD	1:C:418:ILE:HG13	2.10	0.72
1:A:406:GLU:CD	1:A:418:ILE:HG13	2.10	0.72
1:A:332:ILE:HG21	1:A:362:VAL:HG11	1.70	0.72
1:A:340:GLU:OE2	1:A:356:LYS:CE	2.35	0.72
1:A:986:PRO:N	1:A:987:PRO:CD	2.52	0.72
1:B:535:LYS:HG3	1:B:552:LEU:O	1.89	0.71
1:B:357:ARG:HH22	1:C:230:PRO:HG3	1.56	0.71
1:B:406:GLU:CD	1:B:418:ILE:HG13	2.10	0.71
1:A:790:LYS:NZ	1:C:702:GLU:OE2	2.21	0.71

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:392:PHE:HD2	1:B:517:LEU:HD21	1.53	0.71
1:C:124:THR:HG21	3:C:1402:NAG:HN2	1.56	0.71
1:C:392:PHE:HD2	1:C:517:LEU:HD21	1.53	0.71
1:B:562:PHE:CD2	1:C:41:LYS:HE3	2.25	0.71
1:A:318:PHE:CZ	1:A:620:VAL:O	2.43	0.70
3:B:1409:NAG:H4	3:B:1410:NAG:C1	2.21	0.70
1:C:521:PRO:O	1:C:564:GLN:NE2	2.20	0.70
1:B:569:ILE:HG12	1:C:47:VAL:HG12	1.72	0.70
1:B:124:THR:HG21	3:B:1402:NAG:HN2	1.56	0.70
1:A:124:THR:HG21	3:A:1402:NAG:HN2	1.56	0.70
1:B:327:VAL:CG2	1:B:531:THR:HG21	2.20	0.70
1:A:45:SER:OG	1:A:46:SER:N	2.25	0.70
1:C:945:LEU:HD12	1:C:948:LEU:HD12	1.74	0.70
1:A:187:LYS:N	1:A:212:LEU:O	2.25	0.69
1:C:187:LYS:N	1:C:212:LEU:O	2.25	0.69
1:C:521:PRO:HB2	1:C:564:GLN:NE2	2.05	0.69
1:B:986:PRO:HB2	1:B:987:PRO:HD3	1.74	0.69
1:C:44:ARG:O	1:C:283:GLY:CA	2.40	0.69
1:B:187:LYS:N	1:B:212:LEU:O	2.25	0.69
1:C:327:VAL:O	1:C:328:ARG:HD2	1.92	0.69
1:B:333:THR:OG1	1:B:334:ASN:ND2	2.26	0.69
1:B:321:GLN:OE1	1:B:322:PRO:HD2	1.93	0.69
1:C:340:GLU:OE2	1:C:356:LYS:CE	2.35	0.69
1:B:519:HIS:CE1	1:C:41:LYS:N	2.61	0.69
1:B:562:PHE:HD2	1:C:41:LYS:CD	2.02	0.68
1:B:44:ARG:O	1:B:283:GLY:CA	2.40	0.68
1:B:45:SER:OG	1:B:46:SER:N	2.25	0.68
1:B:392:PHE:CG	1:B:517:LEU:HD21	2.29	0.68
1:B:327:VAL:HG22	1:B:531:THR:HG21	1.76	0.68
1:B:43:PHE:CE1	1:B:283:GLY:HA3	2.29	0.68
1:A:43:PHE:CE1	1:A:283:GLY:HA3	2.29	0.68
1:A:329:PHE:CE1	1:A:544:ASN:HA	2.28	0.68
1:A:331:ASN:C	1:A:332:ILE:HG13	2.14	0.68
1:B:562:PHE:CE2	1:C:41:LYS:CD	2.72	0.67
1:C:318:PHE:CE1	1:C:620:VAL:O	2.47	0.67
1:C:96:GLU:OE1	1:C:98:SER:N	2.28	0.67
1:B:551:VAL:HB	1:B:588:THR:HG22	1.74	0.67
1:C:43:PHE:CE1	1:C:283:GLY:HA3	2.29	0.67
1:C:45:SER:OG	1:C:46:SER:N	2.25	0.67
1:A:392:PHE:CG	1:A:517:LEU:HD21	2.29	0.67
1:B:329:PHE:HD1	1:B:330:PRO:CD	2.00	0.67

	, and page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:37:TYR:O	1:A:39:PRO:HD3	1.95	0.67
1:A:187:LYS:HG2	1:A:213:VAL:HA	1.78	0.67
1:B:569:ILE:HD12	1:B:569:ILE:H	1.60	0.66
1:C:324:GLU:HG2	1:C:539:VAL:HG23	1.76	0.66
1:C:392:PHE:CG	1:C:517:LEU:HD21	2.29	0.66
1:B:1045:LYS:NZ	1:C:786:LYS:HE3	2.09	0.66
1:C:357:ARG:HG3	1:C:396:TYR:HE1	1.57	0.66
1:A:521:PRO:HB2	1:B:200:TYR:CZ	2.30	0.66
1:B:535:LYS:HB2	1:B:535:LYS:NZ	2.10	0.66
1:C:37:TYR:O	1:C:39:PRO:HD3	1.95	0.66
1:A:533:LEU:HD12	1:A:533:LEU:C	2.15	0.66
1:B:522:ALA:O	1:B:523:THR:OG1	2.14	0.66
1:C:522:ALA:O	1:C:523:THR:OG1	2.14	0.66
1:B:691:SER:O	1:B:692:ILE:HG13	1.96	0.66
1:A:392:PHE:HD2	1:A:517:LEU:CD2	2.09	0.66
1:B:37:TYR:O	1:B:39:PRO:HD3	1.95	0.66
1:C:187:LYS:HG2	1:C:213:VAL:HA	1.78	0.66
1:B:519:HIS:CE1	1:C:41:LYS:HG2	2.30	0.66
1:B:96:GLU:OE1	1:B:98:SER:N	2.28	0.65
1:C:328:ARG:NH2	1:C:578:ASP:OD1	2.28	0.65
1:B:392:PHE:HD2	1:B:517:LEU:CD2	2.09	0.65
1:B:719:THR:HA	1:B:926:GLN:HE22	1.60	0.65
1:C:536:ASN:HA	1:C:551:VAL:HG13	1.78	0.65
1:A:391:CYS:CA	1:A:525:CYS:HB3	2.24	0.65
1:C:529:LYS:O	1:C:530:SER:OG	2.15	0.65
1:A:96:GLU:OE1	1:A:98:SER:N	2.28	0.65
1:A:47:VAL:HG11	1:C:569:ILE:HG13	1.79	0.65
1:B:187:LYS:HG2	1:B:213:VAL:HA	1.78	0.65
1:B:528:LYS:CE	1:B:528:LYS:HA	2.26	0.65
1:C:332:ILE:CG2	1:C:333:THR:N	2.37	0.65
1:A:522:ALA:O	1:A:523:THR:OG1	2.14	0.65
1:C:392:PHE:HD2	1:C:517:LEU:CD2	2.09	0.65
1:A:40:ASP:CB	1:C:519:HIS:CE1	2.75	0.64
1:B:336:CYS:SG	1:B:358:ILE:HG21	2.37	0.64
1:B:391:CYS:CA	1:B:525:CYS:HB3	2.24	0.64
1:C:569:ILE:H	1:C:569:ILE:HD12	1.61	0.64
1:B:357:ARG:HA	1:B:395:VAL:O	1.96	0.64
1:B:357:ARG:HD2	1:B:396:TYR:CE1	2.33	0.64
1:C:555:SER:HB2	1:C:586:ASP:OD1	1.97	0.64
1:A:321:GLN:HA	1:A:321:GLN:OE1	1.97	0.64
1:A:563:GLN:OE1	1:B:43:PHE:HD1	1.80	0.64

	t i c	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:551:VAL:HB	1:B:588:THR:CG2	2.27	0.64
1:A:569:ILE:HD12	1:A:569:ILE:H	1.61	0.64
1:B:328:ARG:NH2	1:B:578:ASP:OD2	2.31	0.64
1:A:41:LYS:HE3	1:C:562:PHE:CD2	2.33	0.64
1:C:690:GLN:O	1:C:691:SER:HB3	1.98	0.64
1:A:44:ARG:O	1:A:283:GLY:CA	2.40	0.64
1:B:357:ARG:CZ	1:B:394:ASN:HD21	2.11	0.64
1:B:321:GLN:OE1	1:B:321:GLN:HA	1.96	0.63
1:A:983:ARG:HG2	1:C:382:VAL:CB	2.27	0.63
1:C:329:PHE:CD2	1:C:330:PRO:HD2	2.33	0.63
1:A:43:PHE:CE1	1:A:282:ASN:O	2.52	0.63
1:A:674:TYR:HA	1:A:691:SER:O	1.98	0.63
1:B:569:ILE:CG1	1:C:47:VAL:CG1	2.76	0.63
1:A:41:LYS:CE	1:C:562:PHE:CD2	2.82	0.63
1:C:96:GLU:OE1	1:C:97:LYS:N	2.32	0.63
1:C:329:PHE:HB3	1:C:330:PRO:HD2	1.80	0.63
1:A:700:GLY:O	1:A:701:ALA:O	2.17	0.63
1:A:117:LEU:HD12	1:A:118:LEU:H	1.64	0.62
1:B:43:PHE:CE1	1:B:282:ASN:O	2.52	0.62
1:B:521:PRO:O	1:B:564:GLN:NE2	2.32	0.62
1:C:124:THR:OG1	1:C:125:ASN:N	2.32	0.62
1:B:364:ASP:O	1:B:366:SER:N	2.33	0.62
1:B:319:ARG:HH21	1:B:319:ARG:CG	2.12	0.62
1:B:334:ASN:O	1:B:361:CYS:HB2	1.98	0.62
1:A:43:PHE:HE1	1:A:282:ASN:O	1.82	0.62
1:B:117:LEU:HD12	1:B:118:LEU:H	1.64	0.62
1:A:808:ASP:HB3	1:A:811:LYS:HD2	1.82	0.62
1:C:43:PHE:CE1	1:C:282:ASN:O	2.52	0.62
1:C:811:LYS:HB2	1:C:812:PRO:HD3	1.80	0.62
1:C:813:SER:O	1:C:814:LYS:HE2	2.00	0.62
1:B:124:THR:OG1	1:B:125:ASN:N	2.32	0.62
1:B:323:THR:O	1:B:324:GLU:CG	2.28	0.62
1:B:535:LYS:O	1:B:537:LYS:N	2.32	0.62
1:C:326:ILE:HG21	1:C:534:VAL:HG13	1.82	0.62
1:A:980:ILE:HG23	1:A:984:LEU:HD13	1.82	0.62
1:B:329:PHE:HE2	1:B:528:LYS:HG2	1.55	0.62
1:B:340:GLU:OE2	1:B:356:LYS:NZ	2.32	0.62
1:C:117:LEU:HD12	1:C:118:LEU:H	1.64	0.62
1:A:96:GLU:OE1	1:A:97:LYS:N	2.32	0.62
1:A:124:THR:OG1	1:A:125:ASN:N	2.32	0.62
1:B:43:PHE:HE1	1:B:282:ASN:O	1.83	0.61

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:96:GLU:OE1	1:B:97:LYS:N	2.32	0.61
1:C:516:GLU:O	1:C:517:LEU:CD2	2.48	0.61
1:B:332:ILE:HD13	1:B:332:ILE:N	2.12	0.61
1:B:356:LYS:O	1:B:396:TYR:HA	1.99	0.61
1:B:357:ARG:NE	1:B:394:ASN:ND2	2.48	0.61
1:B:295:PRO:HB2	1:B:608:VAL:HG11	1.83	0.61
1:A:357:ARG:HH12	1:A:394:ASN:HD21	1.49	0.61
1:A:1077:THR:HG22	1:A:1095:PHE:O	2.01	0.61
1:A:516:GLU:O	1:A:517:LEU:CD2	2.48	0.61
1:C:521:PRO:O	1:C:522:ALA:HB2	2.01	0.61
1:B:319:ARG:NH2	1:B:319:ARG:HG3	2.15	0.61
1:B:521:PRO:O	1:B:522:ALA:HB2	2.01	0.61
1:C:322:PRO:O	1:C:323:THR:HG23	2.00	0.61
1:A:327:VAL:O	1:A:530:SER:HA	2.01	0.60
1:B:523:THR:HG22	1:B:524:VAL:HG12	1.83	0.60
1:C:43:PHE:HE1	1:C:282:ASN:O	1.83	0.60
1:B:516:GLU:O	1:B:517:LEU:CD2	2.48	0.60
1:B:617:CYS:H	1:B:644:GLN:HE22	1.49	0.60
1:B:356:LYS:HG2	1:B:357:ARG:N	2.16	0.60
1:C:556:ASN:HD22	1:C:556:ASN:H	1.50	0.60
1:A:617:CYS:H	1:A:644:GLN:HE22	1.49	0.60
1:A:326:ILE:HD12	1:A:326:ILE:O	2.02	0.60
1:B:328:ARG:CG	1:B:328:ARG:HH21	2.14	0.60
1:B:406:GLU:OE1	1:B:418:ILE:HG12	2.02	0.60
1:B:534:VAL:O	1:B:535:LYS:HB2	2.02	0.60
1:A:521:PRO:O	1:A:522:ALA:HB2	2.01	0.60
1:A:551:VAL:HB	1:A:588:THR:CG2	2.31	0.60
1:A:981:LEU:C	1:A:983:ARG:H	2.05	0.60
1:B:645:THR:HG22	1:B:647:ALA:H	1.66	0.60
1:C:327:VAL:CG1	1:C:328:ARG:H	2.09	0.60
1:C:406:GLU:OE1	1:C:418:ILE:HG12	2.02	0.60
1:C:586:ASP:OD1	1:C:586:ASP:N	2.33	0.60
1:A:332:ILE:HG23	1:A:362:VAL:HG11	1.83	0.59
1:B:556:ASN:H	1:B:556:ASN:HD22	1.49	0.59
1:C:645:THR:HG22	1:C:647:ALA:H	1.66	0.59
1:A:141:LEU:HB2	1:A:156:GLU:HB2	1.85	0.59
1:A:556:ASN:HD22	1:A:556:ASN:H	1.49	0.59
1:B:364:ASP:C	1:B:366:SER:H	2.06	0.59
1:B:1045:LYS:HZ2	1:C:786:LYS:HE3	1.65	0.59
1:A:406:GLU:CD	1:A:418:ILE:CG1	2.71	0.59
1:B:592:PHE:CZ	1:C:854:LYS:HE3	2.37	0.59

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:406:GLU:OE1	1:A:418:ILE:HG12	2.02	0.59
1:A:645:THR:HG22	1:A:647:ALA:H	1.66	0.59
1:C:329:PHE:HD2	1:C:330:PRO:HD2	1.67	0.59
1:C:523:THR:HG22	1:C:524:VAL:HG12	1.83	0.59
1:A:534:VAL:O	1:A:535:LYS:HG3	2.02	0.59
1:A:978:ASN:HD22	1:C:547:THR:CG2	2.15	0.59
1:B:358:ILE:HG22	1:B:359:SER:N	2.16	0.59
1:C:164:ASN:OD1	1:C:164:ASN:N	2.35	0.59
1:B:738:CYS:O	1:B:742:ILE:HG13	2.03	0.59
1:C:328:ARG:HG2	1:C:328:ARG:HH21	1.67	0.59
1:A:41:LYS:CA	1:C:563:GLN:HG2	2.33	0.59
1:A:722:VAL:HA	1:A:1064:HIS:O	2.03	0.59
1:B:310:LYS:NZ	1:B:663:ASP:OD1	2.35	0.59
1:B:391:CYS:SG	1:B:523:THR:O	2.61	0.59
1:C:329:PHE:CD1	1:C:528:LYS:CG	2.80	0.59
1:C:811:LYS:CB	1:C:812:PRO:HD2	2.27	0.59
1:A:206:LYS:NZ	1:A:221:SER:OG	2.35	0.58
1:B:316:SER:C	1:B:317:ASN:ND2	2.48	0.58
1:B:569:ILE:CG1	1:C:47:VAL:HG11	2.33	0.58
1:A:521:PRO:HG3	1:B:199:GLY:O	2.03	0.58
1:B:164:ASN:OD1	1:B:164:ASN:N	2.35	0.58
1:B:206:LYS:NZ	1:B:221:SER:OG	2.35	0.58
1:B:580:GLN:O	2:K:1:NAG:H83	2.03	0.58
1:B:592:PHE:CE2	1:C:854:LYS:CE	2.86	0.58
1:C:324:GLU:CG	1:C:539:VAL:HG23	2.33	0.58
1:C:617:CYS:H	1:C:644:GLN:HE22	1.49	0.58
1:C:654:GLU:HG3	1:C:693:ILE:HG23	1.76	0.58
1:C:206:LYS:NZ	1:C:221:SER:OG	2.35	0.58
1:A:164:ASN:OD1	1:A:164:ASN:N	2.35	0.58
3:B:1405:NAG:H83	3:B:1405:NAG:H3	1.86	0.58
1:C:406:GLU:CD	1:C:418:ILE:CG1	2.71	0.58
1:A:523:THR:HG22	1:A:524:VAL:HG12	1.83	0.58
1:B:141:LEU:HB2	1:B:156:GLU:HB2	1.85	0.58
1:B:319:ARG:HH21	1:B:319:ARG:HG3	1.68	0.58
1:B:406:GLU:CD	1:B:418:ILE:CG1	2.71	0.58
1:C:391:CYS:SG	1:C:523:THR:O	2.62	0.58
2:W:2:NAG:H3	2:W:2:NAG:H83	1.86	0.58
1:B:338:PHE:O	1:B:340:GLU:N	2.37	0.58
1:B:392:PHE:CD2	1:B:517:LEU:CD2	2.85	0.58
1:C:141:LEU:HB2	1:C:156:GLU:HB2	1.85	0.58
1:A:334:ASN:OD1	1:A:334:ASN:N	2.36	0.58

	jue puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:391:CYS:SG	1:A:523:THR:O	2.62	0.58
1:A:901:GLN:HE21	1:A:905:ARG:HE	1.50	0.58
3:A:1405:NAG:H3	3:A:1405:NAG:H83	1.86	0.58
1:B:332:ILE:HG21	1:B:361:CYS:N	2.18	0.58
1:C:392:PHE:HB3	1:C:517:LEU:HD22	1.82	0.58
1:A:338:PHE:O	1:A:340:GLU:N	2.37	0.57
1:B:47:VAL:O	1:B:47:VAL:HG23	2.04	0.57
1:B:392:PHE:HB3	1:B:517:LEU:HD22	1.82	0.57
1:B:328:ARG:NH2	1:B:578:ASP:OD1	2.36	0.57
1:C:105:ILE:HG12	1:C:239:GLN:HB2	1.87	0.57
1:B:41:LYS:O	1:B:42:VAL:HB	2.05	0.57
1:B:535:LYS:HB2	1:B:535:LYS:HZ1	1.68	0.57
1:A:48:LEU:HD13	1:A:48:LEU:H	1.69	0.57
1:C:41:LYS:O	1:C:42:VAL:HB	2.05	0.57
1:C:532:ASN:H	1:C:532:ASN:HD22	1.53	0.57
1:C:735:SER:OG	1:C:859:THR:HG23	2.04	0.57
1:A:41:LYS:O	1:A:42:VAL:HB	2.04	0.57
1:A:438:SER:O	1:A:438:SER:OG	2.21	0.57
1:A:669:GLY:N	1:B:864:LEU:O	2.37	0.57
1:B:390:LEU:HD23	1:B:391:CYS:N	2.19	0.57
1:B:563:GLN:O	1:B:577:ARG:NH1	2.38	0.57
1:B:570:ALA:HB1	1:C:963:VAL:CG1	2.35	0.57
1:B:901:GLN:NE2	1:B:905:ARG:HE	2.00	0.57
1:A:47:VAL:O	1:A:47:VAL:HG23	2.04	0.57
1:A:978:ASN:HD22	1:C:547:THR:HG22	1.70	0.57
1:A:983:ARG:O	1:A:984:LEU:HG	2.03	0.57
1:B:362:VAL:HG12	1:B:363:ALA:N	2.19	0.57
1:C:47:VAL:O	1:C:47:VAL:HG23	2.04	0.57
1:C:227:VAL:HG12	1:C:228:ASP:N	2.20	0.57
1:C:295:PRO:CB	1:C:608:VAL:HG11	2.29	0.57
1:C:334:ASN:OD1	1:C:334:ASN:N	2.37	0.57
1:A:45:SER:O	1:A:279:TYR:HB2	2.05	0.57
1:A:361:CYS:SG	1:A:524:VAL:CG2	2.92	0.57
1:A:978:ASN:ND2	1:C:547:THR:HG22	2.20	0.57
1:A:980:ILE:CG2	1:A:984:LEU:HD13	2.35	0.57
1:C:392:PHE:CD2	1:C:517:LEU:CD2	2.85	0.57
1:C:519:HIS:O	1:C:519:HIS:ND1	2.38	0.57
1:A:519:HIS:O	1:A:519:HIS:ND1	2.38	0.57
1:B:519:HIS:ND1	1:B:519:HIS:O	2.38	0.57
2:X:2:NAG:H83	2:X:2:NAG:H3	1.87	0.57
1:A:329:PHE:HB3	1:A:330:PRO:HD2	1.87	0.56

	had pagem	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:358:ILE:HD13	1:B:358:ILE:N	2.19	0.56
1:C:342:PHE:HB3	2:S:1:NAG:H82	1.87	0.56
1:B:45:SER:O	1:B:279:TYR:HB2	2.05	0.56
1:B:48:LEU:HD13	1:B:48:LEU:H	1.69	0.56
1:B:329:PHE:CD2	1:B:528:LYS:HG2	2.34	0.56
1:C:338:PHE:O	1:C:340:GLU:N	2.37	0.56
1:C:563:GLN:O	1:C:577:ARG:NH1	2.38	0.56
1:A:29:THR:HG22	1:A:30:ASN:H	1.70	0.56
1:A:105:ILE:HG12	1:A:239:GLN:HB2	1.87	0.56
1:A:227:VAL:HG12	1:A:228:ASP:N	2.20	0.56
1:A:392:PHE:HB3	1:A:517:LEU:HD22	1.82	0.56
1:B:227:VAL:HG12	1:B:228:ASP:N	2.20	0.56
1:B:663:ASP:OD2	1:B:673:SER:OG	2.22	0.56
1:C:361:CYS:SG	1:C:524:VAL:CG2	2.92	0.56
1:C:674:TYR:CD1	1:C:691:SER:O	2.55	0.56
1:C:804:GLN:HE21	1:C:935:GLN:HE22	1.52	0.56
1:A:563:GLN:O	1:A:577:ARG:NH1	2.38	0.56
1:C:535:LYS:NZ	1:C:554:GLU:OE1	2.34	0.56
1:C:536:ASN:HA	1:C:551:VAL:CG1	2.36	0.56
1:A:533:LEU:HD12	1:A:533:LEU:O	2.05	0.56
1:C:48:LEU:HD13	1:C:48:LEU:H	1.69	0.56
1:B:382:VAL:HB	1:C:983:ARG:HB2	1.88	0.56
1:C:29:THR:HG22	1:C:30:ASN:H	1.71	0.56
1:C:438:SER:O	1:C:438:SER:OG	2.21	0.56
1:A:47:VAL:HG12	1:C:569:ILE:HG12	1.88	0.56
1:A:663:ASP:OD2	1:A:673:SER:OG	2.22	0.56
1:B:29:THR:HG22	1:B:30:ASN:H	1.70	0.56
1:A:699:LEU:HD22	1:B:873:TYR:CZ	2.40	0.56
1:B:569:ILE:HG13	1:C:47:VAL:CG1	2.36	0.56
1:A:45:SER:HA	1:A:280:ASN:O	2.06	0.56
1:A:57:PRO:O	1:A:60:SER:OG	2.24	0.56
1:B:105:ILE:HG12	1:B:239:GLN:HB2	1.87	0.56
3:C:1405:NAG:H3	3:C:1405:NAG:H83	1.86	0.56
1:A:388:ASN:OD1	1:A:527:PRO:HD2	2.06	0.56
1:B:336:CYS:SG	1:B:358:ILE:CG2	2.94	0.56
1:B:364:ASP:C	1:B:366:SER:N	2.59	0.56
1:B:382:VAL:HA	1:C:983:ARG:O	2.06	0.56
1:C:45:SER:O	1:C:279:TYR:HB2	2.05	0.56
1:C:57:PRO:O	1:C:60:SER:OG	2.24	0.56
2:H:2:NAG:H3	2:H:2:NAG:H83	1.87	0.56
1:A:983:ARG:O	1:A:983:ARG:HD2	2.05	0.55

Item IItem Idistance (Å)overlap (Å) $1:B:43:PHE:CG$ $1:B:44:ARG:N$ 2.74 0.55 $1:B:406:GLU:OE1$ $1:B:418:UE:CG1$ 2.54 0.55		Atom-2		
1:B:43:PHE:CG 1:B:44:ARG:N 2.74 0.55 1:B:406:GLU:OE1 1:B:418:ILE:CG1 2.54 0.55			distance (Å)	overlap (Å)
$1 \cdot B \cdot 406 \cdot GLU \cdot OE1$ $1 \cdot B \cdot 418 \cdot ILE \cdot CC1$ $2 54$ 0.55	3:PHE:CG	G 1:B:44:ARG:N	2.74	0.55
1.D.100.010.011 1.D.110.111.001 2.01 0.00	6:GLU:OE1	E1 1:B:418:ILE:CG1	2.54	0.55
1:C:663:ASP:OD2 1:C:673:SER:OG 2.22 0.55	3:ASP:OD2	D2 1:C:673:SER:OG	2.22	0.55
1:B:328:ARG:NH2 1:B:328:ARG:HG3 2.22 0.55	8:ARG:NH2	H2 1:B:328:ARG:HG3	2.22	0.55
1:A:342:PHE:HB3 2:E:1:NAG:H82 1.87 0.55	2:PHE:HB3	B3 2:E:1:NAG:H82	1.87	0.55
1:C:520:ALA:CB 1:C:521:PRO:CD 2.79 0.55	20:ALA:CB	CB 1:C:521:PRO:CD	2.79	0.55
1:C:556:ASN:HD22 1:C:556:ASN:N 2.05 0.55	5:ASN:HD22	D22 1:C:556:ASN:N	2.05	0.55
1:A:43:PHE:CG 1:A:44:ARG:N 2.74 0.55	3:PHE:CG	G 1:A:44:ARG:N	2.74	0.55
1:A:406:GLU:OE1 1:A:418:ILE:CG1 2.54 0.55	6:GLU:OE1	E1 1:A:418:ILE:CG1	2.54	0.55
1:B:342:PHE:HB3 2:L:1:NAG:H82 1.87 0.55	2:PHE:HB3	B3 2:L:1:NAG:H82	1.87	0.55
1:C:43:PHE:CG 1:C:44:ARG:N 2.74 0.55	3:PHE:CG	G 1:C:44:ARG:N	2.74	0.55
1:A:967:SER:O 1:A:967:SER:OG 2.24 0.55	67:SER:O	D 1:A:967:SER:OG	2.24	0.55
1:C:45:SER:HA 1:C:280:ASN:O 2.06 0.55	5:SER:HA	A 1:C:280:ASN:O	2.06	0.55
1:A:390:LEU:HD23 1:A:391:CYS:N 2.19 0.55):LEU:HD23	D23 1:A:391:CYS:N	2.19	0.55
1:B:535:LYS:C 1:B:537:LYS:H 2.10 0.55	535:LYS:C	C 1:B:537:LYS:H	2.10	0.55
2:S:1:NAG:H61 2:S:2:NAG:HN2 1.72 0.55	:NAG:H61	1 2:S:2:NAG:HN2	1.72	0.55
1:A:556:ASN:HD22 1:A:556:ASN:N 2.05 0.55	5:ASN:HD22	D22 1:A:556:ASN:N	2.05	0.55
1:B:45:SER:HA 1:B:280:ASN:O 2.06 0.55	5:SER:HA	A 1:B:280:ASN:O	2.06	0.55
1:B:328:ARG:HG2 1:B:578:ASP:OD1 2.06 0.55	8:ARG:HG2	G2 1:B:578:ASP:OD1	2.06	0.55
1:A:347:PHE:CE1 1:A:509:ARG:HD3 2.42 0.55	7:PHE:CE1	E1 1:A:509:ARG:HD3	2.42	0.55
1:C:535:LYS:HE3 1:C:554:GLU:OE2 2.07 0.55	5:LYS:HE3	E3 1:C:554:GLU:OE2	2.07	0.55
2:L:1:NAG:H61 2:L:2:NAG:HN2 1.72 0.55	:NAG:H61	1 2:L:2:NAG:HN2	1.72	0.55
1:A:521:PRO:HB3 1:B:198:ASP:O 2.06 0.54	1:PRO:HB3	B3 1:B:198:ASP:O	2.06	0.54
1:C:406:GLU:OE1 1:C:418:ILE:CG1 2.54 0.54	6:GLU:OE1	E1 1:C:418:ILE:CG1	2.54	0.54
1:A:225:PRO:CG 1:C:562:PHE:CZ 2.91 0.54	25:PRO:CG	CG 1:C:562:PHE:CZ	2.91	0.54
1:A:886:TRP:HH2 1:A:904:TYR:HD2 1.56 0.54	6:TRP:HH2	H2 1:A:904:TYR:HD2	1.56	0.54
1:B:438:SER:O 1:B:438:SER:OG 2.21 0.54	38:SER:O	D 1:B:438:SER:OG	2.21	0.54
1:C:329:PHE:HB2 1:C:530:SER:HB3 1.88 0.54	9:PHE:HB2	B2 1:C:530:SER:HB3	1.88	0.54
1:A:43:PHE:O 1:A:44:ARG:HG3 2.08 0.54	43:PHE:O	D 1:A:44:ARG:HG3	2.08	0.54
1:C:43:PHE:O 1:C:44:ARG:HG3 2.08 0.54	43:PHE:O) 1:C:44:ARG:HG3	2.08	0.54
1:C:347:PHE:CE1 1:C:509:ARG:HD3 2.42 0.54	7:PHE:CE1	E1 1:C:509:ARG:HD3	2.42	0.54
1:A:521:PRO:HB2 1:B:200:TYR:CE2 2.43 0.54	1:PRO:HB2	B2 1:B:200:TYR:CE2	2.43	0.54
1:B:43:PHE:O 1:B:44:ARG:HG3 2.08 0.54	43:PHE:O	D 1:B:44:ARG:HG3	2.08	0.54
1:B:100:ILE:O 1:B:242:LEU:HA 2.08 0.54	100:ILE:O	D 1:B:242:LEU:HA	2.08	0.54
1:B:347:PHE:CE1 1:B:509:ABG:HD3 2.42 0.54	7:PHE:CE1	E1 1:B:509:ABG:HD3	2.42	0.54
1:C:111:ASP:OD1 1:C:134:GLN:NE2 2.41 0.54	1:ASP:OD1	D1 1:C:134:GLN:NE2	2.41	0.54
1:A:111:ASP:OD1 1:A:134:GLN:NE2 2.41 0.54	1:ASP:OD1	D1 1:A:134:GLN:NE2	2.41	0.54
1:A:699:LEU:HD22 1:B:873:TYR:CE2 2.42 0.54	D:LEU:HD22	D22 1:B:873:TYR:CE2	2.42	0.54
1:B:544:ASN:O 1:B:544:ASN:ND2 2.41 0.54	44:ASN:O	0 1:B:544:ASN:ND2	2.41	0.54
$1 \cdot B \cdot 328 \cdot ABG \cdot NH2 = 1 \cdot B \cdot 578 \cdot ASP \cdot CG = 2.61 = 0.54$	8:ARG:NH2	$\frac{1}{1} \frac{1}{1} \frac{1}$	2.11	0.54
1:B:392:PHE:HA 1:B:517:LEU:HD11 1.89 0.54	2:PHE:HA	A 1:B:517:LEU:HD11	1.89	0.54

	Juo puge	Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:A:392:PHE:HA	1:A:517:LEU:HD11	1.89	0.54
2:E:1:NAG:H61	2:E:2:NAG:HN2	1.71	0.54
1:A:41:LYS:HA	1:C:563:GLN:HG2	1.90	0.53
1:A:985:ASP:HB2	1:A:987:PRO:CD	2.33	0.53
1:B:1142:GLN:HG3	1:B:1143:PRO:CD	2.37	0.53
1:C:392:PHE:HA	1:C:517:LEU:HD11	1.89	0.53
1:C:324:GLU:O	1:C:326:ILE:N	2.41	0.53
1:A:813:SER:O	1:A:813:SER:OG	2.18	0.53
1:B:111:ASP:OD1	1:B:134:GLN:NE2	2.41	0.53
1:A:563:GLN:CD	1:B:43:PHE:HA	2.29	0.53
1:C:329:PHE:CB	1:C:330:PRO:HD2	2.39	0.53
1:A:100:ILE:O	1:A:242:LEU:HA	2.08	0.53
1:A:1141:LEU:HD12	1:C:1141:LEU:HD11	1.90	0.53
1:A:64:TRP:HD1	1:A:65:PHE:N	2.07	0.53
1:A:745:ASP:OD1	1:C:319:ARG:NH1	2.33	0.53
1:A:984:LEU:HB3	1:A:989:ALA:HB2	1.90	0.53
1:B:516:GLU:OE2	1:C:200:TYR:HE2	1.91	0.53
1:B:519:HIS:HE1	1:C:41:LYS:N	2.04	0.53
1:B:556:ASN:HD22	1:B:556:ASN:N	2.05	0.53
1:B:748:GLU:HG3	1:B:981:LEU:CD2	2.23	0.53
1:C:100:ILE:O	1:C:242:LEU:HA	2.08	0.53
2:G:2:NAG:H83	2:G:2:NAG:H3	1.90	0.53
1:C:318:PHE:CZ	1:C:620:VAL:O	2.62	0.53
1:C:521:PRO:CB	1:C:564:GLN:NE2	2.72	0.53
1:B:1104:VAL:HG22	1:B:1115:ILE:HG12	1.91	0.53
1:C:64:TRP:HD1	1:C:65:PHE:N	2.07	0.53
1:B:748:GLU:HG2	1:B:981:LEU:HD21	1.83	0.52
1:C:536:ASN:CA	1:C:551:VAL:HG13	2.39	0.52
1:A:894:LEU:HB3	1:C:713:ALA:HB3	1.90	0.52
1:A:981:LEU:HD21	1:A:993:ILE:HD11	1.91	0.52
1:B:329:PHE:CZ	1:B:528:LYS:HG2	2.37	0.52
1:B:357:ARG:CB	1:B:395:VAL:O	2.58	0.52
1:B:521:PRO:HA	1:B:564:GLN:CG	2.39	0.52
1:A:544:ASN:O	1:A:544:ASN:ND2	2.41	0.52
1:B:64:TRP:HD1	1:B:65:PHE:N	2.07	0.52
1:B:328:ARG:CG	1:B:578:ASP:OD1	2.58	0.52
1:B:338:PHE:C	1:B:340:GLU:H	2.13	0.52
1:B:362:VAL:CG1	1:B:363:ALA:N	2.73	0.52
1:C:390:LEU:HD23	1:C:391:CYS:N	2.19	0.52
1:C:338:PHE:C	1:C:340:GLU:H	2.13	0.52
1:A:654:GLU:O	1:A:693:ILE:HA	2.09	0.52

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:978:ASN:ND2	1:C:547:THR:CG2	2.72	0.52
1:A:694:ALA:O	1:A:695:TYR:HB3	2.10	0.52
1:B:358:ILE:HG12	1:B:395:VAL:HB	1.91	0.52
1:B:535:LYS:NZ	1:B:535:LYS:CB	2.73	0.52
1:C:48:LEU:CD1	1:C:48:LEU:N	2.73	0.52
1:C:329:PHE:HB3	1:C:330:PRO:CD	2.38	0.52
1:C:534:VAL:HG23	1:C:535:LYS:N	2.24	0.52
1:C:403:ARG:NH1	1:C:505:TYR:CD1	2.78	0.52
1:C:1101:HIS:CD2	2:X:1:NAG:H5	2.45	0.52
1:A:319:ARG:NH2	1:A:319:ARG:CG	2.73	0.52
1:B:48:LEU:N	1:B:48:LEU:CD1	2.73	0.52
1:C:357:ARG:NE	1:C:394:ASN:HD21	2.04	0.52
1:B:520:ALA:CB	1:B:521:PRO:CD	2.79	0.51
1:C:328:ARG:NH2	1:C:533:LEU:HD13	2.24	0.51
1:C:715:PRO:HA	1:C:1072:GLU:HA	1.92	0.51
1:C:544:ASN:ND2	1:C:544:ASN:O	2.41	0.51
1:A:523:THR:CG2	1:A:524:VAL:N	2.46	0.51
1:A:901:GLN:NE2	1:A:905:ARG:HH21	2.08	0.51
1:A:980:ILE:HG23	1:A:984:LEU:CD1	2.40	0.51
1:A:131:CYS:H	1:A:133:PHE:HE1	1.59	0.51
1:A:338:PHE:C	1:A:340:GLU:H	2.13	0.51
1:A:379:CYS:HB3	1:A:382:VAL:O	2.10	0.51
1:A:403:ARG:NH1	1:A:505:TYR:CD1	2.78	0.51
1:B:57:PRO:O	1:B:60:SER:OG	2.24	0.51
1:B:131:CYS:H	1:B:133:PHE:HE1	1.59	0.51
1:B:379:CYS:HB3	1:B:382:VAL:O	2.10	0.51
1:B:569:ILE:CG1	1:C:47:VAL:HG12	2.36	0.51
1:C:662:CYS:HB2	1:C:697:MET:CE	2.27	0.51
1:B:357:ARG:NH2	1:C:230:PRO:HG2	2.25	0.51
1:C:41:LYS:CD	1:C:41:LYS:N	2.73	0.51
1:A:106:PHE:HB3	1:A:235:ILE:HD13	1.93	0.51
1:A:527:PRO:C	1:A:528:LYS:HG2	2.31	0.51
1:C:130:VAL:HB	1:C:168:PHE:HB3	1.93	0.51
1:C:348:ALA:HB2	1:C:354:ASN:ND2	2.26	0.51
1:C:379:CYS:HB3	1:C:382:VAL:O	2.10	0.51
1:A:41:LYS:CD	1:A:41:LYS:N	2.73	0.50
1:A:48:LEU:N	1:A:48:LEU:CD1	2.73	0.50
1:C:131:CYS:H	1:C:133:PHE:HE1	1.59	0.50
1:A:348:ALA:HB2	1:A:354:ASN:ND2	2.26	0.50
1:A:705:VAL:HB	1:B:883:THR:HG21	1.93	0.50
1:B:357:ARG:CA	1:B:395:VAL:O	2.59	0.50

	h i a	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:328:ARG:HH21	1:C:328:ARG:CG	2.24	0.50
1:A:129:LYS:HG2	1:A:133:PHE:HZ	1.77	0.50
1:C:129:LYS:HG2	1:C:133:PHE:HZ	1.77	0.50
1:C:804:GLN:HE21	1:C:935:GLN:NE2	2.08	0.50
1:B:357:ARG:HH22	1:C:230:PRO:HG2	1.76	0.50
1:B:401:VAL:HG22	1:B:509:ARG:HG2	1.94	0.50
1:B:672:ALA:HA	1:B:693:ILE:O	2.12	0.50
1:A:401:VAL:HG22	1:A:509:ARG:HG2	1.94	0.50
1:B:535:LYS:HG2	1:B:536:ASN:N	2.26	0.50
1:C:807:PRO:O	1:C:809:PRO:HD3	2.12	0.50
1:C:1032:CYS:O	1:C:1051:SER:HB2	2.12	0.50
1:C:1090:PRO:HD3	1:C:1095:PHE:CE2	2.47	0.50
1:C:674:TYR:CE1	1:C:691:SER:N	2.79	0.50
1:A:230:PRO:HB2	1:C:357:ARG:CZ	2.42	0.49
1:B:106:PHE:HB3	1:B:235:ILE:HD13	1.93	0.49
1:B:130:VAL:HB	1:B:168:PHE:HB3	1.93	0.49
1:A:982:SER:O	1:A:983:ARG:HB2	2.12	0.49
1:B:348:ALA:HB2	1:B:354:ASN:ND2	2.26	0.49
1:B:519:HIS:NE2	1:C:40:ASP:HB2	2.25	0.49
1:C:388:ASN:HB2	1:C:527:PRO:HG2	1.93	0.49
2:P:1:NAG:H62	2:P:2:NAG:H2	1.93	0.49
1:A:524:VAL:HG22	1:A:525:CYS:N	2.27	0.49
1:C:329:PHE:CB	1:C:330:PRO:CD	2.90	0.49
1:C:357:ARG:NE	1:C:394:ASN:ND2	2.50	0.49
1:C:363:ALA:O	1:C:526:GLY:HA2	2.11	0.49
1:A:735:SER:HB3	1:A:859:THR:HG22	1.94	0.49
1:B:357:ARG:HD2	1:B:396:TYR:HE1	1.76	0.49
1:C:401:VAL:HG22	1:C:509:ARG:HG2	1.94	0.49
1:A:130:VAL:HB	1:A:168:PHE:HB3	1.93	0.49
1:A:437:ASN:OD1	1:A:438:SER:N	2.46	0.49
1:A:534:VAL:HG23	1:A:535:LYS:N	2.28	0.49
1:A:122:ASN:OD1	1:A:122:ASN:N	2.46	0.49
1:A:534:VAL:O	1:A:535:LYS:CG	2.61	0.49
1:B:312:ILE:HG13	1:B:598:ILE:HG13	1.93	0.49
1:B:319:ARG:CG	1:B:319:ARG:NH2	2.73	0.49
1:C:106:PHE:HB3	1:C:235:ILE:HD13	1.93	0.49
1:C:122:ASN:OD1	1:C:122:ASN:N	2.46	0.49
1:A:42:VAL:N	1:C:563:GLN:HG2	2.28	0.49
1:A:231:ILE:HB	1:A:233:ILE:HG22	1.95	0.49
1:A:361:CYS:O	1:A:524:VAL:HG23	2.13	0.49
1:A:565:PHE:CZ	1:B:42:VAL:HG22	2.48	0.49

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:324:GLU:OE2	1:B:537:LYS:NZ	2.38	0.49
1:C:431:GLY:HA3	1:C:513:LEU:O	2.12	0.49
1:C:528:LYS:O	1:C:529:LYS:HG2	2.13	0.49
1:A:171:VAL:HG12	1:A:172:SER:H	1.78	0.49
1:A:431:GLY:HA3	1:A:513:LEU:O	2.12	0.49
1:B:41:LYS:CD	1:B:41:LYS:N	2.73	0.49
1:C:388:ASN:HA	1:C:526:GLY:HA3	1.95	0.49
1:C:437:ASN:OD1	1:C:438:SER:N	2.46	0.49
1:A:42:VAL:HA	1:C:565:PHE:O	2.13	0.49
1:B:122:ASN:OD1	1:B:122:ASN:N	2.46	0.49
1:B:212:LEU:HD23	1:B:215:ASP:HB2	1.95	0.49
1:C:530:SER:O	1:C:531:THR:HG22	2.13	0.49
1:B:171:VAL:HG12	1:B:172:SER:H	1.78	0.48
1:B:524:VAL:HG22	1:B:525:CYS:N	2.27	0.48
1:B:516:GLU:OE2	1:C:200:TYR:CE2	2.65	0.48
1:C:535:LYS:O	1:C:536:ASN:HB2	2.13	0.48
1:A:47:VAL:CG1	1:C:569:ILE:CG1	2.91	0.48
1:A:674:TYR:CD1	1:A:691:SER:O	2.66	0.48
1:A:896:ILE:HG13	1:A:897:PRO:HD2	1.96	0.48
1:B:329:PHE:CD2	1:B:528:LYS:CG	2.94	0.48
1:B:431:GLY:HA3	1:B:513:LEU:O	2.12	0.48
1:B:535:LYS:C	1:B:537:LYS:N	2.66	0.48
1:C:327:VAL:O	1:C:328:ARG:CD	2.61	0.48
1:B:231:ILE:HB	1:B:233:ILE:HG22	1.95	0.48
1:A:392:PHE:CD2	1:A:517:LEU:CD2	2.85	0.48
1:C:361:CYS:O	1:C:524:VAL:HG23	2.13	0.48
1:A:935:GLN:O	1:A:939:SER:HB3	2.14	0.48
1:B:437:ASN:OD1	1:B:438:SER:N	2.46	0.48
1:C:1104:VAL:HG22	1:C:1115:ILE:HG12	1.95	0.48
1:A:212:LEU:HD23	1:A:215:ASP:HB2	1.95	0.48
1:B:46:SER:O	1:B:47:VAL:HG13	2.14	0.48
1:B:329:PHE:CD1	1:B:330:PRO:CD	2.82	0.48
1:C:171:VAL:HG12	1:C:172:SER:H	1.78	0.48
1:B:129:LYS:HG2	1:B:133:PHE:HZ	1.77	0.48
1:B:334:ASN:N	1:B:334:ASN:ND2	2.60	0.48
1:C:319:ARG:NH2	1:C:319:ARG:CG	2.73	0.48
1:A:46:SER:O	1:A:47:VAL:HG13	2.14	0.48
1:B:560:LEU:O	1:B:562:PHE:N	2.47	0.48
1:C:46:SER:O	1:C:47:VAL:HG13	2.14	0.48
1:C:227:VAL:HG12	1:C:228:ASP:H	1.79	0.48
1:C:524:VAL:HG22	1:C:525:CYS:N	2.28	0.48

	juo puge	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:516:GLU:C	1:C:517:LEU:CD2	2.82	0.47
1:C:560:LEU:O	1:C:562:PHE:N	2.47	0.47
1:A:516:GLU:C	1:A:517:LEU:CD2	2.82	0.47
1:B:331:ASN:O	1:B:332:ILE:HD13	2.14	0.47
1:A:886:TRP:CH2	1:A:904:TYR:HD2	2.31	0.47
1:B:227:VAL:HG12	1:B:228:ASP:H	1.79	0.47
1:B:710:ASN:N	1:B:710:ASN:HD22	2.11	0.47
1:C:212:LEU:HD23	1:C:215:ASP:HB2	1.95	0.47
1:C:231:ILE:HB	1:C:233:ILE:HG22	1.95	0.47
1:B:516:GLU:C	1:B:517:LEU:CD2	2.82	0.47
1:A:41:LYS:C	1:C:563:GLN:HG2	2.34	0.47
1:A:329:PHE:HE1	1:A:544:ASN:HA	1.77	0.47
1:A:227:VAL:HG12	1:A:228:ASP:H	1.79	0.47
1:B:403:ARG:NH1	1:B:505:TYR:CD1	2.78	0.47
1:B:563:GLN:HA	1:C:41:LYS:HB3	1.95	0.47
1:C:973:ILE:HG12	1:C:992:GLN:HE21	1.79	0.47
1:C:369:TYR:CE2	1:C:384:PRO:HB2	2.50	0.47
1:C:640:SER:OG	1:C:641:ASN:N	2.48	0.47
1:B:640:SER:OG	1:B:641:ASN:N	2.48	0.47
1:B:310:LYS:HB3	1:B:600:PRO:O	2.15	0.47
1:B:729:VAL:HG13	1:B:1059:GLY:HA2	1.97	0.47
1:C:726:ILE:HG12	1:C:1061:VAL:HG22	1.97	0.47
1:A:369:TYR:CE2	1:A:384:PRO:HB2	2.50	0.46
1:C:117:LEU:HD12	1:C:118:LEU:N	2.30	0.46
1:C:804:GLN:HG3	1:C:935:GLN:HE22	1.80	0.46
1:B:524:VAL:C	1:B:525:CYS:SG	2.93	0.46
1:A:1105:THR:HG22	1:A:1111:GLU:H	1.80	0.46
1:C:393:THR:HA	1:C:523:THR:HB	1.97	0.46
1:A:520:ALA:CB	1:A:521:PRO:CD	2.79	0.46
1:A:524:VAL:C	1:A:525:CYS:SG	2.93	0.46
1:B:328:ARG:NH2	1:B:328:ARG:CG	2.73	0.46
1:B:530:SER:C	1:B:531:THR:HG22	2.36	0.46
1:B:713:ALA:HB3	1:C:894:LEU:HB3	1.97	0.46
1:A:29:THR:HG22	1:A:30:ASN:N	2.31	0.46
1:C:977:LEU:HD12	1:C:996:LEU:HD12	1.98	0.46
1:B:318:PHE:CZ	1:B:620:VAL:O	2.68	0.46
1:C:41:LYS:N	1:C:41:LYS:HD3	2.31	0.46
1:C:316:SER:OG	1:C:317:ASN:N	2.48	0.46
1:C:673:SER:O	1:C:692:ILE:HA	2.15	0.46
1:A:393:THR:HA	1:A:523:THR:HB	1.98	0.46
1:A:912:THR:OG1	1:A:914:ASN:ND2	2.48	0.46

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:B:369:TYR:CE2	1:B:384:PRO:HB2	2.50	0.46	
1:B:562:PHE:CZ	1:C:225:PRO:HG2	2.51	0.46	
1:B:357:ARG:CZ	1:B:394:ASN:ND2	2.79	0.46	
1:B:710:ASN:HD22	1:B:710:ASN:H	1.62	0.46	
1:B:825:LYS:HB3	1:B:825:LYS:HE2	1.79	0.46	
1:C:364:ASP:O	1:C:367:VAL:HG12	2.15	0.46	
1:A:447:GLY:HA2	1:A:497:PHE:O	2.16	0.46	
1:B:45:SER:O	1:B:279:TYR:CB	2.64	0.46	
1:B:536:ASN:HA	1:B:551:VAL:HG13	1.98	0.46	
1:B:563:GLN:HG2	1:C:41:LYS:CA	2.46	0.46	
1:C:447:GLY:HA2	1:C:497:PHE:O	2.16	0.46	
1:A:47:VAL:CG1	1:C:569:ILE:HG13	2.45	0.46	
1:A:364:ASP:O	1:A:367:VAL:HG12	2.15	0.46	
1:A:560:LEU:O	1:A:562:PHE:N	2.47	0.46	
1:B:41:LYS:N	1:B:41:LYS:HD3	2.31	0.46	
1:B:722:VAL:HA	1:B:1064:HIS:O	2.16	0.46	
1:B:1032:CYS:O	1:B:1051:SER:HB2	2.16	0.46	
1:A:45:SER:O	1:A:279:TYR:CB	2.64	0.45	
1:A:329:PHE:CB	1:A:330:PRO:HD2	2.47	0.45	
1:A:983:ARG:O	1:A:984:LEU:CG	2.64	0.45	
1:B:393:THR:HA	1:B:523:THR:HB	1.98	0.45	
1:B:447:GLY:HA2	1:B:497:PHE:O	2.16	0.45	
1:C:329:PHE:CZ	1:C:528:LYS:CG	2.85	0.45	
1:C:335:LEU:HD12	1:C:335:LEU:H	1.80	0.45	
1:A:41:LYS:N	1:A:41:LYS:HD3	2.31	0.45	
1:A:225:PRO:HG2	1:C:562:PHE:CZ	2.52	0.45	
1:B:500:THR:O	1:B:500:THR:OG1	2.31	0.45	
1:B:563:GLN:HG2	1:C:42:VAL:N	2.32	0.45	
1:B:758:SER:O	1:B:762:GLN:HG3	2.16	0.45	
1:C:45:SER:O	1:C:279:TYR:CB	2.64	0.45	
1:C:326:ILE:HG13	1:C:326:ILE:O	2.16	0.45	
1:A:127:VAL:HG11	3:A:1402:NAG:H61	1.98	0.45	
1:A:377:PHE:CD2	1:A:434:ILE:HG12	2.51	0.45	
1:A:1094:VAL:HG22	1:A:1107:ARG:HG2	1.98	0.45	
1:C:29:THR:HG22	1:C:30:ASN:N	2.31	0.45	
1:C:377:PHE:CD2	1:C:434:ILE:HG12	2.51	0.45	
1:C:555:SER:CB	1:C:586:ASP:OD1	2.64	0.45	
1:A:323:THR:O	1:A:324:GLU:HG2	2.16	0.45	
1:A:903:ALA:HB1	1:A:913:GLN:HG2	1.98	0.45	
1:B:113:LYS:O	1:B:113:LYS:NZ	2.31	0.45	
1:B:562:PHE:CZ	1:C:225:PRO:CG	3.00	0.45	

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:48:LEU:HD13	1:C:48:LEU:N	2.32	0.45
1:C:153:MET:N	1:C:153:MET:SD	2.90	0.45
1:C:500:THR:O	1:C:500:THR:OG1	2.31	0.45
1:A:500:THR:O	1:A:500:THR:OG1	2.31	0.45
1:B:332:ILE:HG22	1:B:333:THR:N	2.21	0.45
1:B:535:LYS:CG	1:B:536:ASN:N	2.79	0.45
1:B:578:ASP:OD2	1:B:581:THR:HG22	2.16	0.45
1:C:329:PHE:HE1	1:C:528:LYS:HG2	1.50	0.45
1:B:127:VAL:HG11	3:B:1402:NAG:H61	1.98	0.45
1:B:535:LYS:O	1:B:537:LYS:HG3	2.17	0.45
1:A:113:LYS:O	1:A:113:LYS:NZ	2.31	0.45
1:A:187:LYS:HE3	1:A:213:VAL:HG12	1.99	0.45
1:A:1090:PRO:HD3	1:A:1095:PHE:CE2	2.51	0.45
1:B:646:ARG:O	1:B:646:ARG:HG3	2.17	0.45
1:C:578:ASP:OD2	1:C:581:THR:HG22	2.16	0.45
1:A:578:ASP:OD2	1:A:581:THR:HG22	2.16	0.45
1:A:670:ILE:HA	1:A:695:TYR:O	2.17	0.45
1:A:316:SER:OG	1:A:317:ASN:N	2.48	0.45
1:B:153:MET:SD	1:B:153:MET:N	2.90	0.45
1:B:323:THR:C	1:B:324:GLU:CG	2.80	0.45
1:B:324:GLU:OE2	1:B:534:VAL:HG11	2.16	0.45
1:A:47:VAL:HG12	1:C:569:ILE:CG1	2.48	0.44
1:B:316:SER:OG	1:B:317:ASN:N	2.50	0.44
1:B:328:ARG:O	1:B:329:PHE:CD2	2.70	0.44
1:B:334:ASN:H	1:B:334:ASN:HD22	1.63	0.44
1:B:357:ARG:HE	1:B:394:ASN:CG	2.21	0.44
1:C:127:VAL:HG11	3:C:1402:NAG:H61	1.98	0.44
1:C:393:THR:O	1:C:523:THR:CG2	2.58	0.44
1:A:440:ASN:ND2	1:A:441:LEU:HG	2.32	0.44
1:A:973:ILE:CD1	1:A:984:LEU:HD11	2.47	0.44
1:B:187:LYS:HE3	1:B:213:VAL:HG12	1.99	0.44
1:B:318:PHE:HZ	1:B:620:VAL:O	2.01	0.44
1:C:187:LYS:HE3	1:C:213:VAL:HG12	1.99	0.44
1:B:48:LEU:HD13	1:B:48:LEU:N	2.32	0.44
1:C:323:THR:C	1:C:324:GLU:HG2	2.38	0.44
1:C:1040:VAL:O	1:C:1041:ASP:HB2	2.17	0.44
1:C:1141:LEU:O	1:C:1145:LEU:HD12	2.17	0.44
1:A:153:MET:SD	1:A:153:MET:N	2.90	0.44
1:B:294:ASP:N	1:B:294:ASP:OD1	2.50	0.44
1:B:521:PRO:O	1:B:522:ALA:CB	2.66	0.44
1:B:653:ALA:CB	1:B:692:ILE:HG22	2.48	0.44

	A l	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:C:335:LEU:C	1:C:362:VAL:O	2.56	0.44	
1:C:691:SER:OG	1:C:692:ILE:N	2.50	0.44	
1:A:117:LEU:HD12	1:A:118:LEU:N	2.30	0.44	
1:B:29:THR:HG22	1:B:30:ASN:N	2.31	0.44	
1:B:377:PHE:CD2	1:B:434:ILE:HG12	2.51	0.44	
1:B:1045:LYS:NZ	1:C:786:LYS:CE	2.79	0.44	
1:C:140:PHE:CG	1:C:244:LEU:HD11	2.53	0.44	
1:C:521:PRO:HA	1:C:564:GLN:HG3	1.99	0.44	
1:A:294:ASP:OD1	1:A:294:ASP:N	2.50	0.44	
1:B:330:PRO:HB2	1:B:332:ILE:HD11	1.98	0.44	
1:B:440:ASN:ND2	1:B:441:LEU:HG	2.32	0.44	
1:C:134:GLN:HB3	1:C:162:SER:HB2	2.00	0.44	
1:C:530:SER:C	1:C:531:THR:CG2	2.85	0.44	
1:C:523:THR:CG2	1:C:524:VAL:N	2.46	0.44	
1:C:1081:ILE:HG12	1:C:1095:PHE:CE2	2.53	0.44	
1:A:329:PHE:HB3	1:A:330:PRO:CD	2.47	0.44	
1:A:390:LEU:O	1:A:525:CYS:HB3	2.18	0.44	
1:A:521:PRO:O	1:A:522:ALA:CB	2.66	0.44	
1:A:546:LEU:HD11	1:A:565:PHE:CG	2.53	0.44	
1:A:646:ARG:O	1:A:646:ARG:HG3	2.17	0.44	
1:C:440:ASN:ND2	1:C:441:LEU:HG	2.32	0.44	
1:A:335:LEU:C	1:A:362:VAL:O	2.56	0.43	
1:A:959:LEU:HD23	1:A:959:LEU:HA	1.78	0.43	
1:A:1104:VAL:HG22	1:A:1115:ILE:HG12	2.00	0.43	
1:C:385:THR:HG1	1:C:386:LYS:HZ3	1.59	0.43	
1:C:646:ARG:HG3	1:C:646:ARG:O	2.17	0.43	
1:B:140:PHE:CG	1:B:244:LEU:HD11	2.53	0.43	
1:C:130:VAL:HG21	1:C:231:ILE:HD12	2.00	0.43	
1:A:592:PHE:CD1	1:A:592:PHE:C	2.91	0.43	
1:B:127:VAL:HG21	3:B:1402:NAG:H5	2.00	0.43	
1:B:134:GLN:HB3	1:B:162:SER:HB2	2.00	0.43	
1:B:328:ARG:HD2	1:B:328:ARG:N	2.33	0.43	
1:B:390:LEU:O	1:B:525:CYS:HB3	2.18	0.43	
1:B:546:LEU:HD11	1:B:565:PHE:CG	2.53	0.43	
1:C:654:GLU:CG	1:C:693:ILE:HG22	2.20	0.43	
1:A:130:VAL:HG21	1:A:231:ILE:HD12	2.00	0.43	
1:A:134:GLN:HB3	1:A:162:SER:HB2	2.00	0.43	
1:A:388:ASN:CG	1:A:527:PRO:HD2	2.38	0.43	
1:B:99:ASN:O	1:B:102:ARG:NE	2.35	0.43	
1:B:141:LEU:O	1:B:243:ALA:HA	2.18	0.43	
1:C:127:VAL:HG21	3:C:1402:NAG:H5	2.01	0.43	

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:328:ARG:NH2	1:C:328:ARG:CG	2.80	0.43
1:C:654:GLU:O	1:C:693:ILE:CG2	2.56	0.43
1:A:331:ASN:C	1:A:332:ILE:CG1	2.86	0.43
1:C:535:LYS:CE	1:C:554:GLU:OE2	2.67	0.43
1:C:995:ARG:HE	1:C:995:ARG:HB3	1.67	0.43
1:A:612:TYR:HE1	1:A:651:ILE:HD12	1.84	0.43
1:A:1097:SER:HA	1:A:1101:HIS:O	2.19	0.43
1:C:391:CYS:HG	1:C:525:CYS:HG	0.45	0.43
1:C:672:ALA:HA	1:C:693:ILE:O	2.18	0.43
1:A:795:LYS:HB3	1:A:797:PHE:CE2	2.54	0.43
1:A:855:PHE:HB3	1:A:856:ASN:H	1.47	0.43
1:A:516:GLU:C	1:A:517:LEU:HD23	2.39	0.43
1:A:654:GLU:HG3	1:A:693:ILE:CG2	2.31	0.43
1:B:357:ARG:NH1	1:B:394:ASN:HD21	2.16	0.43
1:B:986:PRO:CB	1:B:987:PRO:HD3	2.45	0.43
1:C:546:LEU:HD11	1:C:565:PHE:CG	2.53	0.43
2:L:1:NAG:H61	2:L:2:NAG:N2	2.33	0.43
1:A:140:PHE:CG	1:A:244:LEU:HD11	2.53	0.43
1:A:141:LEU:O	1:A:243:ALA:HA	2.18	0.43
1:B:130:VAL:HG21	1:B:231:ILE:HD12	2.00	0.43
1:B:516:GLU:C	1:B:517:LEU:HD23	2.39	0.43
1:C:391:CYS:CB	1:C:525:CYS:SG	3.07	0.43
1:C:612:TYR:HE1	1:C:651:ILE:HD12	1.84	0.43
1:C:617:CYS:HB2	1:C:649:CYS:HB2	1.87	0.43
2:S:1:NAG:H61	2:S:2:NAG:N2	2.33	0.43
1:A:1032:CYS:O	1:A:1051:SER:HB2	2.18	0.43
1:C:722:VAL:HA	1:C:1064:HIS:O	2.19	0.43
2:E:1:NAG:H61	2:E:2:NAG:N2	2.33	0.43
1:B:117:LEU:HD12	1:B:118:LEU:N	2.30	0.42
1:B:530:SER:O	1:B:531:THR:CB	2.67	0.42
1:B:653:ALA:HB2	1:B:692:ILE:HG22	1.99	0.42
1:C:141:LEU:O	1:C:243:ALA:HA	2.18	0.42
1:C:912:THR:OG1	1:C:914:ASN:ND2	2.51	0.42
1:B:131:CYS:HB3	1:B:164:ASN:O	2.19	0.42
1:B:530:SER:O	1:B:531:THR:HB	2.19	0.42
1:C:320:VAL:HG23	1:C:591:SER:O	2.19	0.42
1:C:516:GLU:C	1:C:517:LEU:HD23	2.39	0.42
1:A:569:ILE:O	1:A:570:ALA:HB3	2.19	0.42
3:B:1409:NAG:O4	3:B:1410:NAG:O5	2.28	0.42
1:C:294:ASP:OD1	1:C:294:ASP:N	2.50	0.42
1:A:112:SER:O	1:A:113:LYS:HB3	2.20	0.42

	jus puge	Interatomic	nic Clash (Å) overlap (Å)	
Atom-1	Atom-2	distance (Å)		
1:B:1045:LYS:HZ1	1:C:786:LYS:HE3	1.83	0.42	
1:C:304:LYS:HE3	1:C:304:LYS:HB3	1.78	0.42	
1:C:392:PHE:CA	1:C:517:LEU:HD21	2.49	0.42	
1:C:569:ILE:O	1:C:570:ALA:HB3	2.19	0.42	
1:C:792:PRO:O	1:C:795:LYS:NZ	2.52	0.42	
1:A:640:SER:OG	1:A:641:ASN:N	2.48	0.42	
1:B:112:SER:O	1:B:113:LYS:HB3	2.20	0.42	
1:B:521:PRO:HA	1:B:564:GLN:HG3	2.01	0.42	
1:C:357:ARG:O	1:C:357:ARG:HG2	2.19	0.42	
1:C:793:PRO:HG2	1:C:794:ILE:HD12	2.00	0.42	
1:A:690:GLN:O	1:A:691:SER:HB3	2.19	0.42	
1:B:612:TYR:HE1	1:B:651:ILE:HD12	1.84	0.42	
1:C:131:CYS:HB3	1:C:164:ASN:O	2.19	0.42	
1:C:784:GLN:HE21	1:C:784:GLN:HB3	1.63	0.42	
1:C:1027:THR:HG22	1:C:1042:PHE:HZ	1.83	0.42	
1:B:524:VAL:CG2	1:B:525:CYS:N	2.83	0.42	
1:C:27:ALA:HB3	1:C:64:TRP:HB3	2.01	0.42	
1:C:112:SER:O	1:C:113:LYS:HB3	2.20	0.42	
1:B:27:ALA:HB3	1:B:64:TRP:HB3	2.01	0.42	
1:C:393:THR:H	1:C:517:LEU:HD22	1.85	0.42	
1:C:535:LYS:CE	1:C:554:GLU:CD	2.88	0.42	
1:A:230:PRO:CB	1:C:357:ARG:CZ	2.98	0.42	
1:A:27:ALA:HB3	1:A:64:TRP:HB3	2.01	0.42	
1:A:131:CYS:HB3	1:A:164:ASN:O	2.19	0.42	
1:A:316:SER:C	1:A:317:ASN:ND2	2.73	0.42	
1:A:393:THR:O	1:A:523:THR:CG2	2.58	0.42	
1:A:973:ILE:HG23	1:A:992:GLN:NE2	2.35	0.42	
1:B:393:THR:O	1:B:523:THR:CG2	2.58	0.42	
1:C:735:SER:OG	1:C:859:THR:HG22	2.17	0.42	
2:T:1:NAG:H3	2:T:1:NAG:H83	2.02	0.42	
1:A:323:THR:OG1	1:A:324:GLU:OE1	2.37	0.41	
1:A:933:LYS:HB2	1:A:933:LYS:HE3	1.86	0.41	
1:B:569:ILE:O	1:B:570:ALA:HB3	2.19	0.41	
1:C:538:CYS:CB	1:C:590:CYS:SG	3.05	0.41	
1:A:320:VAL:HG12	1:A:321:GLN:N	2.35	0.41	
1:A:674:TYR:CE1	1:A:691:SER:N	2.88	0.41	
1:A:758:SER:O	1:A:762:GLN:HG3	2.19	0.41	
1:B:406:GLU:CG	1:B:418:ILE:HG13	2.50	0.41	
1:C:193:VAL:HG23	1:C:223:LEU:CD2	2.51	0.41	
1:C:521:PRO:O	1:C:522:ALA:CB	2.66	0.41	
1:C:528:LYS:HD2	1:C:528:LYS:HA	1.66	0.41	

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:696:THR:O	1:C:697:MET:C	2.56	0.41
1:C:736:VAL:HG23	1:C:858:LEU:HD23	2.02	0.41
1:C:856:ASN:O	1:C:856:ASN:ND2	2.48	0.41
1:A:127:VAL:HG21	3:A:1402:NAG:H5	2.01	0.41
1:A:886:TRP:HH2	1:A:904:TYR:CD2	2.35	0.41
1:C:316:SER:C	1:C:317:ASN:ND2	2.73	0.41
1:B:357:ARG:HB3	1:B:396:TYR:HD1	1.78	0.41
1:B:671:CYS:SG	1:B:697:MET:HB3	2.60	0.41
1:C:48:LEU:H	1:C:48:LEU:CD1	2.33	0.41
1:C:532:ASN:H	1:C:532:ASN:ND2	2.15	0.41
1:A:981:LEU:C	1:A:983:ARG:N	2.72	0.41
1:C:334:ASN:O	1:C:362:VAL:CB	2.62	0.41
1:A:99:ASN:O	1:A:102:ARG:NE	2.35	0.41
1:A:193:VAL:HG23	1:A:223:LEU:CD2	2.51	0.41
1:A:393:THR:H	1:A:517:LEU:HD22	1.85	0.41
1:B:193:VAL:HG23	1:B:223:LEU:CD2	2.51	0.41
1:C:931:ILE:HD13	1:C:931:ILE:HA	1.86	0.41
1:A:406:GLU:CG	1:A:418:ILE:HG13	2.50	0.41
1:A:524:VAL:CG2	1:A:525:CYS:N	2.83	0.41
1:A:1123:SER:O	1:A:1123:SER:OG	2.39	0.41
1:C:703:ASN:C	1:C:703:ASN:HD22	2.24	0.41
1:C:973:ILE:HG23	1:C:992:GLN:NE2	2.35	0.41
1:A:347:PHE:CD1	1:A:509:ARG:HD3	2.56	0.41
1:A:565:PHE:O	1:B:42:VAL:CA	2.60	0.41
1:B:45:SER:OG	1:B:281:GLU:HA	2.21	0.41
1:B:523:THR:CG2	1:B:524:VAL:N	2.46	0.41
1:B:542:ASN:HA	1:B:546:LEU:O	2.21	0.41
1:B:776:LYS:HE3	1:B:776:LYS:HB3	1.65	0.41
1:C:674:TYR:HA	1:C:691:SER:O	2.20	0.41
1:C:821:LEU:HD22	1:C:939:SER:HB3	2.03	0.41
1:C:854:LYS:HE2	1:C:854:LYS:HB3	1.88	0.41
1:C:985:ASP:OD1	1:C:985:ASP:N	2.47	0.41
1:B:347:PHE:CD1	1:B:509:ARG:HD3	2.56	0.40
1:B:748:GLU:CG	1:B:981:LEU:CD2	2.81	0.40
1:C:166:CYS:HB3	1:C:169:GLU:OE1	2.21	0.40
1:C:588:THR:OG1	1:C:589:PRO:CD	2.58	0.40
1:C:870:ILE:O	1:C:874:THR:HG23	2.21	0.40
1:A:89:GLY:HA2	1:A:194:PHE:O	2.22	0.40
1:A:329:PHE:HB2	1:A:530:SER:HB3	2.03	0.40
1:A:338:PHE:C	1:A:340:GLU:N	2.75	0.40
1:B:127:VAL:HG22	1:B:171:VAL:HG13	2.04	0.40

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:B:328:ARG:HH21	1:B:328:ARG:HG3	1.80	0.40	
1:B:338:PHE:C	1:B:340:GLU:N	2.75	0.40	
1:B:1040:VAL:O	1:B:1041:ASP:HB2	2.21	0.40	
1:C:213:VAL:HG23	1:C:214:ARG:N	2.36	0.40	
1:A:187:LYS:N	1:A:187:LYS:HE2	2.37	0.40	
1:A:200:TYR:OH	1:C:394:ASN:ND2	2.54	0.40	
1:A:304:LYS:HE3	1:A:304:LYS:HB3	1.78	0.40	
1:A:329:PHE:CB	1:A:330:PRO:CD	2.99	0.40	
1:A:1051:SER:OG	1:A:1064:HIS:ND1	2.46	0.40	
1:A:1105:THR:HG21	1:A:1110:TYR:CD1	2.57	0.40	
1:B:166:CYS:HB3	1:B:169:GLU:OE1	2.21	0.40	
1:B:213:VAL:HG23	1:B:214:ARG:N	2.36	0.40	
1:B:309:GLU:H	1:B:309:GLU:HG2	1.71	0.40	
1:B:794:ILE:H	1:B:794:ILE:HG13	1.69	0.40	
1:C:127:VAL:HG22	1:C:171:VAL:HG13	2.03	0.40	
1:C:200:TYR:CE1	1:C:230:PRO:HB3	2.56	0.40	
1:C:347:PHE:CD1	1:C:509:ARG:HD3	2.56	0.40	
1:C:521:PRO:CB	1:C:564:GLN:CD	2.89	0.40	
1:C:524:VAL:CG2	1:C:525:CYS:N	2.84	0.40	
1:A:213:VAL:HG23	1:A:214:ARG:N	2.36	0.40	
1:A:227:VAL:CG1	1:A:228:ASP:N	2.84	0.40	
1:A:296:LEU:HD11	1:A:602:THR:HG22	2.03	0.40	
1:A:329:PHE:CD1	1:A:544:ASN:HA	2.57	0.40	
1:A:708:SER:OG	1:A:711:SER:HB2	2.22	0.40	
1:B:89:GLY:HA2	1:B:194:PHE:O	2.22	0.40	
1:B:393:THR:H	1:B:517:LEU:HD22	1.85	0.40	
1:B:562:PHE:HE2	1:C:41:LYS:CD	2.22	0.40	
1:C:45:SER:O	1:C:47:VAL:N	2.54	0.40	
1:C:770:ILE:O	1:C:774:GLN:HG2	2.21	0.40	
1:A:212:LEU:HD12	1:A:212:LEU:HA	1.78	0.40	
1:B:523:THR:O	1:B:525:CYS:SG	2.80	0.40	
1:B:600:PRO:HB3	1:B:674:TYR:HB2	2.04	0.40	
1:C:45:SER:OG	1:C:281:GLU:HA	2.21	0.40	
1:C:100:ILE:HG22	1:C:242:LEU:HD23	2.04	0.40	
1:C:226:LEU:HB3	1:C:227:VAL:HG23	2.03	0.40	
1:C:406:GLU:CG	1:C:418:ILE:HG13	2.50	0.40	
1:C:674:TYR:CE1	1:C:690:GLN:CA	3.02	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Per	centiles
1	А	952/1283~(74%)	830 (87%)	92 (10%)	30 (3%)	(T)	20
1	В	951/1283 (74%)	822 (86%)	102 (11%)	27 (3%)	4	22
1	С	951/1283 (74%)	812 (85%)	107 (11%)	32 (3%)	30	19
All	All	2854/3849 (74%)	2464 (86%)	301 (10%)	89 (3%)	Сл	5 21

All (89) Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	48	LEU
1	А	518	LEU
1	А	701	ALA
1	А	983	ARG
1	В	48	LEU
1	В	327	VAL
1	В	518	LEU
1	В	536	ASN
1	С	48	LEU
1	С	518	LEU
1	С	691	SER
1	С	814	LYS
1	А	41	LYS
1	А	46	SER
1	А	339	GLY
1	А	531	THR
1	А	855	PHE
1	В	41	LYS
1	В	46	SER
1	В	339	GLY
1	В	365	TYR
1	В	742	ILE
1	В	743	CYS
1	C	41	LYS

Mol	Chain	Res	Type
1	С	46	SER
1	С	325	SER
1	С	339	GLY
1	С	532	ASN
1	С	697	MET
1	С	810	SER
1	А	43	PHE
1	А	331	ASN
1	А	336	CYS
1	А	522	ALA
1	А	526	GLY
1	А	591	SER
1	А	691	SER
1	А	695	TYR
1	А	710	ASN
1	А	987	PRO
1	В	43	PHE
1	В	336	CYS
1	В	522	ALA
1	В	530	SER
1	В	531	THR
1	В	532	ASN
1	С	43	PHE
1	С	320	VAL
1	С	336	CYS
1	С	522	ALA
1	А	44	ARG
1	А	324	GLU
1	А	349	SER
1	А	520	ALA
1	А	984	LEU
1	В	44	ARG
1	В	326	ILE
1	B	349	SER
1	В	520	ALA
1	В	534	VAL
1	В	746	SER
1	С	44	ARG
1	C	349	SER
1	С	520	ALA
1	C	813	SER
1	A	40	ASP

Mol	Chain	Res	Type
1	А	42	VAL
1	А	47	VAL
1	А	982	SER
1	В	40	ASP
1	В	42	VAL
1	В	47	VAL
1	С	40	ASP
1	С	42	VAL
1	С	47	VAL
1	С	535	LYS
1	С	587	ILE
1	С	812	PRO
1	В	324	GLU
1	С	329	PHE
1	С	333	THR
1	С	811	LYS
1	А	534	VAL
1	С	332	ILE
1	С	534	VAL
1	А	332	ILE
1	С	322	PRO
1	В	527	PRO
1	С	327	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric Outliers		Percentiles		
1	А	850/1121 (76%)	747 (88%)	103 (12%)		4	16
1	В	849/1121~(76%)	753~(89%)	96 (11%)		4	18
1	С	849/1121~(76%)	758~(89%)	91 (11%)		5	21
All	All	2548/3363~(76%)	2258 (89%)	290 (11%)		7	18

All (290) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	40	ASP
1	А	46	SER
1	А	48	LEU
1	А	97	LYS
1	А	109	THR
1	А	116	SER
1	А	118	LEU
1	А	122	ASN
1	А	137	ASN
1	А	141	LEU
1	А	143	VAL
1	А	158	ARG
1	А	164	ASN
1	А	169	GLU
1	А	195	LYS
1	А	205	SER
1	А	208	THR
1	А	221	SER
1	А	282	ASN
1	А	296	LEU
1	А	301	CYS
1	А	308	VAL
1	А	314	GLN
1	А	315	THR
1	А	319	ARG
1	А	324	GLU
1	А	328	ARG
1	А	333	THR
1	А	334	ASN
1	А	335	LEU
1	А	353	TRP
1	А	355	ARG
1	А	375	SER
1	А	383	SER
1	А	389	ASP
1	А	390	LEU
1	А	406	GLU
1	А	421	TYR
1	А	430	THR
1	А	438	SER
1	А	440	ASN
1	А	500	THR
1	А	514	SER

Mol	Chain	Res	Type
1	А	517	LEU
1	А	518	LEU
1	А	525	CYS
1	А	528	LYS
1	А	529	LYS
1	А	533	LEU
1	А	540	ASN
1	А	546	LEU
1	А	553	THR
1	А	554	GLU
1	А	556	ASN
1	А	558	LYS
1	А	576	VAL
1	А	583	GLU
1	А	591	SER
1	А	599	THR
1	А	602	THR
1	А	646	ARG
1	А	673	SER
1	А	690	GLN
1	А	696	THR
1	А	702	GLU
1	А	704	SER
1	А	722	VAL
1	А	727	LEU
1	А	729	VAL
1	А	738	CYS
1	А	746	SER
1	А	773	GLU
1	А	785	VAL
1	А	787	GLN
1	А	791	THR
1	А	826	VAL
1	A	854	LYS
1	A	868	GLU
1	A	878	LEU
1	A	883	THR
1	A	902	MET
1	A	916	LEU
1	А	929	SER
1	A	937	SER
1	А	939	SER

Mol	Chain	Res	Type
1	А	951	VAL
1	А	967	SER
1	А	988	GLU
1	А	994	ASP
1	А	1005	GLN
1	А	1074	ASN
1	А	1076	THR
1	А	1077	THR
1	А	1092	GLU
1	А	1094	VAL
1	А	1100	THR
1	А	1104	VAL
1	А	1123	SER
1	А	1125	ASN
1	А	1132	ILE
1	А	1141	LEU
1	А	1142	GLN
1	А	1144	GLU
1	В	40	ASP
1	В	46	SER
1	В	48	LEU
1	В	97	LYS
1	В	109	THR
1	В	116	SER
1	В	118	LEU
1	В	122	ASN
1	В	137	ASN
1	В	141	LEU
1	В	143	VAL
1	В	158	ARG
1	В	164	ASN
1	В	169	GLU
1	В	195	LYS
1	В	205	SER
1	B	208	THR
1	В	221	SER
1	В	282	ASN
1	В	296	LEU
1	В	301	CYS
1	В	308	VAL
1	В	314	GLN
1	В	315	THR

Mol	Chain	Res	Type
1	В	319	ARG
1	В	324	GLU
1	В	327	VAL
1	В	328	ARG
1	В	329	PHE
1	В	334	ASN
1	В	335	LEU
1	В	353	TRP
1	В	355	ARG
1	В	375	SER
1	В	383	SER
1	В	389	ASP
1	В	390	LEU
1	В	406	GLU
1	В	421	TYR
1	В	430	THR
1	В	438	SER
1	В	440	ASN
1	В	500	THR
1	В	514	SER
1	В	517	LEU
1	В	518	LEU
1	В	525	CYS
1	В	528	LYS
1	В	531	THR
1	В	532	ASN
1	В	533	LEU
1	В	540	ASN
1	В	546	LEU
1	В	553	THR
1	В	554	GLU
1	В	556	ASN
1	В	558	LYS
1	В	576	VAL
1	В	583	GLU
1	В	591	SER
1	В	599	THR
1	В	602	THR
1	В	646	ARG
1	В	673	SER
1	В	704	SER
1	В	710	ASN

Mol	Chain	Res	Type
1	В	735	SER
1	В	747	THR
1	В	748	GLU
1	В	779	GLN
1	В	786	LYS
1	В	787	GLN
1	В	791	THR
1	В	808	ASP
1	В	854	LYS
1	В	855	PHE
1	В	856	ASN
1	В	868	GLU
1	В	878	LEU
1	В	912	THR
1	В	916	LEU
1	В	935	GLN
1	В	964	LYS
1	В	968	SER
1	В	969	ASN
1	В	974	SER
1	В	976	VAL
1	В	1030	SER
1	В	1037	SER
1	В	1045	LYS
1	В	1074	ASN
1	В	1094	VAL
1	В	1104	VAL
1	В	1114	ILE
1	В	1126	CYS
1	В	1141	LEU
1	С	40	ASP
1	С	46	SER
1	С	48	LEU
1	С	97	LYS
1	C	109	THR
1	С	116	SER
1	C	118	LEU
1	С	122	ASN
1	C	137	ASN
1	С	141	LEU
1	С	143	VAL
1	С	158	ARG

Mol	Chain	Res	Type
1	С	164	ASN
1	С	169	GLU
1	С	195	LYS
1	С	205	SER
1	С	208	THR
1	С	221	SER
1	С	282	ASN
1	С	296	LEU
1	С	301	CYS
1	С	308	VAL
1	С	314	GLN
1	С	315	THR
1	С	319	ARG
1	С	323	THR
1	С	324	GLU
1	С	326	ILE
1	С	328	ARG
1	С	333	THR
1	С	335	LEU
1	С	353	TRP
1	С	355	ARG
1	С	357	ARG
1	С	375	SER
1	С	383	SER
1	С	388	ASN
1	С	389	ASP
1	С	390	LEU
1	С	394	ASN
1	С	406	GLU
1	С	421	TYR
1	С	430	THR
1	С	438	SER
1	C	440	ASN
1	C	500	THR
1	C	514	SER
1	C	517	LEU
1	C	518	LEU
1	C	525	CYS
1	C	528	LYS
1	C	529	LYS
1	C	535	LYS
1	C	540	ASN

Mol	Chain	Res	Type
1	С	546	LEU
1	С	553	THR
1	С	554	GLU
1	С	556	ASN
1	С	558	LYS
1	С	576	VAL
1	С	583	GLU
1	С	586	ASP
1	С	599	THR
1	С	602	THR
1	С	646	ARG
1	С	673	SER
1	С	690	GLN
1	С	693	ILE
1	С	696	THR
1	С	703	ASN
1	С	727	LEU
1	С	778	THR
1	С	787	GLN
1	С	814	LYS
1	С	856	ASN
1	С	886	TRP
1	С	937	SER
1	С	974	SER
1	С	975	SER
1	С	976	VAL
1	С	977	LEU
1	С	988	GLU
1	С	1017	GLU
1	С	1077	THR
1	С	1094	VAL
1	С	1104	VAL
1	С	1126	CYS
1	С	1129	VAL
1	С	1132	ILE
1	С	1136	THR
1	С	1145	LEU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (85) such sidechains are listed below:

		ICCD	турс
1	А	134	GLN

Mol	Chain	Res	Type
1	А	137	ASN
1	А	188	ASN
1	А	239	GLN
1	А	317	ASN
1	А	354	ASN
1	А	360	ASN
1	А	394	ASN
1	А	422	ASN
1	А	440	ASN
1	А	498	GLN
1	А	540	ASN
1	А	556	ASN
1	А	644	GLN
1	А	658	ASN
1	А	703	ASN
1	А	762	GLN
1	А	787	GLN
1	А	901	GLN
1	А	914	ASN
1	А	919	ASN
1	А	926	GLN
1	А	955	ASN
1	А	969	ASN
1	А	978	ASN
1	А	992	GLN
1	А	1125	ASN
1	А	1142	GLN
1	В	134	GLN
1	В	137	ASN
1	В	188	ASN
1	В	239	GLN
1	В	317	ASN
1	В	334	ASN
1	В	354	ASN
1	B	422	ASN
1	В	440	ASN
1	В	498	GLN
1	В	519	HIS
1	В	532	ASN
1	B	540	ASN
1	В	556	ASN
1	В	644	GLN

Mol	Chain	Res	Type
1	В	655	HIS
1	В	658	ASN
1	В	710	ASN
1	В	804	GLN
1	В	901	GLN
1	В	914	ASN
1	В	919	ASN
1	В	920	GLN
1	В	926	GLN
1	В	992	GLN
1	В	1054	GLN
1	С	134	GLN
1	С	137	ASN
1	С	188	ASN
1	С	239	GLN
1	С	317	ASN
1	С	354	ASN
1	С	360	ASN
1	С	394	ASN
1	С	422	ASN
1	С	440	ASN
1	С	498	GLN
1	С	532	ASN
1	С	540	ASN
1	С	556	ASN
1	С	644	GLN
1	С	658	ASN
1	С	690	GLN
1	С	703	ASN
1	С	784	GLN
1	С	804	GLN
1	С	901	GLN
1	C	907	ASN
1	С	914	ASN
1	C	926	GLN
1	С	935	GLN
1	С	969	ASN
1	C	992	GLN
1	С	1010	GLN
1	С	1071	GLN
1	С	1101	HIS
1	С	1106	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

44 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tiple	Bo	ond leng	$_{\rm ths}$	Bond angles		
	туре	Unann	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	NAG	D	1	1,2	14,14,15	0.55	0	17,19,21	0.49	0
2	NAG	D	2	2	14,14,15	0.25	0	17,19,21	0.58	0
2	NAG	Е	1	1,2	14,14,15	0.59	1 (7%)	17,19,21	0.57	0
2	NAG	Е	2	2	14,14,15	0.30	0	17,19,21	0.46	0
2	NAG	F	1	1,2	14,14,15	0.33	0	17,19,21	0.62	0
2	NAG	F	2	2	14,14,15	0.51	0	17,19,21	0.47	0
2	NAG	G	1	1,2	14,14,15	0.38	0	17,19,21	0.74	0
2	NAG	G	2	2	14,14,15	0.30	0	17,19,21	1.31	2 (11%)
2	NAG	Н	1	1,2	14,14,15	0.70	1 (7%)	17,19,21	0.70	0
2	NAG	Н	2	2	14,14,15	0.39	0	17,19,21	1.40	3 (17%)
2	NAG	Ι	1	1,2	14,14,15	0.69	1 (7%)	17,19,21	0.67	0
2	NAG	Ι	2	2	14,14,15	0.28	0	17,19,21	0.64	0
2	NAG	J	1	1,2	14,14,15	0.26	0	17,19,21	0.69	1 (5%)
2	NAG	J	2	2	14,14,15	0.16	0	17,19,21	0.49	0
2	NAG	K	1	1,2	14,14,15	0.55	0	17,19,21	0.50	0
2	NAG	K	2	2	14,14,15	0.25	0	17,19,21	0.58	0
2	NAG	L	1	1,2	14,14,15	0.59	1 (7%)	17,19,21	0.56	0
2	NAG	L	2	2	14,14,15	0.29	0	17,19,21	0.46	0
2	NAG	М	1	1,2	14,14,15	0.32	0	17,19,21	0.41	0
2	NAG	М	2	2	14,14,15	0.39	0	17,19,21	0.36	0
2	NAG	N	1	1,2	14,14,15	0.35	0	17,19,21	1.12	1(5%)

Mal	Tuno	Chain	Dog	Tink	Bo	ond leng	ths	Bond angles		
IVIOI	Type	Ullalli	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	NAG	N	2	2	$14,\!14,\!15$	0.29	0	17,19,21	0.47	0
2	NAG	0	1	1,2	14,14,15	0.33	0	17,19,21	0.70	1 (5%)
2	NAG	0	2	2	14,14,15	0.22	0	17,19,21	0.40	0
2	NAG	Р	1	1,2	14,14,15	0.77	1 (7%)	17,19,21	0.91	1 (5%)
2	NAG	Р	2	2	14,14,15	0.34	0	17,19,21	0.70	1 (5%)
2	NAG	Q	1	1,2	14,14,15	0.21	0	17,19,21	0.45	0
2	NAG	Q	2	2	14,14,15	0.27	0	17,19,21	0.36	0
2	NAG	R	1	1,2	$14,\!14,\!15$	0.29	0	17,19,21	0.62	0
2	NAG	R	2	2	$14,\!14,\!15$	0.23	0	17,19,21	0.58	0
2	NAG	S	1	1,2	14,14,15	0.59	1 (7%)	17,19,21	0.57	0
2	NAG	S	2	2	14,14,15	0.29	0	17,19,21	0.46	0
2	NAG	Т	1	1,2	14,14,15	0.22	0	17,19,21	1.36	1 (5%)
2	NAG	Т	2	2	14,14,15	0.19	0	17,19,21	0.50	0
2	NAG	U	1	1,2	14,14,15	0.54	0	17,19,21	0.71	1 (5%)
2	NAG	U	2	2	14,14,15	0.39	0	17,19,21	0.46	0
2	NAG	V	1	1,2	14,14,15	0.33	0	17,19,21	0.39	0
2	NAG	V	2	2	14,14,15	0.19	0	17,19,21	0.74	0
2	NAG	W	1	1,2	14,14,15	0.35	0	17,19,21	0.48	0
2	NAG	W	2	2	14,14,15	0.56	0	17,19,21	1.31	1 (5%)
2	NAG	Х	1	1,2	14,14,15	0.65	1 (7%)	17,19,21	0.43	0
2	NAG	Х	2	2	14,14,15	0.31	0	17,19,21	1.35	2 (11%)
2	NAG	Y	1	1,2	14,14,15	0.40	0	17,19,21	0.46	0
2	NAG	Y	2	2	14,14,15	0.24	0	17,19,21	0.50	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	NAG	D	1	1,2	-	1/6/23/26	0/1/1/1
2	NAG	D	2	2	-	2/6/23/26	0/1/1/1
2	NAG	Е	1	1,2	-	0/6/23/26	0/1/1/1
2	NAG	Е	2	2	-	4/6/23/26	0/1/1/1
2	NAG	F	1	1,2	-	0/6/23/26	0/1/1/1
2	NAG	F	2	2	-	2/6/23/26	0/1/1/1
2	NAG	G	1	1,2	-	2/6/23/26	0/1/1/1
2	NAG	G	2	2	-	3/6/23/26	0/1/1/1
2	NAG	Н	1	1,2	-	2/6/23/26	0/1/1/1

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	NAG	Н	2	2	-	5/6/23/26	0/1/1/1
2	NAG	Ι	1	1,2	-	2/6/23/26	0/1/1/1
2	NAG	Ι	2	2	-	3/6/23/26	0/1/1/1
2	NAG	J	1	1,2	-	2/6/23/26	0/1/1/1
2	NAG	J	2	2	-	0/6/23/26	0/1/1/1
2	NAG	К	1	1,2	-	1/6/23/26	0/1/1/1
2	NAG	K	2	2	-	2/6/23/26	0/1/1/1
2	NAG	L	1	1,2	-	0/6/23/26	0/1/1/1
2	NAG	L	2	2	-	4/6/23/26	0/1/1/1
2	NAG	М	1	1,2	-	0/6/23/26	0/1/1/1
2	NAG	М	2	2	-	1/6/23/26	0/1/1/1
2	NAG	N	1	1,2	-	1/6/23/26	0/1/1/1
2	NAG	N	2	2	-	0/6/23/26	0/1/1/1
2	NAG	0	1	1,2	-	2/6/23/26	0/1/1/1
2	NAG	Ο	2	2	-	3/6/23/26	0/1/1/1
2	NAG	Р	1	1,2	-	2/6/23/26	0/1/1/1
2	NAG	Р	2	2	-	3/6/23/26	0/1/1/1
2	NAG	Q	1	1,2	-	2/6/23/26	0/1/1/1
2	NAG	Q	2	2	-	2/6/23/26	0/1/1/1
2	NAG	R	1	1,2	-	2/6/23/26	0/1/1/1
2	NAG	R	2	2	-	2/6/23/26	0/1/1/1
2	NAG	S	1	1,2	-	0/6/23/26	0/1/1/1
2	NAG	S	2	2	-	4/6/23/26	0/1/1/1
2	NAG	Т	1	1,2	-	6/6/23/26	0/1/1/1
2	NAG	Т	2	2	-	2/6/23/26	0/1/1/1
2	NAG	U	1	1,2	-	2/6/23/26	0/1/1/1
2	NAG	U	2	2	-	2/6/23/26	0/1/1/1
2	NAG	V	1	1,2	-	2/6/23/26	0/1/1/1
2	NAG	V	2	2	-	1/6/23/26	0/1/1/1
2	NAG	W	1	1,2	-	2/6/23/26	0/1/1/1
2	NAG	W	2	2	-	5/6/23/26	0/1/1/1
2	NAG	Х	1	1,2	-	2/6/23/26	0/1/1/1
2	NAG	Х	2	2	-	4/6/23/26	0/1/1/1
2	NAG	Y	1	1,2	-	0/6/23/26	0/1/1/1
2	NAG	Y	2	2	_	2/6/23/26	0/1/1/1

All (7) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
2	Р	1	NAG	O5-C1	-2.80	1.39	1.43
2	Ι	1	NAG	O5-C1	-2.49	1.39	1.43
2	Н	1	NAG	O5-C1	-2.30	1.40	1.43
2	Х	1	NAG	O5-C1	-2.18	1.40	1.43
2	S	1	NAG	O5-C1	-2.08	1.40	1.43
2	L	1	NAG	O5-C1	-2.08	1.40	1.43
2	Е	1	NAG	O5-C1	-2.07	1.40	1.43

All (15) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
2	Т	1	NAG	C2-N2-C7	4.68	129.57	122.90
2	Н	2	NAG	C2-N2-C7	4.35	129.10	122.90
2	W	2	NAG	C2-N2-C7	4.31	129.04	122.90
2	Х	2	NAG	C2-N2-C7	4.31	129.04	122.90
2	G	2	NAG	C2-N2-C7	4.30	129.02	122.90
2	Ν	1	NAG	C1-O5-C5	3.24	116.59	112.19
2	Н	2	NAG	C1-C2-N2	2.43	114.64	110.49
2	Р	1	NAG	O4-C4-C3	-2.39	104.82	110.35
2	0	1	NAG	C1-O5-C5	2.29	115.30	112.19
2	Х	2	NAG	C1-C2-N2	2.28	114.38	110.49
2	G	2	NAG	C1-C2-N2	2.27	114.37	110.49
2	U	1	NAG	C1-O5-C5	2.25	115.25	112.19
2	J	1	NAG	C1-O5-C5	2.12	115.06	112.19
2	Н	2	NAG	C1-O5-C5	2.10	115.04	112.19
2	Р	2	NAG	C1-O5-C5	2.07	114.99	112.19

There are no chirality outliers.

All (89) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	Т	2	NAG	O5-C5-C6-O6
2	U	2	NAG	O5-C5-C6-O6
2	V	1	NAG	O5-C5-C6-O6
2	D	2	NAG	O5-C5-C6-O6
2	Ι	1	NAG	O5-C5-C6-O6
2	Κ	2	NAG	O5-C5-C6-O6
2	Р	1	NAG	O5-C5-C6-O6
2	R	1	NAG	O5-C5-C6-O6
2	R	2	NAG	O5-C5-C6-O6
2	U	1	NAG	O5-C5-C6-O6
2	D	2	NAG	C4-C5-C6-O6

			a as page	
Mol	Chain	Res	Type	Atoms
2	K	2	NAG	C4-C5-C6-O6
2	Р	1	NAG	C4-C5-C6-O6
2	R	2	NAG	C4-C5-C6-O6
2	Q	1	NAG	C4-C5-C6-O6
2	U	1	NAG	C4-C5-C6-O6
2	Р	2	NAG	O5-C5-C6-O6
2	Ι	1	NAG	C4-C5-C6-O6
2	V	1	NAG	C4-C5-C6-O6
2	R	1	NAG	C4-C5-C6-O6
2	W	2	NAG	O5-C5-C6-O6
2	U	2	NAG	C4-C5-C6-O6
2	Т	2	NAG	C4-C5-C6-O6
2	Р	2	NAG	C4-C5-C6-O6
2	G	2	NAG	C8-C7-N2-C2
2	G	2	NAG	O7-C7-N2-C2
2	Н	2	NAG	C8-C7-N2-C2
2	Н	2	NAG	O7-C7-N2-C2
2	0	2	NAG	C8-C7-N2-C2
2	0	2	NAG	O7-C7-N2-C2
2	Т	1	NAG	C8-C7-N2-C2
2	Т	1	NAG	O7-C7-N2-C2
2	W	2	NAG	C8-C7-N2-C2
2	W	2	NAG	O7-C7-N2-C2
2	Х	2	NAG	C8-C7-N2-C2
2	Х	2	NAG	O7-C7-N2-C2
2	Q	2	NAG	O5-C5-C6-O6
2	H	1	NAG	C4-C5-C6-O6
2	W	2	NAG	C4-C5-C6-O6
2	Т	1	NAG	O5-C5-C6-O6
2	G	1	NAG	C4-C5-C6-O6
2	Т	1	NAG	C4-C5-C6-O6
2	Q	2	NAG	C4-C5-C6-O6
2	Q	1	NAG	O5-C5-C6-O6
2	Ι	2	NAG	O5-C5-C6-O6
2	G	1	NAG	O5-C5-C6-O6
2	Н	1	NAG	O5-C5-C6-O6
2	Х	1	NAG	O5-C5-C6-O6
2	Ι	2	NAG	C4-C5-C6-O6
2	Х	1	NAG	C4-C5-C6-O6
2	J	1	NAG	C4-C5-C6-O6
2	J	1	NAG	O5-C5-C6-O6
2	Е	2	NAG	C1-C2-N2-C7

Continued from previous page...

Mol	Chain	Res	Type	Atoms
2	Х	2	NAG	O5-C5-C6-O6
2	L	2	NAG	C1-C2-N2-C7
2	S	2	NAG	C1-C2-N2-C7
2	0	2	NAG	O5-C5-C6-O6
2	D	1	NAG	O5-C5-C6-O6
2	K	1	NAG	O5-C5-C6-O6
2	0	1	NAG	C4-C5-C6-O6
2	F	2	NAG	C4-C5-C6-O6
2	F	2	NAG	O5-C5-C6-O6
2	Y	2	NAG	C4-C5-C6-O6
2	W	1	NAG	C4-C5-C6-O6
2	Y	2	NAG	O5-C5-C6-O6
2	М	2	NAG	C4-C5-C6-O6
2	Ι	2	NAG	C3-C2-N2-C7
2	Ν	1	NAG	C3-C2-N2-C7
2	Р	2	NAG	C3-C2-N2-C7
2	V	2	NAG	C3-C2-N2-C7
2	Х	2	NAG	C3-C2-N2-C7
2	Н	2	NAG	C4-C5-C6-O6
2	W	1	NAG	O5-C5-C6-O6
2	Н	2	NAG	O5-C5-C6-O6
2	Т	1	NAG	C1-C2-N2-C7
2	Е	2	NAG	C4-C5-C6-O6
2	S	2	NAG	C4-C5-C6-O6
2	L	2	NAG	C4-C5-C6-O6
2	0	1	NAG	O5-C5-C6-O6
2	S	2	NAG	O5-C5-C6-O6
2	Е	2	NAG	C3-C2-N2-C7
2	G	2	NAG	C3-C2-N2-C7
2	Н	2	NAG	C3-C2-N2-C7
2	L	2	NAG	C3-C2-N2-C7
2	S	2	NAG	C3-C2-N2-C7
2	Т	1	NAG	C3-C2-N2-C7
2	W	2	NAG	C3-C2-N2-C7
2	L	2	NAG	O5-C5-C6-O6
2	Е	2	NAG	O5-C5-C6-O6

Continued from previous page...

There are no ring outliers.

15 monomers are involved in 17 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	W	2	NAG	1	0
				<i>a</i>	1 .

Mol	Chain	Res	Type	Clashes	Symm-Clashes
2	S	1	NAG	3	0
2	Х	1	NAG	1	0
2	Р	1	NAG	1	0
2	L	1	NAG	3	0
2	Е	2	NAG	2	0
2	Κ	1	NAG	1	0
2	G	2	NAG	1	0
2	Т	1	NAG	1	0
2	Е	1	NAG	3	0
2	Н	2	NAG	1	0
2	Х	2	NAG	1	0
2	S	2	NAG	2	0
2	L	2	NAG	2	0
2	Р	2	NAG	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.

5.6 Ligand geometry (i)

27 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dec	Tiple	Bond lengths			Bond angles		
	Type	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
3	NAG	В	1401	1	14,14,15	0.30	0	17,19,21	0.33	0
3	NAG	С	1405	1	14,14,15	0.56	0	17,19,21	1.26	1 (5%)
3	NAG	С	1408	1	14,14,15	0.31	0	17,19,21	0.38	0

Mal	Turne	Chain	Ros Link		Bo	Bond lengths			Bond angles		
	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
3	NAG	А	1407	1	14,14,15	0.24	0	17,19,21	0.49	0	
3	NAG	С	1403	1	14,14,15	0.22	0	17,19,21	0.41	0	
3	NAG	А	1408	1	14,14,15	0.32	0	17,19,21	0.38	0	
3	NAG	В	1410	-	14,14,15	0.36	0	17,19,21	0.43	0	
3	NAG	А	1403	1	14,14,15	0.20	0	17,19,21	0.41	0	
3	NAG	В	1405	1	14,14,15	0.58	0	17,19,21	1.26	1 (5%)	
3	NAG	С	1407	1	14,14,15	0.24	0	17,19,21	0.49	0	
3	NAG	А	1405	1	14,14,15	0.57	0	17,19,21	1.26	1 (5%)	
3	NAG	В	1408	1	14,14,15	0.30	0	17,19,21	0.38	0	
3	NAG	С	1404	1	14,14,15	0.47	0	17,19,21	0.54	0	
3	NAG	А	1409	1	14,14,15	0.50	0	17,19,21	0.36	0	
3	NAG	А	1402	1	14,14,15	0.21	0	17,19,21	0.63	0	
3	NAG	В	1407	1	14,14,15	0.23	0	17,19,21	0.49	0	
3	NAG	В	1409	1	14,14,15	0.41	0	17,19,21	1.15	2 (11%)	
3	NAG	А	1406	1	14,14,15	0.29	0	17,19,21	0.38	0	
3	NAG	С	1401	1	14,14,15	0.29	0	17,19,21	0.33	0	
3	NAG	С	1406	1	14,14,15	0.30	0	17,19,21	0.38	0	
3	NAG	В	1403	1	$14,\!14,\!15$	0.22	0	$17,\!19,\!21$	0.41	0	
3	NAG	А	1401	1	$14,\!14,\!15$	0.29	0	$17,\!19,\!21$	0.33	0	
3	NAG	С	1402	1	$14,\!14,\!15$	0.21	0	$17,\!19,\!21$	0.63	0	
3	NAG	А	1404	1	14,14,15	0.47	0	17,19,21	0.53	0	
3	NAG	В	1406	1	$14,\!14,\!15$	0.29	0	17,19,21	0.39	0	
3	NAG	В	1402	1	14, 14, 15	0.21	0	17,19,21	0.64	0	
3	NAG	В	1404	1	$1\overline{4,14,15}$	0.47	0	17,19,21	0.54	0	

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	NAG	В	1401	1	-	2/6/23/26	0/1/1/1
3	NAG	С	1405	1	-	5/6/23/26	0/1/1/1
3	NAG	С	1408	1	-	2/6/23/26	0/1/1/1
3	NAG	А	1407	1	-	1/6/23/26	0/1/1/1
3	NAG	С	1403	1	-	2/6/23/26	0/1/1/1
3	NAG	А	1408	1	-	2/6/23/26	0/1/1/1
3	NAG	В	1410	-	-	0/6/23/26	0/1/1/1
3	NAG	А	1403	1	-	2/6/23/26	0/1/1/1
3	NAG	В	1405	1	-	5/6/23/26	0/1/1/1

Continued on next page...

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	NAG	С	1407	1	-	1/6/23/26	0/1/1/1
3	NAG	А	1405	1	-	5/6/23/26	0/1/1/1
3	NAG	В	1408	1	-	2/6/23/26	0/1/1/1
3	NAG	С	1404	1	-	2/6/23/26	0/1/1/1
3	NAG	А	1409	1	-	2/6/23/26	0/1/1/1
3	NAG	А	1402	1	-	2/6/23/26	0/1/1/1
3	NAG	В	1407	1	-	1/6/23/26	0/1/1/1
3	NAG	В	1409	1	-	0/6/23/26	0/1/1/1
3	NAG	А	1406	1	-	2/6/23/26	0/1/1/1
3	NAG	С	1401	1	-	2/6/23/26	0/1/1/1
3	NAG	С	1406	1	-	2/6/23/26	0/1/1/1
3	NAG	В	1403	1	-	2/6/23/26	0/1/1/1
3	NAG	А	1401	1	-	2/6/23/26	0/1/1/1
3	NAG	С	1402	1	-	2/6/23/26	0/1/1/1
3	NAG	А	1404	1	-	2/6/23/26	0/1/1/1
3	NAG	В	1406	1	-	2/6/23/26	0/1/1/1
3	NAG	В	1402	1	-	2/6/23/26	0/1/1/1
3	NAG	В	1404	1	-	2/6/23/26	0/1/1/1

Continued from previous page...

There are no bond length outliers.

All (5) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
3	С	1405	NAG	C2-N2-C7	4.30	129.02	122.90
3	В	1405	NAG	C2-N2-C7	4.29	129.01	122.90
3	А	1405	NAG	C2-N2-C7	4.29	129.01	122.90
3	В	1409	NAG	C8-C7-N2	2.28	119.97	116.10
3	В	1409	NAG	C2-N2-C7	-2.06	119.97	122.90

There are no chirality outliers.

All (56) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	А	1406	NAG	O5-C5-C6-O6
3	В	1406	NAG	O5-C5-C6-O6
3	С	1406	NAG	O5-C5-C6-O6
3	А	1401	NAG	O5-C5-C6-O6
3	В	1401	NAG	O5-C5-C6-O6

Continued on next page...

Mol	Chain	Res	Type	Atoms
3	С	1401	NAG	O5-C5-C6-O6
3	А	1402	NAG	C4-C5-C6-O6
3	В	1402	NAG	C4-C5-C6-O6
3	С	1402	NAG	C4-C5-C6-O6
3	A	1402	NAG	O5-C5-C6-O6
3	А	1404	NAG	O5-C5-C6-O6
3	В	1402	NAG	O5-C5-C6-O6
3	В	1404	NAG	O5-C5-C6-O6
3	С	1402	NAG	O5-C5-C6-O6
3	С	1404	NAG	O5-C5-C6-O6
3	А	1405	NAG	O5-C5-C6-O6
3	В	1405	NAG	O5-C5-C6-O6
3	С	1405	NAG	O5-C5-C6-O6
3	А	1409	NAG	C4-C5-C6-O6
3	А	1408	NAG	O5-C5-C6-O6
3	В	1408	NAG	O5-C5-C6-O6
3	С	1408	NAG	O5-C5-C6-O6
3	А	1405	NAG	C4-C5-C6-O6
3	В	1405	NAG	C4-C5-C6-O6
3	С	1405	NAG	C4-C5-C6-O6
3	А	1405	NAG	C8-C7-N2-C2
3	А	1405	NAG	O7-C7-N2-C2
3	В	1405	NAG	C8-C7-N2-C2
3	В	1405	NAG	O7-C7-N2-C2
3	С	1405	NAG	C8-C7-N2-C2
3	С	1405	NAG	O7-C7-N2-C2
3	А	1409	NAG	O5-C5-C6-O6
3	А	1406	NAG	C4-C5-C6-O6
3	В	1406	NAG	C4-C5-C6-O6
3	С	1406	NAG	C4-C5-C6-O6
3	A	1404	NAG	C4-C5-C6-O6
3	В	1404	NAG	C4-C5-C6-O6
3	С	1404	NAG	C4-C5-C6-O6
3	А	1403	NAG	O5-C5-C6-O6
3	В	1403	NAG	O5-C5-C6-O6
3	C	$14\overline{03}$	NAG	O5-C5-C6-O6
3	A	1403	NAG	C4-C5-C6-O6
3	В	1403	NAG	C4-C5-C6-O6
3	С	1403	NAG	C4-C5-C6-O6
3	A	1408	NAG	C4-C5-C6-O6
3	В	1408	NAG	C4-C5-C6-O6
3	С	1408	NAG	C4-C5-C6-O6

Continued from previous page...

Continued on next page...

Mol	Chain	Res	Type	Atoms
3	В	1401	NAG	C4-C5-C6-O6
3	С	1401	NAG	C4-C5-C6-O6
3	А	1401	NAG	C4-C5-C6-O6
3	А	1407	NAG	C1-C2-N2-C7
3	В	1407	NAG	C1-C2-N2-C7
3	С	1407	NAG	C1-C2-N2-C7
3	А	1405	NAG	C3-C2-N2-C7
3	В	1405	NAG	C3-C2-N2-C7
3	С	1405	NAG	C3-C2-N2-C7

Continued from previous page...

There are no ring outliers.

8 monomers are involved in 16 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
3	С	1405	NAG	1	0
3	В	1410	NAG	4	0
3	В	1405	NAG	1	0
3	А	1405	NAG	1	0
3	А	1402	NAG	3	0
3	В	1409	NAG	4	0
3	С	1402	NAG	3	0
3	В	1402	NAG	3	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and sufficient than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-30893. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

Orthogonal projections (i) 6.1

6.1.1Primary map

The images above show the map projected in three orthogonal directions.

6.2Central slices (i)

6.2.1Primary map

X Index: 144

Y Index: 144

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 129

Y Index: 133

Z Index: 167

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.02. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 138 $\rm nm^3;$ this corresponds to an approximate mass of 125 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.303 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-30893 and PDB model 7DX2. Per-residue inclusion information can be found in section 3 on page 9.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.02 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.02).

9.4 Atom inclusion (i)

At the recommended contour level, 79% of all backbone atoms, 69% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.02) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.6880	0.4420
А	0.6670	0.4370
В	0.7100	0.4520
С	0.7020	0.4470
D	0.5000	0.2150
Е	0.0000	0.1210
F	0.7500	0.5080
G	0.6790	0.3760
Н	0.4640	0.5030
Ι	0.7500	0.4980
J	0.7140	0.4200
Κ	0.2140	0.2040
L	0.1070	0.2350
М	0.3930	0.3070
Ν	0.7500	0.4820
0	0.6790	0.4070
Р	0.7860	0.4360
Q	0.6070	0.3210
R	0.1790	0.2050
S	0.0000	-0.0150
Т	0.4290	0.3430
U	0.7500	0.4540
V	0.7140	0.3580
W	0.3570	0.3210
X	0.7500	0.4440
Y	0.6070	0.3680

