

wwPDB X-ray Structure Validation Summary Report (i)

Aug 20, 2020 – 01:27 PM BST

PDB ID	:	5 EOS
Title	:	crystal structure of the active form of the proteolytic complex $clpP1$ and $clpP2$
Authors	:	LI, M.; Wlodawer, A.; Maurizi, M.
Deposited on	:	2015-09-29
Resolution	:	2.90 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.13
EDS	:	2.13
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
$\operatorname{CCP4}$:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.13

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 2.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	130704	1957 (2.90-2.90)
Ramachandran outliers	138981	2115(2.90-2.90)
Sidechain outliers	138945	2117 (2.90-2.90)
RSRZ outliers	127900	1906 (2.90-2.90)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
- 1	Δ	01.4	2%		_
	A	214	84%	8%	8%
	_		4%		
1	В	214	85%	9%	6%
			%		
1	С	214	81%	9% •	8%
1	D	214	80%	11%	8%
			%		
1	E	214	85%	8%	7%
			2%		
1	F	214	79%	12% •	8%
			%		
1	G	214	83%	9%	8%

Continued from previous page...

Mol	Chain	Length	Quality of chain		
			%		
1	a	214	84%	8%	7%
1	b	214	2% 8 2%	10%	• 6%
1	с	214	82%	9%	• 7%
1	d	214	% 	10%	• 8%
1	е	214	82%	10%	7%
1	f	214	82%	9%	8%
1	g	214	81%	10%	• 8%
2	Н	200	2% 8 0%	13%	• 7%
2	Ι	200	% 7 9%	10%	11%
2	J	200	% • 79%	11%	11%
2	K	200	^{2%} 79%	10% •	11%
2	L	200	4%	10% •	11%
2	М	200	5% 79%	10% •	11%
2	Ν	200	2% 83 %	10%	8%
2	h	200	^{2%} 81%	11%	• 9%
2	i	200	% 	12%	• 10%
2	j	200	2% 8 0%	9%	11%
2	k	200	% 79%	10% •	11%
2	1	200	% 79%	10% •	11%
2	m	200	^{2%} 79%	10% •	11%
2	n	200	% • 80%	12%	• 8%

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 40670 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf	Trace						
1		107	Total	С	Ν	Ο	S	0	0	0			
	A	197	1520	957	258	297	8	0	0	0			
1	р	20.1	Total	С	Ν	Ο	S	0	0	0			
1	D	201	1546	972	263	303	8	0	0	0			
1	C	107	Total	С	Ν	Ο	S	0	0	0			
		197	1520	957	258	297	8	0	0	0			
1	П	107	Total	С	Ν	Ο	S	0	0	0			
	D	197	1520	957	258	297	8	0	0	0			
1	Б	100	Total	С	Ν	Ο	S	0	0	0			
	E	199	1534	965	261	300	8	0	0	0			
1	F	107	Total	С	Ν	Ο	S	0	0	0	0		
	Г	197	1520	957	258	297	8		0	U			
1	C	106	Total	С	Ν	Ο	S	0	0	0			
	G	190	1514	954	257	295	8	0	0	U			
1	_	- 100	Total	С	Ν	Ο	S	0	0	0			
	a	198	1525	960	259	298	8	0	0	0			
1	h	20.1	Total	С	Ν	0	S	0	0	0			
	D	201	1546	972	263	303	8	0	0	0			
1		109	Total	С	Ν	Ο	S	0	0	0			
	С	198	1525	960	259	298	8	0	0	0			
1	4	107	Total	С	Ν	Ο	S	0	0	0			
	a	197	1520	957	258	297	8	0	0	0			
1		100	Total	С	Ν	Ο	S	0	0	0			
	e	199	1534	965	261	300	8	0	0	0			
1	f	107	Total	С	Ν	Ο	S	0	0	0			
	I	197	1520	957	258	297	8	U	U	U			
1	~	107	Total	С	Ν	Ο	S	0	0	0			
	g	g	g	g	197	1520	957	258	297	8	0	U	U

• Molecule 1 is a protein called ATP-dependent Clp protease proteolytic subunit 2.

• Molecule 2 is a protein called ATP-dependent Clp protease proteolytic subunit 1.

5E0S

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
0	п	196	Total	С	Ν	0	S	0	0	0
	11	100	1417	892	242	273	10	0	0	0
2	т	170	Total	С	Ν	Ο	S	0	0	0
	1	170	1357	858	229	261	9	0	0	0
2	т	170	Total	С	Ν	Ο	S	0	0	0
	J	170	1357	858	229	261	9	0	0	0
<u></u>	K	178	Total	С	Ν	Ο	S	0	0	0
	IX	170	1357	858	229	261	9	0	0	0
<u></u>	т	178	Total	С	Ν	Ο	S	0	0	0
		170	1357	858	229	261	9	0	0	U
2	М	179	Total	С	Ν	Ο	S	0	0	0
	IVI	170	1357	858	229	261	9	0	0	U
9	N	194	Total	С	Ν	Ο	S	0	0	0
	IN	104	1400	883	238	270	9	0	0	0
2	h	h 183	Total	С	Ν	Ο	S	0	0	0
	11		1391	878	237	267	9	0	0	0
2	i	181	Total	С	Ν	Ο	\mathbf{S}	0	0	0
	1	101	1379	872	234	264	9	0	0	U
2	i	178	Total	С	Ν	Ο	\mathbf{S}	0	0	Ο
	J	110	1357	858	229	261	9	0	0	0
2	k	178	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
	K	110	1357	858	229	261	9	0	0	0
2	1	178	Total	\mathbf{C}	Ν	Ο	\mathbf{S}	0	0	0
	170	1357	858	229	261	9	0	0	0	
2	m	178	Total	\mathbf{C}	N	Ο	S		0	
	111	110	1357	858	229	261	9	0	U	0
2	n	184	Total	\mathbf{C}	N	Ο	S		0	0
	11	104	1400	883	238	270	9		U	0

• Molecule 3 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	5	Total O 5 5	0	0
3	В	5	Total O 5 5	0	0
3	С	2	Total O 2 2	0	0
3	Ε	1	Total O 1 1	0	0
3	G	3	Total O 3 3	0	0
3	Н	4	Total O 4 4	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	Ι	1	Total O 1 1	0	0
3	J	1	Total O 1 1	0	0
3	K	2	Total O 2 2	0	0
3	L	2	Total O 2 2	0	0
3	Ν	4	Total O 4 4	0	0
3	a	8	Total O 8 8	0	0
3	b	11	Total O 11 11	0	0
3	с	9	Total O 9 9	0	0
3	d	5	Total O 5 5	0	0
3	е	1	Total O 1 1	0	0
3	g	8	Total O 8 8	0	0
3	h	5	Total O 5 5	0	0
3	i	5	Total O 5 5	0	0
3	j	4	Total O 4 4	0	0
3	k	2	Total O 2 2	0	0
3	1	1	Total O 1 1	0	0
3	m	7	Total O 7 7	0	0
3	n	10	Total O 10 10	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: ATP-dependent Clp protease proteolytic subunit 2

• Molecule 1: A'	TP-dependent Clp protease proteolytic su	ıbunit 2		
Chain d:	81%	10%	• 8%	
MET ASW ASW SER CLW CLW CLM CLM PRO CLM ALA	And And H22 F25 F25 C26 C26 C26 C26 C31 C41 C41 C41 C41 C41 C41 C41 C41 C41 C4	R159 M160 M164 T167 K174	R180 R185 D201	S210 ALA
GLN THR ALA				
• Molecule 1: A	TP-dependent Clp protease proteolytic su	ıbunit 2		
Chain e:	82%	10%	7%	
MET ASN SER SER SER SER GLN CLL CLL ALA	Arc 14 14 122 136 136 136 136 136 143 100 1100 1100 1100 1100 1131 1131 1	1157 E158 M164 T167 R180	R185 1209 8210 8211 1111 1111	ALA
• Molecule 1: A'	TP-dependent Clp protease proteolytic su	ıbunit 2		
Chain f:	82%	9%	8%	
MET ASN SER SER ASN GIN GIN GIN ALA ALA	And And H22 H22 H22 H22 H22 H22 H22 H22 H22 H2	M164 T167 K174 R185	L209 S210 ALA GIN THR ALA	
• Molecule 1: A	TP-dependent Clp protease proteolytic su	ıbunit 2		
Chain g:	81%	10%	• 8%	
MET ASW ASW SER ASW ASW SER CILN CILN CILN CILN ALLA	H22 H22 V24 V27 V27 V27 V28 V28 V28 V28 V28 V28 V28 V28 V28 V28	E151 1152 E158 E158 R159 M164	T167 R185 8210 ALA	GLN THR
ALA				
• Molecule 2: A	TP-dependent Clp protease proteolytic su	ıbunit 1		
Chain H:	80%	13%	• 7%	
MET SER GLN GLN VAL ASP ASP M7 N7 S11 G13 G13	11,14 11,14	V129 T130 G131 K147 D170	L181 181 186 191 191 192	HIS VAL
ASN GLY GLU GLN				
• Molecule 2: A	TP-dependent Clp protease proteolytic su	ıbunit 1		
Chain I:	79%	10%	11%	

ALA GLN

• Molecule 2: ATP-dependent Clp protease proteolytic subunit 1

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	205.18Å 183.54Å 188.37Å	Depositor
a, b, c, α , β , γ	90.00° 94.53° 90.00°	Depositor
Bosolution(A)	49.27 - 2.90	Depositor
Resolution (A)	49.22 - 2.88	EDS
% Data completeness	93.7 (49.27-2.90)	Depositor
(in resolution range $)$	93.8 (49.22-2.88)	EDS
R _{merge}	0.09	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.77 (at 2.86 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.7.0029	Depositor
D D.	0.204 , 0.236	Depositor
Π, Π_{free}	0.200 , 0.218	DCC
R_{free} test set	7424 reflections (5.03%)	wwPDB-VP
Wilson B-factor (Å ²)	63.8	Xtriage
Anisotropy	0.347	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.30 , 33.5	EDS
L-test for twinning ²	$ \langle L \rangle = 0.50, \langle L^2 \rangle = 0.33$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.95	EDS
Total number of atoms	40670	wwPDB-VP
Average B, all atoms $(Å^2)$	80.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 36.52 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 4.9322e-04. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	В	ond angles
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.81	0/1542	1.04	3/2086~(0.1%)
1	В	0.81	0/1568	1.05	4/2122~(0.2%)
1	С	0.84	0/1542	1.08	5/2086~(0.2%)
1	D	0.87	1/1542~(0.1%)	1.09	6/2086~(0.3%)
1	Е	0.84	0/1556	1.04	1/2105~(0.0%)
1	F	0.82	0/1542	1.09	8/2086~(0.4%)
1	G	0.81	0/1536	1.07	6/2078~(0.3%)
1	a	0.85	0/1547	1.07	5/2093~(0.2%)
1	b	0.88	0/1568	1.15	10/2122~(0.5%)
1	с	0.88	0/1547	1.18	7/2093~(0.3%)
1	d	0.87	0/1542	1.14	9/2086~(0.4%)
1	е	0.92	1/1556~(0.1%)	1.17	7/2105~(0.3%)
1	f	0.84	0/1542	1.06	4/2086~(0.2%)
1	g	0.89	1/1542~(0.1%)	1.23	11/2086~(0.5%)
2	Н	0.84	1/1439~(0.1%)	1.04	4/1943~(0.2%)
2	Ι	0.87	1/1379~(0.1%)	1.08	6/1864~(0.3%)
2	J	0.86	0/1379	1.07	5/1864~(0.3%)
2	Κ	0.81	0/1379	0.99	3/1864~(0.2%)
2	L	0.80	0/1379	0.98	3/1864~(0.2%)
2	М	0.80	0/1379	1.02	8/1864~(0.4%)
2	Ν	0.79	0/1423	1.02	5/1924~(0.3%)
2	h	0.84	0/1414	1.01	2/1912~(0.1%)
2	i	0.85	1/1402~(0.1%)	1.05	7/1896~(0.4%)
2	j	0.84	0/1379	1.00	4/1864~(0.2%)
2	k	0.85	0/1379	1.02	3/1864~(0.2%)
2	l	0.83	0/1379	1.03	5/1864~(0.3%)
2	m	0.86	$1/\overline{1379}~(0.1\%)$	1.01	2/1864~(0.1%)
2	n	0.86	0/1423	1.04	7/1924~(0.4%)
All	All	0.85	$7/41184 \ (0.0\%)$	1.07	150/55695~(0.3%)

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers $ $
1	В	0	1
1	a	0	1
1	b	0	1
2	Н	0	1
2	Ι	0	1
All	All	0	5

The worst 5 of 7 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
1	е	94	GLN	CG-CD	-8.51	1.31	1.51
2	Ι	163	GLU	CD-OE1	-8.02	1.16	1.25
2	Н	15	SER	CB-OG	-7.53	1.32	1.42
1	g	151	GLU	CD-OE2	6.75	1.33	1.25
2	m	101	GLU	CD-OE1	-5.57	1.19	1.25

The worst 5 of 150 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	с	99	ASP	CB-CG-OD2	17.94	134.44	118.30
1	g	99	ASP	CB-CG-OD2	17.61	134.15	118.30
1	с	99	ASP	CB-CG-OD1	-16.25	103.67	118.30
1	g	99	ASP	CB-CG-OD1	-16.25	103.67	118.30
1	е	94	GLN	CA-CB-CG	-14.34	81.85	113.40

There are no chirality outliers.

All (5) planarity outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Group
1	В	212	GLN	Peptide
2	Н	13	GLY	Peptide
2	Ι	191	THR	Peptide
1	а	14	TYR	Peptide
1	b	212	GLN	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	195/214~(91%)	185~(95%)	8 (4%)	2(1%)	15	45
1	В	199/214~(93%)	$188 \ (94\%)$	9~(4%)	2(1%)	15	45
1	С	195/214~(91%)	185~(95%)	7 (4%)	3(2%)	10	34
1	D	195/214~(91%)	185 (95%)	7 (4%)	3 (2%)	10	34
1	Е	197/214~(92%)	187 (95%)	8 (4%)	2 (1%)	15	45
1	F	195/214~(91%)	184 (94%)	8 (4%)	3 (2%)	10	34
1	G	194/214~(91%)	185 (95%)	7 (4%)	2 (1%)	15	45
1	a	196/214~(92%)	187 (95%)	7 (4%)	2 (1%)	15	45
1	b	199/214~(93%)	190 (96%)	7 (4%)	2 (1%)	15	45
1	с	196/214~(92%)	187 (95%)	7 (4%)	2 (1%)	15	45
1	d	195/214~(91%)	185 (95%)	7 (4%)	3 (2%)	10	34
1	е	197/214~(92%)	187 (95%)	8 (4%)	2 (1%)	15	45
1	f	195/214~(91%)	185 (95%)	7 (4%)	3 (2%)	10	34
1	g	195/214~(91%)	184 (94%)	8 (4%)	3 (2%)	10	34
2	Η	184/200~(92%)	175~(95%)	8 (4%)	1 (0%)	29	61
2	Ι	176/200~(88%)	171 (97%)	5 (3%)	0	100	100
2	J	176/200~(88%)	172 (98%)	4 (2%)	0	100	100
2	K	176/200~(88%)	172 (98%)	4 (2%)	0	100	100
2	L	176/200~(88%)	172 (98%)	4 (2%)	0	100	100
2	М	176/200~(88%)	172 (98%)	4 (2%)	0	100	100
2	N	182/200 (91%)	176 (97%)	6 (3%)	0	100	100
2	h	181/200~(90%)	174 (96%)	6 (3%)	1 (1%)	25	58
2	i	179/200~(90%)	174 (97%)	5 (3%)	0	100	100
2	j	176/200~(88%)	172 (98%)	4 (2%)	0	100	100
2	k	176/200~(88%)	172 (98%)	4 (2%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
2	1	176/200~(88%)	172~(98%)	4 (2%)	0	100	100
2	m	176/200~(88%)	172 (98%)	4 (2%)	0	100	100
2	n	182/200~(91%)	175~(96%)	6 (3%)	1 (0%)	29	61
All	All	5235/5796~(90%)	5025~(96%)	173 (3%)	37~(1%)	22	54

Continued from previous page...

5 of 37 Ramachandran outliers are listed below:

Mol	Chain	\mathbf{Res}	\mathbf{Type}
2	h	192	ARG
2	n	195	VAL
1	А	48	VAL
1	В	48	VAL
1	С	48	VAL

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	P	erce	entiles
1	А	164/178~(92%)	151 (92%)	13~(8%)		12	34
1	В	166/178~(93%)	152 (92%)	14 (8%)		11	31
1	С	164/178~(92%)	146 (89%)	18 (11%)		6	19
1	D	164/178~(92%)	145 (88%)	19~(12%)		5	16
1	Ε	165/178~(93%)	151 (92%)	14 (8%)		10	31
1	F	164/178~(92%)	145 (88%)	19 (12%)		5	16
1	G	163/178~(92%)	151 (93%)	12~(7%)		13	38
1	a	164/178~(92%)	151 (92%)	13 (8%)		12	34
1	b	166/178~(93%)	148 (89%)	18 (11%)		6	20
1	с	164/178~(92%)	148 (90%)	16 (10%)		8	24
1	d	164/178~(92%)	146 (89%)	18 (11%)		6	19
1	е	165/178~(93%)	149 (90%)	16 (10%)		8	25
1	f	164/178~(92%)	148 (90%)	$1\overline{6\ (10\%)}$		8	24

Mol	Chain	Analysed	$\mathbf{Rotameric}$	Outliers	Percer	ntiles
1	g	164/178~(92%)	147~(90%)	$17 \ (10\%)$	7	21
2	Η	146/157~(93%)	124~(85%)	22~(15%)	3	9
2	Ι	139/157~(88%)	125~(90%)	14~(10%)	7	23
2	J	139/157~(88%)	122~(88%)	17 (12%)	5	15
2	K	139/157~(88%)	119~(86%)	20~(14%)	3	9
2	L	139/157~(88%)	120~(86%)	19 (14%)	3	11
2	М	139/157~(88%)	121 (87%)	18 (13%)	4	13
2	Ν	143/157~(91%)	127~(89%)	16 (11%)	6	18
2	h	142/157~(90%)	121~(85%)	21~(15%)	3	9
2	i	141/157~(90%)	120~(85%)	21~(15%)	3	9
2	j	139/157~(88%)	124~(89%)	15~(11%)	6	20
2	k	139/157~(88%)	120~(86%)	19 (14%)	3	11
2	l	139/157~(88%)	121 (87%)	18 (13%)	4	13
2	m	139/157~(88%)	120~(86%)	19 (14%)	3	11
2	n	143/157~(91%)	124 (87%)	19 (13%)	4	11
All	All	$426\overline{7/4690}$ (91%)	3786~(89%)	481 (11%)	6	18

Continued from previous page...

5 of 481 residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
2	М	186	VAL
1	с	36	LEU
2	m	19	SER
2	Ν	50	LEU
1	a	167	THR

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 78 such sidechains are listed below:

Mol	Chain	Res	Type
2	М	65	ASN
1	а	136	GLN
2	l	37	ASN
2	М	123	HIS
2	Ν	123	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$<$ RSRZ $>$	$\# RSRZ {>}2$		>2	$\mathbf{OWAB}(\mathrm{\AA}^2)$	Q<0.9
1	А	197/214~(92%)	-0.09	4 (2%)	65	63	61, 81, 123, 146	0
1	В	201/214~(93%)	0.00	8(3%)	38	33	59, 80, 122, 149	0
1	С	197/214~(92%)	-0.02	3 (1%)	73	73	55, 77, 115, 138	0
1	D	197/214~(92%)	-0.07	1 (0%)	91	91	54, 77, 112, 149	0
1	Е	199/214~(92%)	-0.03	2(1%)	82	82	63, 83, 114, 133	0
1	F	197/214~(92%)	0.03	5(2%)	57	55	69, 94, 121, 144	0
1	G	196/214~(91%)	0.09	3~(1%)	73	73	63, 90, 126, 148	0
1	a	198/214~(92%)	-0.11	2(1%)	82	82	52, 72, 111, 128	0
1	b	201/214~(93%)	-0.05	5(2%)	57	55	51, 71, 108, 128	0
1	с	198/214~(92%)	-0.11	1 (0%)	91	91	51, 75, 113, 132	0
1	d	197/214~(92%)	-0.12	2(1%)	82	82	49, 71, 109, 139	0
1	е	199/214~(92%)	-0.12	$1 \ (0\%)$	91	91	51, 71, 110, 139	0
1	f	197/214~(92%)	-0.08	1 (0%)	91	91	53, 74, 108, 133	0
1	g	197/214~(92%)	-0.13	0 100) 1	00	52, 73, 106, 132	0
2	Н	186/200~(93%)	0.04	3~(1%)	72	71	60, 75, 117, 175	0
2	Ι	178/200~(89%)	-0.20	1 (0%)	89	89	54, 68, 99, 124	0
2	J	178/200~(89%)	-0.10	1 (0%)	89	89	53, 68, 99, 114	0
2	K	178/200~(89%)	-0.09	3~(1%)	70	69	58, 77, 107, 182	0
2	L	178/200~(89%)	0.05	7~(3%)	39	35	66, 86, 112, 139	0
2	М	178/200~(89%)	0.10	9~(5%)	28	24	72, 89, 112, 130	0
2	N	184/200~(92%)	-0.10	3~(1%)	72	71	64, 82, 111, 164	0
2	h	183/200~(91%)	0.04	4 (2%)	62	59	50, 67, 102, 188	0
2	i	181/200 (90%)	-0.16	2(1%)	80	80	55, 71, 107, 194	0
2	j	178/200~(89%)	-0.06	3~(1%)	70	69	54, 69, 102, 136	0

Mol	Chain	Analysed	<RSRZ $>$	#RSR	RZ>	≥ 2	$\mathbf{OWAB}(\mathbf{\AA}^2)$	$Q{<}0.9$
2	k	178/200~(89%)	-0.22	1 (0%) 8	89	89	52, 67, 97, 164	0
2	1	178/200~(89%)	-0.15	1 (0%) 8	89	89	53,66,93,127	0
2	m	178/200~(89%)	-0.28	4 (2%) 6	62	59	50,63,94,131	0
2	n	184/200~(92%)	-0.24	2 (1%) 8	80	80	50,65,100,176	0
All	All	5291/5796~(91%)	-0.08	82 (1%)	73	73	49, 75, 112, 194	0

Continued from previous page...

The worst 5 of 82 RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
2	i	193	ALA	5.1
2	h	194	HIS	4.3
2	i	194	HIS	4.0
2	Κ	192	ARG	4.0
1	a	209	LEU	3.9

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

