

wwPDB X-ray Structure Validation Summary Report (i)

Aug 6, 2024 – 05:10 pm BST

:	9FEK
:	Crystal structure of guanidinase from Nitrospira inopinata
:	Puehringer, D.; Mccarthy, A.
:	2024-05-20
:	1.58 Å(reported)
	::

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	1.8.4, CSD as541be (2020)
Xtriage (Phenix)	:	1.13
EDS	:	FAILED
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 1.58 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Matria	Whole archive	Similar resolution		
Metric	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$		
Clashscore	141614	5861 (1.60-1.56)		
Ramachandran outliers	138981	5708(1.60-1.56)		
Sidechain outliers	138945	5703 (1.60-1.56)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Note EDS failed to run properly.

Mol	Chain	Length	Quality of chain	
1	А	384	89%	8% ••
1	В	384	87%	10% ••
1	С	384	89%	7% ••
1	D	384	91%	6% • •
1	Е	384	91%	7% •
1	F	384	90%	7% ••
1	G	384	90%	7% ••
1	Н	384	88%	9% ••

Mol	Chain	Length	Quality of chain		
1	Ι	384	89%	9%	••
1	J	384	89%	8%	••
1	K	384	89%	8%	••
1	L	384	90%	7%	••

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 71343 atoms, of which 33944 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		Atoms					ZeroOcc	AltConf	Trace			
1	Δ	274	Total	С	Η	Ν	0	S	0	4	0			
	A	374	5703	1826	2831	495	539	12	0	4	0			
1	P	274	Total	С	Η	Ν	0	S	0	4	0			
	D	374	5701	1826	2829	495	539	12	0	4	0			
1	С	374	Total	С	Η	Ν	0	S	0	Б	0			
	U	574	5717	1829	2839	498	539	12	0	5	0			
1	Л	373	Total	С	Η	Ν	0	S	0	2	0			
	D	515	5664	1815	2810	492	535	12	0	2	0			
1	E	374	Total	С	Η	Ν	0	S	0	4	0			
1		514	5701	1826	2829	495	539	12	0	0	0	0	4	0
1	F	374	Total	С	Η	Ν	Ο	\mathbf{S}	0	2	0			
1	Ľ	514	5701	1826	2829	495	539	12	0	5	0			
1	C	977	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0	0			
1	G	511	5719	1830	2843	496	537	13	0	0	0	0	0	
1	н	374	Total	С	Η	Ν	0	\mathbf{S}	0	4	0			
1	11	514	5702	1826	2830	495	539	12	0	4	0			
1	Т	375	Total	С	Η	Ν	0	\mathbf{S}	0	5	0			
1	1	515	5735	1835	2848	498	542	12	0	0	0			
1	Т	374	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0	0			
1	5	014	5669	1816	2815	492	534	12	0	0	0			
1	ĸ	373	Total	\mathbf{C}	Η	Ν	Ο	\mathbf{S}	0	0	0			
	17	010	5646	1810	2801	490	533	12	0	U				
1	T.	375	Total	\mathbf{C}	H	Ν	0	S	0	5				
		010	5726	1833	2840	498	543	12		0				

• Molecule 1 is a protein called Putative agmatinase 2.

There are 24 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	-1	GLY	-	expression tag	UNP A0A0S4KUT0
А	0	PRO	-	expression tag	UNP A0A0S4KUT0
В	-1	GLY	-	expression tag	UNP A0A0S4KUT0
В	0	PRO	-	expression tag	UNP A0A0S4KUT0
С	-1	GLY	-	expression tag	UNP A0A0S4KUT0

Chain	Residue	Modelled	Actual	Comment	Reference
С	0	PRO	-	expression tag	UNP A0A0S4KUT0
D	-1	GLY	-	expression tag	UNP A0A0S4KUT0
D	0	PRO	-	expression tag	UNP A0A0S4KUT0
Е	-1	GLY	-	expression tag	UNP A0A0S4KUT0
Е	0	PRO	-	expression tag	UNP A0A0S4KUT0
F	-1	GLY	-	expression tag	UNP A0A0S4KUT0
F	0	PRO	-	expression tag	UNP A0A0S4KUT0
G	-1	GLY	-	expression tag	UNP A0A0S4KUT0
G	0	PRO	-	expression tag	UNP A0A0S4KUT0
Н	-1	GLY	-	expression tag	UNP A0A0S4KUT0
Н	0	PRO	-	expression tag	UNP A0A0S4KUT0
Ι	-1	GLY	-	expression tag	UNP A0A0S4KUT0
Ι	0	PRO	-	expression tag	UNP A0A0S4KUT0
J	-1	GLY	-	expression tag	UNP A0A0S4KUT0
J	0	PRO	-	expression tag	UNP A0A0S4KUT0
K	-1	GLY	-	expression tag	UNP A0A0S4KUT0
K	0	PRO	-	expression tag	UNP A0A0S4KUT0
L	-1	GLY	-	expression tag	UNP A0A0S4KUT0
L	0	PRO	-	expression tag	UNP A0A0S4KUT0

• Molecule 2 is SULFATE ION (three-letter code: SO4) (formula: O_4S).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	А	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	В	1	Total O S	0	0
			5 4 1		
2	В	1	Total O S $5 4 1$	0	0
	C	1	Total O S	0	0
	C	1	5 4 1	0	0
2	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	D	1	Total O S 5 4 1	0	0
2	Е	1	Total O S	0	0
			5 4 1 Total O S		
2	E	1	$\begin{array}{cccc} 1000 & 0 & 0 \\ 5 & 4 & 1 \end{array}$	0	0
2	F	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	F	1	Total O S $5 4 1$	0	0
2	G	1	Total O S	0	0
2	G	1	Total O S	0	0
			$\begin{array}{ccc} 5 & 4 & 1 \\ \hline \text{Total} & O & S \end{array}$		-
2	Н	1	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0	0
2	Н	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	Ι	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0
2	Ι	1	Total O S 5 4 1	0	0
2	J	1	Total O S	0	0
2	J	1	$\begin{array}{cccc} 5 & 4 & 1 \\ \hline \text{Total} & O & S \\ 5 & 4 & 1 \end{array}$	0	0
2	K	1	$\begin{array}{c cccc} 5 & 4 & 1 \\ \hline \text{Total} & O & S \\ 5 & 4 & 1 \end{array}$	0	0
2	K	1	$\begin{array}{cccc} 5 & 4 & 1 \\ \hline \text{Total} & O & S \\ 5 & 4 & 1 \end{array}$	0	0
2	L	1	$\begin{array}{cccc} 5 & 4 & 1 \\ \hline \text{Total} & \text{O} & \text{S} \\ 5 & 4 & 1 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf
2	L	1	Total 5	0 4	S 1	0	0

• Molecule 3 is MANGANESE (II) ION (three-letter code: MN) (formula: Mn) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	Total Mn 1 1	0	0
3	В	1	Total Mn 1 1	0	0
3	С	1	Total Mn 1 1	0	0
3	D	1	Total Mn 1 1	0	0
3	Ε	1	Total Mn 1 1	0	0
3	F	1	Total Mn 1 1	0	0
3	G	1	Total Mn 1 1	0	0
3	Н	1	Total Mn 1 1	0	0
3	Ι	1	Total Mn 1 1	0	0
3	J	1	Total Mn 1 1	0	0
3	К	1	Total Mn 1 1	0	0
3	L	1	Total Mn 1 1	0	0

• Molecule 4 is NICKEL (II) ION (three-letter code: NI) (formula: Ni) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	1	Total Ni 1 1	0	0
4	В	1	Total Ni 1 1	0	0
4	С	1	Total Ni 1 1	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	D	1	Total Ni 1 1	0	0
4	Е	1	Total Ni 1 1	0	0
4	F	1	Total Ni 1 1	0	0
4	G	1	Total Ni 1 1	0	0
4	Н	1	Total Ni 1 1	0	0
4	Ι	1	Total Ni 1 1	0	0
4	J	1	Total Ni 1 1	0	0
4	K	1	Total Ni 1 1	0	0
4	L	1	Total Ni 1 1	0	0

• Molecule 5 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	А	230	Total O 230 230	0	0
5	В	243	Total O 243 243	0	0
5	С	238	Total O 238 238	0	0
5	D	241	Total O 241 241	0	0
5	Е	234	Total O 234 234	0	0
5	F	210	Total O 210 210	0	0
5	G	255	Total O 255 255	0	0
5	Н	222	Total O 222 222	0	0
5	Ι	245	Total O 245 245	0	0
5	J	243	Total O 243 243	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
5	K	236	Total O 236 236	0	0
5	L	218	Total O 218 218	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

Note EDS failed to run properly.

• Molecule 1: Putative agmatinase 2

- \bullet Molecule 1: Putative agmatinase 2
- Chain E: 91% 7% ·

 \bullet Molecule 1: Putative agmatinase 2

- Molecule 1: Putative agmatinase 2

• Molecule 1: Putative agmatinase 2

• Molecule 1: Putative agmatinase 2

• Molecule 1: Putative agmatinase 2

- Chain J:
 89%
 8%
 8%

 Model
 Single
 Sing
- M371
 M368
 M368

 V862
 0371
 1155

 V862
 0371
 1155

 ABS
 V11
 1155

 ABS
 V11
 1105

 V139
 1105
 1466

 V139
 1122
 1223

 V139
 111
 1225

 V139
 1122
 1224

 V139
 1122
 1224

 V139
 1122
 1224

 V139
 1225
 1224
- Molecule 1: Putative agmatinase 2

Chain L:	90%	7% ••
GLY PRD MET MET ALA LYS C9 C9 K10 K10 K10 K10 K10 K10 K10	65 8128 8128 7128 71224 71224 71224 7225 7225 7225 7225 7225 7225 7225 7	K281 E285 V291 V291 V291 V391 E325 V349 V349 V349 V345 V345 V362
C364 V371 N378 ARG LYS LYS ARG		

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	98.97Å 164.79Å 143.97Å	Depositor
a, b, c, α , β , γ	90.00° 90.03° 90.00°	Depositor
Resolution (Å)	45.01 - 1.58	Depositor
% Data completeness	92 9 (45 01-1 58)	Depositor
(in resolution range)	52.5 (40.01 1.00)	Depositor
R _{merge}	0.11	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.06 (at 1.58 \text{\AA})$	Xtriage
Refinement program	PHENIX (1.21_5184: ???)	Depositor
R, R_{free}	0.200 , 0.214	Depositor
Wilson B-factor ($Å^2$)	22.1	Xtriage
Anisotropy	0.314	Xtriage
L-test for twinning ²	$< L >=0.47, < L^2>=0.29$	Xtriage
Estimated twinning fraction	0.158 for h,-k,-l	Xtriage
Total number of atoms	71343	wwPDB-VP
Average B, all atoms $(Å^2)$	27.0	wwPDB-VP

EDS failed to run properly - this section is therefore incomplete.

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 38.60 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 3.5978e-04. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NI, SO4, MN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.47	0/2949	0.64	0/4008	
1	В	0.49	1/2949~(0.0%)	0.68	1/4008~(0.0%)	
1	С	0.48	1/2960~(0.0%)	0.66	0/4022	
1	D	0.49	0/2931	0.66	0/3984	
1	Ε	0.45	0/2949	0.64	0/4008	
1	F	0.44	1/2940~(0.0%)	0.62	0/3996	
1	G	0.57	1/2944~(0.0%)	0.65	0/3999	
1	Н	0.49	0/2949	0.64	0/4008	
1	Ι	0.44	0/2962	0.63	0/4025	
1	J	0.49	1/2922~(0.0%)	0.65	0/3971	
1	Κ	0.46	0/2913	0.64	0/3960	
1	L	0.50	0/2961	0.67	0/4025	
All	All	0.48	5/35329~(0.0%)	0.65	1/48014~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	Ε	0	3
1	F	0	2
1	G	0	1
1	Н	0	1
1	Ι	0	2
1	L	0	2
All	All	0	11

All (5) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
1	G	12	PRO	N-CD	-15.97	1.25	1.47
1	В	226	TRP	C-O	-5.48	1.12	1.23
1	С	205	HIS	C-O	-5.47	1.12	1.23
1	F	12	PRO	N-CD	-5.46	1.40	1.47
1	J	237	ALA	C-N	-5.12	1.22	1.34

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	182	HIS	CB-CG-ND1	6.43	139.28	123.20

There are no chirality outliers.

5 of 11 planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	Е	352[A]	ALA	Mainchain
1	Е	352[B]	ALA	Mainchain
1	Е	372	ARG	Sidechain
1	F	352[B]	ALA	Mainchain
1	F	42	ARG	Sidechain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2872	2831	2822	19	0
1	В	2872	2829	2822	24	0
1	С	2878	2839	2825	23	0
1	D	2854	2810	2802	15	0
1	Е	2872	2829	2822	21	0
1	F	2872	2829	2827	24	0
1	G	2876	2843	2844	22	0
1	Н	2872	2830	2822	29	0
1	Ι	2887	2848	2836	26	0
1	J	2854	2815	2813	17	0
1	Κ	2845	2801	2801	16	0
1	L	2886	2840	2829	22	0
2	А	10	0	0	0	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
2	B	10	0	0	0	0
2	C	10	0	0	0	0
2	D	10	0	0	0	0
2	E	10	0	0	0	0
2	F	10	0	0	0	0
2	G	10	0	0	0	0
2	Н	10	0	0	0	0
2	Ι	10	0	0	0	0
2	J	10	0	0	0	0
2	K	10	0	0	0	0
2	L	10	0	0	0	0
3	А	1	0	0	0	0
3	В	1	0	0	0	0
3	С	1	0	0	0	0
3	D	1	0	0	0	0
3	Е	1	0	0	0	0
3	F	1	0	0	0	0
3	G	1	0	0	0	0
3	Н	1	0	0	0	0
3	Ι	1	0	0	0	0
3	J	1	0	0	0	0
3	K	1	0	0	0	0
3	L	1	0	0	0	0
4	А	1	0	0	0	0
4	В	1	0	0	0	0
4	С	1	0	0	0	0
4	D	1	0	0	0	0
4	E	1	0	0	0	0
4	F	1	0	0	0	0
4	G	1	0	0	0	0
4	Н	1	0	0	0	0
4	I	1	0	0	0	0
4	J	1	0	0	0	0
4	K	1	0	0	0	0
4		1	0	0	0	0
5	A	230	0	0	2	0
5	B	243	0	0	0	0
5		238	0	0	1	0
5	D	241	0	0	0	0
5		234	0	0		0
5	F'	210	0	0	2	0
5	G	255	0	0		
					Continu	ied on next page

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
5	Н	222	0	0	0	0
5	Ι	245	0	0	0	0
5	J	243	0	0	1	0
5	Κ	236	0	0	0	0
5	L	218	0	0	0	0
All	All	37399	33944	33865	221	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 3.

The worst 5 of 221 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
1:L:238:LYS:HE2	1:L:238:LYS:H	1.31	0.92	
1:G:83:GLU:HG2	1:I:46:LEU:HD13	1.58	0.84	
1:J:298:PHE:HB3	1:J:342:ILE:HD13	1.61	0.82	
1:L:8:GLN:CB	1:L:10:LYS:HE3	2.22	0.69	
1:B:249:GLN:OE1	1:F:123:LEU:HD11	1.92	0.68	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	376/384~(98%)	367~(98%)	8 (2%)	1 (0%)	41	21
1	В	376/384~(98%)	366~(97%)	9~(2%)	1 (0%)	41	21
1	С	377/384~(98%)	368~(98%)	8 (2%)	1 (0%)	41	21
1	D	373/384~(97%)	365~(98%)	7(2%)	1 (0%)	41	21
1	Е	376/384~(98%)	365 (97%)	10 (3%)	1 (0%)	41	21

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	F	375/384~(98%)	364 (97%)	10 (3%)	1 (0%)	41	21
1	G	375/384~(98%)	366~(98%)	8 (2%)	1 (0%)	41	21
1	Н	376/384~(98%)	366~(97%)	9(2%)	1 (0%)	41	21
1	Ι	378/384~(98%)	367~(97%)	10 (3%)	1 (0%)	41	21
1	J	372/384~(97%)	362~(97%)	9~(2%)	1 (0%)	41	21
1	K	371/384~(97%)	361~(97%)	9(2%)	1 (0%)	41	21
1	L	378/384~(98%)	367~(97%)	10 (3%)	1 (0%)	41	21
All	All	4503/4608 (98%)	4384 (97%)	107 (2%)	12 (0%)	41	21

Continued from previous page...

5 of 12 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	224	THR
1	В	224	THR
1	D	224	THR
1	F	224	THR
1	Н	224	THR

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric Outliers		Percentiles	
1	А	301/307~(98%)	293~(97%)	8(3%)	44	18
1	В	301/307~(98%)	294~(98%)	7 (2%)	50	23
1	С	302/307~(98%)	296~(98%)	6 (2%)	55	29
1	D	300/307~(98%)	295~(98%)	5 (2%)	60	36
1	Ε	301/307~(98%)	294~(98%)	7 (2%)	50	23
1	F	300/307~(98%)	294~(98%)	6 (2%)	55	29
1	G	301/307~(98%)	293~(97%)	8(3%)	44	18
1	Н	301/307~(98%)	295~(98%)	6 (2%)	55	29
1	Ι	303/307~(99%)	298 (98%)	5 (2%)	60	36

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
1	J	299/307~(97%)	290~(97%)	9~(3%)	41	15
1	Κ	298/307~(97%)	292~(98%)	6 (2%)	55	29
1	L	303/307~(99%)	296~(98%)	7 (2%)	50	23
All	All	3610/3684~(98%)	3530 (98%)	80 (2%)	52	25

Continued from previous page...

5 of 80 residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
1	Ι	327	PHE
1	Κ	313	TRP
1	J	15	ASP
1	J	313	TRP
1	L	200	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (2) such sidechains are listed below:

Mol	Chain	Res	Type
1	G	8	GLN
1	J	197	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 48 ligands modelled in this entry, 24 are monoatomic - leaving 24 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and

the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	ain Bos Link		B	Bond lengths			Bond angles		
	Type	Unann	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
2	SO4	А	402	-	4,4,4	0.14	0	$6,\!6,\!6$	0.09	0	
2	SO4	L	402	-	4,4,4	0.22	0	$6,\!6,\!6$	0.21	0	
2	SO4	J	401	-	4,4,4	0.07	0	6,6,6	0.16	0	
2	SO4	F	402	-	4,4,4	0.11	0	6,6,6	0.25	0	
2	SO4	Е	402	-	4,4,4	0.16	0	$6,\!6,\!6$	0.09	0	
2	SO4	Е	401	-	4,4,4	0.13	0	6,6,6	0.24	0	
2	SO4	J	402	-	4,4,4	0.53	0	$6,\!6,\!6$	0.10	0	
2	SO4	K	401	-	4,4,4	0.23	0	$6,\!6,\!6$	0.16	0	
2	SO4	F	401	-	4,4,4	0.15	0	6,6,6	0.14	0	
2	SO4	L	401	-	4,4,4	0.24	0	$6,\!6,\!6$	0.17	0	
2	SO4	D	401	-	4,4,4	0.20	0	$6,\!6,\!6$	0.16	0	
2	SO4	В	401	-	4,4,4	0.18	0	$6,\!6,\!6$	0.30	0	
2	SO4	G	402	-	4,4,4	0.25	0	$6,\!6,\!6$	0.07	0	
2	SO4	K	402	-	4,4,4	0.15	0	$6,\!6,\!6$	0.16	0	
2	SO4	В	402	-	4,4,4	0.10	0	$6,\!6,\!6$	0.17	0	
2	SO4	Ι	401	-	4,4,4	0.21	0	$6,\!6,\!6$	0.23	0	
2	SO4	G	401	-	4,4,4	0.21	0	$6,\!6,\!6$	0.25	0	
2	SO4	D	402	-	4,4,4	0.19	0	$6,\!6,\!6$	0.15	0	
2	SO4	Ι	402	-	4,4,4	0.12	0	$6,\!6,\!6$	0.14	0	
2	SO4	Н	401	-	4,4,4	0.15	0	$6,\!6,\!6$	0.13	0	
2	SO4	С	401	-	4,4,4	0.17	0	6,6,6	0.13	0	
2	SO4	Н	402	-	4,4,4	0.11	0	$\overline{6,\!6,\!6}$	0.18	0	
2	SO4	A	401	-	4,4,4	0.27	0	$\overline{6,\!6,\!6}$	0.16	0	
2	SO4	С	402	-	4,4,4	0.15	0	6,6,6	0.23	0	

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

EDS failed to run properly - this section is therefore empty.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

EDS failed to run properly - this section is therefore empty.

6.3 Carbohydrates (i)

EDS failed to run properly - this section is therefore empty.

6.4 Ligands (i)

EDS failed to run properly - this section is therefore empty.

6.5 Other polymers (i)

EDS failed to run properly - this section is therefore empty.

