PDB ID : 4F5C
Title : Crystal structure of the spike receptor binding domain of a porcine respiratory coronavirus in complex with the pig aminopeptidase N ectodomain
Authors : Santiago, C.; Reguera, J.; Gaurav, M.; Ordono, D.; Enjuanes, L.; Casasnovas, J.M.
Deposited on : 2012-05-13
Resolution : 3.20 Å (reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
with specific help available everywhere you see the symbol.

The following versions of software and data (see references) were used in the production of this report:

MolProbity : 4.02b-467
Mogul : 1.7.3 (157068), CSD as539be (2018)
Xtriage (Phenix) : 1.13
EDS : trunk30967
Percentile statistics : 20171227.v01 (using entries in the PDB archive December 27th 2017)
Refmac : 5.8.0158
CCP4 : 7.0 (Gargrove)
Ideal geometry (proteins) : Engh & Huber (2001)
Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP) : trunk30967
1 Overall quality at a glance

The following experimental techniques were used to determine the structure: *X-RAY DIFFRACTION*

The reported resolution of this entry is 3.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>Similar resolution (#Entries, resolution range(Å))</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{free}</td>
<td>111664</td>
<td>1121 (3.22-3.18)</td>
</tr>
<tr>
<td>Clashscore</td>
<td>122126</td>
<td>1091 (3.20-3.20)</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>120053</td>
<td>1074 (3.20-3.20)</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>120020</td>
<td>1073 (3.20-3.20)</td>
</tr>
<tr>
<td>RSRZ outliers</td>
<td>108989</td>
<td>1083 (3.22-3.18)</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for $\geq 3, 2, 1$ and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq 5\%$. The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>959</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>959</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>440</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>440</td>
<td></td>
</tr>
</tbody>
</table>

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit crite-
Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
4 | NAG | B | 1004 | - | - | - | X

2 Entry composition

There are 5 unique types of molecules in this entry. The entry contains 17067 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called Aminopeptidase N.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>901</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>900</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

There are 68 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>19</td>
<td>TYR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>20</td>
<td>PRO</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>21</td>
<td>TYR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>22</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>23</td>
<td>VAL</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>24</td>
<td>PRO</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>25</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>26</td>
<td>TYR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>27</td>
<td>ALA</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>28</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>29</td>
<td>ALA</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>30</td>
<td>GLN</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>31</td>
<td>PRO</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>32</td>
<td>ALA</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>33</td>
<td>ARG</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>34</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>35</td>
<td>PRO</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>82</td>
<td>ASN</td>
<td>PHE</td>
<td>CONFLICT</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>107</td>
<td>PHE</td>
<td>LEU</td>
<td>CONFLICT</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>108</td>
<td>ILE</td>
<td>LEU</td>
<td>CONFLICT</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>964</td>
<td>LEU</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>965</td>
<td>VAL</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>966</td>
<td>PRO</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>967</td>
<td>ARG</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>968</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>969</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>970</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>971</td>
<td>TYR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>972</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>973</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>974</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>975</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>976</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>A</td>
<td>977</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>19</td>
<td>TYR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>20</td>
<td>PRO</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>21</td>
<td>TYR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>22</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>23</td>
<td>VAL</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>24</td>
<td>PRO</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>25</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>26</td>
<td>TYR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>27</td>
<td>ALA</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>28</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>29</td>
<td>ALA</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>30</td>
<td>GLN</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>31</td>
<td>PRO</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>32</td>
<td>ALA</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>33</td>
<td>ARG</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>34</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>35</td>
<td>PRO</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>82</td>
<td>ASN</td>
<td>PHE</td>
<td>CONFLICT</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>107</td>
<td>PHE</td>
<td>LEU</td>
<td>CONFLICT</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>108</td>
<td>ILE</td>
<td>LEU</td>
<td>CONFLICT</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>964</td>
<td>LEU</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>965</td>
<td>VAL</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>966</td>
<td>PRO</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>967</td>
<td>ARG</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>968</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>969</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>970</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>971</td>
<td>TYR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>972</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>973</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>974</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>975</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
<tr>
<td>B</td>
<td>976</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>977</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP P15145</td>
</tr>
</tbody>
</table>

- Molecule 2 is a protein called PRCV spike protein.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>E</td>
<td>146</td>
<td>Total C N O S</td>
<td>1138 722 192 216 8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>139</td>
<td>Total C N O S</td>
<td>1079 688 179 204 8</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

There are 30 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>409</td>
<td>ASP</td>
<td>GLU</td>
<td>CONFLICT</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>E</td>
<td>427</td>
<td>LEU</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>E</td>
<td>428</td>
<td>VAL</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>E</td>
<td>429</td>
<td>PRO</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>E</td>
<td>430</td>
<td>ARG</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>E</td>
<td>431</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>E</td>
<td>432</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>E</td>
<td>433</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>E</td>
<td>434</td>
<td>TYR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>E</td>
<td>435</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>E</td>
<td>436</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>E</td>
<td>437</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>E</td>
<td>438</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>E</td>
<td>439</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>E</td>
<td>440</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>F</td>
<td>409</td>
<td>ASP</td>
<td>GLU</td>
<td>CONFLICT</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>F</td>
<td>427</td>
<td>LEU</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>F</td>
<td>428</td>
<td>VAL</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>F</td>
<td>429</td>
<td>PRO</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>F</td>
<td>430</td>
<td>ARG</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>F</td>
<td>431</td>
<td>GLY</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>F</td>
<td>432</td>
<td>SER</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>F</td>
<td>433</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>F</td>
<td>434</td>
<td>TYR</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>F</td>
<td>435</td>
<td>LYS</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>F</td>
<td>436</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>F</td>
<td>437</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>F</td>
<td>438</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q84852</td>
</tr>
<tr>
<td>F</td>
<td>439</td>
<td>ASP</td>
<td>-</td>
<td>EXPRESSION TAG</td>
<td>UNP Q84852</td>
</tr>
</tbody>
</table>

Continued on next page...
Molecule 3 is ZINC ION (three-letter code: ZN) (formula: Zn).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>B</td>
<td>1</td>
<td>Total 1 Zn 1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1</td>
<td>Total 1 Zn 1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Molecule 4 is N-ACETYL-D-GLUCOSAMINE (three-letter code: NAG) (formula: C₈H₁₅NO₆).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>A</td>
<td>1</td>
<td>Total 14 C 8 N 1 O 5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1</td>
<td>Total 14 C 8 N 1 O 5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1</td>
<td>Total 14 C 8 N 1 O 5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1</td>
<td>Total 14 C 8 N 1 O 5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1</td>
<td>Total 14 C 8 N 1 O 5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1</td>
<td>Total 14 C 8 N 1 O 5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1</td>
<td>Total 14 C 8 N 1 O 5</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>A</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>1</td>
<td>Total C N O</td>
<td>14 8 1 5</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 5 is water.
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>A</td>
<td>2</td>
<td>Total 2 O 2</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>B</td>
<td>2</td>
<td>Total 2 O 2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarizes the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: Aminopeptidase N

Chain A:
• Molecule 1: Aminopeptidase N

Chain B:

• Molecule 2: PRCV spike protein

Chain E:
• Molecule 2: PRCV spike protein

Chain F:
4 Data and refinement statistics

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>C 1 2 1</td>
<td>Depositor</td>
</tr>
<tr>
<td>Cell constants</td>
<td>220.86Å 87.94Å 176.91Å</td>
<td>Depositor</td>
</tr>
<tr>
<td>a, b, c, α, β, γ</td>
<td>90.00° 90.54° 90.00°</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>24.91 – 3.20</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>47.74 – 3.20</td>
<td>EDS</td>
</tr>
<tr>
<td>% Data completeness</td>
<td>95.7 (24.91-3.20)</td>
<td>Depositor</td>
</tr>
<tr>
<td>(in resolution range)</td>
<td>95.7 (47.74-3.20)</td>
<td>Depositor</td>
</tr>
<tr>
<td>R<sub>merge</sub></td>
<td>0.06</td>
<td>Depositor</td>
</tr>
<tr>
<td>R<sub>sym</sub></td>
<td>(Not available)</td>
<td>Depositor</td>
</tr>
<tr>
<td><I/σ(I)> <sup>1</sup></td>
<td>2.75 (at 3.19Å)</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Refinement program</td>
<td>PHENIX (phenix.refine: 1.7.1_743)</td>
<td>Depositor</td>
</tr>
<tr>
<td>R<sub>f</sub>, R<sub>free</sub></td>
<td>0.201 , 0.245</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>0.202 , 0.243</td>
<td>DCC</td>
</tr>
<tr>
<td>R<sub>free</sub> test set</td>
<td>2743 reflections (5.08%)</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Wilson B-factor (Å²)</td>
<td>85.3</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Anisotropy</td>
<td>0.299</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Bulk solvent k<sub>sol</sub> (e/Å<sup>3</sup>), B<sub>sol</sub> (Å<sup>2</sup>)</td>
<td>0.30 , 68.6</td>
<td>EDS</td>
</tr>
<tr>
<td>L-test for twinning<sup>2</sup></td>
<td><L> = 0.48, <L<sup>2</sup> > = 0.31</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Estimated twinning fraction</td>
<td>0.022 for -h,-k,l</td>
<td>Xtriage</td>
</tr>
<tr>
<td>F<sub>o</sub>-F<sub>c</sub> correlation</td>
<td>0.93</td>
<td>EDS</td>
</tr>
<tr>
<td>Total number of atoms</td>
<td>17067</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Average B, all atoms (Å<sup>2</sup>)</td>
<td>95.0</td>
<td>wwPDB-VP</td>
</tr>
</tbody>
</table>

Xtriage’s analysis on translational NCS is as follows: *The largest off-origin peak in the Patterson function is 3.84% of the height of the origin peak. No significant pseudotranslation is detected.*

¹Intensities estimated from amplitudes.

²Theoretical values of <L>, <L²> for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.
5 Model quality

5.1 Standard geometry

Bond lengths and bond angles in the following residue types are not validated in this section: ZN, NAG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol | Chain | Bond lengths RMSZ | #|Z| >5 | Bond angles RMSZ | #|Z| >5 |
|-----|-------|-------------------|------|------|------------------|------|
| 1 | A | 0.25 | 0/7431 | 0.56 | 13/10126 (0.1%) |
| 1 | B | 0.25 | 0/7420 | 0.59 | 13/10111 (0.1%) |
| 2 | E | 0.26 | 0/1160 | 0.52 | 1/1576 (0.1%) |
| 2 | F | 0.23 | 0/1100 | 0.42 | 0/1494 |
| All | All | 0.25 | 0/17111 | 0.56 | 27/23307 (0.1%) |

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>#Chirality outliers</th>
<th>#Planarity outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0</td>
<td>3</td>
</tr>
</tbody>
</table>

There are no bond length outliers.

All (27) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>527</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>15.69</td>
<td>128.15</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>527</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-12.90</td>
<td>113.85</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>538</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>-12.67</td>
<td>113.97</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>538</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-12.31</td>
<td>114.14</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>720</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>-12.11</td>
<td>114.25</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>376</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-11.88</td>
<td>114.36</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>720</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>11.82</td>
<td>126.21</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>538</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>11.71</td>
<td>126.16</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>538</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>11.70</td>
<td>126.15</td>
<td>120.30</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>376</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>11.58</td>
<td>126.09</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>376</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>-11.56</td>
<td>114.52</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>720</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-11.28</td>
<td>114.66</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>376</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>10.95</td>
<td>125.78</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>720</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>10.57</td>
<td>125.59</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>527</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>-8.89</td>
<td>115.85</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>527</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.45</td>
<td>132.63</td>
<td>123.60</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>704</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>6.41</td>
<td>130.04</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>538</td>
<td>ARG</td>
<td>CD-NE-CZ</td>
<td>6.24</td>
<td>132.34</td>
<td>123.60</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>538</td>
<td>ARG</td>
<td>CD-NE-CZ</td>
<td>5.97</td>
<td>131.96</td>
<td>123.60</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>720</td>
<td>ARG</td>
<td>CD-NE-CZ</td>
<td>5.83</td>
<td>131.76</td>
<td>123.60</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>376</td>
<td>ARG</td>
<td>CD-NE-CZ</td>
<td>5.82</td>
<td>131.75</td>
<td>123.60</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>376</td>
<td>ARG</td>
<td>CD-NE-CZ</td>
<td>5.68</td>
<td>131.56</td>
<td>123.60</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>720</td>
<td>ARG</td>
<td>CD-NE-CZ</td>
<td>5.62</td>
<td>131.47</td>
<td>123.60</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>357</td>
<td>ASP</td>
<td>N-CA-C</td>
<td>5.60</td>
<td>126.13</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>564</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>5.57</td>
<td>128.10</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>527</td>
<td>ARG</td>
<td>CG-CD-NE</td>
<td>5.17</td>
<td>122.66</td>
<td>111.80</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

All (3) planarity outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>208</td>
<td>GLN</td>
<td>Peptide</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>208</td>
<td>GLN</td>
<td>Peptide</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>357</td>
<td>ASP</td>
<td>Peptide</td>
</tr>
</tbody>
</table>

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>7245</td>
<td>0</td>
<td>7006</td>
<td>328</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>7235</td>
<td>0</td>
<td>6998</td>
<td>319</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1138</td>
<td>0</td>
<td>1126</td>
<td>80</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>1079</td>
<td>0</td>
<td>1065</td>
<td>70</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 23.

All (788) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:272:THR:O</td>
<td>1:B:274:LEU:N</td>
<td>1.87</td>
<td>1.07</td>
</tr>
<tr>
<td>2:E:357:ASP:HB2</td>
<td>2:E:406:ARG:HH12</td>
<td>1.16</td>
<td>1.05</td>
</tr>
<tr>
<td>1:B:928:GLY:O</td>
<td>1:B:930:GLY:N</td>
<td>1.94</td>
<td>1.01</td>
</tr>
<tr>
<td>2:E:381:LEU:HB3</td>
<td>2:E:383:PHE:HE1</td>
<td>1.26</td>
<td>1.00</td>
</tr>
<tr>
<td>1:A:928:GLY:O</td>
<td>1:A:930:GLY:N</td>
<td>1.94</td>
<td>0.99</td>
</tr>
<tr>
<td>1:B:557:ILE:HG21</td>
<td>1:B:598:LEU:HD21</td>
<td>1.43</td>
<td>0.99</td>
</tr>
<tr>
<td>2:E:322:ASN:CG</td>
<td>2:E:323:ASN:H</td>
<td>1.70</td>
<td>0.95</td>
</tr>
<tr>
<td>1:A:99:PHE:HB3</td>
<td>1:A:181:LEU:HD12</td>
<td>1.51</td>
<td>0.91</td>
</tr>
<tr>
<td>2:F:357:ASP:O</td>
<td>2:F:406:ARG:NH2</td>
<td>2.02</td>
<td>0.91</td>
</tr>
<tr>
<td>1:B:99:PHE:HB3</td>
<td>1:B:181:LEU:HD12</td>
<td>1.52</td>
<td>0.90</td>
</tr>
<tr>
<td>1:A:383:HIS:HB2</td>
<td>1:A:413:GLU:HG2</td>
<td>1.53</td>
<td>0.89</td>
</tr>
<tr>
<td>1:B:383:HIS:HB2</td>
<td>1:B:413:GLU:HG2</td>
<td>1.55</td>
<td>0.87</td>
</tr>
<tr>
<td>2:E:324:THR:HG22</td>
<td>2:E:325:ASP:N</td>
<td>1.87</td>
<td>0.87</td>
</tr>
<tr>
<td>2:E:357:ASP:HB2</td>
<td>2:E:406:ARG:NH1</td>
<td>1.89</td>
<td>0.87</td>
</tr>
<tr>
<td>2:E:324:THR:CG2</td>
<td>2:E:325:ASP:H</td>
<td>1.86</td>
<td>0.87</td>
</tr>
<tr>
<td>2:E:381:LEU:HB3</td>
<td>2:E:383:PHE:CE1</td>
<td>2.09</td>
<td>0.86</td>
</tr>
<tr>
<td>2:E:382:THR:C</td>
<td>2:E:383:PHE:HD1</td>
<td>1.78</td>
<td>0.86</td>
</tr>
<tr>
<td>1:B:888:TYR:HB3</td>
<td>1:B:893:PHE:CD2</td>
<td>2.11</td>
<td>0.85</td>
</tr>
<tr>
<td>1:B:734:THR:HG23</td>
<td>1:B:737:TRP:H</td>
<td>1.41</td>
<td>0.85</td>
</tr>
<tr>
<td>1:A:888:TYR:HB3</td>
<td>1:A:893:PHE:CD2</td>
<td>2.12</td>
<td>0.84</td>
</tr>
<tr>
<td>1:A:930:GLY:O</td>
<td>1:A:932:ARG:N</td>
<td>2.11</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Continued from previous page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:E:320:GLN:O</td>
<td>2:E:322:ASN:N</td>
<td>2.11</td>
<td>0.83</td>
</tr>
<tr>
<td>1:B:930:GLY:O</td>
<td>1:B:932:ARG:N</td>
<td>2.11</td>
<td>0.83</td>
</tr>
<tr>
<td>1:A:86:ARG:NH1</td>
<td>1:A:88:TYR:OH</td>
<td>2.11</td>
<td>0.83</td>
</tr>
<tr>
<td>2:E:357:ASP:CB</td>
<td>2:E:406:ARG:HH12</td>
<td>1.91</td>
<td>0.82</td>
</tr>
<tr>
<td>2:E:391:SER:HB3</td>
<td>2:E:393:VAL:HG13</td>
<td>1.59</td>
<td>0.82</td>
</tr>
<tr>
<td>2:F:341:THR:OG1</td>
<td>2:F:342:CY5:N</td>
<td>2.09</td>
<td>0.82</td>
</tr>
<tr>
<td>1:A:92:ASN:CG</td>
<td>1:A:93:ALA:H</td>
<td>1.83</td>
<td>0.82</td>
</tr>
<tr>
<td>1:A:705:MET:HE1</td>
<td>1:A:944:ASN:HB3</td>
<td>1.61</td>
<td>0.81</td>
</tr>
<tr>
<td>1:B:448:HIS:CB</td>
<td>1:B:572:ARG:HH12</td>
<td>1.94</td>
<td>0.81</td>
</tr>
<tr>
<td>1:B:707:ASP:OD2</td>
<td>1:B:905:ARG:NH1</td>
<td>2.14</td>
<td>0.81</td>
</tr>
<tr>
<td>1:B:505:GLN:OE1</td>
<td>4:B:1011:NAG:O6</td>
<td>1.99</td>
<td>0.81</td>
</tr>
<tr>
<td>1:B:932:ARG:O</td>
<td>1:B:936:GLN:HB3</td>
<td>1.81</td>
<td>0.81</td>
</tr>
<tr>
<td>1:B:426:LEU:O</td>
<td>1:B:428:ASP:N</td>
<td>2.15</td>
<td>0.80</td>
</tr>
<tr>
<td>1:B:450:LEU:H</td>
<td>1:B:450:LEU:HD12</td>
<td>1.46</td>
<td>0.80</td>
</tr>
<tr>
<td>1:A:450:LEU:H</td>
<td>1:A:450:LEU:HD12</td>
<td>1.47</td>
<td>0.80</td>
</tr>
<tr>
<td>1:B:225:LYS:HB3</td>
<td>1:B:269:VAL:HG12</td>
<td>1.64</td>
<td>0.80</td>
</tr>
<tr>
<td>1:A:932:ARG:O</td>
<td>1:A:936:GLN:HB3</td>
<td>1.82</td>
<td>0.79</td>
</tr>
<tr>
<td>1:A:734:THR:HG23</td>
<td>1:A:737:TRP:H</td>
<td>1.45</td>
<td>0.79</td>
</tr>
<tr>
<td>1:A:928:GLY:C</td>
<td>1:A:930:GLY:H</td>
<td>1.86</td>
<td>0.79</td>
</tr>
<tr>
<td>1:A:707:ASP:OD2</td>
<td>1:A:905:ARG:NH1</td>
<td>2.15</td>
<td>0.78</td>
</tr>
<tr>
<td>2:E:384:ASN:OD1</td>
<td>2:E:424:SER:OG</td>
<td>2.01</td>
<td>0.78</td>
</tr>
<tr>
<td>1:B:86:ARG:NH1</td>
<td>1:B:88:TYR:OH</td>
<td>2.16</td>
<td>0.78</td>
</tr>
<tr>
<td>1:B:705:MET:HE1</td>
<td>1:B:944:ASN:HB3</td>
<td>1.63</td>
<td>0.78</td>
</tr>
<tr>
<td>1:A:225:LYS:HB3</td>
<td>1:A:269:VAL:HG12</td>
<td>1.65</td>
<td>0.77</td>
</tr>
<tr>
<td>2:E:322:ASN:CG</td>
<td>2:E:323:ASN:N</td>
<td>2.36</td>
<td>0.77</td>
</tr>
<tr>
<td>1:B:448:HIS:HB2</td>
<td>1:B:572:ARG:HH12</td>
<td>1.50</td>
<td>0.76</td>
</tr>
<tr>
<td>1:A:448:HIS:CB</td>
<td>1:A:572:ARG:HH12</td>
<td>1.98</td>
<td>0.76</td>
</tr>
<tr>
<td>1:B:928:GLY:C</td>
<td>1:B:930:GLY:H</td>
<td>1.87</td>
<td>0.76</td>
</tr>
<tr>
<td>2:E:293:ILE:HD11</td>
<td>2:E:365:ILE:HD11</td>
<td>1.66</td>
<td>0.75</td>
</tr>
<tr>
<td>1:B:619:LEU:HB2</td>
<td>1:B:629:VAL:HG21</td>
<td>1.68</td>
<td>0.75</td>
</tr>
<tr>
<td>1:A:320:LEU:HD13</td>
<td>1:A:385:LEU:HD13</td>
<td>1.69</td>
<td>0.75</td>
</tr>
<tr>
<td>2:F:283:PRO:HA</td>
<td>2:F:286:LEU:O</td>
<td>1.86</td>
<td>0.75</td>
</tr>
<tr>
<td>1:A:448:HIS:HB2</td>
<td>1:A:572:ARG:HH12</td>
<td>1.52</td>
<td>0.74</td>
</tr>
<tr>
<td>1:A:619:LEU:HB2</td>
<td>1:A:629:VAL:HG21</td>
<td>1.69</td>
<td>0.74</td>
</tr>
<tr>
<td>2:E:384:ASN:HB2</td>
<td>2:E:422:GLY:HA3</td>
<td>1.70</td>
<td>0.73</td>
</tr>
<tr>
<td>1:A:181:LEU:CD2</td>
<td>1:A:190:ARG:HB3</td>
<td>2.18</td>
<td>0.73</td>
</tr>
<tr>
<td>1:A:594:ASP:O</td>
<td>1:A:595:HIS:HB2</td>
<td>1.88</td>
<td>0.73</td>
</tr>
<tr>
<td>1:B:107:PHE:CE1</td>
<td>1:B:171:TYR:HB2</td>
<td>2.24</td>
<td>0.73</td>
</tr>
<tr>
<td>1:B:888:TYR:HB3</td>
<td>1:B:893:PHE:CE2</td>
<td>2.23</td>
<td>0.73</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:959:PHE:O</td>
<td>1:B:963:SER:OG</td>
<td>2.06</td>
<td>0.73</td>
</tr>
<tr>
<td>2:E:357:ASP:HA</td>
<td>2:E:359:LEU:H</td>
<td>1.53</td>
<td>0.73</td>
</tr>
<tr>
<td>1:B:889:GLY:HA2</td>
<td>1:B:895:PHE:HE2</td>
<td>1.53</td>
<td>0.73</td>
</tr>
<tr>
<td>1:A:888:TYR:HB3</td>
<td>1:A:893:PHE:CE2</td>
<td>2.24</td>
<td>0.73</td>
</tr>
<tr>
<td>1:B:107:PHE:HE1</td>
<td>1:B:171:TYR:HD2</td>
<td>1.37</td>
<td>0.73</td>
</tr>
<tr>
<td>1:A:564:LEU:HD12</td>
<td>1:A:564:LEU:H</td>
<td>1.53</td>
<td>0.73</td>
</tr>
<tr>
<td>1:B:306:GLU:O</td>
<td>1:B:308:HIS:N</td>
<td>2.22</td>
<td>0.72</td>
</tr>
<tr>
<td>1:B:244:MET:HG2</td>
<td>1:B:267:THR:HG22</td>
<td>1.71</td>
<td>0.72</td>
</tr>
<tr>
<td>1:B:517:GLN:HA</td>
<td>1:B:520:VAL:HG12</td>
<td>1.71</td>
<td>0.72</td>
</tr>
<tr>
<td>1:B:594:ASP:O</td>
<td>1:B:595:HIS:HB2</td>
<td>1.88</td>
<td>0.72</td>
</tr>
<tr>
<td>1:A:959:PHE:O</td>
<td>1:A:963:SER:OG</td>
<td>2.07</td>
<td>0.72</td>
</tr>
<tr>
<td>1:A:107:PHE:CE1</td>
<td>1:A:171:TYR:HB2</td>
<td>2.24</td>
<td>0.72</td>
</tr>
<tr>
<td>1:A:517:GLN:HA</td>
<td>1:A:520:VAL:HG12</td>
<td>1.71</td>
<td>0.72</td>
</tr>
<tr>
<td>1:A:889:GLY:HA2</td>
<td>1:A:895:PHE:HE2</td>
<td>1.52</td>
<td>0.72</td>
</tr>
<tr>
<td>1:B:350:GLU:HB3</td>
<td>1:B:384:GLU:OE1</td>
<td>1.89</td>
<td>0.71</td>
</tr>
<tr>
<td>1:A:136:GLY:HA3</td>
<td>1:A:140:SER:HB2</td>
<td>1.72</td>
<td>0.71</td>
</tr>
<tr>
<td>1:A:107:PHE:HE1</td>
<td>1:A:171:TYR:HD2</td>
<td>1.38</td>
<td>0.71</td>
</tr>
<tr>
<td>1:B:311:TYR:HB2</td>
<td>1:B:384:GLU:OE1</td>
<td>1.89</td>
<td>0.71</td>
</tr>
<tr>
<td>1:B:326:HIS:ND1</td>
<td>1:B:326:HIS:O</td>
<td>2.22</td>
<td>0.71</td>
</tr>
<tr>
<td>1:B:742:GLU:CD</td>
<td>1:B:742:GLU:H</td>
<td>1.95</td>
<td>0.71</td>
</tr>
<tr>
<td>2:E:383:PHE:CD2</td>
<td>2:E:386:PHE:HD2</td>
<td>2.09</td>
<td>0.71</td>
</tr>
<tr>
<td>2:F:305:ALA:HA</td>
<td>2:F:418:ILE:HG12</td>
<td>1.72</td>
<td>0.70</td>
</tr>
<tr>
<td>1:B:320:LEU:HD13</td>
<td>1:B:385:LEU:HD13</td>
<td>1.71</td>
<td>0.70</td>
</tr>
<tr>
<td>1:A:244:MET:HG2</td>
<td>1:A:267:THR:HG22</td>
<td>1.73</td>
<td>0.70</td>
</tr>
<tr>
<td>1:B:490:LEU:HD22</td>
<td>1:B:526:ILE:HD11</td>
<td>1.74</td>
<td>0.70</td>
</tr>
<tr>
<td>2:F:382:THR:O</td>
<td>2:F:383:PHE:HD1</td>
<td>1.74</td>
<td>0.69</td>
</tr>
<tr>
<td>1:A:706:PHE:HB3</td>
<td>1:A:711:VAL:HG22</td>
<td>1.74</td>
<td>0.69</td>
</tr>
<tr>
<td>1:B:706:PHE:HB3</td>
<td>1:B:711:VAL:HG22</td>
<td>1.74</td>
<td>0.69</td>
</tr>
<tr>
<td>1:B:136:GLY:HA3</td>
<td>1:B:140:SER:HB2</td>
<td>1.73</td>
<td>0.69</td>
</tr>
<tr>
<td>1:B:181:LEU:CD2</td>
<td>1:B:190:ARG:HB3</td>
<td>2.23</td>
<td>0.69</td>
</tr>
<tr>
<td>1:A:351:ASN:HB2</td>
<td>1:A:354:LEU:O</td>
<td>1.93</td>
<td>0.69</td>
</tr>
<tr>
<td>1:A:396:LEU:HD21</td>
<td>1:A:404:LEU:HB3</td>
<td>1.75</td>
<td>0.69</td>
</tr>
<tr>
<td>1:A:197:ASN:HB3</td>
<td>1:B:199:LYS:HB3</td>
<td>1.74</td>
<td>0.68</td>
</tr>
<tr>
<td>1:A:881:TRP:CZ2</td>
<td>1:A:927:PHE:HD1</td>
<td>2.11</td>
<td>0.68</td>
</tr>
<tr>
<td>1:A:735:LYS:O</td>
<td>1:A:738:THR:OG1</td>
<td>2.11</td>
<td>0.68</td>
</tr>
<tr>
<td>1:B:75:THR:HG21</td>
<td>1:B:113:THR:HG21</td>
<td>1.76</td>
<td>0.68</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:852:ARG:HB3</td>
<td>1:B:854:GLN:OE1</td>
<td>1.94</td>
<td>0.68</td>
</tr>
<tr>
<td>1:A:780:PRO:C</td>
<td>1:A:782:ASN:H</td>
<td>1.97</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:894:SER:OG</td>
<td>1:B:897:ASN:HB3</td>
<td>1.94</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:780:PRO:C</td>
<td>1:B:782:ASN:H</td>
<td>1.98</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:636:TRP:HZ3</td>
<td>1:B:658:VAL:HG23</td>
<td>1.60</td>
<td>0.67</td>
</tr>
<tr>
<td>2:E:426:VAL:HG12</td>
<td>2:E:427:LEU:N</td>
<td>2.09</td>
<td>0.67</td>
</tr>
<tr>
<td>1:A:894:SER:OG</td>
<td>1:A:897:ASN:HB3</td>
<td>1.94</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:256:ASP:O</td>
<td>1:B:258:ASN:N</td>
<td>2.27</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:296:ARG:HH21</td>
<td>1:B:298:TRP:HZ2</td>
<td>1.43</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:780:PRO:O</td>
<td>1:B:782:ASN:N</td>
<td>2.28</td>
<td>0.67</td>
</tr>
<tr>
<td>1:A:930:GLY:O</td>
<td>1:A:933:ALA:N</td>
<td>2.28</td>
<td>0.67</td>
</tr>
<tr>
<td>1:A:208:GLN:NE2</td>
<td>1:A:209:SER:H</td>
<td>1.93</td>
<td>0.67</td>
</tr>
<tr>
<td>1:B:599:ARG:O</td>
<td>1:B:601:VAL:N</td>
<td>2.27</td>
<td>0.67</td>
</tr>
<tr>
<td>2:E:367:THR:HG22</td>
<td>2:E:373:SER:HB2</td>
<td>1.78</td>
<td>0.66</td>
</tr>
<tr>
<td>1:A:300:ARG:NH2</td>
<td>1:A:359:GLU:OE1</td>
<td>2.28</td>
<td>0.66</td>
</tr>
<tr>
<td>1:B:754:ILE:HG22</td>
<td>1:B:792:THR:HG21</td>
<td>1.75</td>
<td>0.66</td>
</tr>
<tr>
<td>1:A:231:THR:HG22</td>
<td>1:A:263:GLU:HA</td>
<td>1.78</td>
<td>0.66</td>
</tr>
<tr>
<td>1:A:754:ILE:HG22</td>
<td>1:A:792:THR:HG21</td>
<td>1.76</td>
<td>0.66</td>
</tr>
<tr>
<td>1:A:636:TRP:HZ3</td>
<td>1:A:658:VAL:HG23</td>
<td>1.60</td>
<td>0.66</td>
</tr>
<tr>
<td>1:A:742:GLU:CD</td>
<td>1:A:742:GLU:H</td>
<td>1.98</td>
<td>0.66</td>
</tr>
<tr>
<td>1:B:881:TRP:CZ2</td>
<td>1:B:927:PHE:HD1</td>
<td>2.13</td>
<td>0.66</td>
</tr>
<tr>
<td>1:A:780:PRO:O</td>
<td>1:A:782:ASN:N</td>
<td>2.27</td>
<td>0.66</td>
</tr>
<tr>
<td>1:B:145:ILE:HD12</td>
<td>1:B:145:ILE:H</td>
<td>1.60</td>
<td>0.66</td>
</tr>
<tr>
<td>1:B:204:THR:HG22</td>
<td>1:B:205:THR:N</td>
<td>2.11</td>
<td>0.66</td>
</tr>
<tr>
<td>1:B:730:PHE:O</td>
<td>1:B:734:THR:HG22</td>
<td>1.97</td>
<td>0.65</td>
</tr>
<tr>
<td>2:F:391:SER:HB3</td>
<td>2:F:393:VAL:HG23</td>
<td>1.78</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:383:HIS:HB2</td>
<td>1:A:413:GLU:CG</td>
<td>2.26</td>
<td>0.65</td>
</tr>
<tr>
<td>1:B:210:THR:OG1</td>
<td>1:B:211:ASP:N</td>
<td>2.30</td>
<td>0.65</td>
</tr>
<tr>
<td>1:B:83:VAL:HG21</td>
<td>1:B:216:PHE:CE1</td>
<td>2.32</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:775:GLN:OE1</td>
<td>2:E:301:ARG:NH1</td>
<td>2.30</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:92:ASN:CG</td>
<td>1:A:93:ALA:N</td>
<td>2.51</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:204:THR:HG22</td>
<td>1:A:205:THR:N</td>
<td>2.11</td>
<td>0.64</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:E:334:PHE:CZ</td>
<td>2:E:427:LEU:HD12</td>
<td>2.33</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:210:THR:OG1</td>
<td>1:A:211:ASP:N</td>
<td>2.30</td>
<td>0.64</td>
</tr>
<tr>
<td>1:B:481:MET:HE3</td>
<td>1:B:626:TYR:H</td>
<td>1.61</td>
<td>0.64</td>
</tr>
<tr>
<td>1:B:481:MET:HE3</td>
<td>1:B:625:GLY:HA2</td>
<td>1.78</td>
<td>0.64</td>
</tr>
<tr>
<td>1:B:673:VAL:HG21</td>
<td>1:B:951:ASN:OD1</td>
<td>1.98</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:481:MET:HE3</td>
<td>1:A:625:GLY:HA2</td>
<td>1.80</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:889:GLY:HA2</td>
<td>1:A:895:PHE:CE2</td>
<td>2.33</td>
<td>0.64</td>
</tr>
<tr>
<td>1:B:889:GLY:HA2</td>
<td>1:B:895:PHE:CE2</td>
<td>2.33</td>
<td>0.63</td>
</tr>
<tr>
<td>1:B:116:ILE:HB</td>
<td>1:B:159:VAL:HB</td>
<td>1.80</td>
<td>0.63</td>
</tr>
<tr>
<td>1:B:63:GLN:CB</td>
<td>1:B:68:ASN:HB2</td>
<td>2.28</td>
<td>0.63</td>
</tr>
<tr>
<td>1:A:116:ILE:HB</td>
<td>1:A:159:VAL:HB</td>
<td>1.80</td>
<td>0.63</td>
</tr>
<tr>
<td>1:B:208:GLN:NE2</td>
<td>1:B:209:SER:H</td>
<td>1.95</td>
<td>0.63</td>
</tr>
<tr>
<td>1:B:564:LEU:HD23</td>
<td>1:B:564:LEU:H</td>
<td>1.63</td>
<td>0.63</td>
</tr>
<tr>
<td>1:B:701:TYR:O</td>
<td>1:B:705:MET:HG2</td>
<td>1.98</td>
<td>0.63</td>
</tr>
<tr>
<td>1:A:154:THR:O</td>
<td>1:A:156:TYR:N</td>
<td>2.32</td>
<td>0.63</td>
</tr>
<tr>
<td>1:A:740:ARG:NH1</td>
<td>1:A:750:GLU:OE2</td>
<td>2.31</td>
<td>0.63</td>
</tr>
<tr>
<td>1:A:893:PHE:O</td>
<td>1:A:893:PHE:CD1</td>
<td>2.52</td>
<td>0.63</td>
</tr>
<tr>
<td>1:A:589:ASN:ND2</td>
<td>1:A:615:ASP:OD1</td>
<td>2.32</td>
<td>0.63</td>
</tr>
<tr>
<td>1:B:154:THR:O</td>
<td>1:B:156:TYR:N</td>
<td>2.31</td>
<td>0.63</td>
</tr>
<tr>
<td>1:A:881:TRP:HZ2</td>
<td>1:A:927:PHE:HD1</td>
<td>1.47</td>
<td>0.62</td>
</tr>
<tr>
<td>1:A:701:TYR:O</td>
<td>1:A:705:MET:HG2</td>
<td>1.99</td>
<td>0.62</td>
</tr>
<tr>
<td>1:B:589:ASN:ND2</td>
<td>1:B:615:ASP:OD1</td>
<td>2.33</td>
<td>0.62</td>
</tr>
<tr>
<td>1:A:256:ASP:O</td>
<td>1:A:258:ASN:N</td>
<td>2.33</td>
<td>0.62</td>
</tr>
<tr>
<td>1:B:63:GLN:HB3</td>
<td>1:B:68:ASN:HB2</td>
<td>1.81</td>
<td>0.62</td>
</tr>
<tr>
<td>2:F:300:LYS:NZ</td>
<td>2:F:349:ASN:OD1</td>
<td>2.31</td>
<td>0.62</td>
</tr>
<tr>
<td>1:B:289:ALA:O</td>
<td>1:B:291:ASN:N</td>
<td>2.32</td>
<td>0.62</td>
</tr>
<tr>
<td>1:B:930:GLY:O</td>
<td>1:B:933:ALA:N</td>
<td>2.27</td>
<td>0.62</td>
</tr>
<tr>
<td>1:A:443:ALA:HB3</td>
<td>1:A:564:LEU:HD11</td>
<td>1.82</td>
<td>0.61</td>
</tr>
<tr>
<td>1:B:396:LEU:HD11</td>
<td>1:B:404:LEU:HB3</td>
<td>1.82</td>
<td>0.61</td>
</tr>
<tr>
<td>1:B:383:His:HB2</td>
<td>1:B:413:GLU:CG</td>
<td>2.28</td>
<td>0.61</td>
</tr>
<tr>
<td>2:E:357:ASP:C</td>
<td>2:E:359:LEU:H</td>
<td>2.03</td>
<td>0.61</td>
</tr>
<tr>
<td>1:B:231:THR:HG22</td>
<td>1:B:263:GLU:HA</td>
<td>1.81</td>
<td>0.61</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:300:ARG:NH2</td>
<td>1:B:359:GLU:OЕ1</td>
<td>2.33</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:738:THR:HG21</td>
<td>2:E:308:ILE:HG12</td>
<td>1.82</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:565:ASP:O</td>
<td>1:A:567:GLU:N</td>
<td>2.33</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:820:ASN:N</td>
<td>1:A:820:ASN:OD1</td>
<td>2.34</td>
<td>0.61</td>
</tr>
<tr>
<td>2:E:383:PHE:CD1</td>
<td>2:E:383:PHE:N</td>
<td>2.65</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:596:TYR:HE1</td>
<td>1:A:598:LEU:HD22</td>
<td>1.66</td>
<td>0.60</td>
</tr>
<tr>
<td>2:E:291:VAL:HG23</td>
<td>2:E:336:VAL:HA</td>
<td>1.82</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:470:ILE:C</td>
<td>1:A:472:TYR:H</td>
<td>2.05</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:448:HIS:HA</td>
<td>1:B:572:ARG:NH1</td>
<td>2.16</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:888:TYR:HB3</td>
<td>1:A:893:PHE:HD2</td>
<td>1.63</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:481:MET:HE3</td>
<td>1:A:626:TYR:H</td>
<td>1.66</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:734:THR:HG23</td>
<td>1:B:737:TRP:N</td>
<td>2.12</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:852:ARG:HB3</td>
<td>1:A:854:GLN:OЕ1</td>
<td>2.02</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:303:ALA:O</td>
<td>1:B:308:HIS:HB2</td>
<td>2.00</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:596:TYR:HE1</td>
<td>1:B:598:LEU:HD22</td>
<td>1.67</td>
<td>0.60</td>
</tr>
<tr>
<td>2:F:291:VAL:HG23</td>
<td>2:F:336:VAL:HA</td>
<td>1.84</td>
<td>0.60</td>
</tr>
<tr>
<td>2:F:387:CYS:HB2</td>
<td>2:F:418:ILE:HB</td>
<td>1.84</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:470:ILE:C</td>
<td>1:B:472:TYR:H</td>
<td>2.05</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:565:ASP:O</td>
<td>1:B:567:GLU:N</td>
<td>2.34</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:742:GLU:N</td>
<td>1:B:742:GLU:CD</td>
<td>2.55</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:937:ALA:O</td>
<td>1:B:941:THR:HG23</td>
<td>2.01</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:448:HIS:CB</td>
<td>1:B:572:ARG:NH1</td>
<td>2.64</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:119:HIS:HB3</td>
<td>1:B:213:ARG:HD3</td>
<td>1.83</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:311:TYR:HB2</td>
<td>4:B:1009:AGN:C8</td>
<td>2.32</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:885:PHE:HD2</td>
<td>1:B:895:PHE:CE2</td>
<td>2.21</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:888:TYR:HB3</td>
<td>1:B:893:PHE:HD2</td>
<td>1.65</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:448:HIS:HA</td>
<td>1:A:572:ARG:NH1</td>
<td>2.19</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:63:GLN:HB3</td>
<td>1:B:68:ASN:CB</td>
<td>2.34</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:289:ALA:O</td>
<td>1:A:291:ASN:N</td>
<td>2.34</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:237:ASN:O</td>
<td>1:B:237:ASN:OD1</td>
<td>2.22</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:671:VAL:HB</td>
<td>1:B:675:LEU:HD23</td>
<td>1.84</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:730:PHE:O</td>
<td>1:A:734:THR:HG22</td>
<td>2.04</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:705:MET:HE1</td>
<td>1:B:907:SER:HB3</td>
<td>1.86</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:671:VAL:HB</td>
<td>1:A:675:LEU:HD23</td>
<td>1.84</td>
<td>0.58</td>
</tr>
<tr>
<td>1:B:820:ASN:OD1</td>
<td>1:B:820:ASN:N</td>
<td>2.33</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:857:THR:HG22</td>
<td>1:A:893:PHE:HE1</td>
<td>1.69</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:F:341:THR:O</td>
<td>2:F:342:CYS:HB2</td>
<td>2.05</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:431:VAL:HB</td>
<td>1:B:432:PRO:HD3</td>
<td>1.86</td>
<td>0.57</td>
</tr>
<tr>
<td>4:B:1008:NAG:O6</td>
<td>2:F:306:GLN:NE2</td>
<td>2.37</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:349:MET:HE2</td>
<td>1:B:349:MET:HA</td>
<td>1.86</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:205:THR:HB</td>
<td>1:A:207:MET:SD</td>
<td>2.45</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:418:ASP:HA</td>
<td>1:A:426:LEU:HD13</td>
<td>1.86</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:893:PHE:CD1</td>
<td>1:B:893:PHE:O</td>
<td>2.57</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:132:VAL:HG12</td>
<td>1:A:175:SER:HB2</td>
<td>1.86</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:132:VAL:HG12</td>
<td>1:B:175:SER:HB2</td>
<td>1.86</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:107:PHE:HE1</td>
<td>1:B:171:TYR:CD2</td>
<td>2.20</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:342:PRO:HA</td>
<td>1:B:359:GLU:HG3</td>
<td>1.86</td>
<td>0.57</td>
</tr>
<tr>
<td>1:A:72:LEU:HG</td>
<td>1:A:119:HIS:HE2</td>
<td>1.70</td>
<td>0.56</td>
</tr>
<tr>
<td>2:E:367:THR:HG22</td>
<td>2:E:373:SER:CB</td>
<td>2.35</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:564:LEU:N</td>
<td>1:A:564:LEU:HD12</td>
<td>2.19</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:244:MET:HE3</td>
<td>1:B:245:PRO:HD2</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:881:TRP:HZ2</td>
<td>1:B:927:PHE:HD1</td>
<td>1.50</td>
<td>0.56</td>
</tr>
<tr>
<td>2:E:322:ASN:OD1</td>
<td>2:E:323:ASN:N</td>
<td>2.31</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:80:SER:HB2</td>
<td>1:A:227:THR:HG22</td>
<td>1.85</td>
<td>0.56</td>
</tr>
<tr>
<td>2:E:357:ASP:O</td>
<td>2:E:358:VAL:HG13</td>
<td>2.06</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:119:HIS:HB3</td>
<td>1:A:213:ARG:HD3</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:450:LEU:HD13</td>
<td>1:A:540:THR:HA</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:404:LEU:HD12</td>
<td>1:B:479:ILE:HD11</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>2:E:426:VAL:HG12</td>
<td>2:E:427:LEU:H</td>
<td>1.71</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:893:PHE:O</td>
<td>1:B:894:SER:HB3</td>
<td>2.06</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:695:ALA:O</td>
<td>1:A:699:LEU:HB2</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:396:LEU:HD23</td>
<td>1:A:401:ASP:O</td>
<td>2.05</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:205:THR:HB</td>
<td>1:B:207:MET:SD</td>
<td>2.46</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:893:PHE:HD1</td>
<td>1:A:893:PHE:O</td>
<td>1.90</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:777:MET:HE1</td>
<td>1:B:805:GLN:HA</td>
<td>1.88</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:488:GLU:O</td>
<td>1:A:491:PHE:N</td>
<td>2.40</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:181:LEU:HD23</td>
<td>1:B:190:ARG:HB3</td>
<td>1.88</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:707:ASP:HA</td>
<td>1:B:712:TYR:CD1</td>
<td>2.41</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:E:288:HIS:NE2</td>
<td>2:E:335:SER:HB2</td>
<td>2.22</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:734:THR:HG23</td>
<td>1:A:737:TRP:N</td>
<td>2.19</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:61:LEU:HD23</td>
<td>1:B:61:LEU:N</td>
<td>2.21</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:450:LEU:HD13</td>
<td>1:B:540:THR:HA</td>
<td>1.89</td>
<td>0.55</td>
</tr>
<tr>
<td>1:B:438:VAL:HB</td>
<td>1:B:473:SER:HB2</td>
<td>1.89</td>
<td>0.55</td>
</tr>
<tr>
<td>1:A:409:ALA:O</td>
<td>1:A:413:GLU:HG3</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:438:VAL:HB</td>
<td>1:A:473:SER:HB2</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:885:PHE:HD2</td>
<td>1:A:895:PHE:CE2</td>
<td>2.24</td>
<td>0.54</td>
</tr>
<tr>
<td>2:E:310:SER:O</td>
<td>2:E:412:VAL:HG12</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:488:GLU:O</td>
<td>1:B:491:PHE:N</td>
<td>2.41</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:740:ARG:HG3</td>
<td>1:A:740:ARG:HH11</td>
<td>1.71</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:256:ASP:C</td>
<td>1:A:258:ASN:H</td>
<td>2.11</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:409:ALA:O</td>
<td>1:B:413:GLU:HG3</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:677:LEU:HB3</td>
<td>1:B:958:TRP:CE2</td>
<td>2.42</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:695:ALA:O</td>
<td>1:B:699:LEU:HB2</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>2:F:369:THR:OG1</td>
<td>2:F:369:THR:O</td>
<td>2.26</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:191:SER:HB3</td>
<td>1:A:202:LEU:CD2</td>
<td>2.38</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:350:GLU:HB3</td>
<td>1:A:384:GLU:OE1</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:538:ARG:HD3</td>
<td>1:A:576:PHE:CE1</td>
<td>2.43</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:256:ASP:C</td>
<td>1:B:258:ASN:H</td>
<td>2.11</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:705:MET:HE1</td>
<td>1:A:907:SER:HB3</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:852:ARG:HD3</td>
<td>1:B:852:ARG:N</td>
<td>2.22</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:256:ASP:N</td>
<td>1:A:257:PRO:HD3</td>
<td>2.23</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:119:HIS:ND1</td>
<td>1:B:213:ARG:CZ</td>
<td>2.70</td>
<td>0.54</td>
</tr>
<tr>
<td>2:E:404:ARG:HG3</td>
<td>2:E:404:ARG:HH11</td>
<td>1.72</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:742:GLU:N</td>
<td>1:A:742:GLU:CD</td>
<td>2.61</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:204:THR:HG22</td>
<td>1:B:205:THR:H</td>
<td>1.71</td>
<td>0.53</td>
</tr>
<tr>
<td>2:E:324:THR:CG2</td>
<td>2:E:325:ASP:N</td>
<td>2.57</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:80:SER:CB</td>
<td>1:A:227:THR:HG22</td>
<td>2.37</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:677:LEU:HB3</td>
<td>1:A:958:TRP:CE2</td>
<td>2.44</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:244:MET:HE3</td>
<td>1:A:245:PRO:HD2</td>
<td>1.91</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:448:HIS:CB</td>
<td>1:A:572:ARG:NH1</td>
<td>2.69</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:853:LYS:HG3</td>
<td>1:B:854:GLN:N</td>
<td>2.23</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:643:LEU:HD13</td>
<td>1:B:650:ILE:HD12</td>
<td>1.89</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:575:ALA:O</td>
<td>1:B:576:PHE:HB2</td>
<td>2.09</td>
<td>0.53</td>
</tr>
</tbody>
</table>

Continued on next page...
Interatomic Distance (Å) and Clash Overlap (Å)

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:286:ASN:HD22</td>
<td>1:B:286:ASN:C</td>
<td>2.13</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:575:ALA:O</td>
<td>1:B:576:PHE:CB</td>
<td>2.57</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:888:TYR:CD1</td>
<td>1:B:893:PHE:HE2</td>
<td>2.26</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:119:HIS:ND1</td>
<td>1:A:213:ARG:CZ</td>
<td>2.72</td>
<td>0.53</td>
</tr>
<tr>
<td>1:B:679:ASN:N</td>
<td>1:B:679:ASN:HD22</td>
<td>2.07</td>
<td>0.53</td>
</tr>
<tr>
<td>2:E:357:ASP:CA</td>
<td>2:E:359:LEU:H</td>
<td>2.21</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:557:ILE:CG2</td>
<td>1:A:598:LEU:HD21</td>
<td>2.28</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:764:GLN:N</td>
<td>1:A:764:GLN:OE1</td>
<td>2.32</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:893:PHE:O</td>
<td>1:A:894:SER:HB3</td>
<td>2.08</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:734:THR:OG1</td>
<td>1:B:739:GLU:O</td>
<td>2.20</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:210:THR:O</td>
<td>1:A:211:ASP:HB2</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:311:TYR:HD1</td>
<td>4:B:1009:NAG:O7</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:351:ASN:HB2</td>
<td>1:B:354:LEU:O</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:346:ALA:O</td>
<td>1:B:347:GLY:C</td>
<td>2.48</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:758:CYS:HB3</td>
<td>1:B:796:ASN:OD1</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>2:F:299:MET:O</td>
<td>2:F:344:SER:HA</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>2:F:404:ARG:HD2</td>
<td>2:F:409:ASP:CG</td>
<td>2.30</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:719:LEU:O</td>
<td>1:A:723:VAL:HG23</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:857:THR:HG22</td>
<td>1:B:893:PHE:HE1</td>
<td>1.74</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:286:ASN:HD22</td>
<td>1:A:286:ASN:C</td>
<td>2.13</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:668:ALA:O</td>
<td>1:B:669:HIS:HB2</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:66:PRO:HA</td>
<td>1:B:69:ARG:HE</td>
<td>1.75</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:204:THR:HG22</td>
<td>1:A:205:THR:H</td>
<td>1.72</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:672:PRO:HB2</td>
<td>1:B:674:THR:HG23</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:740:ARG:HD2</td>
<td>1:B:786:HIS:CD2</td>
<td>2.45</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:758:CYS:HB3</td>
<td>1:A:796:ASN:OD1</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:254:ALA:HB3</td>
<td>1:B:255:GLU:OE1</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:677:LEU:O</td>
<td>1:B:680:THR:OG1</td>
<td>2.27</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:506:ASN:H</td>
<td>1:A:506:ASN:ND2</td>
<td>2.08</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:625:GLY:O</td>
<td>1:A:627:PHEN</td>
<td>2.43</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:643:LEU:CD1</td>
<td>1:A:650:ILE:HD12</td>
<td>2.40</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:557:ILE:CG2</td>
<td>1:B:598:LEU:HD21</td>
<td>2.28</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:719:LEU:O</td>
<td>1:B:723:VAL:HG23</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:B:917:GLN:HA</td>
<td>1:B:917:GLN:OE1</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>2:F:288:HIS:NE2</td>
<td>2:F:335:SER:HB2</td>
<td>2.25</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:672:PRO:HB2</td>
<td>1:A:674:THR:HG23</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:256:ASP:N</td>
<td>1:B:257:PRO:HD3</td>
<td>2.25</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:814:GLN:HG3</td>
<td>1:B:258:ASN:OD1</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:92:ASN:OD1</td>
<td>1:A:93:ALA:N</td>
<td>2.40</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:91:PRO:HB2</td>
<td>1:B:95:GLY:HA2</td>
<td>1.93</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:333:LEU:HD11</td>
<td>1:A:352:TRP:CE2</td>
<td>2.45</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:853:LYS:HG3</td>
<td>1:A:854:GLN:N</td>
<td>2.25</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:708:ARG:HG2</td>
<td>1:B:867:VAL:CG2</td>
<td>2.40</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:917:GLN:HA</td>
<td>1:A:917:GLN:OE1</td>
<td>2.09</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:478:VAL:HG12</td>
<td>1:B:479:ILE:N</td>
<td>2.25</td>
<td>0.51</td>
</tr>
<tr>
<td>2:E:383:PHE:CE2</td>
<td>2:E:386:PHE:HD2</td>
<td>2.28</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:951:ASN:HD22</td>
<td>1:A:951:ASN:N</td>
<td>2.09</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:150:LEU:HD23</td>
<td>1:B:157:LEU:HA</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:564:LEU:CD2</td>
<td>1:B:564:LEU:H</td>
<td>2.23</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:764:GLN:N</td>
<td>1:B:764:GLN:OE1</td>
<td>2.31</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:780:PRO:O</td>
<td>1:B:781:GLU:HG3</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>2:F:420:GLU:O</td>
<td>2:F:420:GLU:HG3</td>
<td>2.08</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:65:LYS:O</td>
<td>1:A:67:TRP:N</td>
<td>2.42</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:206:GLN:HG3</td>
<td>1:B:206:GLN:O</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:210:THR:O</td>
<td>1:B:211:ASP:HB2</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:443:ALA:HB1</td>
<td>1:B:564:LEU:HD22</td>
<td>1.91</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:689:TYR:CD2</td>
<td>1:B:748:TYR:HB3</td>
<td>2.46</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:951:ASN:HD22</td>
<td>1:B:951:ASN:N</td>
<td>2.09</td>
<td>0.51</td>
</tr>
<tr>
<td>2:E:304:TYR:HB2</td>
<td>2:E:306:GLN:OE1</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:860:ILE:O</td>
<td>1:B:863:ILE:HB</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>2:E:348:ASP:O</td>
<td>2:E:350:VAL:N</td>
<td>2.44</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:780:PRO:O</td>
<td>1:A:781:GLU:HG3</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:202:LEU:HD23</td>
<td>1:B:202:LEU:O</td>
<td>2.11</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:470:ILE:O</td>
<td>1:B:474:LYS:HB3</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>1:B:506:ASN:ND2</td>
<td>1:B:506:ASN:H</td>
<td>2.09</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:408:PHE:O</td>
<td>1:A:412:VAL:HG22</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:925:VAL:O</td>
<td>1:A:926:GLY:O</td>
<td>2.29</td>
<td>0.50</td>
</tr>
<tr>
<td>2:E:383:PHE:CE2</td>
<td>2:E:386:PHE:CD2</td>
<td>2.99</td>
<td>0.50</td>
</tr>
<tr>
<td>2:F:301:ARG:NH2</td>
<td>2:F:357:ASP:OD1</td>
<td>2.44</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:575:ALA:O</td>
<td>1:A:576:PHE:HB2</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:625:GLY:O</td>
<td>1:B:627:PHE:N</td>
<td>2.41</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:679:ASN:HD22</td>
<td>1:A:679:ASN:N</td>
<td>2.09</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:191:SER:HB3</td>
<td>1:B:202:LEU:CD2</td>
<td>2.42</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:885:PHE:CD2</td>
<td>1:B:885:PHE:CE2</td>
<td>2.98</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:206:GLN:O</td>
<td>1:A:206:GLN:HG3</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:668:ALA:O</td>
<td>1:A:669:HIS:HB2</td>
<td>2.10</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:92:ASN:HB3</td>
<td>1:A:96:LEU:O</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:470:ILE:O</td>
<td>1:A:474:LYS:HB3</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:928:GLY:C</td>
<td>1:A:930:GLY:N</td>
<td>2.55</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:63:GLN:H</td>
<td>1:B:63:GLN:CD</td>
<td>2.15</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:272:THR:C</td>
<td>1:A:274:LEU:N</td>
<td>2.64</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:449:PRO:HD3</td>
<td>1:A:572:ARG:HH11</td>
<td>1.76</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:777:MET:HE1</td>
<td>1:A:805:GLN:HA</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:343:ASP:OD1</td>
<td>1:B:343:ASP:C</td>
<td>2.51</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:545:PHE:HE1</td>
<td>1:B:628:GLN:HG3</td>
<td>1.76</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:312:ALA:HB2</td>
<td>1:A:362:LEU:O</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:343:ASP:OD1</td>
<td>1:A:343:ASP:C</td>
<td>2.50</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:80:SER:HB2</td>
<td>1:B:227:THR:HG22</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:925:VAL:O</td>
<td>1:B:926:GLY:O</td>
<td>2.29</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:704:LEU:O</td>
<td>1:A:704:LEU:HD13</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:296:ARG:NH2</td>
<td>1:B:298:TRP:HZ2</td>
<td>2.10</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:181:LEU:HD22</td>
<td>1:A:190:ARG:HB3</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:689:TYR:CD2</td>
<td>1:A:748:TYR:HB3</td>
<td>2.47</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:448:HIS:HA</td>
<td>1:B:572:ARG:HH11</td>
<td>1.78</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:490:LEU:HD22</td>
<td>1:B:526:ILE:CD1</td>
<td>2.40</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:360:ASN:OD1</td>
<td>1:A:360:ASN:C</td>
<td>2.50</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:481:MET:CE</td>
<td>1:A:625:GLY:HA2</td>
<td>2.43</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:780:PRO:C</td>
<td>1:A:782:ASN:N</td>
<td>2.64</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:80:SER:CB</td>
<td>1:B:227:THR:HG22</td>
<td>2.43</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:82:ASN:HB2</td>
<td>1:B:104:ILE:HB</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>2:F:392:PRO:O</td>
<td>2:F:394:GLY:N</td>
<td>2.46</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:449:PRO:HD3</td>
<td>1:B:572:ARG:HH11</td>
<td>1.77</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:643:LEU:CD1</td>
<td>1:B:650:ILE:HD12</td>
<td>2.41</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:681:LEU:HD21</td>
<td>1:B:958:TRP:CZ2</td>
<td>2.47</td>
<td>0.49</td>
</tr>
<tr>
<td>2:E:426:VAL:CG1</td>
<td>2:E:427:LEU:N</td>
<td>2.75</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:346:ALA:O</td>
<td>1:A:347:GLY:C</td>
<td>2.51</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:481:MET:CE</td>
<td>1:B:625:GLY:HA2</td>
<td>2.42</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:545:PHE:HE1</td>
<td>1:A:628:GLN:HG3</td>
<td>1.77</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:681:LEU:HD21</td>
<td>1:A:958:TRP:CZ2</td>
<td>2.47</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:738:THR:HG23</td>
<td>2:E:302:SER:HA</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:438:VAL:HB</td>
<td>1:B:473:SER:CB</td>
<td>2.43</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:83:VAL:HG21</td>
<td>1:B:216:PHE:CD1</td>
<td>2.47</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:426:LEU:O</td>
<td>1:A:427:LYS:C</td>
<td>2.52</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:517:GLN:O</td>
<td>1:A:519:ALA:N</td>
<td>2.46</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:92:ASN:O</td>
<td>1:B:95:GLY:N</td>
<td>2.33</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:888:TYR:CD1</td>
<td>1:A:893:PHE:HE2</td>
<td>2.31</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:794:TYR:C</td>
<td>1:A:796:ASN:H</td>
<td>2.17</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:72:LEU:HG</td>
<td>1:B:119:HIS:HE2</td>
<td>1.78</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:708:ARG:HG2</td>
<td>1:B:867:VAL:HG23</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>2:F:345:ALA:HB2</td>
<td>2:F:351:PHE:HA</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:223:ALA:O</td>
<td>1:B:225:LYS:N</td>
<td>2.46</td>
<td>0.48</td>
</tr>
<tr>
<td>2:E:369:THR:HG23</td>
<td>2:E:398:LYS:HG2</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:204:THR:CG2</td>
<td>1:A:205:THR:N</td>
<td>2.76</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:204:THR:CG2</td>
<td>1:B:205:THR:N</td>
<td>2.76</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:204:THR:CG2</td>
<td>1:B:237:ASN:C</td>
<td>2.51</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:677:LEU:HD23</td>
<td>1:B:958:TRP:CD2</td>
<td>2.49</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:794:TYR:C</td>
<td>1:B:796:ASN:H</td>
<td>2.16</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:888:TYR:CB</td>
<td>1:B:893:PHE:CE2</td>
<td>2.96</td>
<td>0.47</td>
</tr>
<tr>
<td>2:E:356:THR:O</td>
<td>2:E:357:ASP:HB3</td>
<td>2.13</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:542:GLN:OE1</td>
<td>1:A:576:PHE:HB2</td>
<td>2.13</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:740:ARG:NH1</td>
<td>1:A:740:ARG:HG3</td>
<td>2.29</td>
<td>0.47</td>
</tr>
<tr>
<td>2:E:354:ASN:OD1</td>
<td>2:E:354:ASN:N</td>
<td>2.35</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:231:THR:CG2</td>
<td>1:A:263:GLU:HG3</td>
<td>2.44</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:204:THR:HG21</td>
<td>1:B:341:LEU:HD11</td>
<td>1.94</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:223:ALA:O</td>
<td>1:A:225:LYS:N</td>
<td>2.46</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:408:PHE:O</td>
<td>1:B:412:VAL:HG22</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:569:ASN:O</td>
<td>1:B:571:THR:HG23</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:118:ILE:HD11</td>
<td>1:B:173:MET:SD</td>
<td>2.55</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:255:GLU:CD</td>
<td>1:B:255:GLU:H</td>
<td>2.18</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:426:LEU:O</td>
<td>1:B:427:LYS:C</td>
<td>2.52</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:845:THR:HA</td>
<td>1:B:851:ILE:HD12</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:869:GLY:HA2</td>
<td>1:A:872:LEU:HD22</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:885:PHE:CD2</td>
<td>1:A:895:PHE:CE2</td>
<td>3.02</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:635:ASN:O</td>
<td>1:B:639:ILE:HG13</td>
<td>2.15</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:721:LYS:NZ</td>
<td>1:A:964:LEU:O</td>
<td>2.40</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:857:THR:CG2</td>
<td>1:A:893:PHE:CE1</td>
<td>2.98</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:134:LEU:HD21</td>
<td>1:B:171:TYR:HB3</td>
<td>1.95</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:409:ALA:HA</td>
<td>1:A:412:VAL:HG23</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:888:TYR:CB</td>
<td>1:A:893:PHE:CE2</td>
<td>2.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:517:GLN:O</td>
<td>1:B:519:ALA:N</td>
<td>2.48</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:894:SER:HG</td>
<td>1:A:897:ASN:HB3</td>
<td>1.80</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:487:THR:O</td>
<td>1:B:488:GLU:C</td>
<td>2.53</td>
<td>0.47</td>
</tr>
<tr>
<td>2:E:293:ILE:HD11</td>
<td>2:E:365:ILE:CD1</td>
<td>2.40</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:122:LYS:O</td>
<td>1:A:123:LEU:HD23</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:146:ASP:HB2</td>
<td>1:A:162:LYS:HG2</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:461:ALA:O</td>
<td>1:B:465:GLU:HG2</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>2:F:369:THR:HG23</td>
<td>2:F:398:LYS:HG2</td>
<td>1.96</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:244:MET:HE3</td>
<td>1:A:334:PRO:HG2</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:450:LEU:CD1</td>
<td>1:A:450:LEU:H</td>
<td>2.24</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:858:SER:O</td>
<td>1:A:862:SER:HB2</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:284:SER:HB3</td>
<td>1:A:298:TRP:CD2</td>
<td>2.50</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:383:HIS:C</td>
<td>1:A:383:HIS:CD2</td>
<td>2.89</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:373:ASN:OD1</td>
<td>1:B:376:ARG:NH2</td>
<td>2.48</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:735:LYS:NZ</td>
<td>2:F:311:THR:HG22</td>
<td>2.31</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:865:SER:O</td>
<td>1:B:905:ARG:NH2</td>
<td>2.48</td>
<td>0.46</td>
</tr>
<tr>
<td>2:E:392:PRO:HB3</td>
<td>2:E:416:TYR:CZ</td>
<td>2.50</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:86:ARG:N</td>
<td>1:B:100:LYS:O</td>
<td>2.41</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:777:MET:CE</td>
<td>1:B:805:GLN:HA</td>
<td>2.45</td>
<td>0.46</td>
</tr>
<tr>
<td>2:E:341:THR:O</td>
<td>2:E:342:CYS:HB2</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:677:LEU:O</td>
<td>1:A:680:THR:OG1</td>
<td>2.28</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:333:LEU:HD11</td>
<td>1:B:352:TRP:CE2</td>
<td>2.50</td>
<td>0.46</td>
</tr>
<tr>
<td>2:E:369:THR:OG1</td>
<td>2:E:369:THR:O</td>
<td>2.34</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:852:ARG:N</td>
<td>1:A:852:ARG:HD3</td>
<td>2.31</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:517:GLN:HA</td>
<td>1:B:520:VAL:CG1</td>
<td>2.44</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:709:SER:OG</td>
<td>1:B:711:VAL:HG13</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:885:PHE:HZ</td>
<td>1:B:927:PHE:O</td>
<td>2.69</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:635:ASN:O</td>
<td>1:A:639:ILE:HG13</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:857:THR:HG22</td>
<td>1:B:893:PHE:CE1</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:197:ASN:O</td>
<td>1:B:199:LYS:HD2</td>
<td>2.16</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:205:THR:OG1</td>
<td>1:B:276:ALA:HA</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:893:PHE:O</td>
<td>1:B:893:PHE:HD1</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:92:ASN:O</td>
<td>1:B:94:ASP:N</td>
<td>2.48</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:85:LEU:HD11</td>
<td>1:A:277:TYR:CE2</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:94:ASN:O</td>
<td>1:A:948:VAL:HG23</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:191:SER:HB3</td>
<td>1:B:202:LEU:HD21</td>
<td>1.96</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:882:LYS:O</td>
<td>1:B:883:LYS:C</td>
<td>2.54</td>
<td>0.46</td>
</tr>
<tr>
<td>2:F:288:HIS:C</td>
<td>2:F:288:HIS:CD2</td>
<td>2.88</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:426:LEU:O</td>
<td>1:A:429:LEU:N</td>
<td>2.43</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:645:THR:HB</td>
<td>1:A:646:ASN:H</td>
<td>1.47</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:204:THR:CG2</td>
<td>1:B:205:THR:H</td>
<td>2.29</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:284:SER:HB3</td>
<td>1:B:298:TRP:CD2</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>2:E:405:THR:OG1</td>
<td>2:E:408:ASN:HB3</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>2:F:374:PHE:N</td>
<td>2:F:374:PHE:CD1</td>
<td>2.82</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:236:ASN:HB2</td>
<td>1:A:258:ASN:O</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:338:GLN:HB3</td>
<td>1:A:357:TYR:CE1</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:205:THR:OG1</td>
<td>1:A:276:ALA:HA</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:486:LEU:O</td>
<td>1:A:490:LEU:HB3</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:677:LEU:HD23</td>
<td>1:A:958:TRP:CD2</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:857:THR:HG22</td>
<td>1:A:893:PHE:CE1</td>
<td>2.48</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:105:VAL:HG13</td>
<td>1:B:173:MET:HB3</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:231:THR:CG2</td>
<td>1:B:263:GLU:HG3</td>
<td>2.46</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:448:HIS:CA</td>
<td>1:B:572:ARG:NH1</td>
<td>2.80</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:576:PHE:CD2</td>
<td>1:B:576:PHE:N</td>
<td>2.84</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:77:LEU:O</td>
<td>1:A:108:ILE:N</td>
<td>2.47</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:72:LEU:HD21</td>
<td>1:A:119:HIS:CD2</td>
<td>2.52</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:204:THR:CG2</td>
<td>1:A:205:THR:H</td>
<td>2.30</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:296:ARG:NH2</td>
<td>1:A:298:TRP:HZ2</td>
<td>2.10</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:517:GLN:HA</td>
<td>1:A:520:VAL:CG1</td>
<td>2.44</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:885:PHE:HZ</td>
<td>1:A:927:PHE:O</td>
<td>2.69</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:409:ALA:HZ</td>
<td>1:B:412:VAL:HG3</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:502:PHE:O</td>
<td>1:A:505:GLN:HG3</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:576:PHE:CD2</td>
<td>1:A:576:PHE:N</td>
<td>2.83</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:611:THR:CG2</td>
<td>1:A:617:VAL:HG22</td>
<td>2.47</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:769:ALA:HA</td>
<td>1:A:793:ILE:HD12</td>
<td>1.97</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:565:ASP:O</td>
<td>1:A:566:SER:C</td>
<td>2.55</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:865:SER:O</td>
<td>1:A:905:ARG:NH2</td>
<td>2.47</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:887:ASP:C</td>
<td>1:A:889:GLY:H</td>
<td>2.19</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:611:THR:CG2</td>
<td>1:B:617:VAL:HG22</td>
<td>2.47</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:742:GLU:N</td>
<td>1:B:742:GLU:OE1</td>
<td>2.41</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:448:HIS:NE2</td>
<td>1:A:468:ASP:OD2</td>
<td>2.46</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:145:ILE:HD12</td>
<td>1:B:145:ILE:N</td>
<td>2.29</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:777:MET:CE</td>
<td>1:A:805:GLN:HA</td>
<td>2.47</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:96:LEU:HD23</td>
<td>1:A:97:TYR:N</td>
<td>2.31</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:894:SER:O</td>
<td>1:B:896:SER:N</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:398:TRP:HB3</td>
<td>1:A:400:ASN:OD1</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:122:LYS:O</td>
<td>1:B:123:LEU:HD23</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:917:GLN:O</td>
<td>1:B:920:LYS:N</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>2:F:289:THR:HG1</td>
<td>2:F:331:SER:HG</td>
<td>1.60</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:296:ARG:HB2</td>
<td>1:A:337:ASP:OD1</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>2:E:401:VAL:O</td>
<td>2:E:412:VAL:HG23</td>
<td>2.16</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:569:ASN:O</td>
<td>1:A:571:THR:HG23</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:734:THR:HG21</td>
<td>1:A:737:TRP:CE3</td>
<td>2.52</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:882:LYS:O</td>
<td>1:A:883:LYS:C</td>
<td>2.55</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:917:GLN:O</td>
<td>1:A:920:LYS:N</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:202:LEU:HD23</td>
<td>1:B:202:LEU:C</td>
<td>2.37</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:343:ASP:O</td>
<td>1:B:344:PHE:C</td>
<td>2.55</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:688:GLU:O</td>
<td>1:B:691:PRO:HD2</td>
<td>2.16</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:885:PHE:HD2</td>
<td>1:B:895:PHE:CZ</td>
<td>2.35</td>
<td>0.44</td>
</tr>
<tr>
<td>2:E:404:ARG:NH1</td>
<td>2:E:404:ARG:HG3</td>
<td>2.32</td>
<td>0.44</td>
</tr>
<tr>
<td>2:F:295:ILE:CG1</td>
<td>2:F:363:ALA:HB3</td>
<td>2.45</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:343:ASP:O</td>
<td>1:A:344:PHE:C</td>
<td>2.55</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:207:MET:HE3</td>
<td>1:B:212:ALA:HA</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:299:ALA:HB3</td>
<td>1:B:304:ILE:CD1</td>
<td>2.47</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:486:LEU:O</td>
<td>1:B:490:LEU:HB3</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:769:ALA:HA</td>
<td>1:B:793:ILE:HD12</td>
<td>1.98</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:811:GLY:O</td>
<td>1:B:815:GLN:HG3</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:63:GLN:HA</td>
<td>1:A:68:ASN:HB2</td>
<td>1.98</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:448:HIS:NE2</td>
<td>1:B:468:ASP:OD2</td>
<td>2.46</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:502:PHE:O</td>
<td>1:B:505:GLN:HG3</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>2:E:413:ARG:HG2</td>
<td>2:E:413:ARG:HH11</td>
<td>1.82</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:505:GLN:HB2</td>
<td>4:B:1011:NAG:O6</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:296:ARG:HB2</td>
<td>1:B:337:ASP:OD1</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:341:LEU:HA</td>
<td>1:B:342:PRO:HD3</td>
<td>1.82</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:705:MET:CE</td>
<td>1:A:944:ASN:HB3</td>
<td>2.42</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:414:TYR:CE1</td>
<td>1:B:430:ILE:HD12</td>
<td>2.51</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:444:LEU:HD12</td>
<td>1:B:446:SER:HB2</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:247:LYS:N</td>
<td>1:A:263:GLU:O</td>
<td>2.35</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:513:TRP:CZ2</td>
<td>1:B:536:MET:HG2</td>
<td>2.52</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:858:SER:O</td>
<td>1:B:862:SER:HB2</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:360:ASN:OD1</td>
<td>1:A:361:ALA:N</td>
<td>2.51</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:81:TYR:CD1</td>
<td>1:A:228:PHE:CE1</td>
<td>3.05</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:272:THR:C</td>
<td>1:B:274:LEU:N</td>
<td>2.64</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:398:TRP:HB3</td>
<td>1:B:400:ASN:OD1</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:740:ARG:NH1</td>
<td>1:B:750:GLU:OE2</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:320:LEU:HD12</td>
<td>1:A:320:LEU:HA</td>
<td>1.80</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:65:LYS:C</td>
<td>1:A:67:TRP:H</td>
<td>2.22</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:146:ASP:HB2</td>
<td>1:B:162:LYS:HG2</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:383:HIS:CD2</td>
<td>1:B:383:HIS:C</td>
<td>2.91</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:565:ASP:O</td>
<td>1:B:566:SER:C</td>
<td>2.56</td>
<td>0.43</td>
</tr>
<tr>
<td>2:F:295:ILE:CD1</td>
<td>2:F:363:ALA:CB</td>
<td>2.96</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:639:ILE:HG22</td>
<td>1:A:643:LEU:HD22</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:898:LEU:O</td>
<td>1:A:902:VAL:HG23</td>
<td>2.17</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:396:LEU:CD1</td>
<td>1:B:404:LEU:HB3</td>
<td>2.47</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:944:ASN:O</td>
<td>1:B:948:VAL:HG23</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:738:THR:CG2</td>
<td>2:F:302:SER:HA</td>
<td>2.48</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:470:ILE:C</td>
<td>1:A:472:TYR:N</td>
<td>2.72</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:481:MET:HB2</td>
<td>1:B:624:THR:O</td>
<td>2.17</td>
<td>0.43</td>
</tr>
<tr>
<td>2:F:404:ARG:HD2</td>
<td>2:F:409:ASP:OD2</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:431:VAL:HG21</td>
<td>1:A:653:ILE:HG21</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:811:GLY:O</td>
<td>1:A:815:GLN:HG3</td>
<td>2.17</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:517:GLN:C</td>
<td>1:A:519:ALA:N</td>
<td>2.71</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:708:ARG:HG2</td>
<td>1:A:867:VAL:CG2</td>
<td>2.48</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:806:TRP:HZ3</td>
<td>1:B:810:TRP:HB2</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:87:PRO:HD2</td>
<td>1:B:233:ILE:O</td>
<td>2.17</td>
<td>0.43</td>
</tr>
<tr>
<td>2:E:426:VAL:CG1</td>
<td>2:E:427:LEU:H</td>
<td>2.30</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:444:LEU:HD12</td>
<td>1:A:446:SER:HB2</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:806:TRP:HZ3</td>
<td>1:A:810:TRP:HB2</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:895:PHE:O</td>
<td>1:A:899:ILE:HG22</td>
<td>2.17</td>
<td>0.43</td>
</tr>
<tr>
<td>2:F:382:THR:C</td>
<td>2:F:383:PHE:CD1</td>
<td>2.91</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:930:GLY:O</td>
<td>1:A:931:THR:C</td>
<td>2.57</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:686:GLU:OE1</td>
<td>1:B:691:PRO:HG2</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:857:THR:CG2</td>
<td>1:B:893:PHE:CE1</td>
<td>3.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:130:His:NE2</td>
<td>1:A:145:ILE:HB</td>
<td>2.34</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:448:His:HA</td>
<td>1:A:572:ARG:HH11</td>
<td>1.82</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:688:GLU:O</td>
<td>1:A:691:PRO:HD2</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:681:LEU:HD21</td>
<td>1:B:958:TRP:CH2</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:481:MET:HB2</td>
<td>1:A:624:THR:O</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:740:ARG:NH1</td>
<td>1:A:750:GLU:CD</td>
<td>2.72</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:542:GLN:OE1</td>
<td>1:B:576:PHE:HB2</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:63:GLN:N</td>
<td>1:B:63:GLN:CD</td>
<td>2.72</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:894:SER:HG</td>
<td>1:B:897:ASN:HB3</td>
<td>1.82</td>
<td>0.43</td>
</tr>
<tr>
<td>2:E:357:ASP:O</td>
<td>2:E:358:VAL:CG1</td>
<td>2.66</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:686:GLU:OE1</td>
<td>1:A:691:PRO:HG2</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:449:PRO:CD</td>
<td>1:B:572:ARG:HH11</td>
<td>2.32</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:887:ASP:C</td>
<td>1:B:889:GLY:H</td>
<td>2.21</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:895:PHE:O</td>
<td>1:B:899:ILE:HG22</td>
<td>2.18</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:705:MET:CE</td>
<td>1:B:944:ASN:HB3</td>
<td>2.41</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:147:ARG:HG3</td>
<td>1:B:160:HIS:HB2</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:564:LEU:CD2</td>
<td>1:B:564:LEU:N</td>
<td>2.82</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:888:TYR:HD1</td>
<td>1:B:893:PHE:CE2</td>
<td>2.37</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:898:LEU:O</td>
<td>1:B:902:VAL:HG23</td>
<td>2.18</td>
<td>0.42</td>
</tr>
<tr>
<td>2:E:388:LEU:HD22</td>
<td>2:E:415:LEU:HD13</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:236:ASN:HB2</td>
<td>1:B:258:ASN:O</td>
<td>2.18</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:639:ILE:HG22</td>
<td>1:B:643:LEU:HD22</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:699:LEU:O</td>
<td>1:B:702:PHE:HB2</td>
<td>2.18</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:256:ASP:C</td>
<td>1:A:258:ASN:N</td>
<td>2.72</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:508:THR:HG23</td>
<td>1:A:511:ASP:OD1</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:951:ASN:O</td>
<td>1:B:955:VAL:HG23</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:888:TYR:CD1</td>
<td>1:B:893:PHE:CE2</td>
<td>3.05</td>
<td>0.42</td>
</tr>
<tr>
<td>2:E:364:VAL:HG21</td>
<td>2:E:404:ARG:NH1</td>
<td>2.35</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:185:LEU:HA</td>
<td>1:B:189:TYR:CE1</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:429:LEU:O</td>
<td>1:B:432:PRO:HD2</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:594:ASP:O</td>
<td>1:B:595:HIS:CB</td>
<td>2.64</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:850:LEU:HD23</td>
<td>1:B:850:LEU:N</td>
<td>2.35</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:928:GLY:C</td>
<td>1:B:930:GLY:N</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:894:SER:O</td>
<td>1:A:896:SER:N</td>
<td>2.53</td>
<td>0.42</td>
</tr>
<tr>
<td>4:B:1008:NAG:H2</td>
<td>4:B:1008:NAG:H3</td>
<td>1.86</td>
<td>0.42</td>
</tr>
<tr>
<td>Atom-1</td>
<td>Atom-2</td>
<td>Interatomic distance (Å)</td>
<td>Clash overlap (Å)</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>1:B:350:GLU:HG3</td>
<td>1:B:387:HIS:HB3</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:418:ASP:HA</td>
<td>1:B:426:LEU:HD23</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:736:ASN:C</td>
<td>1:B:737:TRP:CD1</td>
<td>2.93</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:322:PHE:HB2</td>
<td>1:A:419:HIS:ND1</td>
<td>2.35</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:513:TRP:CD2</td>
<td>1:A:536:MET:HG2</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:708:ARG:HG2</td>
<td>1:A:867:VAL:HG23</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:738:THR:HG2</td>
<td>2:E:308:ILE:CG1</td>
<td>2.48</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:448:HIS:HB2</td>
<td>1:B:572:ARG:NH1</td>
<td>2.26</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:707:ASP:CG</td>
<td>1:B:905:ARG:NH1</td>
<td>2.73</td>
<td>0.42</td>
</tr>
<tr>
<td>2:F:293:ILE:HG13</td>
<td>2:F:293:ILE:O</td>
<td>2.18</td>
<td>0.42</td>
</tr>
<tr>
<td>2:F:295:ILE:CD1</td>
<td>2:F:363:ALA:HB2</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:885:PHE:HD2</td>
<td>1:A:895:PHE:CZ</td>
<td>2.38</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:165:LEU:HB2</td>
<td>1:B:171:TYR:CE2</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:355:VAL:HG2</td>
<td>1:A:357:TYR:CE1</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:443:ALA:CB</td>
<td>1:A:564:LEU:HD11</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:322:PHE:HB2</td>
<td>1:B:419:HIS:ND1</td>
<td>2.35</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:244:MET:HE3</td>
<td>1:B:334:PRO:HG2</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:508:THR:HG2</td>
<td>1:B:511:ASP:OD1</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:130:HIS:HB3</td>
<td>1:A:131:MET:H</td>
<td>2.43</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:414:TYR:CE1</td>
<td>1:A:430:ILE:HD12</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:470:ILE:O</td>
<td>1:A:472:TYR:N</td>
<td>2.53</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:737:TRP:CD1</td>
<td>1:A:768:LEU:HD13</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:850:LEU:HD23</td>
<td>1:A:850:LEU:N</td>
<td>2.35</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:508:THR:OG1</td>
<td>1:B:509:TYR:N</td>
<td>2.53</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:63:GLN:NE2</td>
<td>1:B:63:GLN:O</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:431:VAL:HG2</td>
<td>1:B:653:ILE:HG21</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:894:SER:C</td>
<td>1:B:896:SER:H</td>
<td>2.23</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:448:HIS:CA</td>
<td>1:A:572:ARG:NH1</td>
<td>2.84</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:681:LEU:HD21</td>
<td>1:A:958:TRP:CH2</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:853:LYS:HE2</td>
<td>1:A:888:TYR:CE1</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:707:ASP:CG</td>
<td>1:A:905:ARG:NH1</td>
<td>2.72</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:508:THR:OG1</td>
<td>1:A:509:TYR:N</td>
<td>2.53</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:835:VAL:HG13</td>
<td>1:A:872:LEU:HD21</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:148:THR:HG2</td>
<td>1:B:148:THR:O</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:517:GLN:C</td>
<td>1:B:519:ALA:N</td>
<td>2.71</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:787:PRO:HD3</td>
<td>2:E:347:TRP:CE2</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>2:E:357:ASP:C</td>
<td>2:E:359:LEU:N</td>
<td>2.69</td>
<td>0.41</td>
</tr>
<tr>
<td>2:E:413:ARG:HG2</td>
<td>2:E:413:ARG:NH1</td>
<td>2.35</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:449:PRO:HD2</td>
<td>1:A:572:ARG:NH1</td>
<td>2.36</td>
<td>0.41</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:699:LEU:O</td>
<td>1:A:702:PHE:HB2</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:320:LEU:HD12</td>
<td>1:B:320:LEU:HA</td>
<td>1.79</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:470:ILE:C</td>
<td>1:B:472:TYR:N</td>
<td>2.72</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:513:TRP:HA</td>
<td>1:B:513:TRP:CE3</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:853:LYS:HB2</td>
<td>1:B:888:TYR:HE1</td>
<td>1.85</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:906:PHE:CD1</td>
<td>1:B:906:PHE:N</td>
<td>2.87</td>
<td>0.41</td>
</tr>
<tr>
<td>2:E:393:VAL:O</td>
<td>2:E:393:VAL:CG2</td>
<td>2.68</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:449:PRO:CD</td>
<td>1:A:572:ARG:HH11</td>
<td>2.32</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:951:ASN:O</td>
<td>1:A:955:VAL:HG23</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:81:TYR:CD1</td>
<td>1:B:228:PHE:CE1</td>
<td>3.08</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:165:LEU:HB2</td>
<td>1:A:171:TYR:CE2</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:85:LEU:HD11</td>
<td>1:B:277:TYR:CE2</td>
<td>2.56</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:399:TRP:CG</td>
<td>1:B:463:ILE:HG23</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:587:ILE:HG13</td>
<td>1:A:592:MET:HG2</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:299:ALA:HB3</td>
<td>1:B:304:ILE:HD11</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:254:ALA:HB3</td>
<td>1:A:255:GLU:OE1</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:513:TRP:CE3</td>
<td>1:A:513:TRP:HA</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:78:PRO:HA</td>
<td>1:A:107:PHE:HA</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:826:ARG:HA</td>
<td>1:A:829:LEU:HD12</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:83:VAL:HG21</td>
<td>1:A:216:PHE:CD1</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:847:ASN:HA</td>
<td>1:A:848:PRO:HD2</td>
<td>1.84</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:443:ALA:CB</td>
<td>1:B:564:LEU:HD22</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:751:ILE:HG22</td>
<td>1:B:752:ASN:N</td>
<td>2.35</td>
<td>0.41</td>
</tr>
<tr>
<td>2:E:310:SER:O</td>
<td>2:E:412:VAL:CG1</td>
<td>2.68</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:564:LEU:CD1</td>
<td>1:A:564:LEU:H</td>
<td>2.28</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:906:PHE:N</td>
<td>1:A:906:PHE:CD1</td>
<td>2.87</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:166:GLN:HB3</td>
<td>1:B:167:PRO:HD2</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:327:TYR:CE1</td>
<td>1:B:389:TRP:HB2</td>
<td>2.56</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:704:LEU:C</td>
<td>1:B:704:LEU:HD23</td>
<td>2.41</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:826:ARG:HA</td>
<td>1:B:829:LEU:HD12</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:327:TYR:CE1</td>
<td>1:A:389:TRP:HB2</td>
<td>2.56</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:426:LEU:O</td>
<td>1:B:429:LEU:N</td>
<td>2.44</td>
<td>0.41</td>
</tr>
<tr>
<td>2:E:308:ILE:HA</td>
<td>2:E:410:GLN:HE22</td>
<td>1.86</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:794:TYR:O</td>
<td>1:A:796:ASN:N</td>
<td>2.54</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:947:TRP:O</td>
<td>1:A:951:ASN:ND2</td>
<td>2.54</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:341:LEU:O</td>
<td>1:B:359:GLU:HG3</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>1:B:470:ILE:O</td>
<td>1:B:472:TYR:N</td>
<td>2.54</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:527:LYS:HE3</td>
<td>1:B:527:LYS:HB2</td>
<td>1.90</td>
<td>0.00</td>
</tr>
<tr>
<td>1:A:274:LEU:HA</td>
<td>1:A:274:LEU:HD13</td>
<td>1.85</td>
<td>0.00</td>
</tr>
<tr>
<td>1:A:429:LEU:O</td>
<td>1:A:432:PRO:HD2</td>
<td>2.20</td>
<td>0.00</td>
</tr>
<tr>
<td>1:B:794:TYR:O</td>
<td>1:B:796:ASN:N</td>
<td>2.53</td>
<td>0.00</td>
</tr>
<tr>
<td>2:E:381:LEU:HA</td>
<td>2:E:381:LEU:HD13</td>
<td>1.87</td>
<td>0.00</td>
</tr>
<tr>
<td>2:F:383:PHE:HE2</td>
<td>2:F:386:PHE:CE2</td>
<td>2.39</td>
<td>0.00</td>
</tr>
<tr>
<td>1:B:181:LEU:HD22</td>
<td>1:B:190:ARG:HB3</td>
<td>2.01</td>
<td>0.00</td>
</tr>
<tr>
<td>1:B:182:ALA:HA</td>
<td>1:B:190:ARG:NH1</td>
<td>2.36</td>
<td>0.00</td>
</tr>
<tr>
<td>1:B:523:GLN:HG2</td>
<td>1:B:524:THR:N</td>
<td>2.36</td>
<td>0.00</td>
</tr>
<tr>
<td>1:A:185:LEU:HA</td>
<td>1:A:189:TYR:CE1</td>
<td>2.57</td>
<td>0.00</td>
</tr>
<tr>
<td>1:A:420:ALA:C</td>
<td>1:A:422:PRO:HD3</td>
<td>2.42</td>
<td>0.00</td>
</tr>
<tr>
<td>1:A:654:ASN:HA</td>
<td>1:A:657:GLN:HB3</td>
<td>2.04</td>
<td>0.00</td>
</tr>
<tr>
<td>2:E:404:ARG:HD3</td>
<td>2:E:409:ASP:OD1</td>
<td>2.22</td>
<td>0.00</td>
</tr>
<tr>
<td>2:F:348:ASP:CG</td>
<td>2:F:350:VAL:HG12</td>
<td>2.41</td>
<td>0.00</td>
</tr>
<tr>
<td>1:A:184:ASP:OD1</td>
<td>1:A:184:ASP:N</td>
<td>2.44</td>
<td>0.00</td>
</tr>
<tr>
<td>1:A:402:LEU:HD23</td>
<td>1:A:466:MET:O</td>
<td>2.21</td>
<td>0.00</td>
</tr>
<tr>
<td>1:A:576:PHE:N</td>
<td>1:A:576:PHE:HD2</td>
<td>2.19</td>
<td>0.00</td>
</tr>
<tr>
<td>1:A:687:LYS:HA</td>
<td>1:A:726:LEU:HD13</td>
<td>2.04</td>
<td>0.00</td>
</tr>
<tr>
<td>1:A:899:ILE:HD11</td>
<td>1:A:934:LEU:HD13</td>
<td>2.04</td>
<td>0.00</td>
</tr>
<tr>
<td>1:B:247:LYS:N</td>
<td>1:B:263:GLU:O</td>
<td>2.34</td>
<td>0.00</td>
</tr>
<tr>
<td>1:B:813:LEU:HA</td>
<td>1:B:825:LEU:HD13</td>
<td>2.03</td>
<td>0.00</td>
</tr>
</tbody>
</table>

All (2) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:527:ARG:NH1</td>
<td>2:E:396:ASN:OD1[3_545]</td>
<td>1.91</td>
<td>0.29</td>
</tr>
<tr>
<td>1:B:527:ARG:NH1</td>
<td>2:E:396:ASN:CG[3_545]</td>
<td>2.05</td>
<td>0.15</td>
</tr>
</tbody>
</table>

5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was
analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>895/959 (93%)</td>
<td>766 (86%)</td>
<td>84 (9%)</td>
<td>45 (5%)</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>894/959 (93%)</td>
<td>768 (86%)</td>
<td>82 (9%)</td>
<td>44 (5%)</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>142/440 (32%)</td>
<td>111 (78%)</td>
<td>22 (16%)</td>
<td>9 (6%)</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>133/440 (30%)</td>
<td>107 (80%)</td>
<td>20 (15%)</td>
<td>6 (4%)</td>
<td>3</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>2064/2798 (74%)</td>
<td>1752 (85%)</td>
<td>208 (10%)</td>
<td>104 (5%)</td>
<td>2</td>
</tr>
</tbody>
</table>

All (104) Ramachandran outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>146</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>155</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>273</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>290</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>344</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>427</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>488</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>566</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>595</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>781</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>884</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>929</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>931</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>146</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>155</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>273</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>290</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>344</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>427</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>488</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>566</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>781</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>884</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>929</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>931</td>
<td>THR</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>321</td>
<td>ASP</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>324</td>
<td>THR</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>349</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>356</td>
<td>THR</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>358</td>
<td>VAL</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>284</td>
<td>SER</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>F</td>
<td>342</td>
<td>CYS</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>357</td>
<td>ASP</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>393</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>137</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>138</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>307</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>345</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>347</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>368</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>487</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>518</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>600</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>645</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>882</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>888</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>895</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>926</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>930</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>93</td>
<td>ALA</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>137</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>138</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>307</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>345</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>347</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>471</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>487</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>518</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>595</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>600</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>645</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>882</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>888</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>895</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>926</td>
<td>GLY</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>930</td>
<td>GLY</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>322</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>407</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>64</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>224</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>257</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>291</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>471</td>
<td>SER</td>
</tr>
</tbody>
</table>

Continued on next page...
Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>799/845 (95%)</td>
<td>682 (85%)</td>
<td>117 (15%)</td>
<td>3 16</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>798/845 (94%)</td>
<td>681 (85%)</td>
<td>117 (15%)</td>
<td>3 16</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>132/393 (34%)</td>
<td>104 (79%)</td>
<td>28 (21%)</td>
<td>1 6</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>125/393 (32%)</td>
<td>102 (82%)</td>
<td>23 (18%)</td>
<td>2 9</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1854/2476 (75%)</td>
<td>1569 (85%)</td>
<td>285 (15%)</td>
<td>3 14</td>
</tr>
</tbody>
</table>

All (285) residues with a non-rotameric sidechain are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>76</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>85</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>94</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>96</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>113</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>118</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>126</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>130</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>137</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>139</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>140</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>145</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>165</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>184</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>202</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>207</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>213</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>216</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>224</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>227</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>236</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>239</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>251</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>255</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>256</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>271</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>273</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>274</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>277</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>286</td>
<td>ASN</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>308</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>310</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>335</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>343</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>345</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>352</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>368</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>378</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>390</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>396</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>412</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>415</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>423</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>434</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>441</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>444</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>448</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>452</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>465</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>468</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>480</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>481</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>488</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>495</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>505</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>506</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>508</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>513</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>523</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>524</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>526</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>527</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>528</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>536</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>557</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>559</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>563</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>564</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>566</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>567</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>568</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>569</td>
<td>ASN</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>587</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>594</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>598</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>599</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>605</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>607</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>615</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>617</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>618</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>634</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>643</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>645</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>647</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>674</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>677</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>700</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>704</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>738</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>740</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>742</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>751</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>777</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>789</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>791</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>796</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>817</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>820</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>845</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>850</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>851</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>852</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>858</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>882</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>885</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>886</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>899</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>905</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>913</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>915</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>924</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>939</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>940</td>
<td>LYS</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>942</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>953</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>963</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>61</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>63</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>76</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>85</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>92</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>94</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>96</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>113</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>118</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>126</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>137</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>139</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>140</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>145</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>165</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>184</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>202</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>207</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>213</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>216</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>224</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>227</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>236</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>239</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>251</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>255</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>271</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>273</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>274</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>277</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>286</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>308</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>310</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>335</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>343</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>345</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>352</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>378</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>390</td>
<td>PHE</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>412</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>415</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>423</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>426</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>434</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>441</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>444</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>448</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>452</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>465</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>468</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>480</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>481</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>488</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>495</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>505</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>506</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>508</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>513</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>523</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>524</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>526</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>527</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>528</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>536</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>557</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>559</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>563</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>564</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>566</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>567</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>568</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>569</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>587</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>594</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>598</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>599</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>605</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>607</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>615</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>617</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>618</td>
<td>LEU</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>634</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>643</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>645</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>647</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>674</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>677</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>679</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>700</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>740</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>742</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>751</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>777</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>789</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>791</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>796</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>817</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>820</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>845</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>850</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>851</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>852</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>858</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>871</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>882</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>885</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>886</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>899</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>905</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>913</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>915</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>924</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>939</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>940</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>942</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>953</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>963</td>
<td>SER</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>289</td>
<td>THR</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>291</td>
<td>VAL</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>294</td>
<td>THR</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>302</td>
<td>SER</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>308</td>
<td>ILE</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>311</td>
<td>THR</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>E</td>
<td>313</td>
<td>SER</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>315</td>
<td>ILE</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>323</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>330</td>
<td>ARG</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>335</td>
<td>SER</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>346</td>
<td>LEU</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>354</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>358</td>
<td>VAL</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>369</td>
<td>THR</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>376</td>
<td>LYS</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>377</td>
<td>LEU</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>382</td>
<td>THR</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>383</td>
<td>PHE</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>404</td>
<td>ARG</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>407</td>
<td>THR</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>412</td>
<td>VAL</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>413</td>
<td>ARG</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>415</td>
<td>LEU</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>417</td>
<td>VAL</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>420</td>
<td>GLU</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>424</td>
<td>SER</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>425</td>
<td>ILE</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>286</td>
<td>LEU</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>289</td>
<td>THR</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>291</td>
<td>VAL</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>294</td>
<td>THR</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>308</td>
<td>ILE</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>311</td>
<td>THR</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>313</td>
<td>SER</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>315</td>
<td>ILE</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>335</td>
<td>SER</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>341</td>
<td>THR</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>346</td>
<td>LEU</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>354</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>367</td>
<td>THR</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>369</td>
<td>THR</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>404</td>
<td>ARG</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>405</td>
<td>THR</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>406</td>
<td>ARG</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>412</td>
<td>VAL</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>413</td>
<td>ARG</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>415</td>
<td>LEU</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>F</td>
<td>417</td>
<td>VAL</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>420</td>
<td>GLU</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>424</td>
<td>SER</td>
</tr>
</tbody>
</table>

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (6) such sidechains are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>640</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>679</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>951</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>640</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>679</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>951</td>
<td>ASN</td>
</tr>
</tbody>
</table>

5.3.3 RNA

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates

There are no carbohydrates in this entry.

5.6 Ligand geometry

Of 28 ligands modelled in this entry, 2 are monoatomic - leaving 26 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).
In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1002</td>
<td>1</td>
<td>14,14,15</td>
<td>0.52</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1003</td>
<td>1</td>
<td>14,14,15</td>
<td>0.41</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1004</td>
<td>1</td>
<td>14,14,15</td>
<td>0.47</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1005</td>
<td>1</td>
<td>14,14,15</td>
<td>0.49</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1006</td>
<td>1</td>
<td>14,14,15</td>
<td>0.51</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1007</td>
<td>1</td>
<td>14,14,15</td>
<td>0.56</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1008</td>
<td>1,4</td>
<td>14,14,15</td>
<td>0.62</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1009</td>
<td>4</td>
<td>14,14,15</td>
<td>0.70</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1010</td>
<td>1</td>
<td>14,14,15</td>
<td>0.49</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1011</td>
<td>1</td>
<td>14,14,15</td>
<td>0.53</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1012</td>
<td>1</td>
<td>14,14,15</td>
<td>0.48</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1002</td>
<td>1</td>
<td>14,14,15</td>
<td>0.44</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1003</td>
<td>1</td>
<td>14,14,15</td>
<td>0.47</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1004</td>
<td>1</td>
<td>14,14,15</td>
<td>0.50</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1005</td>
<td>1</td>
<td>14,14,15</td>
<td>0.71</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1006</td>
<td>1</td>
<td>14,14,15</td>
<td>0.56</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1007</td>
<td>1</td>
<td>14,14,15</td>
<td>0.70</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1008</td>
<td>1</td>
<td>14,14,15</td>
<td>0.43</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1009</td>
<td>1</td>
<td>14,14,15</td>
<td>0.65</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1010</td>
<td>1</td>
<td>14,14,15</td>
<td>0.43</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1011</td>
<td>1</td>
<td>14,14,15</td>
<td>0.50</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1012</td>
<td>1</td>
<td>14,14,15</td>
<td>0.55</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>E</td>
<td>501</td>
<td>2,4</td>
<td>14,14,15</td>
<td>0.61</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>E</td>
<td>502</td>
<td>4</td>
<td>14,14,15</td>
<td>0.48</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>F</td>
<td>501</td>
<td>2,4</td>
<td>14,14,15</td>
<td>0.65</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>F</td>
<td>502</td>
<td>4</td>
<td>14,14,15</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1007</td>
<td>1</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1008</td>
<td>1,4</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1009</td>
<td>4</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1010</td>
<td>1</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1011</td>
<td>1</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1012</td>
<td>1</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1002</td>
<td>1</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1003</td>
<td>1</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1004</td>
<td>1</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1005</td>
<td>1</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1006</td>
<td>1</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1007</td>
<td>1</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1008</td>
<td>1</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1009</td>
<td>1</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1010</td>
<td>1</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1011</td>
<td>1</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1012</td>
<td>1</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>E</td>
<td>501</td>
<td>2,4</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>E</td>
<td>502</td>
<td>4</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>F</td>
<td>501</td>
<td>2,4</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>F</td>
<td>502</td>
<td>4</td>
<td>-</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
</tbody>
</table>

There are no bond length outliers.

All (28) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>B</td>
<td>1003</td>
<td>NAG</td>
<td>C2-N2-C7</td>
<td>-2.43</td>
<td>119.41</td>
<td>122.94</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>501</td>
<td>NAG</td>
<td>O5-C1-C2</td>
<td>-2.32</td>
<td>108.32</td>
<td>111.52</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>501</td>
<td>NAG</td>
<td>O5-C1-C2</td>
<td>-2.27</td>
<td>108.39</td>
<td>111.52</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1010</td>
<td>NAG</td>
<td>C2-N2-C7</td>
<td>-2.17</td>
<td>119.77</td>
<td>122.94</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1011</td>
<td>NAG</td>
<td>C2-N2-C7</td>
<td>-2.16</td>
<td>119.78</td>
<td>122.94</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1005</td>
<td>NAG</td>
<td>O5-C5-C4</td>
<td>-2.15</td>
<td>105.60</td>
<td>110.83</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1007</td>
<td>NAG</td>
<td>O5-C1-C2</td>
<td>-2.08</td>
<td>108.64</td>
<td>111.52</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1010</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>2.00</td>
<td>114.94</td>
<td>112.19</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1011</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>2.01</td>
<td>114.95</td>
<td>112.19</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1012</td>
<td>NAG</td>
<td>O5-C5-C6</td>
<td>2.03</td>
<td>110.35</td>
<td>107.15</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1009</td>
<td>NAG</td>
<td>C4-C3-C2</td>
<td>2.15</td>
<td>114.17</td>
<td>111.02</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1004</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>2.23</td>
<td>115.25</td>
<td>112.19</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1004</td>
<td>NAG</td>
<td>O5-C1-C2</td>
<td>2.24</td>
<td>114.61</td>
<td>111.52</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1010</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>2.26</td>
<td>115.30</td>
<td>112.19</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1005</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>2.31</td>
<td>115.37</td>
<td>112.19</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1002</td>
<td>NAG</td>
<td>O5-C5-C6</td>
<td>2.38</td>
<td>110.91</td>
<td>107.15</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>B</td>
<td>1009</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>2.40</td>
<td>115.48</td>
<td>112.19</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>501</td>
<td>NAG</td>
<td>C3-C4-C5</td>
<td>2.45</td>
<td>114.63</td>
<td>110.24</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1007</td>
<td>NAG</td>
<td>C4-C3-C2</td>
<td>2.53</td>
<td>114.73</td>
<td>111.02</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1008</td>
<td>NAG</td>
<td>C4-C3-C2</td>
<td>2.56</td>
<td>114.77</td>
<td>111.02</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1012</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>2.84</td>
<td>116.09</td>
<td>112.19</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1003</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>2.88</td>
<td>116.15</td>
<td>112.19</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>501</td>
<td>NAG</td>
<td>C3-C4-C5</td>
<td>2.89</td>
<td>115.41</td>
<td>110.24</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1002</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>3.13</td>
<td>116.49</td>
<td>112.19</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>502</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>3.33</td>
<td>116.77</td>
<td>112.19</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>502</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>3.34</td>
<td>116.78</td>
<td>112.19</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1008</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>3.60</td>
<td>117.14</td>
<td>112.19</td>
</tr>
<tr>
<td>4</td>
<td>A</td>
<td>1004</td>
<td>NAG</td>
<td>C1-O5-C5</td>
<td>4.19</td>
<td>117.95</td>
<td>112.19</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

3 monomers are involved in 7 short contacts:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>B</td>
<td>1008</td>
<td>NAG</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1009</td>
<td>NAG</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>1011</td>
<td>NAG</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

5.7 Other polymers

There are no such residues in this entry.

5.8 Polymer linkage issues

There are no chain breaks in this entry.
6 Fit of model and data

6.1 Protein, DNA and RNA chains

In the following table, the column labelled ‘#RSRZ > 2’ contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95\text{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled ‘Q< 0.9’ lists the number of (and percentage) of residues with an average occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th><RSRZ></th>
<th>#RSRZ>2</th>
<th>OWAB(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>901/959 (93%)</td>
<td>-0.07</td>
<td>10 (1%)</td>
<td>80 69</td>
<td>50, 84, 143, 186</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>900/959 (93%)</td>
<td>-0.07</td>
<td>15 (1%)</td>
<td>70 57</td>
<td>48, 86, 154, 203</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>146/440 (33%)</td>
<td>0.04</td>
<td>1 (0%)</td>
<td>87 81</td>
<td>66, 96, 148, 188</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>139/440 (31%)</td>
<td>0.58</td>
<td>8 (5%)</td>
<td>23 12</td>
<td>75, 127, 162, 185</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>2086/2798 (74%)</td>
<td>-0.02</td>
<td>34 (1%)</td>
<td>72 59</td>
<td>48, 88, 153, 203</td>
</tr>
</tbody>
</table>

All (34) RSRZ outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>F</td>
<td>419</td>
<td>TYR</td>
<td>4.5</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>141</td>
<td>GLN</td>
<td>4.0</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>94</td>
<td>ASP</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>141</td>
<td>GLN</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>166</td>
<td>GLN</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>932</td>
<td>ARG</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>116</td>
<td>ILE</td>
<td>2.9</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>388</td>
<td>LEU</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>169</td>
<td>HIS</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>170</td>
<td>MET</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>140</td>
<td>SER</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>614</td>
<td>ASP</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>163</td>
<td>GLY</td>
<td>2.5</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>353</td>
<td>ARG</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>63</td>
<td>GLN</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>159</td>
<td>VAL</td>
<td>2.4</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>295</td>
<td>ILE</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>151</td>
<td>VAL</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>399</td>
<td>PHE</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>170</td>
<td>MET</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>885</td>
<td>PHE</td>
<td>2.3</td>
</tr>
</tbody>
</table>

Continued on next page...
6.2 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates

There are no carbohydrates in this entry.

6.4 Ligands

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95th percentile and maximum values of B factors of atoms in the group. The column labelled ‘Q<0.9’ lists the number of atoms with occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RSRC</th>
<th>RSR</th>
<th>B-factors(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1004</td>
<td>14/15</td>
<td>0.62</td>
<td>0.44</td>
<td>130,164,186,189</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1004</td>
<td>14/15</td>
<td>0.79</td>
<td>0.30</td>
<td>125,149,160,160</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1011</td>
<td>14/15</td>
<td>0.79</td>
<td>0.24</td>
<td>114,128,147,148</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1002</td>
<td>14/15</td>
<td>0.83</td>
<td>0.38</td>
<td>107,137,154,158</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1007</td>
<td>14/15</td>
<td>0.84</td>
<td>0.26</td>
<td>90,99,133,141</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1011</td>
<td>14/15</td>
<td>0.85</td>
<td>0.20</td>
<td>84,95,117,134</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>F</td>
<td>502</td>
<td>14/15</td>
<td>0.85</td>
<td>0.39</td>
<td>144,150,156,159</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1003</td>
<td>14/15</td>
<td>0.86</td>
<td>0.19</td>
<td>75,88,102,106</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1009</td>
<td>14/15</td>
<td>0.86</td>
<td>0.38</td>
<td>125,143,149,155</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1006</td>
<td>14/15</td>
<td>0.86</td>
<td>0.42</td>
<td>138,158,186,192</td>
<td>0</td>
</tr>
</tbody>
</table>
6.5 Other polymers

There are no such residues in this entry.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RCC</th>
<th>RSR</th>
<th>B-factors (Å²)</th>
<th>Q < 0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1012</td>
<td>14/15</td>
<td>0.87</td>
<td>0.22</td>
<td>58,80,99,100</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>E</td>
<td>502</td>
<td>14/15</td>
<td>0.87</td>
<td>0.22</td>
<td>126,140,146,149</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1007</td>
<td>14/15</td>
<td>0.87</td>
<td>0.22</td>
<td>92,117,143,146</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1005</td>
<td>14/15</td>
<td>0.87</td>
<td>0.22</td>
<td>123,148,157,159</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1010</td>
<td>14/15</td>
<td>0.87</td>
<td>0.28</td>
<td>127,145,159,164</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1005</td>
<td>14/15</td>
<td>0.87</td>
<td>0.22</td>
<td>135,142,162,163</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1002</td>
<td>14/15</td>
<td>0.87</td>
<td>0.24</td>
<td>107,119,135,139</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1009</td>
<td>14/15</td>
<td>0.89</td>
<td>0.23</td>
<td>104,125,171,174</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1008</td>
<td>14/15</td>
<td>0.89</td>
<td>0.26</td>
<td>73,97,115,119</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1003</td>
<td>14/15</td>
<td>0.90</td>
<td>0.19</td>
<td>51,79,92,96</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1010</td>
<td>14/15</td>
<td>0.91</td>
<td>0.17</td>
<td>106,121,131,137</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>A</td>
<td>1008</td>
<td>14/15</td>
<td>0.93</td>
<td>0.19</td>
<td>65,95,112,120</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1012</td>
<td>14/15</td>
<td>0.93</td>
<td>0.14</td>
<td>74,87,113,124</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>B</td>
<td>1006</td>
<td>14/15</td>
<td>0.93</td>
<td>0.25</td>
<td>117,129,135,140</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>F</td>
<td>501</td>
<td>14/15</td>
<td>0.94</td>
<td>0.32</td>
<td>97,120,144,146</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>NAG</td>
<td>E</td>
<td>501</td>
<td>14/15</td>
<td>0.95</td>
<td>0.31</td>
<td>88,117,142,149</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>ZN</td>
<td>B</td>
<td>1001</td>
<td>1/1</td>
<td>0.97</td>
<td>0.17</td>
<td>83,83,83,83</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>ZN</td>
<td>A</td>
<td>1001</td>
<td>1/1</td>
<td>0.99</td>
<td>0.18</td>
<td>75,75,75,75</td>
<td>0</td>
</tr>
</tbody>
</table>