

wwPDB EM Validation Summary Report (i)

Nov 21, 2022 – 03:08 PM EST

PDB ID	:	8EUG
EMDB ID	:	EMD-24412
Title	:	Ytm1 associated nascent 60S ribosome State 3
Authors	:	Zhou, X.; Bilokapic, S.; Deshmukh, A.A.; Halic, M.
Deposited on	:	2022-10-18
Resolution	:	2.80 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

:	0.0.1. dev 43
:	4.02b-467
:	20191225.v01 (using entries in the PDB archive December 25th 2019)
:	1.9.9
:	Engh & Huber (2001)
:	Parkinson et al. (1996)
:	2.31.2
	: : : : :

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.80 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motrie	Whole archive	EM structures		
WIEUTIC	$(\# { m Entries})$	$(\# { m Entries})$		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		
RNA backbone	4643	859		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length		Quality of ch	nain		
1	1	3498	65%	6	17%	18	3%
2	2	165		76%		16%	8%
3	3	302	• 36%		61%		
4	8	51		96%			••
5	9	229	45%	6%	48%		
6	А	253		95%			
7	В	388		96%			
8	С	363		96%			••

Mol	Chain	Length	Quality of chain	
9	D	294	97%	••
10	Е	195	85%	• 12%
11	F	250	84%	• 14%
12	G	259	87%	• 11%
13	Н	190	92%	• 6%
14	Ι	221	• 76% •	23%
15	J	174	89%	• 10%
16	K	94	93%	
17	L	208	95%	•••
18	М	134	93%	• 7%
19	Ν	201	98%	•
20	О	197	98%	
21	Р	187	• 88%	• 9%
22	Q	187	96%	
23	R	193	• 75% •	23%
24	S	176	93%	• 5%
25	Т	160	• 98%	
26	U	117	80% •	16%
27	V	139	96%	
28	Х	141	83%	15%
29	Y	126	95%	
30	Z	136	● 96%	
31	a	148	99%	
32	b	61	89%	11%
33	с	117	 76% 5%	19%

Mol	Chain	Length	Quality of chain	
34	d	113	89%	• 10%
35	е	127	90%	• 8%
36	f	108	97%	••
37	g	112	92%	• 5%
38	h	122	98%	••
39	i	99	97%	·
40	j	91	91%	9%
41	k	74	89%	• 7%
42	m	740	5 3% • 46%	
43	n	607	57% • 42%	
44	0	106	89%	• 8%
45	р	440	<u> </u>	
46	u	192	28% • 69%	

2 Entry composition (i)

There are 47 unique types of molecules in this entry. The entry contains 123162 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called RNA (2863-MER).

Mol	Chain	Residues	Atoms					AltConf	Trace
1	1	2869	Total 61386	C 27430	N 11112	O 19975	Р 2869	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
1	1746	С	U	conflict	GB 157310483
1	2185	U	С	conflict	GB 157310483

• Molecule 2 is a RNA chain called RNA (152-MER).

Mol	Chain	Residues	Atoms					AltConf	Trace
2	2	151	Total 3211	C 1437	N 569	O 1054	Р 151	0	0

• Molecule 3 is a protein called Protein mak16.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	3	119	Total 1006	C 637	N 188	0 175	S 6	0	0

• Molecule 4 is a protein called 60S ribosomal protein L39.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	8	50	Total 437	C 273	N 98	O 65	S 1	0	0

• Molecule 5 is a RNA chain called RNA (118-MER).

Mol	Chain	Residues	Atoms					AltConf	Trace
5	9	118	Total 2519	C 1124	N 452	0 825	Р 118	0	0

• Molecule 6 is a protein called 60S ribosomal protein L2-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
6	А	244	Total 1847	C 1152	N 370	O 320	${f S}{5}$	0	0

• Molecule 7 is a protein called 60S ribosomal protein L3-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	В	377	Total 3003	C 1901	N 567	O 525	S 10	0	0

• Molecule 8 is a protein called 60S ribosomal protein L4-B.

Mol	Chain	Residues	Atoms					AltConf	Trace
8	С	359	Total 2795	C 1765	N 536	O 491	${ m S} { m 3}$	0	0

• Molecule 9 is a protein called 60S ribosomal protein L5-A.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
9	D	287	Total 2305	C 1457	N 409	0 435	${S \atop 4}$	0	0

• Molecule 10 is a protein called 60S ribosomal protein L6.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	Е	172	Total 1338	C 860	N 245	O 230	${ m S} { m 3}$	0	0

• Molecule 11 is a protein called 60S ribosomal protein L7-B.

Mol	Chain	Residues	Atoms					AltConf	Trace
11	F	214	Total 1745	C 1124	N 320	O 298	${ m S} { m 3}$	0	0

• Molecule 12 is a protein called 60S ribosomal protein L8.

Mol	Chain	Residues		Ate	AltConf	Trace			
12	G	230	Total 1817	C 1161	N 334	0 319	$\frac{S}{3}$	1	0

• Molecule 13 is a protein called 60S ribosomal protein L9-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	Н	178	Total 1415	C 892	N 260	O 257	S 6	0	0

• Molecule 14 is a protein called 60S ribosomal protein L10-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	Ι	170	Total 1372	C 869	N 256	0 242	${ m S}{ m 5}$	0	0

• Molecule 15 is a protein called 60S ribosomal protein L11-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	J	157	Total 1276	C 806	N 242	0 223	${ m S}{ m 5}$	0	0

• Molecule 16 is a protein called 60S ribosomal protein L43-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
16	K	90	Total	С	Ν	0	S	0	0
			695	428	144	117	6		Ŭ

• Molecule 17 is a protein called 60S ribosomal protein L13.

Mol	Chain	Residues		At	AltConf	Trace			
17	L	202	Total 1612	C 1008	N 321	O 282	S 1	0	0

• Molecule 18 is a protein called 60S ribosomal protein L14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
18	М	125	Total 1007	С 644	N 191	0 168	${S \atop 4}$	0	0

• Molecule 19 is a protein called 60S ribosomal protein L15-A.

Mol	Chain	Residues		Ate	AltConf	Trace			
19	Ν	200	Total 1676	C 1050	N 348	0 275	${ m S} { m 3}$	0	0

• Molecule 20 is a protein called 60S ribosomal protein L16-B.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	О	196	Total 1557	C 999	N 297	O 257	$\frac{S}{4}$	0	0

• Molecule 21 is a protein called 60S ribosomal protein L17-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	Р	171	Total 1357	C 857	N 262	O 235	${ m S} { m 3}$	0	0

• Molecule 22 is a protein called 60S ribosomal protein L18-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	Q	186	Total 1486	C 933	N 300	0 252	S 1	0	0

• Molecule 23 is a protein called 60S ribosomal protein L19-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
23	R	148	Total 1220	C 759	N 259	0 197	${ m S}{ m 5}$	0	0

• Molecule 24 is a protein called 60S ribosomal protein L20-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
24	S	167	Total 1388	C 896	N 259	O 228	${ m S}{ m 5}$	0	0

• Molecule 25 is a protein called 60S ribosomal protein L21-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
25	Т	158	Total 1282	C 807	N 247	0 225	${ m S} { m 3}$	0	0

• Molecule 26 is a protein called 60S ribosomal protein L22.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
26	U	98	Total 791	C 513	N 137	0 141	0	0

• Molecule 27 is a protein called 60S ribosomal protein L23-A.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	V	137	Total 1026	C 644	N 193	0 181	S 8	0	0

• Molecule 28 is a protein called 60S ribosomal protein L25-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
28	Х	120	Total 962	C 614	N 178	O 169	S 1	0	0

• Molecule 29 is a protein called 60S ribosomal protein L26.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	Y	125	Total 998	C 622	N 201	0 173	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 30 is a protein called 60S ribosomal protein L27-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	Ζ	134	Total 1072	C 693	N 199	0 178	${ m S} { m 2}$	0	0

• Molecule 31 is a protein called 60S ribosomal protein L28-A.

Mol	Chain	Residues		At	AltConf	Trace			
31	a	147	Total 1169	C 740	N 235	0 192	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 32 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues		Ator	ns	AltConf	Trace	
32	b	54	Total 463	C 281	N 106	O 76	0	0

• Molecule 33 is a protein called 60S ribosomal protein L30-2.

Mol	Chain	Residues		At	oms	AltConf	Trace		
33	с	95	Total 714	C 454	N 124	0 132	${S \atop 4}$	0	0

• Molecule 34 is a protein called 60S ribosomal protein L31.

Mol	Chain	Residues		At	oms	AltConf	Trace		
34	d	102	Total 849	C 534	N 165	0 147	${ m S} { m 3}$	0	0

• Molecule 35 is a protein called 60S ribosomal protein L32-A.

Mol	Chain	Residues		At	AltConf	Trace			
35	е	117	Total 939	C 588	N 190	0 156	${ m S}{ m 5}$	0	0

• Molecule 36 is a protein called 60S ribosomal protein L33-B.

Mol	Chain	Residues		At	oms	AltConf	Trace		
36	f	106	Total 839	С 534	N 162	0 140	${ m S} { m 3}$	0	0

• Molecule 37 is a protein called 60S ribosomal protein L34-A.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	g	106	Total 861	C 540	N 177	0 142	${ m S} { m 2}$	0	0

• Molecule 38 is a protein called 60S ribosomal protein L35.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
38	h	121	Total 999	C 629	N 194	O 176	0	0

• Molecule 39 is a protein called 60S ribosomal protein L36-B.

Mol	Chain	Residues		At	oms	AltConf	Trace		
39	i	96	Total 767	C 478	N 160	0 128	S 1	0	0

• Molecule 40 is a protein called 60S ribosomal protein L37-B.

Mol	Chain	Residues		At	oms	AltConf	Trace		
40	j	83	Total 657	C 402	N 141	O 107	${f S}{7}$	0	0

• Molecule 41 is a protein called 60S ribosomal protein L38-1.

Mol	Chain	Residues		At	oms	AltConf	Trace		
41	k	69	Total 560	$\begin{array}{c} \mathrm{C} \\ 355 \end{array}$	N 103	0 101	S 1	0	0

• Molecule 42 is a protein called Ribosome biogenesis protein erb1.

Mol	Chain	Residues	Atoms				AltConf	Trace	
42	m	398	Total 3127	C 2001	N 557	O 558	S 11	0	0

• Molecule 43 is a protein called Pescadillo homolog.

Mol	Chain	Residues	Atoms					AltConf	Trace
43	n	354	Total 2903	C 1892	N 496	O 503	S 12	0	0

• Molecule 44 is a protein called 60S ribosomal protein L42.

Mol	Chain	Residues		At	oms			AltConf	Trace
44	0	97	Total 789	C 498	N 158	O 128	${S \over 5}$	0	0

• Molecule 45 is a protein called Ribosome biogenesis protein ytm1.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
45	р	290	Total 1431	C 851	N 290	O 290	0	0

• Molecule 46 is a protein called Ribosome biogenesis protein rlp24.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
46	u	59	Total 493	C 315	N 100	0 72	S 6	0	0

• Molecule 47 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
47	j	1	Total Zn 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: RNA (2863-MER)

• Molecule 6: 60S ribosom	nal protein L2-A	
Chain A:	95%	
MET G2 K118 S159 S159 G17 ALA ALA ALA ALA ALA ALA ALA ALA ALA AL		
• Molecule 7: 60S ribosom	nal protein L3-A	
Chain B:	96%	• •
MET MET HIS CVS CVS K5 K5 K292 K298 K298 K298 K298 K298 K298 K298	THR LIYS LIYS VAL ALA	
• Molecule 8: 60S ribosom	nal protein L4-B	
Chain C:	96%	
MET ALA ALA ALA BIA BI4 M95 M95 T215 T215 T215 T215 T215 T223 X323	8328 8345 8345 8345 8345 8345	
• Molecule 9: 60S ribosom	nal protein L5-A	
Chain D:	97%	
MET PRE PHE FILE ILIE A6 A6 D137 C D137 C D137 C C D137 C C D137 C C C C C C C C C C C C C C C C C C C	C292 ARG ALA	
• Molecule 10: 60S ribosor	mal protein L6	
Chain E:	85%	• 12%
MET SIER THR VAL VAL VAL VAL ASN ALA ALA ALA ALA ALA ALU CLV CLV VAL	ALA ALA ALA ALA ALA ALA ALA R129 S51 K135 K135 K135 R129 S181 73 R173 R173 R173 R173 R173 R173 R173	
• Molecule 11: 60S ribosor	mal protein L7-B	
Chain F:	84%	• 14%
MET ALA ALA ALA ALA THR VAL THR VAL ALA ALA ALA ALA ALA ALA ALA ALA CUU SEU	LEU LYS LYS LYS LYS ALA CLN CLN CLN CLN CLN ARA ARA ARA ARA ARA ARA ARA ARA ARA AR	L250
• Molecule 12: 60S ribosor	mal protein L8	
Chain G:	87%	• 11%
MET MAC PRO LYS SER LYS VAL VAL PRO PRO PRO CUN ALA ALA ALA	ITAR THR K23 K23 K23 K117 M117 M118 M128 M128 M128 M128 M128 M128 M128 M128 M128 M128 M128 M128 M128 M128 M128 M128 M128 M128 M118 M128	1240 D227 E228 S229 M28 M28 ALA ALA ALA ALA ALA ALA ALA ALA LEU LEU
	WORLDWIDE PROTEIN DATA BANK	

• Molecule 13: 60S ribosomal protein L9-A

• Molecule 15: 60S ribosomal protein L11-A

• Molecule 16: 60S ribosomal protein L43-A

Chain K:	93%	• •
MET THR K3 883 883 883 620 CU CU VAL		
• Molecule 17: 60S rib	oosomal protein L13	
Chain L:	95%	• •
MET A2 13 13 13 13 13 16 14 7 15 180 1180 1180 1180 1180 1180 1180 11	SX1 LYS	
• Molecule 18: 60S rib	oosomal protein L14	
Chain M:	93%	• 7%

• Molecule 19: 60S ribosomal protein L15-A

ALA LYS ALA LEU LYS ALA

MET GLU GLY

Chain N:	98% •	
MET 62 62 R24 R24 R18 R181 S183		
• Molecule 20:	60S ribosomal protein L16-B	
Chain O:	98%	
MET 22 860 810 8175 7197		
• Molecule 21:	60S ribosomal protein L17-A	
Chain P:	88% • 9%	
MET V2 K13 R69 K89 K89	N97 N97 GUU ALA ALA ALA ALA ALA ALA ALA ALA ALA A	
• Molecule 22:	60S ribosomal protein L18-A	
Chain Q:	96% · ·	
MET G2 K73 874 A75 K99 K99 S110	R131 A184 V187	
• Molecule 23:	60S ribosomal protein L19-A	
Chain R:	75% • 23%	
MET A2 A2 439 G113 L115 L115 L119	1124 1124 1124 1124 1125 1125 1125 1125 1125 1125 1125 1125 1125 1125 1125 1125 1125 1125 1125 1125 1125 1125 1125 1126	LYS TLE GLU GLU
• Molecule 24:	60S ribosomal protein L20-A	
Chain S:	93% · 5%	
MET A2 L44 D81 K130 K130 V134 ARC	TIS6 TIS6 GLY GLY ALA ALA ALA TYR TYR	
• Molecule 25:	60S ribosomal protein L21-A	
Chain T:	98%	
MET PRO B3 899 160		

 \bullet Molecule 26: 60S ribosomal protein L22

Chain U:	80%	• 16%
MET VAL LYS LYS ASN TASN TASN LYS VAL S9 K23 K23 K23 K32 K32	K43 E56 K98 K98 K98 K98 K98 K10 K10 K11 VAL VAL VAL VAL VAL VAL VAL CUU GLU GLU GLU GLU GLU	
• Molecule 27: 60S ril	bosomal protein L23-A	
Chain V:	96%	
MET SER R3 R3 R3 R35 R35 R35 R35 R35 R35 R35 R		
• Molecule 28: 60S ril	bosomal protein L25-A	
Chain X:	83%	• 15%
MET MET VAL LYS LYS LYS LYS CLY CLYS CLY VAL LYS CLN CLN CLN	LLE ASIN ASIN ASIN ASIN AZI AZI K23 K23 K23 K23 K23 K23 K23 K23 K23 K23	
• Molecule 29: 60S ril	bosomal protein L26	
Chain Y:	95%	. .
M1 K2 D6 D6 V3 K112 K112 K124 V125 GLU		
• Molecule 30: 60S ril	bosomal protein L27-A	
Chain Z:	96%	••
MET VAL K3 S35 S35 S35 S35 S35 S35 S35 S35 S35 S3		
• Molecule 31: 60S ril	bosomal protein L28-A	
Chain a:	99%	••
MET P2 1120 A148 A148		
• Molecule 32: 60S ril	bosomal protein L29	
Chain b:	89%	11%
MET ALA LYS SER SER ALA ALA ALA		

• Molecule 33: 60S ribosomal protein L30-2

Chain c:	76%	5%	19%
MET SER ALA ALA PRO THR ALA ALA PRO VAL	ALA ALA VAL LYS CLY SER LYS CLY GLY GLY M75 CLY M75 CLY M75 CLY M75 CLY M75 CLY M75 CLY M75 A11 M75 A116 A116 A116		
• Molecule 34	4: 60S ribosomal protein L31		
Chain d:	89%		• 10%
MET ALA ASN ASN THR LYS SER ALA ASN ASN	11 151 188 <		
• Molecule 35	5: 60S ribosomal protein L32-A		
Chain e:	90%		• 8%
MET ALA ALA ALA D20 D78 D78 B78 R110	G120 VAL ARG SER GLU		
• Molecule 36	6: 60S ribosomal protein L33-B		
Chain f:	97%		
MET PRO A3 I108 I108			
• Molecule 37	7: 60S ribosomal protein L34-A		
Chain g:	92%		• 5%
MET ALA 83 84 N68 N68	SER SER		
• Molecule 38	8: 60S ribosomal protein L35		
Chain h:	98%		
MET 42 86 863 863 A122			
• Molecule 39	9: 60S ribosomal protein L36-B		
Chain i:	97%		
MET A2 L97 ALA HIS			

• Molecule 40: 60S ribosomal protein L37-B

 \bullet Molecule 46: Ribosome biogenesis protein rlp24

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	35000	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	60	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	2000	Depositor
Magnification	Not provided	
Image detector	GATAN K3 $(6k \times 4k)$	Depositor
Maximum map value	0.870	Depositor
Minimum map value	-0.492	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.015	Depositor
Recommended contour level	0.05	Depositor
Map size (Å)	542.72, 542.72, 542.72	wwPDB
Map dimensions	512, 512, 512	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.06, 1.06, 1.06	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond	l angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	1	0.22	0/68700	0.73	0/107035
2	2	0.22	0/3589	0.72	0/5586
3	3	0.31	0/1028	0.64	0/1384
4	8	0.25	0/448	0.58	0/597
5	9	0.17	0/2816	0.70	0/4388
6	А	0.26	0/1885	0.57	0/2542
7	В	0.26	0/3069	0.54	0/4130
8	С	0.26	0/2848	0.52	0/3842
9	D	0.25	0/2354	0.49	0/3166
10	Е	0.27	0/1366	0.54	0/1843
11	F	0.26	0/1781	0.49	0/2389
12	G	0.26	0/1846	0.50	0/2485
13	Н	0.24	0/1433	0.54	0/1931
14	Ι	0.26	0/1398	0.55	0/1873
15	J	0.25	0/1296	0.59	0/1732
16	Κ	0.25	0/704	0.58	0/941
17	L	0.26	0/1644	0.53	0/2215
18	М	0.24	0/1024	0.52	0/1375
19	Ν	0.26	0/1717	0.57	0/2304
20	0	0.26	0/1588	0.51	0/2128
21	Р	0.27	0/1381	0.54	0/1849
22	Q	0.25	0/1510	0.57	0/2017
23	R	0.24	0/1238	0.56	0/1647
24	S	0.25	0/1422	0.52	0/1909
25	Т	0.27	0/1309	0.52	0/1761
26	U	0.26	0/805	0.57	0/1080
27	V	0.27	0/1042	0.55	0/1402
28	Х	0.26	0/978	0.51	0/1314
29	Y	0.25	0/1008	0.61	0/1341
30	Ζ	0.27	0/1095	0.52	0/1467
31	a	0.26	0/1198	0.56	0/1608
32	b	0.29	0/471	0.55	0/623

Mal	Chain	Bond	lengths	Bond	l angles
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
33	с	0.26	0/723	0.50	0/973
34	d	0.24	0/864	0.55	0/1161
35	е	0.25	0/953	0.54	0/1271
36	f	0.26	0/859	0.52	0/1152
37	g	0.27	0/873	0.58	0/1170
38	h	0.25	0/1008	0.52	0/1340
39	i	0.25	0/774	0.56	0/1028
40	j	0.26	0/671	0.57	0/888
41	k	0.28	0/566	0.59	0/757
42	m	0.25	0/3209	0.51	0/4357
43	n	0.26	0/2971	0.48	0/3997
44	0	0.25	0/803	0.54	0/1064
45	р	0.24	0/1426	0.44	0/1977
46	u	0.28	0/509	0.54	0/678
All	All	0.23	0/132200	0.66	0/193717

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
3	3	117/302~(39%)	102 (87%)	13 (11%)	2(2%)	9	29
4	8	48/51~(94%)	47 (98%)	1 (2%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
6	А	242/253~(96%)	235~(97%)	7 (3%)	0	100	100
7	В	375/388~(97%)	365~(97%)	10 (3%)	0	100	100
8	С	357/363~(98%)	336 (94%)	20~(6%)	1 (0%)	41	72
9	D	285/294~(97%)	279~(98%)	6 (2%)	0	100	100
10	Е	170/195~(87%)	160 (94%)	9~(5%)	1 (1%)	25	56
11	F	212/250~(85%)	209 (99%)	3 (1%)	0	100	100
12	G	229/259~(88%)	219 (96%)	7(3%)	3 (1%)	12	36
13	Н	174/190~(92%)	168 (97%)	6(3%)	0	100	100
14	Ι	166/221~(75%)	162 (98%)	4 (2%)	0	100	100
15	J	153/174 (88%)	151 (99%)	2(1%)	0	100	100
16	K	88/94~(94%)	85~(97%)	3(3%)	0	100	100
17	L	200/208~(96%)	194 (97%)	4 (2%)	2(1%)	15	44
18	М	123/134~(92%)	118 (96%)	4 (3%)	1 (1%)	19	49
19	Ν	198/201~(98%)	184 (93%)	12 (6%)	2(1%)	15	44
20	О	194/197~(98%)	190 (98%)	4 (2%)	0	100	100
21	Р	167/187~(89%)	161 (96%)	5(3%)	1 (1%)	25	56
22	Q	184/187~(98%)	173 (94%)	8 (4%)	3 (2%)	9	31
23	R	144/193~(75%)	139 (96%)	4 (3%)	1 (1%)	22	53
24	S	161/176~(92%)	157 (98%)	4 (2%)	0	100	100
25	Т	156/160~(98%)	154 (99%)	2(1%)	0	100	100
26	U	96/117~(82%)	91 (95%)	5(5%)	0	100	100
27	V	135/139~(97%)	133 (98%)	2(2%)	0	100	100
28	Х	118/141 (84%)	116 (98%)	2(2%)	0	100	100
29	Y	123/126~(98%)	122 (99%)	1 (1%)	0	100	100
30	Z	132/136~(97%)	123 (93%)	8 (6%)	1 (1%)	19	49
31	a	145/148~(98%)	139 (96%)	6 (4%)	0	100	100
32	b	52/61~(85%)	50 (96%)	2(4%)	0	100	100
33	с	93/117~(80%)	91~(98%)	2(2%)	0	100	100
34	d	100/113~(88%)	95~(95%)	5 (5%)	0	100	100
35	е	115/127~(91%)	114 (99%)	1 (1%)	0	100	100
36	f	104/108~(96%)	97~(93%)	7 (7%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
37	g	104/112~(93%)	99~(95%)	5 (5%)	0	100	100
38	h	119/122~(98%)	118 (99%)	1 (1%)	0	100	100
39	i	94/99~(95%)	88 (94%)	6 (6%)	0	100	100
40	j	81/91~(89%)	78~(96%)	3 (4%)	0	100	100
41	k	67/74~(90%)	67 (100%)	0	0	100	100
42	m	384/740~(52%)	361 (94%)	21 (6%)	2~(0%)	29	61
43	n	344/607~(57%)	329~(96%)	15 (4%)	0	100	100
44	О	95/106 (90%)	92 (97%)	3 (3%)	0	100	100
45	р	280/440~(64%)	271 (97%)	9(3%)	0	100	100
46	u	57/192~(30%)	55 (96%)	2 (4%)	0	100	100
All	All	6981/8593~(81%)	6717 (96%)	244 (4%)	20 (0%)	44	72

5 of 20 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
12	G	28	VAL
12	G	227[A]	ASP
12	G	227[B]	ASP
42	m	369	ARG
17	L	47	ALA

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
3	3	108/271~(40%)	101 (94%)	7~(6%)	17	44
4	8	46/47~(98%)	45 (98%)	1 (2%)	52	83
6	А	187/192~(97%)	184 (98%)	3 (2%)	62	88
7	В	316/326~(97%)	310~(98%)	6(2%)	57	85
8	С	296/297~(100%)	286~(97%)	10 (3%)	37	71
9	D	235/241~(98%)	232~(99%)	3~(1%)	69	91

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
10	Е	139/155~(90%)	134~(96%)	5~(4%)	35	69
11	F	180/210~(86%)	176~(98%)	4(2%)	52	83
12	G	192/212~(91%)	189~(98%)	3~(2%)	62	88
13	Н	160/170~(94%)	156~(98%)	4 (2%)	47	80
14	Ι	146/187~(78%)	144 (99%)	2(1%)	67	90
15	J	134/146~(92%)	131 (98%)	3(2%)	52	83
16	К	71/75~(95%)	68~(96%)	3 (4%)	30	63
17	L	162/167~(97%)	159 (98%)	3 (2%)	57	85
18	М	108/113~(96%)	108 (100%)	0	100	100
19	Ν	175/176~(99%)	173 (99%)	2 (1%)	73	92
20	О	161/162~(99%)	159 (99%)	2 (1%)	71	92
21	Р	138/149~(93%)	132 (96%)	6 (4%)	29	62
22	Q	158/159~(99%)	155 (98%)	3 (2%)	57	85
23	R	126/162~(78%)	123~(98%)	3(2%)	49	81
24	S	148/154~(96%)	145 (98%)	3 (2%)	55	84
25	Т	137/139~(99%)	135~(98%)	2(2%)	65	89
26	U	85/103~(82%)	81 (95%)	4 (5%)	26	59
27	V	105/107~(98%)	102~(97%)	3~(3%)	42	76
28	Х	106/122~(87%)	103~(97%)	3~(3%)	43	77
29	Y	110/111 (99%)	105 (96%)	5 (4%)	27	60
30	Ζ	113/115~(98%)	111 (98%)	2(2%)	59	86
31	a	121/122~(99%)	120 (99%)	1 (1%)	81	94
32	b	47/51~(92%)	47 (100%)	0	100	100
33	с	77/91~(85%)	71 (92%)	6 (8%)	12	35
34	d	93/102~(91%)	92~(99%)	1 (1%)	73	92
35	е	100/107~(94%)	97~(97%)	3~(3%)	41	75
36	f	89/91~(98%)	88 (99%)	1 (1%)	73	92
37	g	92/97~(95%)	89 (97%)	3 (3%)	38	72
38	h	106/107~(99%)	104 (98%)	2 (2%)	57	85
39	i	82/84~(98%)	82 (100%)	0	100	100
40	j	68/71 (96%)	68 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
41	k	63/66~(96%)	60~(95%)	3~(5%)	25 58
42	m	344/659~(52%)	339~(98%)	5 (2%)	65 89
43	n	312/532~(59%)	307~(98%)	5(2%)	62 88
44	О	87/93~(94%)	84~(97%)	3~(3%)	37 71
46	u	52/168~(31%)	47 (90%)	5(10%)	8 24
All	All	5775/6909~(84%)	5642 (98%)	133 (2%)	53 82

5 of 133 residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
42	m	290	LYS
42	m	705	ARG
46	u	30	ARG
15	J	35	LYS
14	Ι	215	GLU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 12 such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
27	V	134	ASN
28	Х	67	ASN
43	n	349	ASN
30	Ζ	91	ASN
12	G	95	ASN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	1	2837/3498~(81%)	600~(21%)	19~(0%)
2	2	150/165~(90%)	24 (16%)	2(1%)
5	9	117/229~(51%)	14 (11%)	0
All	All	3104/3892~(79%)	638~(20%)	21 (0%)

5 of 638 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	1	26	А
1	1	28	G

Continued from previous page...

Mol	Chain	Res	Type
1	1	30	G
1	1	40	А
1	1	43	А

5 of 21 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	1	2657	А
1	1	3358	U
2	2	131	G
1	1	3441	G
1	1	3174	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 1 ligands modelled in this entry, 1 is monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-24412. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

Orthogonal projections (i) 6.1

6.1.1Primary map

The images above show the map projected in three orthogonal directions.

6.2Central slices (i)

6.2.1Primary map

X Index: 256

Y Index: 256

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 283

Y Index: 263

Z Index: 276

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.05. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 1408 $\rm nm^3;$ this corresponds to an approximate mass of 1272 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.357 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-24412 and PDB model 8EUG. Per-residue inclusion information can be found in section 3 on page 12.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.05 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.05).

9.4 Atom inclusion (i)

At the recommended contour level, 96% of all backbone atoms, 95% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.05) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.9491	0.5670
1	0.9863	0.5950
2	0.9907	0.6210
3	0.8356	0.4530
8	0.9904	0.6190
9	0.9921	0.5370
А	0.9821	0.6130
В	0.9726	0.5920
С	0.9743	0.6030
D	0.8878	0.4980
Ε	0.9280	0.5250
F	0.9624	0.5920
G	0.8954	0.5310
Н	0.7751	0.3480
Ι	0.8445	0.4870
J	0.7798	0.3820
К	0.9580	0.6010
L	0.9576	0.6030
М	0.9488	0.5140
Ν	0.9894	0.6350
О	0.9617	0.5810
Р	0.9500	0.5850
Q	0.9798	0.6020
R	0.9607	0.5850
S	0.9576	0.5600
Т	0.9534	0.5770
U	0.7951	0.4340
V	0.9659	0.5790
Х	0.9692	0.6000
Y	0.9709	0.5930
Ζ	0.9321	0.5370
a	0.9655	0.6130
b	0.9483	0.5460
с	0.8944	0.5330
d	0.9305	0.5790

 $Continued \ on \ next \ page...$

Chain	Atom inclusion	Q-score
е	0.9823	0.6130
f	0.9816	0.6060
g	0.9661	0.6040
h	0.9586	0.5880
i	0.9538	0.5710
j	0.9905	0.6440
k	0.8846	0.5210
m	0.7330	0.3910
n	0.7601	0.4050
0	0.9389	0.5650
р	0.4403	0.2640
u	0.9474	0.5350

