

Nov 21, 2022 - 03:54 PM EST

PDB ID	:	8ESR
EMDB ID	:	EMD-24422
Title	:	Ytm1 associated nascent 60S ribosome (-fkbp39) State 2
Authors	:	Zhou, X.; Bilokapic, S.; Deshmukh, A.A.; Halic, M.
Deposited on	:	2022-10-14
Resolution	:	3.20 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1. dev 43
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	1.9.9
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.31.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${ m EM~structures}\ (\#{ m Entries})$		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		
RNA backbone	4643	859		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length			Quality	y of chain			
1	1	3497	•	47%		14%		39%	
2	2	165			76%			15%	9%
3	6	300	16%	11%		74%			
4	7	707	16% 16%	-		84%			
5	8	51		43%			57%		
6	А	295	8%		68%		•	31%	
7	В	388	•		85%			•	14%
8	С	363			98	3%			••

Mol	Chain	Length	Quality of chain	
9	D	578	28%	. 28%
10		105	9%	2070
10	E	195	78%	• 20%
11	F	250	84%	• 14%
12	G	259	79%	• 20%
13	Н	190	95%	
14	Ι	747	55%	45%
15	J	333	35% 65%	
16	К	373	66% ·	33%
17	L	208	55%	44%
18	М	134	93%	• 7%
19	Ν	201	82%	18%
20	О	197	• 99%	
21	Р	187	7%	• 20%
22	Q	187	71%	29%
23	R	193	58% •	42%
24	S	176	<mark>6%</mark> 93%	• 5%
25	U	117	54%	16%
26	V	139	9%	• 5%
27	W	241	58%	11%
28	Х	141	94%	6%
29	Y	126	• 98%	••
30	Z	136	16%	
31	a	148	6 4%	34%
32	b	642	23%	44%
33	с	117	44%	20%

Mol	Chain	Length	puge	Q	uality of chair	ı	
34	d	113	-	{	34%		• 15%
35	е	127	•		93%		• 6%
36	f	108			98%		•
37	g	112			87%		13%
38	h	122	•		99%		
39	i	99			86%		14%
40	j	91		789	6		22%
41	k	74	16%		92%		• 5%
42	1	180		72%	97%		•
43	m	740	26%	76%		•	23%
44	n	607	8%	70%		• 2	29%
45	О	276	11%	49%	•	50%	
46	р	440		58% 62%	_	38%	
47	q	608		41% 43%		57%	
48	r	260	18%	63%		37%	6
49	s	470	5%		95%		
50	t	249	•		93%		• 6%
51	u	192	12%	51%	•	47%	
52	v	209	-	75%		•	23%
53	w	802	22%		78%		
54	У	244	11%		91%		9%
55	Z	117	27%	·	7	0%	
56	Т	160	5% 11% •		89%		

2 Entry composition (i)

There are 57 unique types of molecules in this entry. The entry contains 116762 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called RNA (2142-MER).

Mol	Chain	Residues		Atoms					Trace
1	1	2143	Total 45883	C 20493	N 8324	0 14923	Р 2143	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
1	1741	С	U	conflict	GB 157310483

• Molecule 2 is a RNA chain called RNA (150-MER).

Mol	Chain	Residues	Atoms					AltConf	Trace
2	2	150	Total 3189	C 1427	N 564	O 1048	Р 150	0	0

• Molecule 3 is a RNA chain called RNA (79-MER).

Mol	Chain	Residues	Atoms					AltConf	Trace
3	6	79	Total 1674	C 751	N 288	O 556	Р 79	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
6	137	С	U	conflict	GB 157310483
6	146	G	U	conflict	GB 157310483

• Molecule 4 is a protein called Noc2.

Mol	Chain	Residues	Atoms				AltConf	Trace
4	7	110	Total 548	C 328	N 110	O 110	0	0

• Molecule 5 is a protein called 60S ribosomal protein L39.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
5	8	22	Total 187	C 119	N 40	O 28	0	0

• Molecule 6 is a protein called Ribosome biogenesis protein brx1.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
6	А	204	Total 1652	C 1057	N 295	O 293	S 7	0	0

• Molecule 7 is a protein called 60S ribosomal protein L3-A.

Mol	Chain	Residues		Ate	AltConf	Trace			
7	В	335	Total 2662	C 1687	N 492	O 474	${ m S} 9$	0	0

• Molecule 8 is a protein called 60S ribosomal protein L4-B.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
8	С	359	Total 2795	C 1765	N 536	0 491	${ m S} { m 3}$	0	0

• Molecule 9 is a protein called ATP-dependent RNA helicase has1.

Mol	Chain	Residues	Atoms					AltConf	Trace
9	D	418	Total 3320	C 2140	N 570	O 599	S 11	0	0

• Molecule 10 is a protein called 60S ribosomal protein L6.

Mol	Chain	Residues	Atoms					AltConf	Trace
10	Е	156	Total 1213	С 777	N 226	O 207	${ m S} { m 3}$	0	0

• Molecule 11 is a protein called 60S ribosomal protein L7-B.

Mol	Chain	Residues		Ate	AltConf	Trace			
11	F	214	Total 1745	C 1124	N 320	O 298	${ m S} { m 3}$	0	0

• Molecule 12 is a protein called 60S ribosomal protein L8.

Mol	Chain	Residues		At	AltConf	Trace			
12	G	206	Total 1607	C 1030	N 294	O 280	${ m S} { m 3}$	0	0

• Molecule 13 is a protein called 60S ribosomal protein L9-A.

Mol	Chain	Residues		At	oms	Atoms					
13	Н	183	Total 1451	C 914	N 266	O 265	S 6	0	0		

• Molecule 14 is a protein called Nucleolar complex-associated protein 3.

Mol	Chain	Residues		Ator	AltConf	Trace		
14	Ι	409	Total 2032	C 1214	N 409	O 409	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Ι	607	LYS	LEU	conflict	UNP O94288

• Molecule 15 is a protein called Probable rRNA-processing protein ebp2.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
15	J	115	Total 574	C 344	N 115	O 115	0	0

• Molecule 16 is a protein called Putative ribosome biogenesis protein C8F11.04.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
16	K	250	Total 1964	C 1256	N 336	O 366	${ m S}{ m 6}$	0	0

• Molecule 17 is a protein called 60S ribosomal protein L13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	L	116	Total 942	C 592	N 198	0 151	S 1	0	0

• Molecule 18 is a protein called 60S ribosomal protein L14.

Mol	Chain	Residues		At	oms			AltConf	Trace
18	М	125	Total 1007	C 644	N 191	O 168	$\frac{S}{4}$	0	0

• Molecule 19 is a protein called 60S ribosomal protein L15-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
19	Ν	165	Total 1392	C 872	N 289	0 228	${ m S} { m 3}$	0	0

• Molecule 20 is a protein called 60S ribosomal protein L16-B.

Mol	Chain	Residues		At	oms	AltConf	Trace		
20	Ο	196	Total 1557	C 999	N 297	0 257	$\frac{S}{4}$	0	0

• Molecule 21 is a protein called 60S ribosomal protein L17-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	Р	149	Total 1168	C 742	N 216	O 207	${ m S} { m 3}$	0	0

• Molecule 22 is a protein called 60S ribosomal protein L18-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	Q	133	Total 1032	C 650	N 199	0 182	S 1	0	0

• Molecule 23 is a protein called 60S ribosomal protein L19-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
23	R	112	Total 729	С 445	N 148	0 133	${ m S} { m 3}$	0	0

• Molecule 24 is a protein called 60S ribosomal protein L20-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
24	S	167	Total 1401	C 905	N 262	0 229	${S \atop 5}$	0	0

• Molecule 25 is a protein called 60S ribosomal protein L22.

Mol	Chain	Residues		Aton	ns	AltConf	Trace	
25	U	98	Total 484	C 288	N 98	O 98	0	0

• Molecule 26 is a protein called 60S ribosomal protein L23-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
26	V	132	Total 991	C 625	N 182	0 176	S 8	0	0

• Molecule 27 is a protein called Ribosome assembly factor mrt4.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
27	W	215	Total 1057	C 627	N 215	0 215	0	0

• Molecule 28 is a protein called 60S ribosomal protein L25-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	Х	132	Total 1044	C 664	N 194	0 185	S 1	0	0

• Molecule 29 is a protein called 60S ribosomal protein L26.

Mol	Chain	Residues		At	AltConf	Trace			
29	Y	125	Total 998	C 622	N 201	0 173	S 2	0	0

• Molecule 30 is a protein called 60S ribosomal protein L27-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
30	Ζ	134	Total 662	C 393	N 134	O 135	0	0

• Molecule 31 is a protein called 60S ribosomal protein L28-A.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
31	a	97	Total 762	C 483	N 145	0 134	0	0

• Molecule 32 is a protein called Probable nucleolar GTP-binding protein 1.

Mol	Chain	Residues		Ator	AltConf	Trace		
32	b	359	Total 1780	C 1062	N 359	O 359	0	0

• Molecule 33 is a protein called 60S ribosomal protein L30-2.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
33	с	94	Total 462	С 274	N 94	O 94	0	0

• Molecule 34 is a protein called 60S ribosomal protein L31.

Mol	Chain	Residues		At	AltConf	Trace			
34	d	96	Total 801	C 507	N 158	0 133	${ m S} { m 3}$	0	0

• Molecule 35 is a protein called 60S ribosomal protein L32-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
35	е	119	Total	С	Ν	Ο	\mathbf{S}	0	0
	Ŭ	110	953	597	193	158	5		

• Molecule 36 is a protein called 60S ribosomal protein L33-B.

Mol	Chain	Residues		At	AltConf	Trace			
36	f	106	Total 839	C 534	N 162	0 140	${ m S} { m 3}$	0	0

• Molecule 37 is a protein called 60S ribosomal protein L34-A.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
37	g	97	Total 478	C 284	N 97	O 97	0	0

• Molecule 38 is a protein called 60S ribosomal protein L35.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
38	h	121	Total 999	C 629	N 194	O 176	0	0

• Molecule 39 is a protein called 60S ribosomal protein L36-B.

Mol	Chain	Residues		At	oms			AltConf	Trace
39	i	85	Total 696	C 431	N 148	O 116	S 1	0	0

• Molecule 40 is a protein called 60S ribosomal protein L37-B.

Mol	Chain	Residues		Ate	AltConf	Trace			
40	j	71	Total 563	C 346	N 121	O 90	S 6	0	0

• Molecule 41 is a protein called 60S ribosomal protein L38-1.

Mol	Chain	Residues		At	oms	AltConf	Trace		
41	k	70	Total 564	$\begin{array}{c} \mathrm{C} \\ 357 \end{array}$	N 104	0 102	S 1	0	0

• Molecule 42 is a protein called 60S ribosome subunit biogenesis protein nip7.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
42	1	174	Total 860	C 512	N 174	0 174	0	0

• Molecule 43 is a protein called Ribosome biogenesis protein erb1.

Mol	Chain	Residues		At	oms			AltConf	Trace
43	m	572	Total 4526	C 2883	N 790	0 842	S 11	0	0

• Molecule 44 is a protein called Pescadillo homolog.

Mol	Chain	Residues		At	oms			AltConf	Trace
44	n	432	Total 3517	C 2262	N 606	O 637	S 12	0	0

• Molecule 45 is a protein called Uncharacterized RNA-binding protein C1827.05c.

Mol	Chain	Residues		At	oms	AltConf	Trace		
45	О	137	Total 1138	C 732	N 213	0 187	S 6	0	0

• Molecule 46 is a protein called Ribosome biogenesis protein ytm1.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
46	р	275	Total 1357	C 807	N 275	O 275	0	0

• Molecule 47 is a protein called 25S rRNA (cytosine-C(5))-methyltransferase nop2.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
47	q	260	Total 1282	C 762	N 260	O 260	0	0

• Molecule 48 is a protein called Ribosome biogenesis protein nsa2.

Mol	Chain	Residues		At	oms	AltConf	Trace		
48	r	165	Total 1081	C 653	N 223	0 204	S 1	0	0

• Molecule 49 is a protein called GTPase grn1.

Mol	Chain	Residues		Aton	ıs	AltConf	Trace	
49	S	23	Total 193	C 117	N 44	O 32	0	0

• Molecule 50 is a protein called 60S ribosomal protein L7-A.

Mol	Chain	Residues		Ate	AltConf	Trace			
50	t	235	Total 1948	C 1242	N 367	0 334	$\frac{S}{5}$	0	0

• Molecule 51 is a protein called Ribosome biogenesis protein rlp24.

Mol	Chain	Residues		At	oms		Atoms						
51	u	101	Total 714	C 448	N 143	0 116	${f S}{7}$	0	0				

• Molecule 52 is a protein called Nucleolar protein 16.

Mol	Chain	Residues	Atoms			AltConf	Trace		
52	V	161	Total 1299	C 818	N 243	O 235	${ m S} { m 3}$	0	0

• Molecule 53 is a protein called AdoMet-dependent rRNA methyltransferase spb1.

Mol	Chain	Residues	Atoms			AltConf	Trace		
53	W	180	Total 1462	C 910	N 276	O 270	S 6	0	0

• Molecule 54 is a protein called Eukaryotic translation initiation factor 6.

Mol	Chain	Residues	Atoms		AltConf	Trace		
54	У	223	Total 1097	C 651	N 223	O 223	0	0

• Molecule 55 is a protein called UPF0642 protein C32H8.05.

Mol	Chain	Residues	Atoms		AltConf	Trace		
55	Z	35	Total 292	C 183	N 63	O 46	0	0

• Molecule 56 is a protein called 60S ribosomal protein L21-A.

Mol	Chain	Residues	Atoms			AltConf	Trace	
56	Т	18	Total	С	Ν	Ο	0	0
50	T	10	138	87	24	27	0	0

• Molecule 57 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
57	j	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Chain 1: 47% 14% 39%
- Molecule 1: RNA (2142-MER)

• Molecule 3: RNA (79-MER)

• Molecule 5: 60S ribosomal protein L39

Chain 8	43%		57%	_
MET PRO SER HIS KS	F7 F7 M20 M26 M26 M26 M26 M26 M26 M26 M26 M26 M26	MET IVS LVS ARC ARC ARC ARC TRP ARC TRP ARC LVS LVS LVS LLEU ILEU		
• Mole	cule 6: Ribosome biogen	esis protein brx1		
Chain .	A: 6	8%	• 31%	_
MET SER THR VAL TYR	LUIS LAUS LYS THR SER SER GLU ASP GLU GLU GLU GLU TYR	PAL PAD VAL VAL GLN GLN GLN GLN GLN GLN ASN ASN ASS ASS	M68 D81 N136 C144 C149 D156 T157	L167 K176 P183
C189	4195 K197 F200 F200 C1205 K206 K206 C10 ASP LYS SSR LYS SSR LYS SSR LYS SSR	T217 T217 1217 222 6222 6229 6229 6239 6239 6239 6239	SER THR MET MET VAL ARG ALA ALA ALA ALA ALA ALA ALA ALA ALA	TYR VAL ASN ASG GLN GLU SEU LYS LEU CLU GLU ARG
GLN VAL ARG ALA GLN	ASN VAL TLE TLE GLU GLU GLU ASP ASP ASN VAL VAL ALA			
• Mole	cule 7: 60S ribosomal pr	otein L3-A		
Chain 1	3:	85%	• 14%	-
MET SER HIS CYS LYS	GLN GLN PRO ARC H11 B61 F139 F132 C228 C228 C228 F139 F139 F139 F139 F138 F139 F139 F139 F137 F139 F132 F132 F14	ALA ARG GLY THR LYS LYS PRO PRO THR ARG ARG ARG ARG	GLY LEU LYS LYS VAL LYS VAL ALA GLY GLY ALA ALA ALA ALA ANO ANO ANO ANO ANO ANO ANO ANO ANO AN	C VAL TRP THR VAL ALA ALA ALA
GLY N269 Y283	ASP M323 K385 K385 VAL ALA			
• Mole	cule 8: 60S ribosomal pr	otein L4-B		
Chain	C:	98%		
MET ALA ALA ALA <mark>RS</mark>	L36 Y122 S345 E346 B353 N363			
• Mole	cule 9: ATP-dependent I	RNA helicase has1		
Chain 1	28%	72%	• 28%	_
MET ALA LYS SER GLU	LYS LYS LYS LYS LYS CLY SER ASN GLU CLU CLU CLU CLU CLU CLU CLU CLU CLU C	LYS PRO LEU LYS ASN ASP LYS LYS LYS LYS LLU GLU CLU PRO	GLN ASP ASP ASP ASP GLU GLU GLU ASP ASP ASP ASP	GLN ASN THR SER VAL GLU SER

• Molecule 13: 60S ribosomal protein L9-A

Chain H:	95%
MET GLY ARG V17 S61	M106
• Molecule 14	4: Nucleolar complex-associated protein 3
Chain I:	55% 45%
MET ALA ALA ALA ARG LYS GLN CLN SER SER	LIVE PRO VAL VAL SER SER SER SER SER LIVE SER LIVE SER ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN
GLU ARG GLU ILEU GLN GLU ASP ILE	PHE PHE ASN ASN ASN ASN ASN ASN ASN CTYS SER ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP
ASP GLU GLU SER VAL LEU ASP TYR SER	ASP ASP ASP ASP ASP ASP ASP ASP ASP ASS ASS
	и 4 и й F и и
GLU SER GLU GLU GLU SER SER SER CLU	A REAL AND A MARK A MAR
L241 1242 R243 N244 1245 F246 F246 E247	K448 F249 ASR ASR ASR ASR ASS F249 ASP F249 ASP F249 F249 F249 F256 F256 F256 F256 F256 F256 F256 F256
q301 T302 L303 L304 K305 H306 Y307	 Kasso Kasso F310 F311 <
V361 R362 Q363 1364 H365 H366 K367	T468 K369 F371 F371 G372 G372 G372 G375 F373 G375 F373 S379 K331 F384 F384 F384 F384 F384 F384 F384 F384
GLN ASP ASP ASP THR THR ASP LVS LVS LVS	LYS LYS LYS L449 P450 P450 P450 P450 P475 P475 P475 P475 P475 P473 P47
L537 VAL MET ASP ASP THR VAL PHE LEU	LYN LYN ASP ASS ASS ASS ASS ASS ASS ASS ASS ASS
F597 S598 S598 A58 A28 A1A A1A A5P A5P LEU	ASN LYS LYS LYS LYS LKG LKU ARG ASP ASP ASP ASP ASP ASP ASP ASP ASP ASS ASS
K657 R658 L659 A660 1661 A662 S663	M664 M664 P667 P667 B668 A671 B677 A671 A673 A675 L677 A676 A676 L677 A676 L677 A676 C681 F683 F684 F683 F684 F683 F684 F683 F684 F683 F684 F683 F684 F683 F684 F683 F684 F684 F683 F684 F684 F683 F684 F684 F683 F684 F684 F684 F684 F684 F684 F684 F684
THR ALA VAL LEU Y721 F723 F723 F724	L7.25 K7.27 K7.26 H7.29 F7.30 F7.30 F7.33 K7.33 K7.33 K7.39 C7.36 K7.39 K7.33

• Molecule 19: 60S ribosomal protein L15-A

• Molecule 29: 60	S ribosomal protein L26	
Chain Y:	98%	
M1 R5 R5 R3 M3 G1U		
• Molecule 30: 60	S ribosomal protein L27-A	
Chain Z:	99%	
MET VAL K3 A28 A28 A28 A28 A28 A28 A28 A28 A28 A28	V53 T54 K55 M57 G58 A59 K60 R61 R61 T97 C94 C94 C94 C94 C123 S127 S127 F136 F136	
• Molecule 31: 60	S ribosomal protein L28-A	
Chain a:	6 4% • 34%	
MET P2 P2 A16 A16 A14 A14 A16 A16 A17 A17 A17 A17 A17 A17 A17 A17 A17 A17	ARG LYS HIS PR0 GLY GLY GLY ALA ARG CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	HIS HIS NET ISYS ASA N94 N94
T95 E36 E119 A148 A148		
• Molecule 32: Pr	cobable nucleolar GTP-binding protein 1	
Chain b:	% 56% 44%	
MET ALA THR A4 V5 K7 E68 K71	LT2 NT3 D74 LT5 D81 B81 B89 B89 R89 R89 L14 L154 L171 L172 L172 L172 L172 L171 L172 C174 V176 V173 C174 V177 K181 S182 M185	q192 V193 V195 P197 P197 P197 P197 P197 T200 T201 P211 D211 P221 P221 P221 P221 P221 P22
LEU ASP ASP ASP PRO CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	M238 2340 2349 2346 4243 A245 A245 A245 A245 A245 A245 A245 A245 A245 A245 A245 A245 A245 A256	A266 A267 Q268 V269 K270 L271 H273 S274 L275 F277 F277 F277 F279 F277 K276 F279 K276 F279 K276 F279 Y281 V281 Y283 T284
L286 V287 L288 M289 M289 K290 L291 D291 MET MET ARG ARG	ASP GLN ASP ASP ASP ASN CLN CLN CLN CLN CLN CLN CLN CLN CLN CL	V329 M320 D331 A336 C337 C337 C337 A340 L340 L340 L340 C337 A342 A342 A342 C341 C41 C10 C10 C10 C10
LEU LYS GLY SER SER ARG VAL ASN VAL ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	HIS LEU ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	L398 R400 B401 E403 E403 A404 A405 G407 G407 G407
V414 ↔ D418 ↔ L422 ↔ Q423 ↔ D424 ↔ S426 ↔ S426 ↔	K428 7 429 7 429 7 429 7 444 7 444 7 444 7 445 7 444 7 445 7 444 7 445 7	ASP ASP ASP GLN GLU GLU GLU VAL LEU
GLU LYS ALA SER ARG TLE ARG GLU CYS CLU LYS LYS LEU THR	MET LEU ALA ALA ALA ALA ALA CVXL LVS CVXL LVS CVXL LVS PRO ARG PRO PRO PRO PRO PRO PRO PRO PRO PRO PRO	SER ASP ILLE GLU GLU ARG ARG SER SER

• Molecule 33: 60S ribosomal protein L30-2

	44%		
Chain c:	80%	20%	
_	**********	* *** ** * *	** ***** *
MET SER ALA ALA ALA PRO PRO VAL ALA ALA ALA ALA SER VAL	LYNS LYNS LYNS LYNS LYNS LYNS CLY D22 L23 R25 L23 R25 L26 R27 L28 R27 L28 R27 R27 R33 R33 R33 R33 R33 R33 R33 R33 R33 R3	A37 Y37 G51 G51 A53 A60 A60 P64 P64	877 877 877 878 885 885 885 886 886 887 888 888 888 888 888 888 888
T95 A94 C95 C95 C95 C95 F95 F95 A110 V110			
• Molecule 34: 60S	ribosomal protein L31		
Chain d:	84%	• 15%	I
MET ALA ALA ALA ALA LYS LYS SER ALA ALA ALA ALA ALU OLU	ASP LYS LYS ALA ALA 19100 V101 A102 6LU GLU		
• Molecule 35: 60S	ribosomal protein L32-A		
Chain e:	93%	• 6%	
MET MET ALA ALA ALA ALA R42 K122 VLL AL2 VLL ARG CLU			
• Molecule 36: 60S	ribosomal protein L33-B		
Chain f:	98%		
MET PRO A3 I 108			
• Molecule 37: 60S	ribosomal protein L34-A		
Chain g:	87%	13%	
MET MLA GLN CLN CLN ARG ARG ARG ARG ARG ARG	K106 CLN CLN CLN CLN		
• Molecule 38: 60S	ribosomal protein L35		
Chain h:	99%		I

	٠	
MET	A2	A122

• Molecule 39: 60S ribosomal protein L36-B

Chain i:	86%	14%	
MET ALA ALA GLY GLY CLEU UAL CLEU CLEU CLYS CLYS CLYS CLSS CLSS	R36 197 199 H39		
• Molecule 40: 60S $_{\rm H}$	ribosomal protein L37-B		
Chain j:	78%	22%	
MET THR CLYS CLYS CLY CLY THR CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	A18 ALA ALA ALA ALA ALA ALA ALA ALA		
• Molecule 41: 60S $_{\rm H}$	ribosomal protein L38-1		
Chain k:	92%	• 5%	
MET P2 E13 K18 K31 K31 K31 K31 K31 K31 K31 K31 K31 K31	K52 E55 E55 E53 E63 E63 E71 LYS LYS LYS ALA		
• Molecule 42: 60S 1	ribosome subunit biogenesis protein nip	7	
Chain l:	72% 97%	·	
MI 144 145 146 146 146 149 141 141 141	E14 417 417 120 418 421 428 421 128 128 128 128 128 128 128 128 128 1	R43 447 848 850 851 851 852 8653 8654	A55 S57 V58 A59 A59 A59 A59 A62 L63 M64 M64 S65 S65 C66 C66
F73 T74 K75 T76 T76 F79 F79 F79 R80 R80 R80 A85	L86 D87 Y88 Y98 A90 A91 A93 A93 A93 A93 A93 A93 A93 A93 A93 A93	V1113 V113 K115 K115 A116 A116 C119 C119 R120	T122 D123 D124 T125 P126 Q127 Q125 Q129 Q130 C130 C130 T133 T133 T133 M136
N137 D138 L141 C142 C142 F143 C144 C144 C146 A147 R146 R148 S149	T150 L151 L151 L153 R154 R154 R155 P158 P158 P158 A160 A160 A160 A165 A175 A165 A175 A165 A175 A165 A175 A165 A175	Li173 ASP ASP GLU ASP THR LEU PHE	
• Molecule 43: Ribo	some biogenesis protein erb1		
Chain m:	76%	• 23%	
MET CLU CLU CLV CLY MET MET ARG ARG SER ARG SER ARG ALA	ASN ASN ASN VAL CLYS CLYS CLU CLYS CLU CLYS CLU SER CLV SER ASN ASN ASN CLY SER CLY SER CLV SER CLV SER SER CLV SER ASN CLV SER CLV SER CLV SER SER CLV SER CLV SER CLV SER CLV SER CLV SER CLV SER CLV SER CLV SER CLV SER CLV SER CLV SER SER SER SER SER SER SER SER SER SER	SER SER HIS GLU PRO PRO SER PHE LYS LYS ASP VAL	GLU TILE PRO
SER LEU ATHR ATHR ATLA GLU GLU GLU GLU GLU GLU SER SER SER	SER SER SER SER SER SER SER SER SER ASP ASP ASP ASP ASP CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	L119 Y120 GLU SER FR0 TYR ASP GLU H127	Viig 1130 1134 Dist
	WORLDWIDE PROTEIN DATA BANK		

• Molecule 53: AdoMet-dependent rRNA methyltransferase spb1

• Molecule 56: 60S ribosomal protein L21-A

Chain T: 11%

89%

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	109000	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	60	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	2000	Depositor
Magnification	Not provided	
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor
Maximum map value	0.568	Depositor
Minimum map value	-0.215	Depositor
Average map value	0.001	Depositor
Map value standard deviation	0.009	Depositor
Recommended contour level	0.05	Depositor
Map size (Å)	542.72, 542.72, 542.72	wwPDB
Map dimensions	512, 512, 512	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.06, 1.06, 1.06	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	B	ond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	1	0.19	0/51332	0.72	0/79942
2	2	0.23	0/3563	0.72	0/5543
3	6	0.18	0/1868	0.71	0/2898
4	7	0.23	0/544	0.33	0/754
5	8	0.25	0/191	0.49	0/254
6	А	0.25	0/1686	0.52	0/2272
7	В	0.24	0/2715	0.52	0/3647
8	С	0.25	0/2848	0.50	0/3842
9	D	0.25	0/3381	0.46	0/4559
10	Е	0.26	0/1235	0.53	0/1663
11	F	0.25	0/1781	0.48	0/2389
12	G	0.26	0/1629	0.49	0/2192
13	Н	0.26	0/1470	0.54	0/1982
14	Ι	0.23	0/2023	0.34	0/2810
15	J	0.23	0/573	0.34	0/800
16	Κ	0.26	0/1999	0.50	0/2702
17	L	0.26	0/960	0.57	0/1288
18	М	0.23	0/1024	0.49	0/1375
19	Ν	0.26	0/1420	0.56	0/1897
20	0	0.25	0/1588	0.49	0/2128
21	Р	0.26	0/1188	0.51	0/1590
22	Q	0.24	0/1043	0.54	0/1401
23	R	0.24	0/732	0.47	0/992
24	S	0.25	0/1437	0.54	0/1929
25	U	0.23	0/483	0.42	0/671
26	V	0.26	0/1007	0.58	0/1357
27	W	0.23	0/1053	0.43	0/1457
28	Х	0.26	0/1060	0.50	0/1422
29	Y	0.25	0/1008	0.56	0/1341
30	Ζ	0.24	0/661	0.40	0/917
31	a	0.25	0/775	0.58	1/1047~(0.1%)
32	b	0.23	0/1776	0.37	0/2471

Mal	Chain	Bond	lengths	В	ond angles
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
33	с	0.24	0/461	0.39	0/639
34	d	0.25	0/815	0.58	0/1094
35	е	0.26	0/967	0.55	0/1289
36	f	0.25	0/859	0.52	0/1152
37	g	0.24	0/477	0.41	0/662
38	h	0.25	0/1008	0.50	0/1340
39	i	0.24	0/703	0.55	0/931
40	j	0.26	0/575	0.57	0/761
41	k	0.27	0/570	0.56	0/762
42	l	0.24	0/859	0.43	0/1195
43	m	0.24	0/4644	0.50	0/6313
44	n	0.25	0/3598	0.46	0/4845
45	0	0.26	0/1163	0.56	0/1552
46	р	0.24	0/1351	0.44	0/1871
47	q	0.24	0/1280	0.42	0/1778
48	r	0.30	0/1086	0.57	0/1457
49	s	0.23	0/192	0.60	0/248
50	t	0.24	0/1979	0.51	0/2645
51	u	0.29	0/729	0.56	0/981
52	V	0.25	0/1319	0.49	0/1769
53	W	0.25	0/1478	0.52	0/1967
54	У	0.24	0/1096	0.45	0/1522
55	Z	0.25	0/297	0.49	0/388
56	Т	0.25	0/142	0.46	0/196
All	All	0.22	0/123701	0.62	1/178889~(0.0%)

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
31	a	67	PRO	N-CA-CB	5.88	110.36	103.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
4	7	102/707~(14%)	101 (99%)	1 (1%)	0	100	100
5	8	20/51~(39%)	20 (100%)	0	0	100	100
6	А	200/295~(68%)	194 (97%)	6 (3%)	0	100	100
7	В	331/388~(85%)	318 (96%)	13 (4%)	0	100	100
8	С	357/363~(98%)	342 (96%)	15 (4%)	0	100	100
9	D	412/578~(71%)	401 (97%)	11 (3%)	0	100	100
10	Ε	152/195~(78%)	142 (93%)	10 (7%)	0	100	100
11	F	212/250~(85%)	205~(97%)	7 (3%)	0	100	100
12	G	202/259~(78%)	196 (97%)	4 (2%)	2(1%)	15	54
13	Н	181/190~(95%)	173 (96%)	8 (4%)	0	100	100
14	Ι	391/747~(52%)	382 (98%)	8 (2%)	1 (0%)	41	74
15	J	113/333~(34%)	112 (99%)	1 (1%)	0	100	100
16	K	246/373~(66%)	232 (94%)	13 (5%)	1 (0%)	34	69
17	L	114/208~(55%)	112 (98%)	2 (2%)	0	100	100
18	М	123/134~(92%)	117 (95%)	6 (5%)	0	100	100
19	Ν	159/201~(79%)	158 (99%)	1 (1%)	0	100	100
20	Ο	194/197~(98%)	188 (97%)	6 (3%)	0	100	100
21	Р	143/187~(76%)	139~(97%)	4 (3%)	0	100	100
22	Q	131/187~(70%)	127 (97%)	4 (3%)	0	100	100
23	R	108/193~(56%)	107~(99%)	1 (1%)	0	100	100
24	S	163/176~(93%)	154 (94%)	9 (6%)	0	100	100
25	U	96/117~(82%)	93~(97%)	3 (3%)	0	100	100
26	V	$\overline{130/139} \ (94\%)$	126 (97%)	4 (3%)	0	100	100
27	W	207/241~(86%)	196 (95%)	11 (5%)	0	100	100
28	Х	128/141 (91%)	124 (97%)	4 (3%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
29	Y	123/126~(98%)	117~(95%)	6 (5%)	0	100	100
30	Ζ	132/136~(97%)	130~(98%)	2(2%)	0	100	100
31	a	93/148~(63%)	92~(99%)	1 (1%)	0	100	100
32	b	351/642~(55%)	346~(99%)	5 (1%)	0	100	100
33	с	92/117~(79%)	92 (100%)	0	0	100	100
34	d	92/113~(81%)	91~(99%)	1 (1%)	0	100	100
35	е	117/127~(92%)	114 (97%)	3~(3%)	0	100	100
36	f	104/108~(96%)	99~(95%)	5 (5%)	0	100	100
37	g	95/112~(85%)	92~(97%)	3~(3%)	0	100	100
38	h	119/122~(98%)	118 (99%)	1 (1%)	0	100	100
39	i	83/99~(84%)	83 (100%)	0	0	100	100
40	j	69/91~(76%)	68~(99%)	1 (1%)	0	100	100
41	k	68/74~(92%)	66~(97%)	2(3%)	0	100	100
42	1	172/180~(96%)	170~(99%)	2(1%)	0	100	100
43	m	558/740~(75%)	529~(95%)	28~(5%)	1 (0%)	47	79
44	n	426/607~(70%)	415~(97%)	11 (3%)	0	100	100
45	0	135/276~(49%)	129~(96%)	6 (4%)	0	100	100
46	р	263/440~(60%)	257~(98%)	6(2%)	0	100	100
47	q	256/608~(42%)	252~(98%)	4 (2%)	0	100	100
48	r	157/260~(60%)	157~(100%)	0	0	100	100
49	\mathbf{S}	21/470~(4%)	18~(86%)	3(14%)	0	100	100
50	t	233/249~(94%)	221~(95%)	12~(5%)	0	100	100
51	u	97/192~(50%)	94~(97%)	3~(3%)	0	100	100
52	V	157/209~(75%)	151~(96%)	5(3%)	1 (1%)	25	64
53	W	174/802~(22%)	170~(98%)	4(2%)	0	100	100
54	У	221/244 (91%)	218 (99%)	3(1%)	0	100	100
55	Z	33/117~(28%)	31 (94%)	1 (3%)	1 (3%)	4	28
56	Т	16/160~(10%)	16 (100%)	0	0	100	100
All	All	9072/14419~(63%)	8795 (97%)	270 (3%)	7 (0%)	54	83

All (7) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
52	V	130	ILE
12	G	227	ASP
16	Κ	153	ILE
12	G	182	ASN
55	Z	104	ARG
43	m	115	VAL
14	Ι	698	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{n} tiles
5	8	19/47~(40%)	19~(100%)	0	100	100
6	А	184/266~(69%)	182 (99%)	2(1%)	73	88
7	В	284/326~(87%)	279~(98%)	5 (2%)	59	82
8	С	296/297~(100%)	293~(99%)	3 (1%)	76	90
9	D	362/505~(72%)	359~(99%)	3 (1%)	81	93
10	Е	128/155~(83%)	125~(98%)	3(2%)	50	78
11	F	180/210~(86%)	177 (98%)	3(2%)	60	83
12	G	167/212~(79%)	167 (100%)	0	100	100
13	Н	164/170~(96%)	162 (99%)	2 (1%)	71	88
16	К	223/333~(67%)	219 (98%)	4 (2%)	59	82
17	L	97/167~(58%)	96~(99%)	1 (1%)	76	90
18	М	108/113~(96%)	107~(99%)	1 (1%)	78	91
19	Ν	145/176~(82%)	145 (100%)	0	100	100
20	Ο	161/162~(99%)	160 (99%)	1 (1%)	86	94
21	Р	121/149~(81%)	118 (98%)	3(2%)	47	77
22	Q	114/159~(72%)	114 (100%)	0	100	100
23	R	51/162~(32%)	50 (98%)	1 (2%)	55	80
24	S	149/154~(97%)	146 (98%)	3 (2%)	55	80
26	V	$10\overline{3}/107~(96\%)$	102 (99%)	1 (1%)	76	90

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
28	Х	114/122~(93%)	114 (100%)	0	100	100
29	Y	110/111 (99%)	108 (98%)	2 (2%)	59	82
31	a	81/122 (66%)	80 (99%)	1 (1%)	71	88
34	d	88/102~(86%)	87~(99%)	1 (1%)	73	88
35	е	101/107~(94%)	100 (99%)	1 (1%)	76	90
36	f	89/91~(98%)	89 (100%)	0	100	100
38	h	106/107~(99%)	106 (100%)	0	100	100
39	i	74/84~(88%)	74 (100%)	0	100	100
40	j	58/71~(82%)	58 (100%)	0	100	100
41	k	63/66~(96%)	61 (97%)	2 (3%)	39	71
43	m	504/659~(76%)	497 (99%)	7 (1%)	67	86
44	n	378/532~(71%)	373~(99%)	5 (1%)	69	87
45	О	123/246~(50%)	120 (98%)	3 (2%)	49	77
48	r	63/224~(28%)	61 (97%)	2 (3%)	39	71
49	S	21/409~(5%)	21 (100%)	0	100	100
50	t	211/223~(95%)	208 (99%)	3 (1%)	67	86
51	u	55/168~(33%)	52 (94%)	3 (6%)	21	57
52	V	138/181 (76%)	135 (98%)	3 (2%)	52	79
53	W	158/697~(23%)	158 (100%)	0	100	100
55	Z	31/107~(29%)	29 (94%)	2 (6%)	17	51
56	Т	16/139~(12%)	15 (94%)	1 (6%)	18	52
All	All	5638/8438~(67%)	5566 (99%)	72 (1%)	70	87

All (72) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
6	А	68	MET
6	А	167	LEU
7	В	132	LYS
7	В	199	PHE
7	В	214	MET
7	В	283	TYR
7	В	323	MET
8	С	36	LEU
8	С	122	TYR

Mol	Chain	Res	Type
8	С	345	SER
9	D	270	GLN
9	D	459	LEU
9	D	531	ASN
10	Е	33	GLU
10	Е	140	PHE
10	Е	156	ASP
11	F	67	ARG
11	F	87	GLU
11	F	234	ASP
13	Н	61	SER
13	Н	78	MET
16	K	23	TYR
16	K	98	TYR
16	K	200	MET
16	K	234	LYS
17	L	67	MET
18	М	33	ASP
20	0	64	ARG
21	Р	30	ARG
21	Р	97	ASN
21	Р	110	ASP
23	R	30	SER
24	S	42	TYR
24	S	138	TYR
24	S	176	TYR
26	V	134	ASN
29	Y	5	ARG
29	Y	40	GLU
31	a	131	ARG
34	d	92	LEU
$\overline{35}$	e	42	ARG
41	k	13	GLU
41	k	52	LYS
43	m	114	ASP
43	m	137	LYS
43	m	267	HIS
43	m	300	TYR
43	m	368	LEU
43	m	371	PHE
43	m	585	MET
44	n	87	PHE

Mol	Chain	Res	Type
44	n	139	MET
44	n	411	GLN
44	n	460	TYR
44	n	555	LYS
45	0	137	SER
45	0	211	HIS
45	0	232	LYS
48	r	37	LEU
48	r	60	GLN
50	t	64	ARG
50	t	115	SER
50	t	209	TRP
51	u	1	MET
51	u	9	CYS
51	u	42	MET
52	V	9	LYS
52	V	147	LYS
52	V	205	MET
55	Z	91	ARG
55	Z	113	PHE
56	Т	140	PHE

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (12) such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
6	А	97	ASN
7	В	279	ASN
8	С	323	ASN
9	D	367	HIS
9	D	370	GLN
9	D	531	ASN
16	Κ	177	GLN
41	k	59	GLN
44	n	190	GLN
44	n	408	HIS
44	n	411	GLN
45	0	187	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	1	2100/3497~(60%)	496 (23%)	21 (1%)
2	2	147/165~(89%)	24 (16%)	1 (0%)
3	6	75/300~(25%)	32~(42%)	0
All	All	2322/3962~(58%)	552~(23%)	22~(0%)

All (552) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	1	6	А
1	1	26	А
1	1	34	А
1	1	36	С
1	1	49	А
1	1	57	А
1	1	59	G
1	1	60	А
1	1	65	А
1	1	66	А
1	1	91	G
1	1	109	A
1	1	110	G
1	1	111	С
1	1	116	А
1	1	117	U
1	1	122	А
1	1	133	А
1	1	149	G
1	1	154	G
1	1	162	А
1	1	163	А
1	1	170	G
1	1	177	G
1	1	193	U
1	1	195	А
1	1	197	U
1	1	198	U
1	1	207	С
1	1	213	G
1	1	217	G
1	1	218	A
1	1	225	G
1	1	226	A
1	1	227	G

Mol	Chain	Res	Type
1	1	239	U
1	1	240	G
1	1	241	G
1	1	244	G
1	1	245	А
1	1	246	U
1	1	258	U
1	1	259	А
1	1	263	А
1	1	268	U
1	1	269	U
1	1	276	А
1	1	277	G
1	1	303	A
1	1	306	U
1	1	307	G
1	1	313	U
1	1	331	А
1	1	337	U
1	1	338	G
1	1	346	А
1	1	347	С
1	1	358	С
1	1	359	A
1	1	360	А
1	1	361	G
1	1	378	U
1	1	384	G
1	1	406	U
1	1	409	U
1	1	411	С
1	1	415	A
1	1	429	G
1	1	430	A
1	1	437	G
1	1	445	G
1	1	507	U
1	1	522	G
1	1	530	A
1	1	532	A
1	1	534	A
1	1	540	A

1 1 544 A 1 1 546 G 1 1 547 G 1 1 548 U 1 1 551 C 1 1 577 U 1 1 577 U 1 1 579 A 1 1 579 A 1 1 580 U 1 1 581 A 1 1 590 U 1 1 602 A 1 1 603 C 1 1 613 A 1 1 616 A 1 1 632 A 1 1 636 A 1 1 647 A 1 1 647 A 1 1 650 G <t< th=""><th>Mol</th><th>Chain</th><th>Res</th><th>Type</th></t<>	Mol	Chain	Res	Type
1 1 546 G 1 1 547 G 1 1 548 U 1 1 551 C 1 1 577 U 1 1 578 U 1 1 579 A 1 1 580 U 1 1 581 A 1 1 590 U 1 1 590 U 1 1 602 A 1 1 603 C 1 1 613 A 1 1 616 A 1 1 637 U 1 1 636 A 1 1 647 A 1 1 650 G 1 1 651 U 1 1 675 C <t< td=""><td>1</td><td>1</td><td>544</td><td>А</td></t<>	1	1	544	А
1 1 547 G 1 1 548 U 1 1 551 C 1 1 577 U 1 1 578 U 1 1 579 A 1 1 579 A 1 1 580 U 1 1 580 U 1 1 581 A 1 1 590 U 1 1 602 A 1 1 603 C 1 1 613 A 1 1 616 A 1 1 624 U 1 1 637 U 1 1 636 A 1 1 647 A 1 1 650 G 1 1 675 C <t< td=""><td>1</td><td>1</td><td>546</td><td>G</td></t<>	1	1	546	G
1 1 548 U 1 1 551 C 1 1 577 U 1 1 578 U 1 1 579 A 1 1 579 A 1 1 580 U 1 1 581 A 1 1 582 G 1 1 590 U 1 1 602 A 1 1 603 C 1 1 613 A 1 1 613 A 1 1 632 A 1 1 637 U 1 1 637 U 1 1 647 A 1 1 651 U 1 1 651 U 1 1 675 C <t< td=""><td>1</td><td>1</td><td>547</td><td>G</td></t<>	1	1	547	G
1 1 551 C 1 1 577 U 1 1 578 U 1 1 579 A 1 1 579 A 1 1 580 U 1 1 581 A 1 1 582 G 1 1 590 U 1 1 602 A 1 1 603 C 1 1 613 A 1 1 616 A 1 1 632 A 1 1 637 U 1 1 637 U 1 1 647 A 1 1 647 A 1 1 661 C 1 1 675 C 1 1 675 C <t< td=""><td>1</td><td>1</td><td>548</td><td>U</td></t<>	1	1	548	U
1 1 577 U 1 1 578 U 1 1 579 A 1 1 580 U 1 1 580 U 1 1 581 A 1 1 582 G 1 1 590 U 1 1 590 U 1 1 602 A 1 1 603 C 1 1 613 A 1 1 616 A 1 1 624 U 1 1 637 U 1 1 637 U 1 1 647 A 1 1 647 A 1 1 661 C 1 1 675 C 1 1 675 C <t< td=""><td>1</td><td>1</td><td>551</td><td>С</td></t<>	1	1	551	С
11578U11579A11580U11581A11581A11590U11591G11602A11603C11613A11613A11616A11632A11636A11637U11641G11645U11650G11651U11661C11675C11685A11702A11714A11735G11735G11743A11744U	1	1	577	U
1 1 579 A 1 1 580 U 1 1 581 A 1 1 582 G 1 1 590 U 1 1 591 G 1 1 602 A 1 1 603 C 1 1 613 A 1 1 613 A 1 1 613 A 1 1 614 M 1 1 615 A 1 1 637 U 1 1 637 U 1 1 645 U 1 1 647 A 1 1 650 G 1 1 662 C 1 1 675 C 1 1 675 C 1 1 702 A 1 1 716 G </td <td>1</td> <td>1</td> <td>578</td> <td>U</td>	1	1	578	U
1 1 580 U 1 1 581 A 1 1 582 G 1 1 590 U 1 1 591 G 1 1 602 A 1 1 603 C 1 1 613 A 1 1 613 A 1 1 616 A 1 1 618 U 1 1 632 A 1 1 636 A 1 1 637 U 1 1 645 U 1 1 647 A 1 1 650 G 1 1 651 U 1 1 662 C 1 1 675 C 1 1 675 C 1 1 702 A 1 1 716 G </td <td>1</td> <td>1</td> <td>579</td> <td>A</td>	1	1	579	A
1 1 581 A 1 1 582 G 1 1 590 U 1 1 591 G 1 1 602 A 1 1 603 C 1 1 613 A 1 1 616 A 1 1 616 A 1 1 618 U 1 1 632 A 1 1 637 U 1 1 637 U 1 1 647 A 1 1 645 U 1 1 650 G 1 1 651 U 1 1 662 C 1 1 675 C 1 1 685 A 1 1 706 U 1 1 717 A 1 1 735 G </td <td>1</td> <td>1</td> <td>580</td> <td>U</td>	1	1	580	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	581	A
1 1 590 U 1 1 591 G 1 1 602 A 1 1 603 C 1 1 613 A 1 1 613 A 1 1 616 A 1 1 616 A 1 1 618 U 1 1 632 A 1 1 634 U 1 1 637 U 1 1 645 U 1 1 647 A 1 1 650 G 1 1 651 U 1 1 662 C 1 1 675 C 1 1 685 A 1 1 706 U 1 1 717 A 1 1 717 A 1 1 735 G </td <td>1</td> <td>1</td> <td>582</td> <td>G</td>	1	1	582	G
11591G11 602 A11 603 C11 613 A11 616 A11 616 A11 616 A11 616 A11 616 A11 624 U11 632 A11 636 A11 637 U11 641 G11 647 A11 650 G11 651 U11 661 C11 662 C11 675 C11 685 A11 702 A11 716 G11 716 G11 735 G11 743 A11 744 U	1	1	590	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	591	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	602	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	603	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	613	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	616	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	618	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	624	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	632	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	636	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	637	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	641	G
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	645	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	647	А
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	650	G
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1	651	U
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1	661	С
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	662	С
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1	671	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	675	С
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	1	1	685	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	687	U
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	702	A
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	706	U
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	714	A
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	716	G
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	717	А
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	732	А
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	1	735	G
1 1 744 U	1	1	743	A
	1	1	744	U

Mol	Chain	Res	Type
1	1	745	G
1	1	746	С
1	1	747	А
1	1	748	G
1	1	749	G
1	1	760	С
1	1	776	U
1	1	777	С
1	1	778	G
1	1	779	А
1	1	817	G
1	1	847	G
1	1	851	U
1	1	852	A
1	1	854	G
1	1	935	U
1	1	936	А
1	1	938	А
1	1	939	G
1	1	957	А
1	1	965	А
1	1	968	А
1	1	969	G
1	1	976	С
1	1	986	U
1	1	987	U
1	1	990	С
1	1	997	А
1	1	998	U
1	1	1006	A
1	1	1009	С
1	1	1011	G
1	1	1012	A
1	1	1013	U
1	1	1014	С
1	1	1015	А
1	1	1017	U
1	1	1023	G
1	1	1135	G
1	1	1138	U
1	1	1139	U
1	1	1141	С

Mol	Chain	Res	Type
1	1	1142	U
1	1	1143	А
1	1	1147	G
1	1	1148	G
1	1	1157	G
1	1	1158	G
1	1	1159	U
1	1	1160	А
1	1	1161	А
1	1	1163	С
1	1	1167	А
1	1	1168	С
1	1	1171	G
1	1	1173	G
1	1	1184	А
1	1	1185	А
1	1	1186	С
1	1	1191	С
1	1	1205	G
1	1	1211	А
1	1	1212	U
1	1	1223	С
1	1	1234	А
1	1	1235	А
1	1	1239	U
1	1	1241	U
1	1	1244	G
1	1	1245	U
1	1	1249	U
1	1	1251	U
1	1	1253	G
1	1	1255	С
1	1	1260	G
1	1	1266	U
1	1	1269	С
1	1	1272	U
1	1	1273	G
1	1	1274	G
1	1	1275	A
1	1	1276	A
1	1	1277	G
1	1	1279	С

Mol	Chain	Res	Type
1	1	1282	А
1	1	1286	С
1	1	1289	U
1	1	1290	А
1	1	1291	А
1	1	1293	G
1	1	1295	G
1	1	1296	U
1	1	1297	G
1	1	1303	С
1	1	1308	С
1	1	1309	А
1	1	1312	U
1	1	1316	G
1	1	1317	А
1	1	1318	А
1	1	1332	А
1	1	1333	А
1	1	1334	А
1	1	1336	U
1	1	1337	G
1	1	1340	U
1	1	1347	U
1	1	1348	А
1	1	1361	А
1	1	1363	А
1	1	1379	U
1	1	1380	A
1	1	1381	G
1	1	1388	G
1	1	1389	А
1	1	1390	A
1	1	1420	U
1	1	1433	U
1	1	1451	G
1	1	1452	А
1	1	1453	А
1	1	1459	U
1	1	1465	G
1	1	1468	G
1	1	1471	С
1	1	1484	G

Mol	Chain	Res	Type
1	1	1502	А
1	1	1515	А
1	1	1517	G
1	1	1518	U
1	1	1519	G
1	1	1521	G
1	1	1528	U
1	1	1529	U
1	1	1537	А
1	1	1538	А
1	1	1539	С
1	1	1541	G
1	1	1542	С
1	1	1546	U
1	1	1548	G
1	1	1568	А
1	1	1570	G
1	1	1588	А
1	1	1589	U
1	1	1590	G
1	1	1591	А
1	1	1596	U
1	1	1597	G
1	1	1604	U
1	1	1607	U
1	1	1608	С
1	1	1614	U
1	1	1622	А
1	1	1623	А
1	1	1624	А
1	1	1628	А
1	1	1640	A
1	1	1643	С
1	1	$165\overline{4}$	A
1	1	1655	G
1	1	1674	C
1	1	1677	A
1	1	1678	А
1	1	1686	U
1	1	1691	А
1	1	1718	C
1	1	1731	А

Mol	Chain	Res	Type
1	1	1736	А
1	1	1737	С
1	1	1747	А
1	1	1753	А
1	1	1754	А
1	1	1764	U
1	1	1782	U
1	1	1790	А
1	1	1791	G
1	1	1797	А
1	1	1798	G
1	1	1811	А
1	1	1814	С
1	1	1816	G
1	1	1818	U
1	1	1819	G
1	1	1820	С
1	1	1821	G
1	1	1829	С
1	1	1831	G
1	1	1833	С
1	1	1834	С
1	1	1835	U
1	1	1836	U
1	1	1838	А
1	1	1849	G
1	1	1852	G
1	1	1873	U
1	1	1874	U
1	1	1876	U
1	1	1877	С
1	1	1917	U
1	1	1935	U
1	1	1940	С
1	1	1941	А
1	1	1948	A
1	1	1961	G
1	1	2423	G
1	1	2424	U
1	1	2451	A
1	1	2452	G
1	1	2455	U

Mol	Chain	Res	Type
1	1	2456	G
1	1	2458	G
1	1	2459	G
1	1	2461	А
1	1	2462	С
1	1	2463	G
1	1	2464	G
1	1	2465	G
1	1	2466	С
1	1	2471	С
1	1	2473	А
1	1	2476	U
1	1	2481	G
1	1	2498	U
1	1	2499	U
1	1	2505	U
1	1	2506	G
1	1	2507	А
1	1	2700	G
1	1	2701	G
1	1	2702	G
1	1	2706	U
1	1	2898	А
1	1	2902	U
1	1	2905	С
1	1	2906	А
1	1	2907	С
1	1	2908	А
1	1	2921	U
1	1	2925	G
1	1	$2\overline{929}$	G
1	1	2931	С
1	1	2932	A
1	1	2946	A
1	1	2952	С
1	1	2953	U
1	1	2971	С
1	1	2972	G
1	1	2973	G
1	1	2978	U
1	1	2982	A
1	1	2984	C

Mol	Chain	Res	Type
1	1	2993	G
1	1	2994	С
1	1	2995	А
1	1	3009	G
1	1	3011	U
1	1	3014	А
1	1	3023	С
1	1	3024	С
1	1	3025	А
1	1	3030	U
1	1	3031	А
1	1	3036	А
1	1	3037	С
1	1	3038	G
1	1	3040	G
1	1	3041	А
1	1	3042	G
1	1	3044	U
1	1	3046	G
1	1	3057	U
1	1	3059	G
1	1	3060	U
1	1	3061	G
1	1	3062	А
1	1	3063	G
1	1	3064	А
1	1	3065	С
1	1	3071	А
1	1	3072	G
1	1	3073	U
1	1	3085	G
1	1	3087	U
1	1	3093	G
1	1	3107	A
1	1	3108	A
1	1	3113	A
1	1	3117	A
1	1	3118	G
1	1	3119	U
1	1	$3\overline{125}$	A
1	1	3126	G
1	1	3128	А

Mol	Chain	Res	Type
1	1	3151	А
1	1	3153	U
1	1	3155	G
1	1	3167	С
1	1	3168	А
1	1	3170	G
1	1	3172	С
1	1	3173	А
1	1	3174	А
1	1	3176	G
1	1	3182	G
1	1	3188	U
1	1	3189	С
1	1	3192	С
1	1	3195	С
1	1	3196	С
1	1	3198	G
1	1	3200	U
1	1	3205	G
1	1	3218	А
1	1	3225	А
1	1	3226	А
1	1	3227	U
1	1	3237	А
1	1	3238	А
1	1	3239	А
1	1	3272	U
1	1	3273	А
1	1	3275	А
1	1	3276	А
1	1	3282	G
1	1	3288	G
1	1	3301	C
1	1	3307	U
1	1	3309	U
1	1	3315	A
1	1	3317	A
1	1	3318	А
1	1	3319	G
1	1	3327	A
1	1	3337	A
1	1	3338	А

Mol	Chain	Res	Type
1	1	3339	А
1	1	3343	А
1	1	3344	А
1	1	3345	G
1	1	3346	U
1	1	3349	U
1	1	3351	U
1	1	3354	U
1	1	3357	С
1	1	3359	U
1	1	3360	G
1	1	3362	С
1	1	3368	А
1	1	3369	А
1	1	3370	U
1	1	3371	U
1	1	3372	С
1	1	3373	С
1	1	3374	А
1	1	3375	U
1	1	3404	G
1	1	3405	С
1	1	3414	U
1	1	3417	А
1	1	3418	U
1	1	3419	G
1	1	3420	U
1	1	3421	G
1	1	3424	А
1	1	3425	С
1	1	3430	U
1	1	3435	U
1	1	3436	A
1	1	3469	U
1	1	3470	G
1	1	3476	А
1	1	3479	С
1	1	3483	U
1	1	3490	A
1	1	3491	A
1	1	3492	G
2	2	9	А

Mol	Chain	Res	Type
2	2	30	U
2	2	31	U
2	2	42	U
2	2	43	С
2	2	46	U
2	2	67	А
2	2	70	С
2	2	71	G
2	2	79	А
2	2	87	А
2	2	98	U
2	2	103	G
2	2	112	А
2	2	114	С
2	2	115	G
2	2	124	G
2	2	132	G
2	2	134	U
2	2	135	С
2	2	136	U
2	2	137	А
2	2	156	G
2	2	159	U
3	6	2	С
3	6	5	U
3	6	6	С
3	6	8	U
3	6	9	С
3	6	47	U
3	6	50	U
3	6	56	A
3	6	57	A
3	6	60	U
3	6	82	A
3	6	83	A
3	6	86	U
3	6	87	A
3	6	92	G
3	6	93	A
3	6	94	А
3	6	97	С
3	6	98	G

Mol	Chain	Res	Type
3	6	99	А
3	6	101	U
3	6	102	G
3	6	105	G
3	6	106	А
3	6	108	А
3	6	178	U
3	6	181	С
3	6	182	С
3	6	184	С
3	6	186	U
3	6	187	U
3	6	188	G

All (22) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	1	359	А
1	1	360	А
1	1	644	А
1	1	661	С
1	1	759	С
1	1	816	А
1	1	996	G
1	1	1159	U
1	1	1183	G
1	1	1272	U
1	1	1380	А
1	1	1540	А
1	1	1851	А
1	1	1916	G
1	1	2951	G
1	1	2952	С
1	1	3024	С
1	1	3041	А
1	1	3070	U
1	1	3217	U
1	1	3337	A
2	2	131	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 1 ligands modelled in this entry, 1 is monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
1	1	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	1	3315:A	O3'	3316:G	Р	3.15

Z Index: 256

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-24422. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 256

Y Index: 256

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 271

Y Index: 273

Z Index: 314

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.05. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1113 nm^3 ; this corresponds to an approximate mass of 1006 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.312 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-24422 and PDB model 8ESR. Per-residue inclusion information can be found in section 3 on page 14.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.05 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.05).

9.4 Atom inclusion (i)

At the recommended contour level, 79% of all backbone atoms, 80% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.05) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.7998	0.4400
1	0.9349	0.4440
2	0.9790	0.5630
6	0.8865	0.4240
7	0.0000	0.2620
8	0.7333	0.4100
А	0.6941	0.3800
В	0.8776	0.4640
\mathbf{C}	0.9424	0.5670
D	0.4979	0.4460
Ε	0.7718	0.4590
F	0.8942	0.5070
G	0.8964	0.5620
Н	0.7999	0.4020
I	0.1924	0.3030
J	0.4617	0.3280
K	0.6686	0.4160
L	0.9744	0.5950
М	0.8690	0.4500
N	0.9902	0.6090
0	0.9050	0.4940
Р	0.8412	0.5050
Q	0.8852	0.5220
R	0.7291	0.3660
S	0.8118	0.4390
Т	0.4493	0.3560
U	0.3223	0.2920
V	0.6939	0.3970
W	0.3377	0.2720
X	0.8907	0.5290
Y	0.9252	0.5570
Z	0.7462	0.3650
a	0.8011	0.5060
b	0.5360	0.3310
с	0.4329	0.2760

Chain	Atom inclusion	Q-score
d	0.8044	0.4260
е	0.9347	0.5520
f	0.9620	0.5560
g	0.8870	0.4270
h	0.9151	0.5640
i	0.9158	0.5410
j	0.9852	0.5950
k	0.6582	0.3760
1	0.2779	0.2860
m	0.5501	0.3440
n	0.7587	0.4360
О	0.6793	0.4390
р	0.0877	0.2130
q	0.0468	0.2600
r	0.6304	0.3590
S	0.7268	0.3880
t	0.8068	0.4680
u	0.6997	0.3320
V	0.8524	0.5330
W	0.5592	0.3930
У	0.7912	0.3600
Z	0.3930	0.2780

