

# Full wwPDB X-ray Structure Validation Report (i)

#### Jun 23, 2024 – 11:40 AM EDT

| PDB ID       | : | 5DZK                                                                            |
|--------------|---|---------------------------------------------------------------------------------|
| Title        | : | Crystal structure of the active form of the proteolytic complex clpP1 and clpP2 |
| Authors      | : | LI, M.; Wlodawer, A.; Maurizi, M.                                               |
| Deposited on | : | 2015-09-25                                                                      |
| Resolution   | : | 3.07  Å(reported)                                                               |
|              |   |                                                                                 |

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| MolProbity                     | : | 4.02b-467                                                          |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| Xtriage (Phenix)               | : | 1.13                                                               |
| EDS                            | : | 2.37.1                                                             |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| Refmac                         | : | 5.8.0158                                                           |
| CCP4                           | : | 7.0.044 (Gargrove)                                                 |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.37.1                                                             |

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure:  $X\text{-}RAY \, DIFFRACTION$ 

The reported resolution of this entry is 3.07 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Matria                | Whole archive        | Similar resolution                                          |  |  |  |
|-----------------------|----------------------|-------------------------------------------------------------|--|--|--|
| Metric                | $(\# {\rm Entries})$ | $(\# { m Entries},  { m resolution}  { m range}({ m \AA}))$ |  |  |  |
| R <sub>free</sub>     | 130704               | 1447 (3.10-3.06)                                            |  |  |  |
| Ramachandran outliers | 138981               | 1487 (3.10-3.06)                                            |  |  |  |
| Sidechain outliers    | 138945               | 1486 (3.10-3.06)                                            |  |  |  |
| RSRZ outliers         | 127900               | 1416 (3.10-3.06)                                            |  |  |  |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain |          |
|-----|-------|--------|------------------|----------|
| 1   | А     | 214    | 79%              | 10% • 8% |
| 1   | В     | 214    | 79%              | 13% • 7% |
| 1   | С     | 214    | 78%              | 13% • 8% |
| 1   | D     | 214    | 79%              | 13% 8%   |
| 1   | Е     | 214    | 82%              | 11% 7%   |
| 1   | F     | 214    | 76%              | 14% • 8% |
| 1   | G     | 214    | 80%              | 11% 9%   |



Continued from previous page... Chain Length Quality of chain Mol 1 214• 8%  $\mathbf{a}$ 82% 9% 1 b 21479% 14% • 7% 2141  $\mathbf{c}$ 78% 14% 8% 1 d 21479% 8% 11% • 1 214е 80% 12% • 7% 214f 1 80% 12% 8% 1 214g 78% 14% 8% 21 3 67% 33% 33% 223 67% 33%  $\mathbf{3}$ 3 267% 33% 243 67% 33% 2Ο 3 100% 2Р 3 33% 67% Q 3 2100% 3 2 $\mathbf{R}$ 67% 33%  $\mathbf{S}$ 23 33% 33% 33%  $\mathbf{2}$ Т 3 33% 67% U 3 2100% 2V 3 67% 33% W 23 100% Х 23 67% 33% 2Υ 3 100% 2Ζ 3 67% 33% 23 0 67% 33% 23 р 67% 33%



| Mol | Chain | Length | Quality of chain |           |  |  |  |  |  |
|-----|-------|--------|------------------|-----------|--|--|--|--|--|
| 2   | q     | 3      | 33% 33%          | 33%       |  |  |  |  |  |
| 2   | r     | 3      | 67%              | 33%       |  |  |  |  |  |
| 2   | s     | 3      | 33% 67%          | ó         |  |  |  |  |  |
| 2   | t     | 3      | 100%             |           |  |  |  |  |  |
| 2   | u     | 3      | 33% 67%          | 6         |  |  |  |  |  |
| 2   | V     | 3      | 67%              | 33%       |  |  |  |  |  |
| 2   | W     | 3      | 100%             |           |  |  |  |  |  |
| 2   | x     | 3      | 33% 67%          | ,<br>0    |  |  |  |  |  |
| 2   | у     | 3      | 100%             |           |  |  |  |  |  |
| 2   | Z     | 3      | 67%              | 33%       |  |  |  |  |  |
| 3   | Н     | 200    | 76%              | 12% • 11% |  |  |  |  |  |
| 3   | Ι     | 200    | 77%              | 11% • 11% |  |  |  |  |  |
| 3   | J     | 200    | 78%              | 10% • 11% |  |  |  |  |  |
| 3   | K     | 200    | 76%              | 10% • 11% |  |  |  |  |  |
| 3   | L     | 200    | 78%              | 10% • 11% |  |  |  |  |  |
| 3   | М     | 200    | 75%              | 13% • 11% |  |  |  |  |  |
| 3   | N     | 200    | 80%              | 9% • 10%  |  |  |  |  |  |
| 3   | h     | 200    | 76%              | 13% 11%   |  |  |  |  |  |
| 3   | i     | 200    | 75%              | 13% • 11% |  |  |  |  |  |
| 3   | i     | 200    | 78%              | 10% 11%   |  |  |  |  |  |
| 3   | k     | 200    | 76%              | 12% • 11% |  |  |  |  |  |
| 3   | 1     | 200    | 76%              | 12% 11%   |  |  |  |  |  |
| 3   | m     | 200    | 70/0             | 120/ 110/ |  |  |  |  |  |
| 2   | n     | 200    | /0%              | 12% • 11% |  |  |  |  |  |
| J   | 11    | 200    | /0%              | 12% • 11% |  |  |  |  |  |



# 2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 40976 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain | Residues | Atoms |     |     |     |              | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|-----|-----|-----|--------------|---------|---------|-------|
| 1   |       | 100      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
|     | A     | 190      | 1508  | 948 | 257 | 295 | 8            | 0       | 0       | 0     |
| 1   | D     | 200      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
|     | D     | 200      | 1534  | 963 | 262 | 301 | 8            | 0       | 0       | 0     |
| 1   | С     | 106      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
| 1   |       | 190      | 1508  | 948 | 257 | 295 | 8            | 0       | 0       | 0     |
| 1   | П     | 106      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
|     | D     | 190      | 1508  | 948 | 257 | 295 | 8            | 0       | 0       | 0     |
| 1   | F     | 200      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
| 1   |       | 200      | 1534  | 963 | 262 | 301 | 8            | 0       | 0       | 0     |
| 1   | Б     | 106      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
|     | Г     | 190      | 1508  | 948 | 257 | 295 | 8            | 0       | 0       | 0     |
| 1   | C     | 105      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
| 1   | G     | 195      | 1502  | 945 | 256 | 293 | 3 8          | 0       | 0       | 0     |
| 1   | 0     | 107      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
| 1   | a     | 197      | 1513  | 951 | 258 | 296 | 8            | 0       | 0       |       |
| 1   | h     | 200      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
|     | U     | 200      | 1534  | 963 | 262 | 301 | 8            | 0       | 0       | 0     |
| 1   | C     | 107      | Total | С   | Ν   | 0   | $\mathbf{S}$ | 0       | 0       | 0     |
|     | C     | 191      | 1513  | 951 | 258 | 296 | 8            | 0       | 0       | 0     |
| 1   | d     | 106      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| 1   | u     | 190      | 1508  | 948 | 257 | 295 | 8            | 0       | 0       | 0     |
| 1   | 0     | 200      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
| 1   | r e   | 200      | 1534  | 963 | 262 | 301 | 8            | 0       | 0       | 0     |
| 1   | f     | 106      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
|     |       | 190      | 1508  | 948 | 257 | 295 | 8            | 0       | U       | 0     |
| 1   | ſ     | 106      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
|     | 8     | 190      | 1508  | 948 | 257 | 295 | 8            |         | 0       | U     |

• Molecule 1 is a protein called ATP-dependent Clp protease proteolytic subunit 2.

• Molecule 2 is a protein called BEZ-LEU-LEU.



| Mol | Chain | Residues | At                                                         | om      | s      |        | ZeroOcc | AltConf | Trace |
|-----|-------|----------|------------------------------------------------------------|---------|--------|--------|---------|---------|-------|
| 2   | О     | 3        | Total (<br>25 1                                            | C<br>.9 | N<br>2 | 0<br>4 | 0       | 0       | 0     |
| 2   | Р     | 3        | Total (<br>25 1                                            | C<br>.9 | N<br>2 | 0<br>4 | 0       | 0       | 0     |
| 2   | Q     | 3        | Total (<br>25 1                                            | C<br>.9 | N<br>2 | 0<br>4 | 0       | 0       | 0     |
| 2   | R     | 3        | Total (<br>25 1                                            | C<br>.9 | N<br>2 | 0<br>4 | 0       | 0       | 0     |
| 2   | S     | 3        | Total (<br>25 1                                            | C<br>.9 | N<br>2 | 0<br>4 | 0       | 0       | 0     |
| 2   | Т     | 3        | Total (<br>25 1                                            | C<br>.9 | N<br>2 | 0<br>4 | 0       | 0       | 0     |
| 2   | U     | 3        | Total (<br>25 1                                            | C<br>.9 | N<br>2 | 0<br>4 | 0       | 0       | 0     |
| 2   | V     | 3        | Total (<br>25 1                                            | C<br>.9 | N<br>2 | O<br>4 | 0       | 0       | 0     |
| 2   | W     | 3        | Total (<br>25 1                                            | C<br>.9 | N<br>2 | 0<br>4 | 0       | 0       | 0     |
| 2   | Х     | 3        | Total (<br>25 1                                            | C<br>9  | N<br>2 | 0<br>4 | 0       | 0       | 0     |
| 2   | Y     | 3        | Total (<br>25 1                                            | C<br>.9 | N<br>2 | 0<br>4 | 0       | 0       | 0     |
| 2   | Z     | 3        | Total (<br>25 1                                            | C<br>9  | N<br>2 | 0<br>4 | 0       | 0       | 0     |
| 2   | 1     | 3        | Total $(25 1)$                                             | C<br>.9 | N<br>2 | 0<br>4 | 0       | 0       | 0     |
| 2   | 2     | 3        | Total (<br>25 1                                            | C<br>9  | N<br>2 | 0<br>4 | 0       | 0       | 0     |
| 2   | 0     | 3        | Total (<br>25 1                                            | C<br>.9 | N<br>2 | 0<br>4 | 0       | 0       | 0     |
| 2   | р     | 3        | Total (<br>25 1                                            | C<br>9  | N<br>2 | 0<br>4 | 0       | 0       | 0     |
| 2   | q     | 3        | Total $(25 1)$                                             | C<br>.9 | N<br>2 | 0<br>4 | 0       | 0       | 0     |
| 2   | r     | 3        | Total $(25 1)$                                             | C<br>.9 | N<br>2 | 0<br>4 | 0       | 0       | 0     |
| 2   | s     | 3        | Total (<br>25 1                                            | C<br>.9 | N<br>2 | 0<br>4 | 0       | 0       | 0     |
| 2   | t     | 3        | $\begin{array}{c} \text{Total} & 0 \\ 25 & 1 \end{array}$  | C<br>.9 | N<br>2 | 0<br>4 | 0       | 0       | 0     |
| 2   | u     | 3        | $\begin{array}{cc} \text{Total} & 0 \\ 25 & 1 \end{array}$ | C<br>.9 | N<br>2 | 0<br>4 | 0       | 0       | 0     |
| 2   | V     | 3        | Total (<br>25 1                                            | C<br>.9 | N<br>2 | O<br>4 | 0       | 0       | 0     |



| Mol | Chain | Residues | Atoms |    |   |   | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|----|---|---|---------|---------|-------|
| 2   | 2 w   | 3        | Total | С  | Ν | 0 | 0       | 0       | 0     |
|     | vv    |          | 25    | 19 | 2 | 4 | 0       | 0       | 0     |
| 2   | v     | 2        | Total | С  | Ν | Ο | 0       | 0       | 0     |
|     | А     | ა        | 25    | 19 | 2 | 4 | 0       | 0       |       |
| 9   | 2 y   | 3        | Total | С  | Ν | Ο | 0       | 0       | 0     |
|     |       |          | 25    | 19 | 2 | 4 | 0       | 0       |       |
| 0   | 7     | 2        | Total | С  | Ν | 0 | 0       | 0       | 0     |
|     | Z     | 5        | 25    | 19 | 2 | 4 | 0       | 0       |       |
| 2   | 9     | 9        | Total | С  | Ν | Ο | 0       | 0       | 0     |
|     | 5     | 9        | 25    | 19 | 2 | 4 | 0       | 0       | 0     |
| 2 4 | 4     | 2        | Total | С  | Ν | Ο | 0       | 0       | 0     |
|     | 4     | ა        | 25    | 19 | 2 | 4 | 0       | 0       | U     |

• Molecule 3 is a protein called ATP-dependent Clp protease proteolytic subunit 1.

| Mol | Chain | Residues |       | At  | oms |     |              | ZeroOcc | AltConf | Trace |
|-----|-------|----------|-------|-----|-----|-----|--------------|---------|---------|-------|
| 9   | тт    | 170      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
| 3   | п     | 178      | 1357  | 858 | 229 | 261 | 9            | 0       | 0       | 0     |
| 9   | т     | 170      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
| 0   | 1     | 170      | 1357  | 858 | 229 | 261 | 9            | 0       | 0       | 0     |
| 3   | Т     | 178      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| 5   | J     | 170      | 1357  | 858 | 229 | 261 | 9            | 0       | 0       | 0     |
| 3   | K     | 178      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| 5   | Γ     | 170      | 1357  | 858 | 229 | 261 | 9            | 0       | 0       | 0     |
| 3   | т     | 178      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
| 0   |       | 170      | 1357  | 858 | 229 | 261 | 9            |         | 0       | 0     |
| 3   | 2 M   | 178      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
| 0   | 111   | 170      | 1357  | 858 | 229 | 261 | 9            | 0       | 0       | 0     |
| 3   | 3 N   | 179      | Total | С   | Ν   | Ο   | S            | 0       | 0       | 0     |
| 0   | 11    | 115      | 1362  | 861 | 230 | 262 | 9            | 0       | 0       | 0     |
| 3   | h     | 178      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| 0   | 11    | 170      | 1357  | 858 | 229 | 261 | 9            | 0       | 0       | 0     |
| 3   | i     | 178      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| 0   | 1     | 170      | 1357  | 858 | 229 | 261 | 9            | 0       | 0       | 0     |
| 3   | i     | 178      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| 0   | J     | 170      | 1357  | 858 | 229 | 261 | 9            | 0       | 0       | 0     |
| 3   | Ŀ     | 178      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0       | 0       | 0     |
| 0   | K     | 170      | 1357  | 858 | 229 | 261 | 9            | 0       | 0       | 0     |
| 2   | 3 1   | 178      | Total | С   | Ν   | Ο   | S            | 0       | 0       | Ο     |
| J   |       | 1/8      | 1357  | 858 | 229 | 261 | 9            |         | U       | U     |
| 3   | 2     | 178      | Total | С   | Ν   | 0   | S            | 0       | 0       | 0     |
|     |       |          | 1357  | 858 | 229 | 261 | 9            |         |         | 0     |



Continued from previous page...

| Mol | Chain | Residues | Atoms         |          |          |          |            | ZeroOcc | AltConf | Trace |
|-----|-------|----------|---------------|----------|----------|----------|------------|---------|---------|-------|
| 3   | n     | 178      | Total<br>1357 | C<br>858 | N<br>229 | 0<br>261 | ${ m S} 9$ | 0       | 0       | 0     |

• Molecule 4 is water.

| Mol | Chain | Residues | Atoms          | ZeroOcc | AltConf |
|-----|-------|----------|----------------|---------|---------|
| 4   | А     | 1        | Total O<br>1 1 | 0       | 0       |
| 4   | С     | 1        | Total O<br>1 1 | 0       | 0       |
| 4   | D     | 1        | Total O<br>1 1 | 0       | 0       |
| 4   | Е     | 1        | Total O<br>1 1 | 0       | 0       |
| 4   | G     | 2        | Total O<br>2 2 | 0       | 0       |
| 4   | Н     | 2        | Total O<br>2 2 | 0       | 0       |
| 4   | Ι     | 4        | Total O<br>4 4 | 0       | 0       |
| 4   | J     | 1        | Total O<br>1 1 | 0       | 0       |
| 4   | К     | 2        | Total O<br>2 2 | 0       | 0       |
| 4   | L     | 2        | Total O<br>2 2 | 0       | 0       |
| 4   | М     | 3        | Total O<br>3 3 | 0       | 0       |
| 4   | Ν     | 2        | Total O<br>2 2 | 0       | 0       |
| 4   | a     | 1        | Total O<br>1 1 | 0       | 0       |
| 4   | b     | 1        | Total O<br>1 1 | 0       | 0       |
| 4   | с     | 1        | Total O<br>1 1 | 0       | 0       |
| 4   | d     | 2        | TotalO22       | 0       | 0       |
| 4   | е     | 1        | Total O<br>1 1 | 0       | 0       |
| 4   | h     | 4        | Total O<br>4 4 | 0       | 0       |



Continued from previous page...

| Mol | Chain | Residues | Atoms          | ZeroOcc | AltConf |
|-----|-------|----------|----------------|---------|---------|
| 4   | i     | 3        | Total O<br>3 3 | 0       | 0       |
| 4   | j     | 3        | Total O<br>3 3 | 0       | 0       |
| 4   | k     | 6        | Total O<br>6 6 | 0       | 0       |
| 4   | 1     | 2        | Total O<br>2 2 | 0       | 0       |
| 4   | m     | 4        | Total O<br>4 4 | 0       | 0       |
| 4   | n     | 3        | Total O<br>3 3 | 0       | 0       |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: ATP-dependent Clp protease proteolytic subunit 2







• Molecule 1: ATP-dependent Clp protease proteolytic subunit 2



# 



• Molecule 1: ATP-dependent Clp protease proteolytic subunit 2





 $\bullet$  Molecule 1: ATP-dependent Clp protease proteolytic subunit 2

|                                                                                                                   |                                                         |                                                              | • 770                                        |
|-------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------|--------------------------------------------------------------|----------------------------------------------|
| MET<br>ASN<br>SER<br>GLN<br>GLN<br>GLN<br>FLC<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>A | M87<br>94<br>94<br>1100<br>6106<br>8110<br>8110<br>8131 | H135<br>H135<br>G144<br>E151<br>1157<br>E158<br>E158<br>M164 | K174<br>D184<br>R185<br>R207<br>K208<br>L209 |

#### S210 A211 Q212 T213 A214

• Molecule 1: ATP-dependent Clp protease proteolytic subunit 2



#### GLN THR ALA

 $\bullet$  Molecule 1: ATP-dependent Clp protease proteolytic subunit 2

| Chain g:                                                                                                            | 78%                                                                                           | 14% 8%                                                            |      |
|---------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------|
| MET<br>ASN<br>SER<br>CLN<br>SER<br>ASN<br>SER<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN | 049<br>050<br>161<br>161<br>173<br>173<br>173<br>173<br>173<br>173<br>173<br>173<br>173<br>17 | N131<br>1134<br>1136<br>1136<br>1136<br>1136<br>1136<br>1136<br>1 | M164 |
| D184<br>R185<br>R207<br>R207<br>R209<br>L209<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA                                     |                                                                                               |                                                                   |      |
| • Molecule 2: BEZ-LEU-LEU                                                                                           |                                                                                               |                                                                   |      |
| Chain O:                                                                                                            | 100%                                                                                          |                                                                   |      |



| Page 13                | Full wwPD            | B X-ray Structure Va | lidation Report |
|------------------------|----------------------|----------------------|-----------------|
| There are no out       | ior residues record  | ad for this chain    |                 |
| • Molecule 2: BE       | Z-LEU-LEU            | eu for this cham.    |                 |
| Chain P:               | 33%                  | 67%                  |                 |
| BEZ801<br>L802<br>L803 |                      |                      |                 |
| • Molecule 2: BE       | Z-LEU-LEU            |                      |                 |
| Chain Q:               |                      | 100%                 |                 |
| There are no outl      | ier residues recorde | ed for this chain.   |                 |
| • Molecule 2: BE       | Z-LEU-LEU            |                      |                 |
| Chain R:               | 67%                  |                      | 33%             |
| BE2801<br>L802<br>L803 |                      |                      |                 |
| • Molecule 2: BE       | Z-LEU-LEU            |                      |                 |
| Chain S:               | 33%                  | 33%                  | 33%             |
| BE2801<br>L802<br>L803 |                      |                      |                 |
| • Molecule 2: BE       | Z-LEU-LEU            |                      |                 |
| Chain T:               | 33%                  | 67%                  |                 |
| 862801<br>1802<br>1803 |                      |                      |                 |
| • Molecule 2: BE       | Z-LEU-LEU            |                      |                 |
| Chain U:               |                      | 100%                 |                 |
| There are no outl      | ier residues recorde | ed for this chain.   |                 |
| • Molecule 2: BE       | Z-LEU-LEU            |                      |                 |
| Chain V:               | 67%                  |                      | 33%             |
| BE2801<br>L802<br>L803 |                      |                      |                 |
| • Molecule 2: BE       | Z-LEU-LEU            |                      |                 |
| Chain W:               |                      | 100%                 |                 |



• Molecule 2: BEZ-LEU-LEU

| Chain X:                         | 67%                     | 33%  |
|----------------------------------|-------------------------|------|
| BE2801<br>1802<br>11803<br>11803 |                         |      |
| • Molecule 2: BEZ-LEU-L          | EU                      |      |
| Chain Y:                         | 100%                    |      |
| There are no outlier residu      | es recorded for this ch | ain. |
| • Molecule 2: BEZ-LEU-L          | EU                      |      |
| Chain Z:                         | 67%                     | 33%  |
| BE2201<br>L803<br>L803           |                         |      |
| • Molecule 2: BEZ-LEU-L          | EU                      |      |
| Chain 1:                         | 67%                     | 33%  |
| BE2801<br>1802<br>1.803<br>1.803 |                         |      |
| • Molecule 2: BEZ-LEU-L          | EU                      |      |
| Chain 2:                         | 67%                     | 33%  |
| BEZ 801<br>L902<br>L903          |                         |      |
| • Molecule 2: BEZ-LEU-L          | EU                      |      |
| Chain o:                         | 67%                     | 33%  |
| BE2801<br>L802<br>L803           |                         |      |
| • Molecule 2: BEZ-LEU-L          | EU                      |      |
| Chain p: 33%                     |                         | 67%  |
| 822901<br>1802<br>1.803          |                         |      |

• Molecule 2: BEZ-LEU-LEU



| Chain q:                                                                                                                                                                                     | 33%                                                                            | 33%                                        | 33% |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|--------------------------------------------|-----|
| BFZ 801<br>L802<br>L803                                                                                                                                                                      |                                                                                |                                            |     |
| • Molecule 2:                                                                                                                                                                                | BEZ-LEU-LEU                                                                    |                                            |     |
| Chain r:                                                                                                                                                                                     | 679                                                                            | %                                          | 33% |
| BEZ801<br>L802<br>L803                                                                                                                                                                       |                                                                                |                                            |     |
| • Molecule 2:                                                                                                                                                                                | BEZ-LEU-LEU                                                                    |                                            |     |
| Chain s:                                                                                                                                                                                     | 33%                                                                            | 67%                                        |     |
| BEZ801<br>L802<br>L803                                                                                                                                                                       |                                                                                |                                            |     |
| • Molecule 2:                                                                                                                                                                                | BEZ-LEU-LEU                                                                    |                                            |     |
| Chain t:                                                                                                                                                                                     |                                                                                | 100%                                       |     |
| There are no                                                                                                                                                                                 | outlier residues red                                                           | corded for this chain.                     |     |
| • Molecule 2:                                                                                                                                                                                | BEZ-LEU-LEU                                                                    |                                            |     |
| Chain u:                                                                                                                                                                                     | 33%                                                                            | 67%                                        |     |
| Chann u.                                                                                                                                                                                     | 5570                                                                           | 01,0                                       |     |
| Cinam u.                                                                                                                                                                                     | 5576                                                                           |                                            |     |
| <ul> <li>Molecule 2:</li> </ul>                                                                                                                                                              | BEZ-LEU-LEU                                                                    |                                            |     |
| <ul> <li>Molecule 2:</li> <li>Chain v:</li> </ul>                                                                                                                                            | BEZ-LEU-LEU                                                                    | %                                          | 33% |
| Molecule 2: Chain v:                                                                                                                                                                         | BEZ-LEU-LEU                                                                    | %                                          | 33% |
| <ul> <li>Molecule 2:</li> <li>Chain v:</li> <li>Molecule 2:</li> <li>Molecule 2:</li> </ul>                                                                                                  | BEZ-LEU-LEU<br>67<br>BEZ-LEU-LEU                                               | %                                          | 33% |
| <ul> <li>Molecule 2:</li> <li>Chain v:</li> <li>Molecule 2:</li> <li>Chain v:</li> <li>Chain w:</li> </ul>                                                                                   | BEZ-LEU-LEU<br>67<br>BEZ-LEU-LEU                                               | %                                          | 33% |
| <ul> <li>Molecule 2:</li> <li>Chain v:</li> <li>Molecule 2:</li> <li>Chain w:</li> <li>Chain w:</li> <li>There are no</li> </ul>                                                             | BEZ-LEU-LEU<br>BEZ-LEU-LEU<br>outlier residues ree                             | %<br>100%<br>corded for this chain.        | 33% |
| <ul> <li>Molecule 2:</li> <li>Chain v:</li> <li>Molecule 2:</li> <li>Molecule 2:</li> <li>Chain w:</li> <li>There are no</li> <li>Molecule 2:</li> </ul>                                     | BEZ-LEU-LEU<br>BEZ-LEU-LEU<br>outlier residues red<br>BEZ-LEU-LEU              | %<br>100%<br>corded for this chain.        | 33% |
| <ul> <li>Molecule 2:</li> <li>Chain v:</li> <li>Molecule 2:</li> <li>Chain v:</li> <li>Molecule 2:</li> <li>Chain w:</li> <li>There are no</li> <li>Molecule 2:</li> <li>Chain x:</li> </ul> | BEZ-LEU-LEU<br>BEZ-LEU-LEU<br>outlier residues ree<br>BEZ-LEU-LEU<br>33%       | %<br>100%<br>corded for this chain.        | 33% |
| <ul> <li>Molecule 2:</li> <li>Chain v:</li> <li>Molecule 2:</li> <li>Chain v:</li> <li>Molecule 2:</li> <li>Chain w:</li> <li>There are no</li> <li>Molecule 2:</li> <li>Chain x:</li> </ul> | BEZ-LEU-LEU<br>67<br>BEZ-LEU-LEU<br>outlier residues red<br>BEZ-LEU-LEU<br>33% | %<br>100%<br>corded for this chain.<br>67% | 33% |

| • Molecule 2: BEZ-LEU-LEU                                                                                            |                                                                                                              |                                              |                      |                      |
|----------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|----------------------------------------------|----------------------|----------------------|
| Chain y:                                                                                                             | 100%                                                                                                         |                                              |                      | •                    |
| There are no outlier residues red                                                                                    | corded for this chain.                                                                                       |                                              |                      |                      |
| • Molecule 2: BEZ-LEU-LEU                                                                                            |                                                                                                              |                                              |                      |                      |
| Chain z: 67                                                                                                          | %                                                                                                            | 33%                                          |                      |                      |
| 1503<br>1503<br>1503                                                                                                 |                                                                                                              |                                              |                      |                      |
| • Molecule 2: BEZ-LEU-LEU                                                                                            |                                                                                                              |                                              |                      |                      |
| Chain 3: 67                                                                                                          | %                                                                                                            | 33%                                          |                      |                      |
| 1803210<br>1803<br>1803                                                                                              |                                                                                                              |                                              |                      |                      |
| • Molecule 2: BEZ-LEU-LEU                                                                                            |                                                                                                              |                                              |                      |                      |
| Chain 4: 67                                                                                                          | %                                                                                                            | 33%                                          |                      |                      |
| BEZ301<br>L803<br>L803                                                                                               |                                                                                                              |                                              |                      |                      |
| • Molecule 3: ATP-dependent C                                                                                        | Clp protease proteolytic sub                                                                                 | unit 1                                       |                      |                      |
| Chain H:                                                                                                             | 76%                                                                                                          | 12%                                          | • 11%                |                      |
| MET<br>SER<br>CLN<br>VAL<br>THR<br>ASP<br>MET<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP  | L25<br>E35<br>N36<br>N36<br>L49<br>L49<br>L49<br>L49<br>L49<br>L62<br>S72<br>S72<br>S72<br>E101              | 1120<br>1120<br>1121<br>1121<br>1123<br>1123 | 1130<br>G131<br>K147 | R152<br>D170<br>R173 |
| V186<br>T191<br>T191<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>GLU<br>GLU                                                |                                                                                                              |                                              |                      |                      |
| • Molecule 3: ATP-dependent C                                                                                        | Clp protease proteolytic sub                                                                                 | unit 1                                       |                      |                      |
| Chain I:                                                                                                             | 77%                                                                                                          | 11% •                                        | 11%                  |                      |
| MET<br>SER<br>CALN<br>VAL<br>THR<br>ARF<br>ARF<br>ARG<br>CLN<br>CALN<br>CALN<br>CALN<br>CALN<br>CALN<br>CALN<br>CALN | E35<br>N37<br>N37<br>N37<br>L44<br>L50<br>L50<br>S72<br>E101<br>E101<br>E101<br>E112<br>1120<br>L122<br>H122 | V129<br>V129<br>G131<br>G131                 | R164<br>D170<br>R173 | V186<br>R192<br>ALA  |
| HIS<br>VAL<br>ASN<br>GLY<br>GLU<br>GLN                                                                               |                                                                                                              |                                              |                      |                      |
| • Molecule 3: ATP-dependent C                                                                                        | Clp protease proteolytic sub                                                                                 | unit 1                                       |                      |                      |
| Chain J:                                                                                                             | 78%                                                                                                          | 10% •                                        | 11%                  |                      |



# MET SER GLN VAL THR ASP ASP ASN SER SER GLN GLY

#### VAL ASN GLY GLU ALA GLN

• Molecule 3: ATP-dependent Clp protease proteolytic subunit 1

| Chain K:                                                                   |                                 |                          | 76%               |            |                          |                    | 10%                  | ·    | 11%          | I                    |
|----------------------------------------------------------------------------|---------------------------------|--------------------------|-------------------|------------|--------------------------|--------------------|----------------------|------|--------------|----------------------|
| MET<br>SER<br>GLN<br>VAL<br>THR<br>ASP<br>ASP<br>ASS<br>SER<br>GLN<br>CLEU | S15<br>L16<br>D18<br>S19<br>S19 | E22<br>R23<br>L24<br>L25 | E35<br>V36<br>N37 | 140<br>L44 | L49<br>L50<br>L51<br>L62 | S72<br>M95<br>E101 | L121<br>M122<br>H123 | L126 | V129<br>E149 | D170<br>R173<br>V186 |

# ALA HIS VAL ASN GLY GLU ALA GLU GLN

• Molecule 3: ATP-dependent Clp protease proteolytic subunit 1

| Chain L:                                                                                                                   | 78%                                                                                                          | 10%                                                                    | • 11%                | •                                                |
|----------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|----------------------|--------------------------------------------------|
| MET<br>SER<br>SER<br>CIN<br>CIN<br>ARF<br>ARC<br>ARC<br>ARC<br>ARC<br>SER<br>ARC<br>CIN<br>CIU<br>CIU<br>CIU<br>CIU<br>CIU | D18<br>519<br>519<br>519<br>522<br>125<br>125<br>135<br>137<br>144<br>149<br>149<br>149<br>149<br>149<br>160 | P67<br>872<br>872<br>872<br>872<br>812<br>H121<br>H123<br>H123<br>H123 | V129<br>D170<br>R173 | 11 <mark>90</mark><br>T191<br>R192<br>ALA<br>HIS |

### VAL ASN GLY GLU ALA GLN

• Molecule 3: ATP-dependent Clp protease proteolytic subunit 1

| Chain M:                                                                                               | 75%                                                                              | 13% •                                                | 11%                                  |
|--------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------|--------------------------------------|
| MET<br>MET<br>SER<br>CALN<br>VAL<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG<br>ARG | E35<br>V36<br>N37<br>L49<br>L49<br>L49<br>L50<br>D59<br>S72<br>S72<br>S72<br>S72 | 1119<br>1120<br>1121<br>1122<br>1126<br>1126<br>1126 | V127<br>D170<br>E173<br>E179<br>E182 |



• Molecule 3: ATP-dependent Clp protease proteolytic subunit 1

| Chain N:                                                                                                    | 80%                                                                                                                            | 9% • 10%                                                                                                                     |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|
| MET<br>SER<br>CLIM<br>VAL<br>THR<br>ASP<br>MET<br>ARG<br>SER<br>ASR<br>CLIM<br>CLIM<br>CLIM<br>CLIM<br>CLIM | 117<br>218<br>218<br>218<br>218<br>22<br>218<br>22<br>238<br>144<br>144<br>144<br>144<br>144<br>144<br>144<br>148<br>148<br>14 | L121<br>H123<br>H123<br>H123<br>L170<br>L170<br>L170<br>L170<br>L173<br>L173<br>L173<br>L173<br>L173<br>L173<br>L173<br>L173 |
| ALA<br>GLN                                                                                                  |                                                                                                                                |                                                                                                                              |
| • Molecule 3: ATP-de                                                                                        | pendent Clp protease proteoly                                                                                                  | tic subunit 1                                                                                                                |
| Chain h:                                                                                                    | 76%                                                                                                                            | 13% 11%                                                                                                                      |



# 



• Molecule 3: ATP-dependent Clp protease proteolytic subunit 1





• Molecule 3: ATP-dependent Clp protease proteolytic subunit 1

| Chain j:                                                                                               | 78%                                                                                     | 10                                                                | % 11%                                                                                         |
|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| MET<br>MET<br>SER<br>CLIN<br>VAL<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP | 519<br>E22<br>E22<br>E23<br>E23<br>E35<br>N37<br>N37<br>E44<br>L44<br>L49<br>L49<br>L50 | L62<br>872<br>872<br>1120<br>1120<br>1120<br>1123<br>1123<br>1123 | D170<br>D170<br>R173<br>V186<br>V186<br>R191<br>A1A<br>A1A<br>A1A<br>A1A<br>A1A<br>A1A<br>A1A |

#### GLY GLU ALA GLN

• Molecule 3: ATP-dependent Clp protease proteolytic subunit 1



#### R192 ALA HIS VAL ASN GLY GLV ALA ALA CLU

• Molecule 3: ATP-dependent Clp protease proteolytic subunit 1



Chain m: 76% 12% • 11%



# 

#### V186 T191 R192 ALA ALA ALA ASN GLY GLV GLV GLV

• Molecule 3: ATP-dependent Clp protease proteolytic subunit 1

| Chain n:                                                                                                             | 76%                                                                                                                   | 12% · 11%                                                                                   |      |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|------|
| MET<br>MET<br>GLIN<br>VAL<br>THR<br>ASP<br>MET<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP<br>ASP | D18<br>319<br>822<br>822<br>823<br>8235<br>8235<br>835<br>835<br>835<br>126<br>149<br>149<br>149<br>149<br>150<br>150 | 872<br>E101<br>E101<br>1120<br>1121<br>1121<br>1122<br>1126<br>1128<br>1128<br>1128<br>1128 | E179 |





# 4 Data and refinement statistics (i)

| Property                                    | Value                                           | Source    |
|---------------------------------------------|-------------------------------------------------|-----------|
| Space group                                 | C 1 2 1                                         | Depositor |
| Cell constants                              | 205.94Å 183.35Å 188.45Å                         | Depositor |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$      | $90.00^{\circ}$ $94.44^{\circ}$ $90.00^{\circ}$ | Depositor |
| Bosolution (Å)                              | 72.24 - 3.07                                    | Depositor |
|                                             | 72.14 - 3.07                                    | EDS       |
| % Data completeness                         | 93.2 (72.24-3.07)                               | Depositor |
| (in resolution range)                       | 93.2(72.14-3.07)                                | EDS       |
| $R_{merge}$                                 | 0.10                                            | Depositor |
| $R_{sym}$                                   | (Not available)                                 | Depositor |
| $< I/\sigma(I) > 1$                         | $2.83 (at 3.07 \text{\AA})$                     | Xtriage   |
| Refinement program                          | REFMAC 5.7.0029                                 | Depositor |
| B B.                                        | 0.198 , $0.232$                                 | Depositor |
| II, II, <i>free</i>                         | 0.201 , $0.232$                                 | DCC       |
| $R_{free}$ test set                         | 6092 reflections $(5.03%)$                      | wwPDB-VP  |
| Wilson B-factor $(Å^2)$                     | 59.3                                            | Xtriage   |
| Anisotropy                                  | 0.223                                           | Xtriage   |
| Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$ | 0.32 , $26.7$                                   | EDS       |
| L-test for $twinning^2$                     | $ < L >=0.46, < L^2>=0.28$                      | Xtriage   |
| Estimated twinning fraction                 | No twinning to report.                          | Xtriage   |
| $F_o, F_c$ correlation                      | 0.94                                            | EDS       |
| Total number of atoms                       | 40976                                           | wwPDB-VP  |
| Average B, all atoms $(Å^2)$                | 67.0                                            | wwPDB-VP  |

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 36.13 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 5.2426e-04. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

<sup>&</sup>lt;sup>2</sup>Theoretical values of  $\langle |L| \rangle$ ,  $\langle L^2 \rangle$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

# 5 Model quality (i)

# 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: BEZ

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Chain | Bo   | ond lengths       | Bond angles |                |  |
|-----|-------|------|-------------------|-------------|----------------|--|
|     | Chain | RMSZ | # Z  > 5          | RMSZ        | # Z  > 5       |  |
| 1   | А     | 0.82 | 0/1529            | 1.03        | 8/2068~(0.4%)  |  |
| 1   | В     | 0.83 | 0/1555            | 1.04        | 7/2104~(0.3%)  |  |
| 1   | С     | 0.86 | 0/1529            | 1.06        | 6/2068~(0.3%)  |  |
| 1   | D     | 0.91 | 1/1529~(0.1%)     | 1.08        | 5/2068~(0.2%)  |  |
| 1   | Е     | 0.87 | 0/1555            | 0.99        | 3/2104~(0.1%)  |  |
| 1   | F     | 0.83 | 0/1529            | 1.07        | 8/2068~(0.4%)  |  |
| 1   | G     | 0.83 | 0/1523            | 1.01        | 5/2060~(0.2%)  |  |
| 1   | а     | 0.84 | 0/1534            | 1.01        | 3/2075~(0.1%)  |  |
| 1   | b     | 0.86 | 0/1555            | 1.07        | 5/2104~(0.2%)  |  |
| 1   | с     | 0.91 | 2/1534~(0.1%)     | 1.22        | 11/2075~(0.5%) |  |
| 1   | d     | 0.84 | 1/1529~(0.1%)     | 1.07        | 9/2068~(0.4%)  |  |
| 1   | е     | 0.87 | 2/1555~(0.1%)     | 1.14        | 9/2104~(0.4%)  |  |
| 1   | f     | 0.86 | 1/1529~(0.1%)     | 1.04        | 4/2068~(0.2%)  |  |
| 1   | g     | 0.86 | 1/1529~(0.1%)     | 1.13        | 9/2068~(0.4%)  |  |
| 2   | 1     | 0.85 | 0/16              | 1.53        | 0/19           |  |
| 2   | 2     | 1.06 | 0/16              | 1.61        | 0/19           |  |
| 2   | 3     | 0.61 | 0/16              | 1.52        | 0/19           |  |
| 2   | 4     | 0.80 | 0/16              | 1.91        | 1/19~(5.3%)    |  |
| 2   | 0     | 0.83 | 0/16              | 1.13        | 0/19           |  |
| 2   | Р     | 0.66 | 0/16              | 1.88        | 0/19           |  |
| 2   | Q     | 0.69 | 0/16              | 1.35        | 0/19           |  |
| 2   | R     | 0.78 | 0/16              | 1.46        | 0/19           |  |
| 2   | S     | 0.45 | 0/16              | 1.94        | 1/19~(5.3%)    |  |
| 2   | Т     | 0.89 | 0/16              | 1.32        | 0/19           |  |
| 2   | U     | 0.71 | 0/16              | 1.13        | 0/19           |  |
| 2   | V     | 0.58 | 0/16              | 1.86        | 1/19~(5.3%)    |  |
| 2   | W     | 0.95 | 0/16              | 1.50        | 0/19           |  |
| 2   | Х     | 0.76 | 0/16              | 1.15        | 0/19           |  |
| 2   | Y     | 0.93 | 0/16              | 1.19        | 0/19           |  |
| 2   | Ζ     | 1.21 | 0/16              | 1.99        | 1/19~(5.3%)    |  |
| 2   | 0     | 0.61 | 0/16              | 1.67        | 0/19           |  |
| 2   | р     | 0.52 | $0/\overline{16}$ | 1.54        | 0/19           |  |



| Mal | Chain   | Bond lengths |                 | Bond angles |                               |  |
|-----|---------|--------------|-----------------|-------------|-------------------------------|--|
|     | Ullalli | RMSZ         | # Z  > 5        | RMSZ        | # Z  > 5                      |  |
| 2   | q       | 0.44         | 0/16            | 2.09        | 1/19~(5.3%)                   |  |
| 2   | r       | 0.92         | 0/16            | 1.35        | 0/19                          |  |
| 2   | s       | 0.66         | 0/16            | 1.84        | 0/19                          |  |
| 2   | t       | 0.61         | 0/16            | 1.47        | 0/19                          |  |
| 2   | u       | 0.57         | 0/16            | 1.76        | 0/19                          |  |
| 2   | V       | 0.64         | 0/16            | 1.29        | 0/19                          |  |
| 2   | W       | 0.75         | 0/16            | 1.47        | 0/19                          |  |
| 2   | Х       | 0.69         | 0/16            | 1.81        | 1/19~(5.3%)                   |  |
| 2   | у       | 0.92         | 0/16            | 1.60        | 0/19                          |  |
| 2   | Z       | 0.82         | 0/16            | 2.09        | 1/19~(5.3%)                   |  |
| 3   | Н       | 0.86         | 0/1379          | 1.03        | 8/1864~(0.4%)                 |  |
| 3   | Ι       | 0.92         | 1/1379~(0.1%)   | 1.14        | 9/1864~(0.5%)                 |  |
| 3   | J       | 0.90         | 0/1379          | 1.11        | 8/1864~(0.4%)                 |  |
| 3   | Κ       | 0.83         | 0/1379          | 1.03        | 6/1864~(0.3%)                 |  |
| 3   | L       | 0.82         | 0/1379          | 1.02        | 4/1864~(0.2%)                 |  |
| 3   | М       | 0.84         | 1/1379~(0.1%)   | 1.03        | 10/1864~(0.5%)                |  |
| 3   | Ν       | 0.82         | 1/1384~(0.1%)   | 1.04        | 6/1871~(0.3%)                 |  |
| 3   | h       | 0.84         | 2/1379~(0.1%)   | 1.03        | 5/1864~(0.3%)                 |  |
| 3   | i       | 0.84         | 1/1379~(0.1%)   | 1.10        | 10/1864~(0.5%)                |  |
| 3   | j       | 0.80         | 0/1379          | 1.05        | 6/1864~(0.3%)                 |  |
| 3   | k       | 0.82         | 0/1379          | 1.05        | 7/1864~(0.4%)                 |  |
| 3   | 1       | 0.81         | 0/1379          | 1.01        | 6/1864 (0.3%)                 |  |
| 3   | m       | 0.85         | 1/1379~(0.1%)   | 1.03        | 4/1864~(0.2%)                 |  |
| 3   | n       | 0.87         | 0/1379          | 1.10        | $1\overline{2/1864}\ (0.6\%)$ |  |
| All | All     | 0.85         | 15/41273~(0.0%) | 1.07        | 200/55737~(0.4%)              |  |

All (15) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms  | Z     | Observed(Å) | $\operatorname{Ideal}(\operatorname{\AA})$ |
|-----|-------|-----|------|--------|-------|-------------|--------------------------------------------|
| 3   | h     | 26  | SER  | CB-OG  | -9.46 | 1.29        | 1.42                                       |
| 3   | Ν     | 179 | GLU  | CD-OE2 | -7.57 | 1.17        | 1.25                                       |
| 1   | е     | 94  | GLN  | CG-CD  | -7.03 | 1.34        | 1.51                                       |
| 1   | с     | 205 | GLU  | CD-OE2 | -6.52 | 1.18        | 1.25                                       |
| 1   | е     | 151 | GLU  | CD-OE1 | -6.52 | 1.18        | 1.25                                       |
| 3   | М     | 179 | GLU  | CD-OE1 | -6.38 | 1.18        | 1.25                                       |
| 3   | h     | 192 | ARG  | N-CA   | 6.00  | 1.58        | 1.46                                       |
| 1   | D     | 21  | GLU  | CD-OE2 | -5.70 | 1.19        | 1.25                                       |
| 1   | f     | 158 | GLU  | CD-OE2 | -5.63 | 1.19        | 1.25                                       |
| 3   | m     | 101 | GLU  | CD-OE1 | -5.53 | 1.19        | 1.25                                       |
| 3   | Ι     | 163 | GLU  | CD-OE1 | -5.48 | 1.19        | 1.25                                       |
| 1   | с     | 205 | GLU  | CD-OE1 | 5.42  | 1.31        | 1.25                                       |
| 1   | g     | 151 | GLU  | CD-OE1 | -5.38 | 1.19        | 1.25                                       |



Continued from previous page...

| Mol | Chain | Res | Type | Atoms  | Z     | Observed(Å) | Ideal(Å) |
|-----|-------|-----|------|--------|-------|-------------|----------|
| 3   | i     | 179 | GLU  | CD-OE1 | -5.30 | 1.19        | 1.25     |
| 1   | d     | 94  | GLN  | CD-OE1 | 5.01  | 1.34        | 1.24     |

All (200) bond angle outliers are listed below:

| Mol | Chain | Res | Type | Atoms      | Z      | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|--------|------------------|---------------|
| 1   | с     | 99  | ASP  | CB-CG-OD1  | -19.46 | 100.79           | 118.30        |
| 1   | с     | 99  | ASP  | CB-CG-OD2  | 18.03  | 134.53           | 118.30        |
| 1   | g     | 99  | ASP  | CB-CG-OD1  | -15.39 | 104.45           | 118.30        |
| 1   | g     | 99  | ASP  | CB-CG-OD2  | 15.32  | 132.09           | 118.30        |
| 1   | е     | 94  | GLN  | CA-CB-CG   | -14.42 | 81.67            | 113.40        |
| 3   | J     | 168 | ASP  | CB-CG-OD1  | 14.32  | 131.19           | 118.30        |
| 1   | е     | 174 | LYS  | CD-CE-NZ   | 12.95  | 141.49           | 111.70        |
| 1   | D     | 174 | LYS  | CD-CE-NZ   | 12.53  | 140.53           | 111.70        |
| 1   | е     | 100 | ILE  | CG1-CB-CG2 | -12.44 | 84.03            | 111.40        |
| 3   | h     | 26  | SER  | CB-CA-C    | -11.12 | 88.98            | 110.10        |
| 3   | N     | 170 | ASP  | CB-CG-OD1  | 10.96  | 128.16           | 118.30        |
| 3   | i     | 119 | ARG  | NE-CZ-NH1  | 10.51  | 125.55           | 120.30        |
| 3   | Ι     | 164 | ARG  | CB-CG-CD   | 10.25  | 138.25           | 111.60        |
| 3   | J     | 170 | ASP  | CB-CG-OD1  | 10.03  | 127.33           | 118.30        |
| 3   | i     | 170 | ASP  | CB-CG-OD1  | 9.90   | 127.21           | 118.30        |
| 3   | m     | 170 | ASP  | CB-CG-OD1  | 9.89   | 127.20           | 118.30        |
| 3   | h     | 170 | ASP  | CB-CG-OD2  | -9.72  | 109.56           | 118.30        |
| 3   | Ι     | 170 | ASP  | CB-CG-OD1  | 9.48   | 126.83           | 118.30        |
| 3   | L     | 126 | LEU  | CA-CB-CG   | 9.20   | 136.47           | 115.30        |
| 3   | n     | 119 | ARG  | NE-CZ-NH1  | 9.10   | 124.85           | 120.30        |
| 1   | b     | 86  | LEU  | CB-CG-CD1  | 9.04   | 126.36           | 111.00        |
| 3   | Ι     | 170 | ASP  | CB-CG-OD2  | -8.92  | 110.28           | 118.30        |
| 3   | K     | 126 | LEU  | CA-CB-CG   | 8.87   | 135.71           | 115.30        |
| 3   | n     | 126 | LEU  | CA-CB-CG   | 8.74   | 135.40           | 115.30        |
| 1   | a     | 86  | LEU  | CB-CG-CD1  | 8.66   | 125.72           | 111.00        |
| 3   | m     | 170 | ASP  | CB-CG-OD2  | -8.59  | 110.57           | 118.30        |
| 3   | j     | 43  | ARG  | CG-CD-NE   | 8.58   | 129.81           | 111.80        |
| 3   | J     | 170 | ASP  | CB-CG-OD2  | -8.50  | 110.65           | 118.30        |
| 1   | В     | 160 | MET  | CG-SD-CE   | 8.49   | 113.78           | 100.20        |
| 3   | h     | 170 | ASP  | CB-CG-OD1  | 8.29   | 125.76           | 118.30        |
| 1   | d     | 201 | ASP  | CB-CG-OD2  | 8.26   | 125.73           | 118.30        |
| 1   | С     | 160 | MET  | CG-SD-CE   | 8.24   | 113.39           | 100.20        |
| 1   | с     | 205 | GLU  | CG-CD-OE2  | -8.22  | 101.86           | 118.30        |
| 1   | A     | 86  | LEU  | CB-CG-CD1  | 8.17   | 124.88           | 111.00        |
| 1   | с     | 160 | MET  | CG-SD-CE   | 8.15   | 113.25           | 100.20        |
| 1   | F     | 160 | MET  | CG-SD-CE   | 8.02   | 113.03           | 100.20        |



| 5l         | DΖK |
|------------|-----|
| <b>~</b> - |     |

| Mol | Chain | $\mathbf{Res}$ | Type | Atoms      | $\mathbf{Z}$ | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|----------------|------|------------|--------------|------------------|---------------|
| 1   | D     | 107            | GLN  | CB-CA-C    | -7.94        | 94.52            | 110.40        |
| 3   | k     | 171            | ARG  | CA-CB-CG   | 7.90         | 130.78           | 113.40        |
| 3   | i     | 124            | GLN  | CB-CA-C    | -7.89        | 94.62            | 110.40        |
| 1   | с     | 205            | GLU  | CG-CD-OE1  | 7.74         | 133.79           | 118.30        |
| 3   | Ι     | 163            | GLU  | CB-CG-CD   | -7.72        | 93.36            | 114.20        |
| 1   | С     | 107            | GLN  | CB-CA-C    | -7.69        | 95.01            | 110.40        |
| 3   | J     | 168            | ASP  | CB-CG-OD2  | -7.66        | 111.41           | 118.30        |
| 1   | В     | 163            | LEU  | CA-CB-CG   | 7.55         | 132.67           | 115.30        |
| 3   | i     | 164            | ARG  | CG-CD-NE   | 7.55         | 127.66           | 111.80        |
| 3   | n     | 164            | ARG  | CG-CD-NE   | 7.55         | 127.65           | 111.80        |
| 3   | 1     | 170            | ASP  | CB-CG-OD2  | 7.47         | 125.03           | 118.30        |
| 3   | М     | 126            | LEU  | CB-CA-C    | 7.35         | 124.17           | 110.20        |
| 1   | b     | 131            | ARG  | NE-CZ-NH2  | -7.33        | 116.64           | 120.30        |
| 1   | с     | 163            | LEU  | CA-CB-CG   | 7.30         | 132.09           | 115.30        |
| 3   | Н     | 119            | ARG  | NE-CZ-NH2  | 7.25         | 123.92           | 120.30        |
| 1   | В     | 31             | ASN  | CB-CA-C    | -7.16        | 96.07            | 110.40        |
| 1   | d     | 159            | ARG  | CG-CD-NE   | -7.16        | 96.77            | 111.80        |
| 3   | Ν     | 170            | ASP  | CB-CG-OD2  | -7.12        | 111.89           | 118.30        |
| 1   | a     | 31             | ASN  | CB-CA-C    | -7.05        | 96.30            | 110.40        |
| 3   | i     | 170            | ASP  | CB-CG-OD2  | -7.04        | 111.97           | 118.30        |
| 1   | С     | 31             | ASN  | CB-CA-C    | -7.02        | 96.37            | 110.40        |
| 1   | f     | 31             | ASN  | CB-CA-C    | -6.99        | 96.42            | 110.40        |
| 1   | е     | 31             | ASN  | CB-CA-C    | -6.88        | 96.65            | 110.40        |
| 1   | А     | 31             | ASN  | CB-CA-C    | -6.84        | 96.71            | 110.40        |
| 3   | Κ     | 51             | LEU  | CB-CG-CD1  | -6.82        | 99.40            | 111.00        |
| 3   | Ν     | 179            | GLU  | CG-CD-OE1  | 6.80         | 131.90           | 118.30        |
| 3   | Ι     | 119            | ARG  | CG-CD-NE   | 6.79         | 126.06           | 111.80        |
| 1   | Е     | 31             | ASN  | CB-CA-C    | -6.78        | 96.84            | 110.40        |
| 3   | М     | 170            | ASP  | CB-CG-OD2  | 6.78         | 124.40           | 118.30        |
| 3   | 1     | 192            | ARG  | NE-CZ-NH1  | 6.75         | 123.68           | 120.30        |
| 1   | d     | 201            | ASP  | CB-CG-OD1  | -6.74        | 112.23           | 118.30        |
| 3   | n     | 170            | ASP  | CB-CG-OD2  | 6.71         | 124.34           | 118.30        |
| 3   | n     | 120            | ILE  | CG1-CB-CG2 | -6.70        | 96.67            | 111.40        |
| 1   | b     | 31             | ASN  | CB-CA-C    | -6.68        | 97.04            | 110.40        |
| 1   | D     | 31             | ASN  | CB-CA-C    | -6.66        | 97.09            | 110.40        |
| 1   | А     | 105            | LEU  | N-CA-C     | -6.51        | 93.41            | 111.00        |
| 3   | М     | 192            | ARG  | NE-CZ-NH1  | 6.49         | 123.55           | 120.30        |
| 3   | j     | 120            | ILE  | CG1-CB-CG2 | -6.49        | 97.12            | 111.40        |
| 1   | g     | 31             | ASN  | CB-CA-C    | -6.46        | 97.49            | 110.40        |
| 2   | Z     | 803            | LEU  | CA-CB-CG   | 6.45         | 130.14           | 115.30        |
| 1   | е     | 131            | ARG  | NE-CZ-NH2  | -6.43        | 117.09           | 120.30        |
| 2   | n     | 802            | LEU  | CA-CB-CG   | 6.42         | 130.06           | 115.30        |



| 5DZK |
|------|
|------|

| Mol | Chain | Res | Tvne | Atoms      | Z     | $Observed(^{o})$ | Ideal(°) |
|-----|-------|-----|------|------------|-------|------------------|----------|
| 1   | B     | 131 | ARG  | NE-CZ-NH2  | -6.37 | 117.11           | 120.30   |
| 1   | F     | 157 | ILE  | CB-CA-C    | 6.36  | 124.32           | 111.60   |
| 3   | i     | 50  | LEU  | CA-CB-CG   | 6.35  | 129.91           | 115.30   |
| 3   | I     | 192 | ARG  | NE-CZ-NH1  | 6.34  | 123.47           | 120.30   |
| 1   | d     | 157 | ILE  | CB-CA-C    | 6.28  | 124.17           | 111.60   |
| 1   | F     | 31  | ASN  | CB-CA-C    | -6.28 | 97.83            | 110.40   |
| 3   | i     | 130 | THR  | CB-CA-C    | -6.27 | 94.67            | 111.60   |
| 1   | d     | 158 | GLU  | OE1-CD-OE2 | -6.26 | 115.78           | 123.30   |
| 1   | d     | 31  | ASN  | CB-CA-C    | -6.23 | 97.94            | 110.40   |
| 3   | j     | 130 | THR  | CB-CA-C    | -6.22 | 94.81            | 111.60   |
| 3   | k     | 170 | ASP  | CB-CG-OD2  | 6.22  | 123.90           | 118.30   |
| 3   | N     | 179 | GLU  | CG-CD-OE2  | -6.20 | 105.91           | 118.30   |
| 3   | m     | 50  | LEU  | CA-CB-CG   | 6.19  | 129.55           | 115.30   |
| 2   | Ζ     | 803 | LEU  | CA-CB-CG   | 6.17  | 129.50           | 115.30   |
| 1   | G     | 31  | ASN  | CB-CA-C    | -6.14 | 98.11            | 110.40   |
| 3   | n     | 192 | ARG  | NE-CZ-NH1  | 6.12  | 123.36           | 120.30   |
| 1   | a     | 131 | ARG  | NE-CZ-NH2  | -6.08 | 117.26           | 120.30   |
| 3   | L     | 50  | LEU  | CA-CB-CG   | 6.08  | 129.28           | 115.30   |
| 1   | С     | 174 | LYS  | CA-CB-CG   | 6.04  | 126.68           | 113.40   |
| 3   | 1     | 50  | LEU  | CA-CB-CG   | 6.02  | 129.15           | 115.30   |
| 3   | М     | 126 | LEU  | CB-CG-CD2  | 6.01  | 121.21           | 111.00   |
| 3   | Ι     | 120 | ILE  | CA-CB-CG1  | -6.01 | 99.59            | 111.00   |
| 3   | n     | 179 | GLU  | CG-CD-OE2  | 5.99  | 130.29           | 118.30   |
| 1   | D     | 157 | ILE  | CB-CA-C    | 5.99  | 123.58           | 111.60   |
| 3   | j     | 170 | ASP  | CB-CG-OD2  | 5.99  | 123.69           | 118.30   |
| 3   | Ι     | 50  | LEU  | CA-CB-CG   | 5.98  | 129.05           | 115.30   |
| 3   | L     | 170 | ASP  | CB-CG-OD2  | 5.95  | 123.66           | 118.30   |
| 1   | с     | 31  | ASN  | CB-CA-C    | -5.91 | 98.59            | 110.40   |
| 1   | f     | 134 | ILE  | CB-CA-C    | -5.90 | 99.79            | 111.60   |
| 3   | Н     | 131 | GLY  | N-CA-C     | 5.90  | 127.85           | 113.10   |
| 3   | N     | 192 | ARG  | NE-CZ-NH1  | 5.90  | 123.25           | 120.30   |
| 3   | 1     | 120 | ILE  | CA-CB-CG1  | -5.89 | 99.80            | 111.00   |
| 3   | Н     | 50  | LEU  | CA-CB-CG   | 5.88  | 128.83           | 115.30   |
| 1   | b     | 174 | LYS  | CA-CB-CG   | 5.88  | 126.34           | 113.40   |
| 1   | е     | 151 | GLU  | CG-CD-OE2  | 5.88  | 130.05           | 118.30   |
| 3   | j     | 50  | LEU  | CA-CB-CG   | 5.87  | 128.80           | 115.30   |
| 3   | H     | 170 | ASP  | CB-CG-OD2  | 5.85  | 123.56           | 118.30   |
| 1   | C     | 134 | ILE  | CB-CA-C    | -5.84 | 99.92            | 111.60   |
| 1   | E     | 131 | ARG  | NE-CZ-NH2  | -5.84 | 117.38           | 120.30   |
| 3   | J     | 50  | LEU  | CA-CB-CG   | 5.81  | 128.66           | 115.30   |
| 1   | е     | 151 | GLU  | CG-CD-OE1  | -5.81 | 106.68           | 118.30   |
| 3   | n     | 119 | ARG  | CD-NE-CZ   | 5.80  | 131.72           | 123.60   |



| 5DZK  |  |
|-------|--|
| 0DDIX |  |

| Mol | Chain | Res | Tvpe | Atoms      | Z     | Observed( <sup>o</sup> ) | Ideal(°) |
|-----|-------|-----|------|------------|-------|--------------------------|----------|
| 3   | K     | 40  | ILE  | CG1-CB-CG2 | -5.79 | 98.66                    | 111.40   |
| 3   | i     | 179 | GLU  | CG-CD-OE2  | 5.79  | 129.88                   | 118.30   |
| 3   | M     | 120 | ILE  | CA-CB-CG1  | -5.79 | 100.01                   | 111.00   |
| 1   | g     | 151 | GLU  | CG-CD-OE1  | -5.78 | 106.74                   | 118.30   |
| 3   | M     | 179 | GLU  | CG-CD-OE2  | 5.78  | 129.86                   | 118.30   |
| 3   | 1     | 40  | ILE  | CG1-CB-CG2 | -5.76 | 98.72                    | 111.40   |
| 1   | b     | 151 | GLU  | OE1-CD-OE2 | -5.75 | 116.40                   | 123.30   |
| 1   | В     | 134 | ILE  | CB-CA-C    | -5.75 | 100.11                   | 111.60   |
| 3   | K     | 50  | LEU  | CA-CB-CG   | 5.73  | 128.47                   | 115.30   |
| 3   | Н     | 119 | ARG  | CG-CD-NE   | 5.72  | 123.81                   | 111.80   |
| 3   | k     | 192 | ARG  | NE-CZ-NH1  | 5.72  | 123.16                   | 120.30   |
| 1   | f     | 174 | LYS  | CD-CE-NZ   | 5.70  | 124.82                   | 111.70   |
| 3   | K     | 170 | ASP  | CB-CG-OD2  | 5.68  | 123.41                   | 118.30   |
| 1   | е     | 157 | ILE  | CB-CA-C    | 5.67  | 122.94                   | 111.60   |
| 3   | М     | 119 | ARG  | CG-CD-NE   | 5.67  | 123.71                   | 111.80   |
| 1   | В     | 93  | MET  | CG-SD-CE   | -5.67 | 91.13                    | 100.20   |
| 1   | С     | 131 | ARG  | NE-CZ-NH2  | -5.64 | 117.48                   | 120.30   |
| 2   | V     | 803 | LEU  | CA-CB-CG   | 5.63  | 128.24                   | 115.30   |
| 3   | L     | 190 | ILE  | CA-CB-CG1  | 5.60  | 121.64                   | 111.00   |
| 1   | g     | 134 | ILE  | CB-CA-C    | -5.58 | 100.43                   | 111.60   |
| 3   | j     | 43  | ARG  | CB-CG-CD   | -5.58 | 97.11                    | 111.60   |
| 2   | 4     | 803 | LEU  | CA-CB-CG   | 5.56  | 128.10                   | 115.30   |
| 3   | k     | 43  | ARG  | CG-CD-NE   | 5.55  | 123.45                   | 111.80   |
| 1   | g     | 151 | GLU  | CG-CD-OE2  | 5.54  | 129.38                   | 118.30   |
| 1   | g     | 131 | ARG  | NE-CZ-NH2  | -5.52 | 117.54                   | 120.30   |
| 1   | А     | 93  | MET  | CG-SD-CE   | -5.52 | 91.37                    | 100.20   |
| 1   | G     | 131 | ARG  | NE-CZ-NH2  | -5.50 | 117.55                   | 120.30   |
| 3   | М     | 182 | GLU  | OE1-CD-OE2 | -5.46 | 116.74                   | 123.30   |
| 1   | A     | 134 | ILE  | CB-CA-C    | -5.46 | 100.68                   | 111.60   |
| 3   | h     | 40  | ILE  | CG1-CB-CG2 | -5.46 | 99.39                    | 111.40   |
| 3   | K     | 37  | ASN  | CB-CA-C    | -5.41 | 99.57                    | 110.40   |
| 3   | k     | 40  | ILE  | CG1-CB-CG2 | -5.41 | 99.49                    | 111.40   |
| 3   | i     | 119 | ARG  | CD-NE-CZ   | 5.38  | 131.13                   | 123.60   |
| 1   | G     | 174 | LYS  | CD-CE-NZ   | 5.37  | 124.04                   | 111.70   |
| 1   | d     | 174 | LYS  | CA-CB-CG   | 5.35  | 125.18                   | 113.40   |
| 1   | F     | 93  | MET  | CG-SD-CE   | -5.35 | 91.64                    | 100.20   |
| 1   | F     | 174 | LYS  | CD-CE-NZ   | 5.35  | 124.00                   | 111.70   |
| 1   | g     | 70  | ARG  | NE-CZ-NH1  | 5.34  | 122.97                   | 120.30   |
| 1   | F     | 134 | ILE  | CB-CA-C    | -5.34 | 100.92                   | 111.60   |
| 1   | С     | 196 | ASP  | CB-CG-OD2  | 5.33  | 123.10                   | 118.30   |
| 3   | H     | 147 | LYS  | CB-CG-CD   | 5.33  | 125.45                   | 111.60   |
| 1   | F     | 208 | LYS  | CD-CE-NZ   | 5.32  | 123.94                   | 111.70   |



| 5DZK |
|------|
|------|

| Mol | Chain | $\mathbf{Res}$ | Type | Atoms      | Z     | Observed( <sup>o</sup> ) | $Ideal(^{o})$ |
|-----|-------|----------------|------|------------|-------|--------------------------|---------------|
| 1   | с     | 174            | LYS  | CD-CE-NZ   | 5.32  | 123.94                   | 111.70        |
| 3   | М     | 179            | GLU  | CG-CD-OE1  | -5.31 | 107.68                   | 118.30        |
| 3   | 1     | 43             | ARG  | CG-CD-NE   | 5.31  | 122.94                   | 111.80        |
| 1   | G     | 134            | ILE  | CB-CA-C    | -5.30 | 101.00                   | 111.60        |
| 1   | е     | 134            | ILE  | CB-CA-C    | -5.29 | 101.03                   | 111.60        |
| 1   | А     | 184            | ASP  | CB-CG-OD2  | 5.28  | 123.05                   | 118.30        |
| 1   | А     | 131            | ARG  | NE-CZ-NH2  | -5.28 | 117.66                   | 120.30        |
| 3   | n     | 37             | ASN  | CB-CA-C    | -5.28 | 99.85                    | 110.40        |
| 1   | Е     | 134            | ILE  | CB-CA-C    | -5.27 | 101.06                   | 111.60        |
| 3   | N     | 37             | ASN  | CB-CA-C    | -5.26 | 99.87                    | 110.40        |
| 3   | J     | 43             | ARG  | NE-CZ-NH1  | 5.26  | 122.93                   | 120.30        |
| 3   | Н     | 43             | ARG  | NE-CZ-NH2  | -5.25 | 117.67                   | 120.30        |
| 1   | с     | 75             | TYR  | CB-CG-CD1  | 5.25  | 124.15                   | 121.00        |
| 3   | i     | 179            | GLU  | CG-CD-OE1  | -5.25 | 107.80                   | 118.30        |
| 3   | m     | 119            | ARG  | CG-CD-NE   | 5.25  | 122.83                   | 111.80        |
| 1   | d     | 159            | ARG  | CA-CB-CG   | 5.23  | 124.91                   | 113.40        |
| 1   | В     | 184            | ASP  | CB-CG-OD2  | 5.22  | 123.00                   | 118.30        |
| 1   | f     | 158            | GLU  | OE1-CD-OE2 | -5.22 | 117.04                   | 123.30        |
| 3   | J     | 37             | ASN  | CB-CA-C    | -5.21 | 99.98                    | 110.40        |
| 3   | J     | 43             | ARG  | NE-CZ-NH2  | -5.20 | 117.70                   | 120.30        |
| 3   | n     | 130            | THR  | N-CA-CB    | 5.18  | 120.15                   | 110.30        |
| 3   | n     | 130            | THR  | CB-CA-C    | -5.14 | 97.73                    | 111.60        |
| 1   | G     | 69             | ASP  | CB-CG-OD1  | -5.13 | 113.68                   | 118.30        |
| 1   | d     | 131            | ARG  | NE-CZ-NH2  | -5.10 | 117.75                   | 120.30        |
| 3   | М     | 190            | ILE  | CA-CB-CG1  | 5.10  | 120.68                   | 111.00        |
| 3   | Ι     | 131            | GLY  | N-CA-C     | 5.10  | 125.84                   | 113.10        |
| 1   | D     | 134            | ILE  | CB-CA-C    | -5.09 | 101.41                   | 111.60        |
| 3   | Н     | 43             | ARG  | CG-CD-NE   | 5.09  | 122.50                   | 111.80        |
| 1   | А     | 151            | GLU  | CA-CB-CG   | 5.09  | 124.59                   | 113.40        |
| 2   | Х     | 802            | LEU  | CA-CB-CG   | 5.08  | 126.98                   | 115.30        |
| 2   | S     | 802            | LEU  | CA-CB-CG   | 5.08  | 126.97                   | 115.30        |
| 3   | n     | 179            | GLU  | CG-CD-OE1  | -5.08 | 108.15                   | 118.30        |
| 3   | k     | 43             | ARG  | NE-CZ-NH2  | -5.06 | 117.77                   | 120.30        |
| 3   | k     | 43             | ARG  | NE-CZ-NH1  | 5.05  | 122.82                   | 120.30        |
| 1   | g     | 69             | ASP  | CB-CG-OD1  | -5.03 | 113.78                   | 118.30        |
| 3   | h     | 192            | ARG  | NE-CZ-NH1  | 5.03  | 122.81                   | 120.30        |
| 1   | F     | 156            | GLU  | CG-CD-OE1  | 5.02  | 128.35                   | 118.30        |
| 1   | с     | 134            | ILE  | CB-CA-C    | -5.02 | 101.56                   | 111.60        |

There are no chirality outliers.

There are no planarity outliers.



### 5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed      | Favoured  | Allowed | Outliers | Perce | ntiles |
|-----|-------|---------------|-----------|---------|----------|-------|--------|
| 1   | А     | 194/214~(91%) | 187 (96%) | 6 (3%)  | 1 (0%)   | 29    | 61     |
| 1   | В     | 198/214~(92%) | 191 (96%) | 5 (2%)  | 2(1%)    | 15    | 47     |
| 1   | С     | 194/214~(91%) | 188 (97%) | 4 (2%)  | 2(1%)    | 15    | 47     |
| 1   | D     | 194/214~(91%) | 188 (97%) | 5 (3%)  | 1 (0%)   | 29    | 61     |
| 1   | Е     | 198/214~(92%) | 190 (96%) | 6 (3%)  | 2(1%)    | 15    | 47     |
| 1   | F     | 194/214~(91%) | 187 (96%) | 5 (3%)  | 2 (1%)   | 15    | 47     |
| 1   | G     | 193/214~(90%) | 186 (96%) | 6 (3%)  | 1 (0%)   | 29    | 61     |
| 1   | a     | 195/214~(91%) | 189 (97%) | 5 (3%)  | 1 (0%)   | 29    | 61     |
| 1   | b     | 198/214~(92%) | 189 (96%) | 6 (3%)  | 3 (2%)   | 10    | 37     |
| 1   | с     | 195/214~(91%) | 189 (97%) | 4 (2%)  | 2 (1%)   | 15    | 47     |
| 1   | d     | 194/214~(91%) | 188 (97%) | 4 (2%)  | 2 (1%)   | 15    | 47     |
| 1   | е     | 198/214~(92%) | 188 (95%) | 8 (4%)  | 2 (1%)   | 15    | 47     |
| 1   | f     | 194/214~(91%) | 188 (97%) | 5 (3%)  | 1 (0%)   | 29    | 61     |
| 1   | g     | 194/214~(91%) | 188 (97%) | 4 (2%)  | 2 (1%)   | 15    | 47     |
| 2   | 1     | 1/3~(33%)     | 1 (100%)  | 0       | 0        | 100   | 100    |
| 2   | 2     | 1/3~(33%)     | 1 (100%)  | 0       | 0        | 100   | 100    |
| 2   | 3     | 1/3~(33%)     | 1 (100%)  | 0       | 0        | 100   | 100    |
| 2   | 4     | 1/3~(33%)     | 1 (100%)  | 0       | 0        | 100   | 100    |
| 2   | Ο     | 1/3~(33%)     | 1 (100%)  | 0       | 0        | 100   | 100    |
| 2   | Р     | 1/3~(33%)     | 1 (100%)  | 0       | 0        | 100   | 100    |
| 2   | Q     | 1/3~(33%)     | 1 (100%)  | 0       | 0        | 100   | 100    |



| Mol | Chain | Analysed      | Favoured  | Allowed  | Outliers | Perce | ntiles |
|-----|-------|---------------|-----------|----------|----------|-------|--------|
| 2   | R     | 1/3~(33%)     | 1 (100%)  | 0        | 0        | 100   | 100    |
| 2   | S     | 1/3~(33%)     | 1 (100%)  | 0        | 0        | 100   | 100    |
| 2   | Т     | 1/3~(33%)     | 1 (100%)  | 0        | 0        | 100   | 100    |
| 2   | U     | 1/3~(33%)     | 1 (100%)  | 0        | 0        | 100   | 100    |
| 2   | V     | 1/3~(33%)     | 1 (100%)  | 0        | 0        | 100   | 100    |
| 2   | W     | 1/3~(33%)     | 1 (100%)  | 0        | 0        | 100   | 100    |
| 2   | Х     | 1/3~(33%)     | 1 (100%)  | 0        | 0        | 100   | 100    |
| 2   | Y     | 1/3~(33%)     | 1 (100%)  | 0        | 0        | 100   | 100    |
| 2   | Z     | 1/3~(33%)     | 1 (100%)  | 0        | 0        | 100   | 100    |
| 2   | О     | 1/3~(33%)     | 1 (100%)  | 0        | 0        | 100   | 100    |
| 2   | р     | 1/3~(33%)     | 1 (100%)  | 0        | 0        | 100   | 100    |
| 2   | q     | 1/3~(33%)     | 0         | 1 (100%) | 0        | 100   | 100    |
| 2   | r     | 1/3~(33%)     | 1 (100%)  | 0        | 0        | 100   | 100    |
| 2   | s     | 1/3~(33%)     | 1 (100%)  | 0        | 0        | 100   | 100    |
| 2   | t     | 1/3~(33%)     | 1 (100%)  | 0        | 0        | 100   | 100    |
| 2   | u     | 1/3~(33%)     | 1 (100%)  | 0        | 0        | 100   | 100    |
| 2   | V     | 1/3~(33%)     | 1 (100%)  | 0        | 0        | 100   | 100    |
| 2   | W     | 1/3~(33%)     | 1 (100%)  | 0        | 0        | 100   | 100    |
| 2   | х     | 1/3~(33%)     | 1 (100%)  | 0        | 0        | 100   | 100    |
| 2   | У     | 1/3~(33%)     | 1 (100%)  | 0        | 0        | 100   | 100    |
| 2   | Z     | 1/3~(33%)     | 1 (100%)  | 0        | 0        | 100   | 100    |
| 3   | Н     | 176/200~(88%) | 169 (96%) | 7 (4%)   | 0        | 100   | 100    |
| 3   | Ι     | 176/200~(88%) | 171 (97%) | 5 (3%)   | 0        | 100   | 100    |
| 3   | J     | 176/200~(88%) | 171 (97%) | 5 (3%)   | 0        | 100   | 100    |
| 3   | К     | 176/200~(88%) | 170 (97%) | 6 (3%)   | 0        | 100   | 100    |
| 3   | L     | 176/200~(88%) | 170 (97%) | 6 (3%)   | 0        | 100   | 100    |
| 3   | М     | 176/200~(88%) | 170 (97%) | 6 (3%)   | 0        | 100   | 100    |
| 3   | Ν     | 177/200~(88%) | 170 (96%) | 7 (4%)   | 0        | 100   | 100    |
| 3   | h     | 176/200~(88%) | 171 (97%) | 5 (3%)   | 0        | 100   | 100    |
| 3   | i     | 176/200~(88%) | 171 (97%) | 5 (3%)   | 0        | 100   | 100    |
| 3   | j     | 176/200~(88%) | 171 (97%) | 5 (3%)   | 0        | 100   | 100    |



| Mol | Chain | Analysed        | Favoured   | Allowed  | Outliers | Perce | ntiles |
|-----|-------|-----------------|------------|----------|----------|-------|--------|
| 3   | k     | 176/200~(88%)   | 170~(97%)  | 6 (3%)   | 0        | 100   | 100    |
| 3   | 1     | 176/200~(88%)   | 169~(96%)  | 7 (4%)   | 0        | 100   | 100    |
| 3   | m     | 176/200~(88%)   | 171 (97%)  | 5(3%)    | 0        | 100   | 100    |
| 3   | n     | 176/200~(88%)   | 170~(97%)  | 6 (3%)   | 0        | 100   | 100    |
| All | All   | 5226/5880~(89%) | 5047 (97%) | 155 (3%) | 24 (0%)  | 29    | 61     |

All (24) Ramachandran outliers are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | F     | 209 | LEU  |
| 1   | В     | 48  | VAL  |
| 1   | Е     | 48  | VAL  |
| 1   | G     | 48  | VAL  |
| 1   | b     | 48  | VAL  |
| 1   | е     | 48  | VAL  |
| 1   | g     | 48  | VAL  |
| 1   | С     | 48  | VAL  |
| 1   | D     | 48  | VAL  |
| 1   | a     | 48  | VAL  |
| 1   | b     | 210 | SER  |
| 1   | с     | 48  | VAL  |
| 1   | d     | 48  | VAL  |
| 1   | f     | 48  | VAL  |
| 1   | F     | 48  | VAL  |
| 1   | А     | 48  | VAL  |
| 1   | В     | 106 | GLY  |
| 1   | Е     | 106 | GLY  |
| 1   | е     | 106 | GLY  |
| 1   | g     | 106 | GLY  |
| 1   | С     | 106 | GLY  |
| 1   | b     | 106 | GLY  |
| 1   | с     | 106 | GLY  |
| 1   | d     | 106 | GLY  |

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was



| 5DZK |
|------|
|------|

| Mol | Chain | Analysed      | Rotameric | Outliers | Percentiles |     |  |
|-----|-------|---------------|-----------|----------|-------------|-----|--|
| 1   | А     | 163/178~(92%) | 142 (87%) | 21 (13%) | 4           | 17  |  |
| 1   | В     | 165/178~(93%) | 142 (86%) | 23 (14%) | 3           | 14  |  |
| 1   | С     | 163/178~(92%) | 140 (86%) | 23 (14%) | 3           | 14  |  |
| 1   | D     | 163/178~(92%) | 141 (86%) | 22 (14%) | 4           | 15  |  |
| 1   | Е     | 165/178~(93%) | 145 (88%) | 20 (12%) | 5           | 19  |  |
| 1   | F     | 163/178~(92%) | 137 (84%) | 26 (16%) | 2           | 10  |  |
| 1   | G     | 162/178~(91%) | 143 (88%) | 19 (12%) | 5           | 20  |  |
| 1   | a     | 163/178~(92%) | 143 (88%) | 20 (12%) | 4           | 18  |  |
| 1   | b     | 165/178~(93%) | 140 (85%) | 25 (15%) | 3           | 11  |  |
| 1   | с     | 163/178~(92%) | 142 (87%) | 21 (13%) | 4           | 17  |  |
| 1   | d     | 163/178~(92%) | 142 (87%) | 21 (13%) | 4           | 17  |  |
| 1   | е     | 165/178~(93%) | 145 (88%) | 20 (12%) | 5           | 19  |  |
| 1   | f     | 163/178~(92%) | 143 (88%) | 20 (12%) | 4           | 18  |  |
| 1   | g     | 163/178~(92%) | 142 (87%) | 21 (13%) | 4           | 17  |  |
| 2   | 1     | 2/2~(100%)    | 1 (50%)   | 1 (50%)  | 0           | 0   |  |
| 2   | 2     | 2/2~(100%)    | 1 (50%)   | 1 (50%)  | 0           | 0   |  |
| 2   | 3     | 2/2~(100%)    | 1 (50%)   | 1 (50%)  | 0           | 0   |  |
| 2   | 4     | 2/2~(100%)    | 1 (50%)   | 1 (50%)  | 0           | 0   |  |
| 2   | О     | 2/2~(100%)    | 2 (100%)  | 0        | 100         | 100 |  |
| 2   | Р     | 2/2~(100%)    | 0         | 2 (100%) | 0           | 0   |  |
| 2   | Q     | 2/2~(100%)    | 2 (100%)  | 0        | 100         | 100 |  |
| 2   | R     | 2/2~(100%)    | 1 (50%)   | 1 (50%)  | 0           | 0   |  |
| 2   | S     | 2/2~(100%)    | 0         | 2 (100%) | 0           | 0   |  |
| 2   | Т     | 2/2~(100%)    | 0         | 2 (100%) | 0           | 0   |  |
| 2   | U     | 2/2~(100%)    | 2 (100%)  | 0        | 100         | 100 |  |
| 2   | V     | 2/2~(100%)    | 1 (50%)   | 1 (50%)  | 0           | 0   |  |
| 2   | W     | 2/2~(100%)    | 2 (100%)  | 0        | 100         | 100 |  |
| 2   | Х     | 2/2 (100%)    | 1 (50%)   | 1 (50%)  | 0           | 0   |  |
| 2   | Y     | 2/2~(100%)    | 2 (100%)  | 0        | 100         | 100 |  |
| 2   | Ζ     | 2/2~(100%)    | 1 (50%)   | 1 (50%)  | 0           | 0   |  |
| 2   | О     | 2/2~(100%)    | 1 (50%)   | 1 (50%)  | 0           | 0   |  |

analysed, and the total number of residues.



| $\alpha \cdot \cdot \cdot$ | C    |                                                |           |
|----------------------------|------|------------------------------------------------|-----------|
| Continued                  | trom | previous                                       | page      |
| • • • • • • • • • • • •    | J    | <b>P</b> · · · · · · · · · · · · · · · · · · · | r ~g ···· |

| Mol | Chain | Analysed        | Rotameric  | Outliers  | Percer | ntiles |
|-----|-------|-----------------|------------|-----------|--------|--------|
| 2   | р     | 2/2~(100%)      | 0          | 2(100%)   | 0      | 0      |
| 2   | q     | 2/2~(100%)      | 0          | 2(100%)   | 0      | 0      |
| 2   | r     | 2/2~(100%)      | 1 (50%)    | 1 (50%)   | 0      | 0      |
| 2   | s     | 2/2~(100%)      | 0          | 2 (100%)  | 0      | 0      |
| 2   | t     | 2/2~(100%)      | 2(100%)    | 0         | 100    | 100    |
| 2   | u     | 2/2~(100%)      | 0          | 2 (100%)  | 0      | 0      |
| 2   | V     | 2/2~(100%)      | 1 (50%)    | 1 (50%)   | 0      | 0      |
| 2   | W     | 2/2~(100%)      | 2(100%)    | 0         | 100    | 100    |
| 2   | х     | 2/2~(100%)      | 1 (50%)    | 1 (50%)   | 0      | 0      |
| 2   | У     | 2/2~(100%)      | 2 (100%)   | 0         | 100    | 100    |
| 2   | Z     | 2/2~(100%)      | 1 (50%)    | 1 (50%)   | 0      | 0      |
| 3   | Н     | 139/157~(88%)   | 117 (84%)  | 22 (16%)  | 2      | 10     |
| 3   | Ι     | 139/157~(88%)   | 121 (87%)  | 18 (13%)  | 4      | 17     |
| 3   | J     | 139/157~(88%)   | 119 (86%)  | 20 (14%)  | 3      | 13     |
| 3   | K     | 139/157~(88%)   | 114 (82%)  | 25 (18%)  | 1      | 7      |
| 3   | L     | 139/157~(88%)   | 120 (86%)  | 19 (14%)  | 3      | 15     |
| 3   | М     | 139/157~(88%)   | 117 (84%)  | 22 (16%)  | 2      | 10     |
| 3   | Ν     | 139/157~(88%)   | 121 (87%)  | 18 (13%)  | 4      | 17     |
| 3   | h     | 139/157~(88%)   | 115 (83%)  | 24 (17%)  | 2      | 8      |
| 3   | i     | 139/157~(88%)   | 116 (84%)  | 23 (16%)  | 2      | 9      |
| 3   | j     | 139/157~(88%)   | 121 (87%)  | 18 (13%)  | 4      | 17     |
| 3   | k     | 139/157~(88%)   | 117 (84%)  | 22 (16%)  | 2      | 10     |
| 3   | 1     | 139/157~(88%)   | 116 (84%)  | 23 (16%)  | 2      | 9      |
| 3   | m     | 139/157~(88%)   | 115 (83%)  | 24 (17%)  | 2      | 8      |
| 3   | n     | 139/157~(88%)   | 118 (85%)  | 21 (15%)  | 3      | 11     |
| All | All   | 4291/4746 (90%) | 3663~(85%) | 628 (15%) | 3      | 13     |

All (628) residues with a non-rotameric side chain are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 15  | ILE  |
| 1   | А     | 22  | HIS  |
| 1   | А     | 27  | VAL  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 36  | LEU  |
| 1   | А     | 50  | ASP  |
| 1   | А     | 61  | LEU  |
| 1   | А     | 86  | LEU  |
| 1   | А     | 87  | MET  |
| 1   | А     | 110 | SER  |
| 1   | А     | 131 | ARG  |
| 1   | А     | 135 | HIS  |
| 1   | А     | 136 | GLN  |
| 1   | А     | 142 | VAL  |
| 1   | А     | 144 | GLN  |
| 1   | А     | 151 | GLU  |
| 1   | А     | 152 | ILE  |
| 1   | А     | 158 | GLU  |
| 1   | А     | 184 | ASP  |
| 1   | А     | 185 | ARG  |
| 1   | А     | 207 | ARG  |
| 1   | А     | 209 | LEU  |
| 1   | В     | 15  | ILE  |
| 1   | В     | 22  | HIS  |
| 1   | В     | 27  | VAL  |
| 1   | В     | 36  | LEU  |
| 1   | В     | 50  | ASP  |
| 1   | В     | 61  | LEU  |
| 1   | В     | 86  | LEU  |
| 1   | В     | 87  | MET  |
| 1   | В     | 97  | ARG  |
| 1   | В     | 110 | SER  |
| 1   | В     | 135 | HIS  |
| 1   | В     | 136 | GLN  |
| 1   | В     | 140 | SER  |
| 1   | В     | 144 | GLN  |
| 1   | В     | 152 | ILE  |
| 1   | В     | 158 | GLU  |
| 1   | В     | 163 | LEU  |
| 1   | В     | 184 | ASP  |
| 1   | В     | 185 | ARG  |
| 1   | В     | 207 | ARG  |
| 1   | В     | 209 | LEU  |
| 1   | В     | 210 | SER  |
| 1   | В     | 212 | GLN  |
| 2   | Р     | 802 | LEU  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | Р     | 803 | LEU  |
| 1   | С     | 15  | ILE  |
| 1   | С     | 27  | VAL  |
| 1   | С     | 36  | LEU  |
| 1   | С     | 43  | PHE  |
| 1   | С     | 50  | ASP  |
| 1   | С     | 61  | LEU  |
| 1   | С     | 73  | THR  |
| 1   | С     | 86  | LEU  |
| 1   | С     | 87  | MET  |
| 1   | С     | 97  | ARG  |
| 1   | С     | 107 | GLN  |
| 1   | С     | 110 | SER  |
| 1   | С     | 131 | ARG  |
| 1   | С     | 135 | HIS  |
| 1   | С     | 136 | GLN  |
| 1   | С     | 144 | GLN  |
| 1   | С     | 152 | ILE  |
| 1   | С     | 158 | GLU  |
| 1   | С     | 164 | MET  |
| 1   | С     | 168 | LEU  |
| 1   | С     | 185 | ARG  |
| 1   | С     | 207 | ARG  |
| 1   | С     | 209 | LEU  |
| 1   | D     | 15  | ILE  |
| 1   | D     | 22  | HIS  |
| 1   | D     | 27  | VAL  |
| 1   | D     | 36  | LEU  |
| 1   | D     | 61  | LEU  |
| 1   | D     | 86  | LEU  |
| 1   | D     | 87  | MET  |
| 1   | D     | 97  | ARG  |
| 1   | D     | 110 | SER  |
| 1   | D     | 131 | ARG  |
| 1   | D     | 135 | HIS  |
| 1   | D     | 136 | GLN  |
| 1   | D     | 144 | GLN  |
| 1   | D     | 152 | ILE  |
| 1   | D     | 157 | ILE  |
| 1   | D     | 158 | GLU  |
| 1   | D     | 159 | ARG  |
| 1   | D     | 164 | MET  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | D     | 184 | ASP  |
| 1   | D     | 185 | ARG  |
| 1   | D     | 207 | ARG  |
| 1   | D     | 210 | SER  |
| 2   | R     | 802 | LEU  |
| 1   | Е     | 15  | ILE  |
| 1   | Е     | 22  | HIS  |
| 1   | Е     | 27  | VAL  |
| 1   | Е     | 36  | LEU  |
| 1   | Е     | 50  | ASP  |
| 1   | Е     | 73  | THR  |
| 1   | Е     | 86  | LEU  |
| 1   | Е     | 87  | MET  |
| 1   | Е     | 110 | SER  |
| 1   | Е     | 131 | ARG  |
| 1   | Е     | 135 | HIS  |
| 1   | Е     | 144 | GLN  |
| 1   | Е     | 152 | ILE  |
| 1   | Е     | 164 | MET  |
| 1   | Е     | 185 | ARG  |
| 1   | Е     | 207 | ARG  |
| 1   | Е     | 208 | LYS  |
| 1   | Е     | 209 | LEU  |
| 1   | Е     | 210 | SER  |
| 1   | Е     | 212 | GLN  |
| 2   | S     | 802 | LEU  |
| 2   | S     | 803 | LEU  |
| 1   | F     | 15  | ILE  |
| 1   | F     | 22  | HIS  |
| 1   | F     | 27  | VAL  |
| 1   | F     | 36  | LEU  |
| 1   | F     | 43  | PHE  |
| 1   | F     | 50  | ASP  |
| 1   | F     | 61  | LEU  |
| 1   | F     | 71  | ASP  |
| 1   | F     | 84  | THR  |
| 1   | F     | 86  | LEU  |
| 1   | F     | 87  | MET  |
| 1   | F     | 110 | SER  |
| 1   | F     | 131 | ARG  |
| 1   | F     | 135 | HIS  |
| 1   | F     | 136 | GLN  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | F     | 144 | GLN  |
| 1   | F     | 152 | ILE  |
| 1   | F     | 157 | ILE  |
| 1   | F     | 158 | GLU  |
| 1   | F     | 159 | ARG  |
| 1   | F     | 164 | MET  |
| 1   | F     | 170 | ARG  |
| 1   | F     | 185 | ARG  |
| 1   | F     | 207 | ARG  |
| 1   | F     | 208 | LYS  |
| 1   | F     | 209 | LEU  |
| 2   | Т     | 802 | LEU  |
| 2   | Т     | 803 | LEU  |
| 1   | G     | 15  | ILE  |
| 1   | G     | 22  | HIS  |
| 1   | G     | 24  | SER  |
| 1   | G     | 27  | VAL  |
| 1   | G     | 36  | LEU  |
| 1   | G     | 73  | THR  |
| 1   | G     | 86  | LEU  |
| 1   | G     | 87  | MET  |
| 1   | G     | 110 | SER  |
| 1   | G     | 131 | ARG  |
| 1   | G     | 135 | HIS  |
| 1   | G     | 136 | GLN  |
| 1   | G     | 144 | GLN  |
| 1   | G     | 152 | ILE  |
| 1   | G     | 158 | GLU  |
| 1   | G     | 184 | ASP  |
| 1   | G     | 185 | ARG  |
| 1   | G     | 188 | ILE  |
| 1   | G     | 207 | ARG  |
| 3   | Н     | 17  | THR  |
| 3   | Н     | 19  | SER  |
| 3   | Н     | 22  | GLU  |
| 3   | Н     | 24  | LEU  |
| 3   | Н     | 25  | LEU  |
| 3   | Н     | 35  | GLU  |
| 3   | Н     | 37  | ASN  |
| 3   | Н     | 44  | LEU  |
| 3   | Н     | 49  | LEU  |
| 3   | Н     | 50  | LEU  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 3   | Н     | 62  | LEU  |
| 3   | Н     | 72  | SER  |
| 3   | Н     | 95  | MET  |
| 3   | Н     | 101 | GLU  |
| 3   | Н     | 121 | LEU  |
| 3   | Н     | 123 | HIS  |
| 3   | Н     | 129 | VAL  |
| 3   | Н     | 147 | LYS  |
| 3   | Н     | 173 | ARG  |
| 3   | Н     | 186 | VAL  |
| 3   | Н     | 191 | THR  |
| 3   | Н     | 192 | ARG  |
| 2   | V     | 803 | LEU  |
| 3   | Ι     | 17  | THR  |
| 3   | Ι     | 19  | SER  |
| 3   | Ι     | 22  | GLU  |
| 3   | Ι     | 24  | LEU  |
| 3   | Ι     | 35  | GLU  |
| 3   | Ι     | 37  | ASN  |
| 3   | Ι     | 44  | LEU  |
| 3   | Ι     | 49  | LEU  |
| 3   | Ι     | 50  | LEU  |
| 3   | Ι     | 62  | LEU  |
| 3   | Ι     | 72  | SER  |
| 3   | I     | 101 | GLU  |
| 3   | Ι     | 121 | LEU  |
| 3   | Ι     | 123 | HIS  |
| 3   | Ι     | 129 | VAL  |
| 3   | I     | 173 | ARG  |
| 3   | I     | 186 | VAL  |
| 3   | I     | 192 | ARG  |
| 3   | J     | 17  | THR  |
| 3   | J     | 19  | SER  |
| 3   | J     | 22  | GLU  |
| 3   | J     | 24  |      |
| 3   | J     | 25  | LEU  |
| 3   | J     | 35  | GLU  |
| 3   | J     | 37  | ASN  |
| 3   | J     | 44  |      |
| 3   | J     | 49  |      |
| 3   | J     | 50  |      |
| 3   | J     | 62  | LEU  |



| $\mathbf{Mol}$ | Chain | Res | Type |
|----------------|-------|-----|------|
| 3              | J     | 67  | PRO  |
| 3              | J     | 72  | SER  |
| 3              | J     | 101 | GLU  |
| 3              | J     | 121 | LEU  |
| 3              | J     | 123 | HIS  |
| 3              | J     | 129 | VAL  |
| 3              | J     | 173 | ARG  |
| 3              | J     | 186 | VAL  |
| 3              | J     | 192 | ARG  |
| 2              | X     | 802 | LEU  |
| 3              | K     | 17  | THR  |
| 3              | K     | 19  | SER  |
| 3              | K     | 22  | GLU  |
| 3              | K     | 24  | LEU  |
| 3              | K     | 25  | LEU  |
| 3              | K     | 35  | GLU  |
| 3              | K     | 37  | ASN  |
| 3              | K     | 40  | ILE  |
| 3              | K     | 44  | LEU  |
| 3              | K     | 49  | LEU  |
| 3              | K     | 50  | LEU  |
| 3              | K     | 51  | LEU  |
| 3              | K     | 62  | LEU  |
| 3              | Κ     | 72  | SER  |
| 3              | K     | 95  | MET  |
| 3              | K     | 101 | GLU  |
| 3              | K     | 121 | LEU  |
| 3              | Κ     | 123 | HIS  |
| 3              | Κ     | 126 | LEU  |
| 3              | Κ     | 129 | VAL  |
| 3              | K     | 149 | GLU  |
| 3              | Κ     | 173 | ARG  |
| 3              | K     | 186 | VAL  |
| 3              | K     | 191 | THR  |
| 3              | K     | 192 | ARG  |
| 3              | L     | 17  | THR  |
| 3              | L     | 19  | SER  |
| 3              | L     | 22  | GLU  |
| 3              | L     | 25  | LEU  |
| 3              | L     | 35  | GLU  |
| 3              | L     | 37  | ASN  |
| 3              | L     | 44  | LEU  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 3   | L     | 49  | LEU  |
| 3   | L     | 50  | LEU  |
| 3   | L     | 62  | LEU  |
| 3   | L     | 67  | PRO  |
| 3   | L     | 72  | SER  |
| 3   | L     | 95  | MET  |
| 3   | L     | 101 | GLU  |
| 3   | L     | 121 | LEU  |
| 3   | L     | 123 | HIS  |
| 3   | L     | 126 | LEU  |
| 3   | L     | 129 | VAL  |
| 3   | L     | 173 | ARG  |
| 2   | Ζ     | 803 | LEU  |
| 3   | М     | 17  | THR  |
| 3   | М     | 19  | SER  |
| 3   | М     | 22  | GLU  |
| 3   | М     | 24  | LEU  |
| 3   | М     | 25  | LEU  |
| 3   | М     | 35  | GLU  |
| 3   | М     | 37  | ASN  |
| 3   | М     | 44  | LEU  |
| 3   | М     | 49  | LEU  |
| 3   | М     | 50  | LEU  |
| 3   | М     | 59  | ASP  |
| 3   | М     | 62  | LEU  |
| 3   | М     | 72  | SER  |
| 3   | М     | 101 | GLU  |
| 3   | М     | 121 | LEU  |
| 3   | М     | 123 | HIS  |
| 3   | М     | 129 | VAL  |
| 3   | М     | 173 | ARG  |
| 3   | М     | 182 | GLU  |
| 3   | М     | 186 | VAL  |
| 3   | М     | 191 | THR  |
| 3   | М     | 192 | ARG  |
| 2   | 1     | 802 | LEU  |
| 3   | Ν     | 17  | THR  |
| 3   | N     | 19  | SER  |
| 3   | N     | 22  | GLU  |
| 3   | N     | 35  | GLU  |
| 3   | N     | 37  | ASN  |
| 3   | N     | 44  | LEU  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 3   | N     | 49  | LEU  |
| 3   | N     | 50  | LEU  |
| 3   | N     | 62  | LEU  |
| 3   | N     | 72  | SER  |
| 3   | N     | 95  | MET  |
| 3   | N     | 101 | GLU  |
| 3   | N     | 121 | LEU  |
| 3   | N     | 123 | HIS  |
| 3   | N     | 129 | VAL  |
| 3   | N     | 173 | ARG  |
| 3   | N     | 186 | VAL  |
| 3   | N     | 192 | ARG  |
| 2   | 2     | 803 | LEU  |
| 1   | a     | 15  | ILE  |
| 1   | a     | 22  | HIS  |
| 1   | a     | 27  | VAL  |
| 1   | a     | 36  | LEU  |
| 1   | a     | 50  | ASP  |
| 1   | a     | 73  | THR  |
| 1   | a     | 86  | LEU  |
| 1   | a     | 87  | MET  |
| 1   | a     | 110 | SER  |
| 1   | a     | 131 | ARG  |
| 1   | a     | 135 | HIS  |
| 1   | a     | 136 | GLN  |
| 1   | a     | 144 | GLN  |
| 1   | a     | 152 | ILE  |
| 1   | a     | 158 | GLU  |
| 1   | a     | 164 | MET  |
| 1   | a     | 185 | ARG  |
| 1   | a     | 207 | ARG  |
| 1   | a     | 209 | LEU  |
| 1   | a     | 210 | SER  |
| 2   | 0     | 802 | LEU  |
| 1   | b     | 15  | ILE  |
| 1   | b     | 22  | HIS  |
| 1   | b     | 27  | VAL  |
| 1   | b     | 36  | LEU  |
| 1   | b     | 50  | ASP  |
| 1   | b     | 61  | LEU  |
| 1   | b     | 73  | THR  |
| 1   | b     | 84  | THR  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | b     | 86  | LEU  |
| 1   | b     | 87  | MET  |
| 1   | b     | 110 | SER  |
| 1   | b     | 135 | HIS  |
| 1   | b     | 136 | GLN  |
| 1   | b     | 144 | GLN  |
| 1   | b     | 152 | ILE  |
| 1   | b     | 158 | GLU  |
| 1   | b     | 159 | ARG  |
| 1   | b     | 164 | MET  |
| 1   | b     | 180 | ARG  |
| 1   | b     | 185 | ARG  |
| 1   | b     | 188 | ILE  |
| 1   | b     | 207 | ARG  |
| 1   | b     | 209 | LEU  |
| 1   | b     | 210 | SER  |
| 1   | b     | 212 | GLN  |
| 2   | р     | 802 | LEU  |
| 2   | р     | 803 | LEU  |
| 1   | с     | 15  | ILE  |
| 1   | с     | 22  | HIS  |
| 1   | с     | 27  | VAL  |
| 1   | с     | 36  | LEU  |
| 1   | с     | 50  | ASP  |
| 1   | с     | 86  | LEU  |
| 1   | с     | 87  | MET  |
| 1   | с     | 110 | SER  |
| 1   | с     | 131 | ARG  |
| 1   | с     | 135 | HIS  |
| 1   | с     | 136 | GLN  |
| 1   | с     | 144 | GLN  |
| 1   | с     | 152 | ILE  |
| 1   | с     | 158 | GLU  |
| 1   | с     | 163 | LEU  |
| 1   | с     | 164 | MET  |
| 1   | с     | 185 | ARG  |
| 1   | с     | 207 | ARG  |
| 1   | с     | 208 | LYS  |
| 1   | с     | 209 | LEU  |
| 1   | с     | 210 | SER  |
| 2   | q     | 802 | LEU  |
| 2   | q     | 803 | LEU  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | d     | 15  | ILE  |
| 1   | d     | 22  | HIS  |
| 1   | d     | 27  | VAL  |
| 1   | d     | 36  | LEU  |
| 1   | d     | 50  | ASP  |
| 1   | d     | 61  | LEU  |
| 1   | d     | 86  | LEU  |
| 1   | d     | 87  | MET  |
| 1   | d     | 97  | ARG  |
| 1   | d     | 110 | SER  |
| 1   | d     | 131 | ARG  |
| 1   | d     | 135 | HIS  |
| 1   | d     | 136 | GLN  |
| 1   | d     | 144 | GLN  |
| 1   | d     | 152 | ILE  |
| 1   | d     | 157 | ILE  |
| 1   | d     | 158 | GLU  |
| 1   | d     | 159 | ARG  |
| 1   | d     | 164 | MET  |
| 1   | d     | 185 | ARG  |
| 1   | d     | 207 | ARG  |
| 2   | r     | 803 | LEU  |
| 1   | е     | 15  | ILE  |
| 1   | е     | 22  | HIS  |
| 1   | е     | 27  | VAL  |
| 1   | е     | 36  | LEU  |
| 1   | е     | 86  | LEU  |
| 1   | е     | 87  | MET  |
| 1   | е     | 100 | ILE  |
| 1   | е     | 110 | SER  |
| 1   | е     | 135 | HIS  |
| 1   | е     | 144 | GLN  |
| 1   | е     | 152 | ILE  |
| 1   | е     | 157 | ILE  |
| 1   | е     | 158 | GLU  |
| 1   | е     | 164 | MET  |
| 1   | е     | 184 | ASP  |
| 1   | е     | 185 | ARG  |
| 1   | е     | 207 | ARG  |
| 1   | е     | 209 | LEU  |
| 1   | е     | 210 | SER  |
| 1   | е     | 212 | GLN  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 2   | s     | 802 | LEU  |
| 2   | S     | 803 | LEU  |
| 1   | f     | 15  | ILE  |
| 1   | f     | 22  | HIS  |
| 1   | f     | 27  | VAL  |
| 1   | f     | 36  | LEU  |
| 1   | f     | 50  | ASP  |
| 1   | f     | 61  | LEU  |
| 1   | f     | 73  | THR  |
| 1   | f     | 86  | LEU  |
| 1   | f     | 87  | MET  |
| 1   | f     | 110 | SER  |
| 1   | f     | 131 | ARG  |
| 1   | f     | 135 | HIS  |
| 1   | f     | 144 | GLN  |
| 1   | f     | 152 | ILE  |
| 1   | f     | 164 | MET  |
| 1   | f     | 175 | ASP  |
| 1   | f     | 185 | ARG  |
| 1   | f     | 207 | ARG  |
| 1   | f     | 209 | LEU  |
| 1   | f     | 210 | SER  |
| 1   | g     | 15  | ILE  |
| 1   | g     | 22  | HIS  |
| 1   | g     | 27  | VAL  |
| 1   | g     | 36  | LEU  |
| 1   | g     | 50  | ASP  |
| 1   | g     | 61  | LEU  |
| 1   | g     | 73  | THR  |
| 1   | g     | 86  | LEU  |
| 1   | g     | 87  | MET  |
| 1   | g     | 110 | SER  |
| 1   | g     | 135 | HIS  |
| 1   | g     | 136 | GLN  |
| 1   | g     | 144 | GLN  |
| 1   | g     | 152 | ILE  |
| 1   | g     | 158 | GLU  |
| 1   | g     | 159 | ARG  |
| 1   | g     | 164 | MET  |
| 1   | g     | 184 | ASP  |
| 1   | g     | 185 | ARG  |
| 1   | g     | 207 | ARG  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | g     | 209 | LEU  |
| 2   | u     | 802 | LEU  |
| 2   | u     | 803 | LEU  |
| 3   | h     | 17  | THR  |
| 3   | h     | 19  | SER  |
| 3   | h     | 22  | GLU  |
| 3   | h     | 24  | LEU  |
| 3   | h     | 25  | LEU  |
| 3   | h     | 35  | GLU  |
| 3   | h     | 37  | ASN  |
| 3   | h     | 39  | GLU  |
| 3   | h     | 44  | LEU  |
| 3   | h     | 49  | LEU  |
| 3   | h     | 50  | LEU  |
| 3   | h     | 62  | LEU  |
| 3   | h     | 72  | SER  |
| 3   | h     | 95  | MET  |
| 3   | h     | 101 | GLU  |
| 3   | h     | 121 | LEU  |
| 3   | h     | 123 | HIS  |
| 3   | h     | 129 | VAL  |
| 3   | h     | 148 | LYS  |
| 3   | h     | 152 | ARG  |
| 3   | h     | 173 | ARG  |
| 3   | h     | 186 | VAL  |
| 3   | h     | 191 | THR  |
| 3   | h     | 192 | ARG  |
| 2   | V     | 802 | LEU  |
| 3   | i     | 17  | THR  |
| 3   | i     | 19  | SER  |
| 3   | i     | 22  | GLU  |
| 3   | i     | 24  | LEU  |
| 3   | i     | 25  | LEU  |
| 3   | i     | 35  | GLU  |
| 3   | i     | 37  | ASN  |
| 3   | i     | 44  | LEU  |
| 3   | i     | 49  | LEU  |
| 3   | i     | 50  | LEU  |
| 3   | i     | 62  | LEU  |
| 3   | i     | 72  | SER  |
| 3   | i     | 95  | MET  |
| 3   | i     | 101 | GLU  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 3   | i     | 121 | LEU  |
| 3   | i     | 123 | HIS  |
| 3   | i     | 126 | LEU  |
| 3   | i     | 129 | VAL  |
| 3   | i     | 130 | THR  |
| 3   | i     | 173 | ARG  |
| 3   | i     | 186 | VAL  |
| 3   | i     | 191 | THR  |
| 3   | i     | 192 | ARG  |
| 3   | i     | 17  | THR  |
| 3   | j     | 19  | SER  |
| 3   | j     | 22  | GLU  |
| 3   | j     | 24  | LEU  |
| 3   | i     | 35  | GLU  |
| 3   | j     | 37  | ASN  |
| 3   | i     | 44  | LEU  |
| 3   | j     | 49  | LEU  |
| 3   | j     | 50  | LEU  |
| 3   | j     | 62  | LEU  |
| 3   | j     | 72  | SER  |
| 3   | j     | 101 | GLU  |
| 3   | j     | 121 | LEU  |
| 3   | j     | 123 | HIS  |
| 3   | j     | 129 | VAL  |
| 3   | j     | 173 | ARG  |
| 3   | j     | 186 | VAL  |
| 3   | j     | 191 | THR  |
| 2   | x     | 803 | LEU  |
| 3   | k     | 17  | THR  |
| 3   | k     | 19  | SER  |
| 3   | k     | 22  | GLU  |
| 3   | k     | 24  | LEU  |
| 3   | k     | 35  | GLU  |
| 3   | k     | 37  | ASN  |
| 3   | k     | 39  | GLU  |
| 3   | k     | 43  | ARG  |
| 3   | k     | 44  | LEU  |
| 3   | k     | 49  | LEU  |
| 3   | k     | 50  | LEU  |
| 3   | k     | 62  | LEU  |
| 3   | k     | 72  | SER  |
| 3   | k     | 95  | MET  |
|     |       |     |      |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 3   | k     | 101 | GLU  |
| 3   | k     | 121 | LEU  |
| 3   | k     | 123 | HIS  |
| 3   | k     | 129 | VAL  |
| 3   | k     | 148 | LYS  |
| 3   | k     | 171 | ARG  |
| 3   | k     | 173 | ARG  |
| 3   | k     | 182 | GLU  |
| 3   | 1     | 17  | THR  |
| 3   | 1     | 19  | SER  |
| 3   | 1     | 22  | GLU  |
| 3   | 1     | 24  | LEU  |
| 3   | 1     | 25  | LEU  |
| 3   | 1     | 35  | GLU  |
| 3   | 1     | 37  | ASN  |
| 3   | 1     | 40  | ILE  |
| 3   | 1     | 44  | LEU  |
| 3   | 1     | 49  | LEU  |
| 3   | 1     | 50  | LEU  |
| 3   | 1     | 62  | LEU  |
| 3   | 1     | 72  | SER  |
| 3   | 1     | 83  | LEU  |
| 3   | 1     | 101 | GLU  |
| 3   | l     | 121 | LEU  |
| 3   | 1     | 123 | HIS  |
| 3   | l     | 129 | VAL  |
| 3   | 1     | 148 | LYS  |
| 3   | 1     | 173 | ARG  |
| 3   | 1     | 186 | VAL  |
| 3   | 1     | 191 | THR  |
| 3   | 1     | 192 | ARG  |
| 2   | Z     | 803 | LEU  |
| 3   | m     | 17  | THR  |
| 3   | m     | 19  | SER  |
| 3   | m     | 22  | GLU  |
| 3   | m     | 24  | LEU  |
| 3   | m     | 25  | LEU  |
| 3   | m     | 35  | GLU  |
| 3   | m     | 37  | ASN  |
| 3   | m     | 44  | LEU  |
| 3   | m     | 49  | LEU  |
| 3   | m     | 50  | LEU  |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 3   | m     | 62  | LEU  |
| 3   | m     | 72  | SER  |
| 3   | m     | 95  | MET  |
| 3   | m     | 101 | GLU  |
| 3   | m     | 121 | LEU  |
| 3   | m     | 123 | HIS  |
| 3   | m     | 129 | VAL  |
| 3   | m     | 149 | GLU  |
| 3   | m     | 152 | ARG  |
| 3   | m     | 156 | GLU  |
| 3   | m     | 173 | ARG  |
| 3   | m     | 186 | VAL  |
| 3   | m     | 191 | THR  |
| 3   | m     | 192 | ARG  |
| 2   | 3     | 803 | LEU  |
| 3   | n     | 17  | THR  |
| 3   | n     | 19  | SER  |
| 3   | n     | 22  | GLU  |
| 3   | n     | 24  | LEU  |
| 3   | n     | 25  | LEU  |
| 3   | n     | 35  | GLU  |
| 3   | n     | 37  | ASN  |
| 3   | n     | 44  | LEU  |
| 3   | n     | 49  | LEU  |
| 3   | n     | 50  | LEU  |
| 3   | n     | 62  | LEU  |
| 3   | n     | 67  | PRO  |
| 3   | n     | 72  | SER  |
| 3   | n     | 101 | GLU  |
| 3   | n     | 121 | LEU  |
| 3   | n     | 123 | HIS  |
| 3   | n     | 126 | LEU  |
| 3   | n     | 129 | VAL  |
| 3   | n     | 173 | ARG  |
| 3   | n     | 186 | VAL  |
| 3   | n     | 192 | ARG  |
| 2   | 4     | 803 | LEU  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (46) such sidechains are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | А     | 94  | GLN  |
|     | ~     | -   |      |



| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | В     | 94  | GLN  |
| 1   | В     | 107 | GLN  |
| 1   | С     | 94  | GLN  |
| 1   | С     | 144 | GLN  |
| 1   | Е     | 212 | GLN  |
| 1   | F     | 59  | GLN  |
| 1   | F     | 94  | GLN  |
| 1   | F     | 107 | GLN  |
| 1   | F     | 171 | HIS  |
| 1   | G     | 94  | GLN  |
| 1   | G     | 107 | GLN  |
| 3   | Н     | 37  | ASN  |
| 3   | Ι     | 37  | ASN  |
| 3   | Ι     | 65  | ASN  |
| 3   | Ι     | 142 | GLN  |
| 3   | J     | 37  | ASN  |
| 3   | J     | 65  | ASN  |
| 3   | K     | 37  | ASN  |
| 3   | L     | 37  | ASN  |
| 3   | L     | 124 | GLN  |
| 3   | М     | 37  | ASN  |
| 3   | М     | 65  | ASN  |
| 3   | N     | 37  | ASN  |
| 3   | N     | 117 | HIS  |
| 3   | Ν     | 124 | GLN  |
| 1   | a     | 94  | GLN  |
| 1   | a     | 144 | GLN  |
| 1   | b     | 94  | GLN  |
| 1   | b     | 146 | GLN  |
| 1   | с     | 94  | GLN  |
| 1   | е     | 212 | GLN  |
| 1   | f     | 94  | GLN  |
| 1   | g     | 94  | GLN  |
| 3   | h     | 37  | ASN  |
| 3   | i     | 37  | ASN  |
| 3   | i     | 65  | ASN  |
| 3   | j     | 37  | ASN  |
| 3   | j     | 154 | ASN  |
| 3   | k     | 37  | ASN  |
| 3   | k     | 124 | GLN  |
| 3   | 1     | 37  | ASN  |
| 3   | m     | 37  | ASN  |



Continued from previous page...

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 3   | m     | 124 | GLN  |
| 3   | n     | 37  | ASN  |
| 3   | n     | 124 | GLN  |

#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

## 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

# 5.6 Ligand geometry (i)

There are no ligands in this entry.

## 5.7 Other polymers (i)

There are no such residues in this entry.

## 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Fit of model and data (i)

# 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain | Analysed      | $\langle RSRZ \rangle$ | #RSRZ>2 |      | (   | $\mathbf{DWAB}(\mathbf{A}^2)$ | Q < 0.9           |   |
|-----|-------|---------------|------------------------|---------|------|-----|-------------------------------|-------------------|---|
| 1   | А     | 196/214~(91%) | -0.15                  | 0       | 100  | 100 | 5                             | 1,66,90,117       | 0 |
| 1   | В     | 200/214~(93%) | -0.19                  | 0       | 100  | 100 | 48                            | 8,64,93,118       | 0 |
| 1   | С     | 196/214~(91%) | -0.15                  | 0       | 100  | 100 | 4                             | 6,  60,  88,  100 | 0 |
| 1   | D     | 196/214~(91%) | -0.24                  | 0       | 100  | 100 | 48                            | 8, 60, 82, 102    | 0 |
| 1   | Е     | 200/214~(93%) | -0.11                  | 0       | 100  | 100 | 48                            | 8, 65, 92, 141    | 0 |
| 1   | F     | 196/214~(91%) | 0.02                   | 0       | 100  | 100 | 5'                            | 7, 75, 92, 115    | 0 |
| 1   | G     | 195/214~(91%) | -0.02                  | 0       | 100  | 100 | 5                             | 5, 72, 93, 107    | 0 |
| 1   | a     | 197/214~(92%) | -0.13                  | 0       | 100  | 100 | 55                            | 2,63,91,112       | 0 |
| 1   | b     | 200/214~(93%) | -0.19                  | 0       | 100  | 100 | 50                            | 0, 63, 93, 124    | 0 |
| 1   | с     | 197/214~(92%) | -0.20                  | 0       | 100  | 100 | 50                            | 0, 67, 92, 110    | 0 |
| 1   | d     | 196/214~(91%) | -0.20                  | 0       | 100  | 100 | 48                            | 8, 64, 91, 113    | 0 |
| 1   | e     | 200/214~(93%) | -0.12                  | 0       | 100  | 100 | 4'                            | 7,65,93,125       | 0 |
| 1   | f     | 196/214~(91%) | -0.07                  | 0       | 100  | 100 | 48                            | 8, 67, 91, 111    | 0 |
| 1   | g     | 196/214~(91%) | -0.07                  | 0       | 100  | 100 | 49                            | 9,66,89,109       | 0 |
| 2   | 1     | 2/3~(66%)     | 0.39                   | 0       | 100  | 100 | 9                             | 1, 91, 91, 97     | 0 |
| 2   | 2     | 2/3~(66%)     | 1.16                   | 1 (     | 50%) | 0   | 8                             | 6, 86, 86, 112    | 0 |
| 2   | 3     | 2/3~(66%)     | 0.84                   | 0       | 100  | 100 | 94                            | 4, 94, 94, 100    | 0 |
| 2   | 4     | 2/3~(66%)     | 0.25                   | 0       | 100  | 100 | 8                             | 7, 87, 87, 88     | 0 |
| 2   | Ο     | 2/3~(66%)     | 0.36                   | 0       | 100  | 100 | 9                             | 9, 99, 99, 99     | 0 |
| 2   | Р     | 2/3~(66%)     | 0.01                   | 0       | 100  | 100 | 9                             | 6,  96,  96,  101 | 0 |
| 2   | Q     | 2/3~(66%)     | -0.03                  | 0       | 100  | 100 | 9                             | 2, 92, 92, 95     | 0 |
| 2   | R     | 2/3~(66%)     | 0.61                   | 0       | 100  | 100 | 8                             | 9, 89, 89, 95     | 0 |
| 2   | S     | 2/3~(66%)     | 0.32                   | 0       | 100  | 100 | 90                            | 0, 90, 90, 112    | 0 |
| 2   | Т     | 2/3~(66%)     | 1.44                   | 0       | 100  | 100 | 102                           | , 102, 102, 114   | 0 |



| Mol | Chain | Analysed                     | $\langle RSRZ \rangle$ | #    | # RSRZ > 2 |      | $OWAB(Å^2)$        | Q<0.9 |
|-----|-------|------------------------------|------------------------|------|------------|------|--------------------|-------|
| 2   | U     | 2/3~(66%)                    | 0.47                   | 0    | 100        | 100  | 93, 93, 93, 105    | 0     |
| 2   | V     | 2/3~(66%)                    | -0.02                  | 0    | 100        | 100  | 83, 83, 83, 89     | 0     |
| 2   | W     | 2/3~(66%)                    | -0.12                  | 0    | 100        | 100  | 76, 76, 76, 84     | 0     |
| 2   | Х     | 2/3~(66%)                    | 0.38                   | 0    | 100        | 100  | 82, 82, 82, 91     | 0     |
| 2   | Y     | 2/3~(66%)                    | -0.23                  | 0    | 100        | 100  | 85, 85, 85, 88     | 0     |
| 2   | Z     | 2/3~(66%)                    | 0.67                   | 0    | 100        | 100  | 89, 89, 89, 103    | 0     |
| 2   | О     | 2/3~(66%)                    | -0.10                  | 0    | 100        | 100  | 98, 98, 98, 100    | 0     |
| 2   | р     | 2/3~(66%)                    | 0.10                   | 0    | 100        | 100  | 95,  95,  95,  102 | 0     |
| 2   | q     | 2/3~(66%)                    | 0.40                   | 0    | 100        | 100  | 97, 97, 97, 109    | 0     |
| 2   | r     | 2/3~(66%)                    | 0.51                   | 0    | 100        | 100  | 91,91,91,100       | 0     |
| 2   | s     | 2/3~(66%)                    | 0.35                   | 0    | 100        | 100  | 89, 89, 89, 98     | 0     |
| 2   | t     | 2/3~(66%)                    | 1.01                   | 0    | 100        | 100  | 98, 98, 98, 105    | 0     |
| 2   | u     | 2/3~(66%)                    | 0.44                   | 0    | 100        | 100  | 98, 98, 98, 108    | 0     |
| 2   | v     | 2/3~(66%)                    | -0.23                  | 0    | 100        | 100  | 82, 82, 82, 88     | 0     |
| 2   | w     | 2/3~(66%)                    | -0.25                  | 0    | 100        | 100  | 88, 88, 88, 89     | 0     |
| 2   | x     | 2/3~(66%)                    | 0.29                   | 0    | 100        | 100  | 77, 77, 77, 97     | 0     |
| 2   | У     | 2/3~(66%)                    | -0.12                  | 0    | 100        | 100  | 88, 88, 88, 90     | 0     |
| 2   | Z     | 2/3~(66%)                    | 1.02                   | 0    | 100        | 100  | 80, 80, 80, 95     | 0     |
| 3   | Н     | 178/200~(89%)                | -0.15                  | 0    | 100        | 100  | 46, 61, 82, 117    | 0     |
| 3   | Ι     | 178/200~(89%)                | -0.16                  | 0    | 100        | 100  | 44, 54, 81, 121    | 0     |
| 3   | J     | 178/200~(89%)                | -0.18                  | 0    | 100        | 100  | 48, 53, 82, 96     | 0     |
| 3   | K     | 178/200~(89%)                | 0.01                   | 0    | 100        | 100  | 45, 60, 87, 116    | 0     |
| 3   | L     | 178/200~(89%)                | -0.00                  | 0    | 100        | 100  | 51, 71, 95, 104    | 0     |
| 3   | М     | 178/200~(89%)                | 0.10                   | 1 (0 | %) 8       | 9 77 | 53, 73, 91, 114    | 0     |
| 3   | N     | 179/200~(89%)                | -0.10                  | 0    | 100        | 100  | 48, 67, 88, 110    | 0     |
| 3   | h     | 178/200~(89%)                | -0.14                  | 0    | 100        | 100  | 46, 64, 86, 113    | 0     |
| 3   | i     | 178/200~(89%)                | -0.11                  | 0    | 100        | 100  | 48, 67, 92, 118    | 0     |
| 3   | j     | 178/200~(89%)                | -0.09                  | 0    | 100        | 100  | 49, 65, 94, 116    | 0     |
| 3   | k     | 178/200 (89%)                | -0.08                  | 0    | 100        | 100  | 48, 61, 84, 101    | 0     |
| 3   | 1     | $\overline{178/200}\ (89\%)$ | -0.08                  | 0    | 100        | 100  | 46, 59, 80, 100    | 0     |
| 3   | m     | 178/200~(89%)                | -0.17                  | 0    | 100        | 100  | 44, 58, 82, 120    | 0     |



Continued from previous page...

| Mol | Chain | Analysed        | < <b>RSRZ</b> > | #RSRZ>2        | $\mathbf{OWAB}(\mathrm{\AA}^2)$ | Q<0.9 |
|-----|-------|-----------------|-----------------|----------------|---------------------------------|-------|
| 3   | n     | 178/200~(89%)   | -0.05           | 0 100 100      | 45, 59, 85, 126                 | 0     |
| All | All   | 5310/5880~(90%) | -0.11           | 2 (0%) 100 100 | 44, 64, 91, 141                 | 0     |

All (2) RSRZ outliers are listed below:

| Mol | Chain | Res | Type | RSRZ |
|-----|-------|-----|------|------|
| 2   | 2     | 803 | LEU  | 2.0  |
| 3   | М     | 192 | ARG  | 2.0  |

# 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

# 6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

## 6.4 Ligands (i)

There are no ligands in this entry.

## 6.5 Other polymers (i)

There are no such residues in this entry.

