

Full wwPDB X-ray Structure Validation Report (i)

Aug 20, 2020 – 12:45 PM BST

PDB ID	:	5FHZ
Title	:	Human aldehyde dehydrogenase 1A3 complexed with $NAD(+)$ and retinoic
		acid
Authors	:	Moretti, A.; Rizzi, M.; Garavaglia, S.
Deposited on	:	2015-12-22
Resolution	:	2.90 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	•	4.02b-467
Mogul	÷	1.8.5 (274361), CSD as541be(2020)
Xtriage (Phenix)	:	1.13
EDS	:	2.13.1
buster-report	:	1.1.7 (2018)
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
$\operatorname{CCP4}$:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.13.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 2.90 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	130704	1957 (2.90-2.90)
Clashscore	141614	2172(2.90-2.90)
Ramachandran outliers	138981	2115(2.90-2.90)
Sidechain outliers	138945	2117 (2.90-2.90)
RSRZ outliers	127900	1906 (2.90-2.90)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	Δ	520	000	0.40/	00/
	Л	529	68%	24%	• 8%
1	P	520		2007	
	Б	529	66%	23%	• 10%
					_
	C	529	68%	23%	• 8%
1	D	529	71%	21%	• 8%
			2%		
1	E	529	68%	22%	• 10%
			2%		
1	F	529	63%	21%	15%

Mol	Chain	Length	Quality of chain			
1	G	529	64%	22%	•	13%
1	Н	529	70%	22%		• 8%

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
3	REA	А	602	-	- X		-
3	REA	D	602	-	-	Х	-

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 29992 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace	
1	Δ	490	Total	С	Ν	Ο	S	0	0	0	
	A	409	3780	2410	646	704	20	0	0	0	
1	р	475	Total	С	Ν	Ο	S	0	0	0	
	D	475	3666	2336	628	682	20	0	0	0	
1	C	480	Total	С	Ν	Ο	S	0	0	0	
		409	3779	2409	646	704	20	0	0	U	
1	р	199	Total	С	Ν	Ο	S	0	0	0	
	D	400	3775	2407	645	703	20	0	0	0	
1	Б	178	Total	С	Ν	Ο	S	0	0	0	
		410	3695	2358	630	688	19	0	0		
1	Б	440	Total	С	Ν	Ο	S	0	0	0	
	Ľ	449	3453	2201	586	647	19	0	0	0	
1	C	469	Total	С	Ν	0	S	0	0	0	
	G	402	3570	2282	606	664	18	0	0	0	
1	Ц	199	Total	С	Ν	Ο	S	0	0	0	
	11	400	3771	2403	645	703	20				

• Molecule 1 is a protein called Aldehyde dehydrogenase family 1 member A3.

There are 136 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	-16	HIS	-	expression tag	UNP P47895
А	-15	HIS	-	expression tag	UNP P47895
А	-14	HIS	-	expression tag	UNP P47895
A	-13	HIS	-	expression tag	UNP P47895
A	-12	HIS	-	expression tag	UNP P47895
А	-11	HIS	-	expression tag	UNP P47895
А	-10	LEU	-	expression tag	UNP P47895
А	-9	GLU	-	expression tag	UNP P47895
A	-8	SER	-	expression tag	UNP P47895
A	-7	THR	-	expression tag	UNP P47895
A	-6	SER	-	expression tag	UNP P47895
А	-5	LEU	-	expression tag	UNP P47895
A	-4	TYR	_	expression tag	UNP P47895

Chain	Residue Modelled		Actual	Comment	Reference		
A	-3	LYS	-	expression tag	UNP P47895		
A	-2	LYS	_	expression tag	UNP P47895		
A	-1	ALA	_	expression tag	UNP P47895		
A	0	GLY	_	expression tag	UNP P47895		
 B	-16	HIS	_	expression tag	UNP P47895		
 B	-15	HIS	_	expression tag	UNP P47895		
 B	-14	HIS	_	expression tag	UNP P47895		
 B	-13	HIS	_	expression tag	UNP P47895		
 B	-12	HIS	_	expression tag	UNP P47895		
B	-11	HIS	_	expression tag	UNP P47895		
В	-10	LEU	_	expression tag	UNP P47895		
B	-9	GLU	_	expression tag	UNP P47895		
В	-8	SER	_	expression tag	UNP P47895		
В	-7	THR	_	expression tag	UNP P47895		
 B	-6	SER	_	expression tag	UNP P47895		
В	-5	LEU	_	expression tag	UNP P47895		
В	-4	TYR	_	expression tag	UNP P47895		
В	-3	LYS	_	expression tag	UNP P47895		
В	-2	LYS	_	expression tag	UNP P47895		
В	-1	ALA	-	expression tag	UNP P47895		
В	0	GLY	-	expression tag	UNP P47895		
С	-16	HIS	_	expression tag	UNP P47895		
С	-15	HIS	_	expression tag	UNP P47895		
С	-14	HIS	_	expression tag	UNP P47895		
С	-13	HIS	_	expression tag	UNP P47895		
С	-12	HIS	_	expression tag	UNP P47895		
С	-11	HIS	_	expression tag	UNP P47895		
С	-10	LEU	_	expression tag	UNP P47895		
С	-9	GLU	-	expression tag	UNP P47895		
С	-8	SER	-	expression tag	UNP P47895		
С	-7	THR	-	expression tag	UNP P47895		
С	-6	SER	-	expression tag	UNP P47895		
С	-5	LEU	_	expression tag	UNP P47895		
С	-4	TYR	-	expression tag	UNP P47895		
С	-3	LYS	-	expression tag	UNP P47895		
С	-2	LYS	-	expression tag	UNP P47895		
С	-1	ALA	-	expression tag	UNP P47895		
С	0	GLY	-	expression tag	UNP P47895		
D	-16	HIS	-	expression tag	UNP P47895		
D	-15	HIS	-	expression tag	UNP P47895		
D	-14	HIS	-	expression tag	UNP P47895		
D	-13	HIS	_	expression tag	UNP P47895		

Chain	Residue	Modelled	Actual	Comment	Reference
D	-12	HIS	-	expression tag	UNP P47895
D	-11	HIS	-	expression tag	UNP P47895
D	-10	LEU	-	expression tag	UNP P47895
D	-9	GLU	-	expression tag	UNP P47895
D	-8	SER	_	expression tag	UNP P47895
D	-7	THR	-	expression tag	UNP P47895
D	-6	SER	-	expression tag	UNP P47895
D	-5	LEU	-	expression tag	UNP P47895
D	-4	TYR	-	expression tag	UNP P47895
D	-3	LYS	-	expression tag	UNP P47895
D	-2	LYS	-	expression tag	UNP P47895
D	-1	ALA	-	expression tag	UNP P47895
D	0	GLY	-	expression tag	UNP P47895
Е	-16	HIS	-	expression tag	UNP P47895
Е	-15	HIS	-	expression tag	UNP P47895
Е	-14	HIS	-	expression tag	UNP P47895
Е	-13	HIS	-	expression tag	UNP P47895
Е	-12	HIS	-	expression tag	UNP P47895
Е	-11	HIS	-	expression tag	UNP P47895
Е	-10	LEU	-	expression tag	UNP P47895
Е	-9	GLU	-	expression tag	UNP P47895
Е	-8	SER	-	expression tag	UNP P47895
Е	-7	THR	-	expression tag	UNP P47895
E	-6	SER	-	expression tag	UNP P47895
E	-5	LEU	-	expression tag	UNP P47895
E	-4	TYR	-	expression tag	UNP P47895
E	-3	LYS	-	expression tag	UNP P47895
E	-2	LYS	-	expression tag	UNP P47895
E	-1	ALA	-	expression tag	UNP P47895
E	0	GLY	-	expression tag	UNP P47895
F	-16	HIS	-	expression tag	UNP P47895
F	-15	HIS	-	expression tag	UNP P47895
F	-14	HIS	_	expression tag	UNP P47895
F	-13	HIS	-	expression tag	UNP P47895
F	-12	HIS	_	expression tag	UNP P47895
F	-11	HIS	-	expression tag	UNP P47895
F	-10	LEU	-	expression tag	UNP P47895
F	-9	GLU	_	expression tag	UNP P47895
F	-8	SER	-	expression tag	UNP P47895
F	-7	THR	-	expression tag	UNP P47895
F	-6	SER	-	expression tag	UNP P47895
F	-5	LEU	-	expression tag	UNP P47895

Chain	Residue	Modelled	Actual	Comment	Reference
F	-4	TYR	-	expression tag	UNP P47895
F	-3	LYS	-	expression tag	UNP P47895
F	-2	LYS	_	expression tag	UNP P47895
F	-1	ALA	_	expression tag	UNP P47895
F	0	GLY	_	expression tag	UNP P47895
G	-16	HIS	_	expression tag	UNP P47895
G	-15	HIS	_	expression tag	UNP P47895
G	-14	HIS	_	expression tag	UNP P47895
G	-13	HIS	-	expression tag	UNP P47895
G	-12	HIS	-	expression tag	UNP P47895
G	-11	HIS	_	expression tag	UNP P47895
G	-10	LEU	-	expression tag	UNP P47895
G	-9	GLU	_	expression tag	UNP P47895
G	-8	SER	-	expression tag	UNP P47895
G	-7	THR	-	expression tag	UNP P47895
G	-6	SER	-	expression tag	UNP P47895
G	-5	LEU	-	expression tag	UNP P47895
G	-4	TYR	-	expression tag	UNP P47895
G	-3	LYS	-	expression tag	UNP P47895
G	-2	LYS	-	expression tag	UNP P47895
G	-1	ALA	-	expression tag	UNP P47895
G	0	GLY	-	expression tag	UNP P47895
Н	-16	HIS	-	expression tag	UNP P47895
H	-15	HIS	-	expression tag	UNP P47895
H	-14	HIS	-	expression tag	UNP P47895
H	-13	HIS	-	expression tag	UNP P47895
Η	-12	HIS	-	expression tag	UNP P47895
H	-11	HIS	-	expression tag	UNP P47895
H	-10	LEU	-	expression tag	UNP P47895
H	-9	GLU	-	expression tag	UNP P47895
H	-8	SER	-	expression tag	UNP P47895
H	-7	THR	-	expression tag	UNP P47895
H	-6	SER	-	expression tag	UNP P47895
Н	-5	LEU	_	expression tag	UNP P47895
H	-4	TYR	_	expression tag	UNP P47895
H	-3	LYS	-	expression tag	UNP P47895
H	-2	LYS	_	expression tag	UNP P47895
H	-1	ALA	-	expression tag	UNP P47895
H	0	GLY	-	expression tag	UNP P47895

• Molecule 2 is NICOTINAMIDE-ADENINE-DINUCLEOTIDE (three-letter code: NAD) (formula: $C_{21}H_{27}N_7O_{14}P_2$).

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	
0	Λ	1	Total	С	Ν	Ο	Р	0	0	
		L	44	21	7	14	2	0	0	
0	В	1	Total	С	Ν	Ο	Р	0	0	
	D	L	44	21	7	14	2	0	0	
0	C	1	Total	С	Ν	Ο	Р	0	0	
	U	L	44	21	7	14	2	0	0	
0	р	1	Total	С	Ν	Ο	Р	0	0	
	D	L	44	21	7	14	2	0		
0	F	1	Total	С	Ν	Ο	Р	0	0	
		L	44	21	7	14	2	0	0	
0	Б	1	Total	С	Ν	Ο	Р	0	0	
	Г	L	44	21	7	14	2	0	0	
0	С	1	Total	С	Ν	Ο	Р	0	0	
	G		44	21	7	14	2	U	U	
9	Ц	1	Total	С	Ν	Ο	Р	0	0	
	11		44	21	7	14	2	U	0	

• Molecule 3 is RETINOIC ACID (three-letter code: REA) (formula: $\mathrm{C}_{20}\mathrm{H}_{28}\mathrm{O}_2).$

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	Total C O 22 20 2	0	0
3	В	1	Total C O 22 20 2	0	0
3	С	1	Total C O 22 20 2	7	0
3	D	1	Total C O 22 20 2	0	0

• Molecule 4 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	19	Total O 19 19	0	0
4	В	15	Total O 15 15	0	0
4	С	9	Total O 9 9	0	0
4	D	12	Total O 12 12	0	0
4	Е	2	$\begin{array}{cc} \text{Total} & \text{O} \\ 2 & 2 \end{array}$	0	0
4	F	4	$\begin{array}{cc} \text{Total} & \text{O} \\ 4 & 4 \end{array}$	0	0
4	Н	2	Total O 2 2	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Aldehyde dehydrogenase family 1 member A3

Chain C:	68%		23%	8%
	0077	_	2070	
HIS HIS HIS HIS HIS HIS CIU CIU CIU CIU CIU CIU CIU CIU CIU CIU	LVIS ALA MET ALA ALA ALA ALA ALA ALA ALA ASP CUU CUU CUU CUU CUU CUU CUU CUU CUU CU	PR0 PR0 ALA 134 134 735 735	N38 E39 E41 E42 N53	P54 S55 R57 R57 E58 E58 E58 E64 E64
K68 P69 D70 P71 R111 R111 E118 E118 K124 K124	F130 F130 D133 V143 M147 M147 M146 M146 M146 M146 M161 V162 V162	H168 B169 C172 L184 L185 H189 W189	M190 L191 C195 M199 M199	1200 1001 1203 1203 1214 1214 1215
V230 P234 245 C241 C241 C241 C245 C245 C245 C245 C245 C245 C245 C245	S272 K224 K224 K224 1288 1288 1289 8318 8318 8318 8318 8318 8318 8318 83	R333 8384 8384 8386 8386 8386 8386 8387 8388 8388 8388	6344 D345 D348 D348 V349 K350 T351	1359 1356 1357 1357 1357 1357 1357 1359 1359
K364 1365 1365 1368 1368 1368 1371 1379 1371 1379 1379 1379 1379 1379	140	EA11 1412 F413 6414 6414 7415 7415 7418 7419 1419 1419 1420	1425 E426 E427 V428 R431	D436 Y437 G438 G438 F444 F444 K450
8456 N466 0474 0474 0475 P476 P475 P475 P475 P475 P475 P475 P475 7493	1505 1505 450 450 450 450 450 450 450 450 450			
• Molecule 1: Alde	ehyde dehydrogenase famil	y 1 member A3		
Chain D:	71%		21%	• 8%
HIS HIS HIS HIS HIS HIS HIS CIU CIU CIU SER SER SER SER SER SER SER SER SER	LTS LTS GETY GETY MET MET ALA ALA ALA ALA ASN GETY GETY GETY ASP GETY CTA CTA CTA CTA CTA CTA CTA CTA CTA CTA	PR0 PR0 ALA 127 127 127 123 833 833	H41 S45 F49 A50 T51	S55 T56 R57 E58 E65 G66 D67
K68 P69 V75 R84 W88 W88 S95 R95 R96	q102 1106 1106 1110 1111 1119 11119 1119 1121 1119 11211	M147 K150 1151 1155 T155 R167	A176 F182 F183 L184 L185	M186 L187 L191 A192 P193 A194 L195
8 4 <u> </u>	<mark>8 8 4 8 8 5 8 4 5 9 9 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9</mark>	9 0 8 9 9 9 9		ა. ი. ე. თ. ჯ. ი
121 121 121 121 121 121 121 121 121 121	72 22 22 22 22 22 22 22 22 22 22 22 22 2	828 V26 V26 V26 V26 V26 V26 V26 V26 V26 V26	131 131 132	R31 R31 R32 R32 R32 R32 R32
F330 V331 V335 V335 V335 Q361 Q361 L366 E367 E367 E367 E368	E370 5371 5371 5374 5374 5374 5381 5381 5381 5381 5381 5381 5381 5381	K421 F422 S424 I425 E426 E426 F427 V428 R431	1465 1471 1494 1494 1495 1495 1495	Y497 L507 GLY ASP LYS ASW ASW PRO
• Molecule 1: Alde	ehyde dehydrogenase famil	y 1 member A3		
Chain E:	68%	2	22% •	10%
HIS HIS HIS HIS HIS HIS HIS HIS SIH TIU SIH TIU SIN TIU SIN SIN SIN SIN SIN SIN SIN SIN SIN SIN	LYIS LYIS ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	PRO PRO ALLA LEU PRO PRO P23 LE2 L27 F35	N38 K4 4 S45 F49	T56 R57 K68 P69 V75
979 1922 1922 1922 103 101	R111 E117 E118 T119 M120 M120 M120 1138 E135 E135 T149 T149 T149	K450 1151 1171 6472 6475 7179 1179 8180 1181	F182 P183 F184 L186 M186 L187	L191 L195 C196 C196 G198 M201 V202
• • • • • • •				
L203 K204 F205 A205 A205 L211 T212 A213 T214 Y215 Y215	1219 1220 1220 1230 1233 1233 1233 1233 1233	E280 1281 6282 6283 6283 7292 1295 1295 1295 1295 1295	Q304 G305 V306 F307 F307 N309	(311 (311 (311 (311 (311) (311) (311) (311) (312) (322) (322)

 \bullet Molecule 1: Aldehyd
e dehydrogenase family 1 member A3

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	82.66Å 159.78Å 177.65Å	Depositor
a, b, c, α , β , γ	90.00° 93.69° 90.00°	Depositor
$\mathbf{Bosolution} (\mathbf{\hat{A}})$	49.57 - 2.90	Depositor
Resolution (A)	47.51 - 2.90	EDS
% Data completeness	98.3 (49.57-2.90)	Depositor
(in resolution range)	98.3(47.51-2.90)	EDS
R_{merge}	0.18	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$1.86 (at 2.91 \text{\AA})$	Xtriage
Refinement program	REFMAC 5.8.0071	Depositor
D D .	0.228 , 0.289	Depositor
n, n_{free}	0.228 , 0.286	DCC
R_{free} test set	5047 reflections $(5.04%)$	wwPDB-VP
Wilson B-factor $(Å^2)$	39.5	Xtriage
Anisotropy	0.727	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.33 , 16.1	EDS
L-test for $twinning^2$	$ \langle L \rangle = 0.48, \langle L^2 \rangle = 0.31$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.91	EDS
Total number of atoms	29992	wwPDB-VP
Average B, all atoms $(Å^2)$	44.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 36.07 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 5.2864e-04. The detected translational NCS is most likely also responsible for the elevated intensity ratio.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: REA, NAD

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond angles	
	Cham	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.61	0/3858	0.75	0/5221
1	В	0.61	0/3739	0.76	1/5056~(0.0%)
1	С	0.61	0/3857	0.76	0/5219
1	D	0.60	0/3853	0.75	0/5214
1	Е	0.39	0/3770	0.62	0/5101
1	F	0.42	0/3521	0.61	0/4761
1	G	0.44	0/3644	0.62	0/4932
1	Н	0.42	0/3849	0.62	0/5207
All	All	0.52	0/30091	0.69	1/40711~(0.0%)

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	В	121	ASP	CB-CG-OD2	-5.95	112.95	118.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3780	0	3813	104	0
1	В	3666	0	3696	86	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	С	3779	0	3811	97	0
1	D	3775	0	3808	82	0
1	Е	3695	0	3721	84	0
1	F	3453	0	3457	74	0
1	G	3570	0	3593	88	0
1	Н	3771	0	3801	87	0
2	А	44	0	26	1	0
2	В	44	0	26	3	0
2	С	44	0	26	4	0
2	D	44	0	26	4	0
2	Е	44	0	26	4	0
2	F	44	0	26	3	0
2	G	44	0	26	5	0
2	Н	44	0	26	2	0
3	А	22	0	27	18	0
3	В	22	0	27	7	0
3	С	22	0	27	7	0
3	D	22	0	27	10	0
4	А	19	0	0	2	0
4	В	15	0	0	1	0
4	С	9	0	0	0	0
4	D	12	0	0	0	0
4	Е	2	0	0	0	0
4	F	4	0	0	0	0
4	Н	2	0	0	1	0
All	All	29992	0	30016	699	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 12.

All (699) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:310:GLN:OE1	1:A:353:GLN:HG3	1.48	1.12
1:B:180:TRP:CE3	1:B:357:ILE:HD12	1.90	1.05
1:C:34:ILE:HD13	1:C:234:PRO:HD2	1.47	0.96
1:D:56:THR:O	1:D:58:GLU:N	1.98	0.96
1:E:180:TRP:CE3	1:E:357:ILE:HD13	2.02	0.94
1:F:204:LYS:NZ	2:F:601:NAD:O2B	2.00	0.93
1:H:204:LYS:NZ	2:H:601:NAD:O2B	2.02	0.92
1:B:187:LEU:HD21	1:B:203:LEU:HD13	1.55	0.88

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:E:118:GLU:HG2	1:E:212:THR:HG21	1.55	0.88
1:G:167:ARG:NH1	1:G:169:GLU:OE2	2.07	0.88
1:A:284:LYS:HE2	1:A:408:ALA:O	1.74	0.86
1:G:261:VAL:HG11	2:G:601:NAD:O1A	1.76	0.86
1:E:180:TRP:CE3	1:E:357:ILE:CD1	2.59	0.85
1:B:296:ASP:OD1	1:B:333:ARG:NH1	2.11	0.84
1:D:187:LEU:HD21	1:D:203:LEU:HD23	1.60	0.83
1:E:180:TRP:CZ3	1:E:357:ILE:CD1	2.62	0.82
1:D:27:LEU:HB3	1:D:120:MET:HE1	1.65	0.78
1:B:348:ASP:HB2	1:B:351:THR:HG23	1.65	0.78
1:F:335:VAL:HG22	1:F:397:VAL:HG11	1.63	0.78
1:E:306:VAL:HG12	1:E:317:ALA:O	1.83	0.78
1:F:124:LYS:NZ	1:F:133:ASP:OD1	2.17	0.78
1:A:186:MET:HE1	3:A:602:REA:H14	1.64	0.78
1:C:56:THR:O	1:C:58:GLU:N	2.16	0.77
1:E:450:LYS:O	1:E:454:LEU:HD23	1.85	0.77
1:G:204:LYS:HE2	1:G:241:GLY:HA2	1.67	0.77
1:E:180:TRP:CZ3	1:E:357:ILE:HD12	2.20	0.77
1:B:268:ALA:O	1:B:272:SER:OG	2.02	0.77
1:C:335:VAL:HG11	1:C:380:GLU:HB3	1.66	0.76
1:A:172:GLY:O	1:A:199:ASN:HB2	1.85	0.76
1:C:386:MET:HB3	1:C:394:LYS:HG3	1.68	0.76
1:E:215:TYR:O	1:E:218:SER:OG	2.03	0.76
1:E:35:PHE:CZ	1:E:38:ASN:HA	2.21	0.75
3:B:602:REA:O1	3:B:602:REA:H201	1.86	0.75
1:H:179:PRO:HD3	1:H:256:THR:HB	1.68	0.75
1:E:119:THR:HG23	1:E:124:LYS:O	1.86	0.75
1:A:167:ARG:NH1	1:A:169:GLU:OE2	2.19	0.75
1:D:136:GLY:HA2	3:D:602:REA:H22	1.69	0.75
1:C:425:ILE:HD11	1:C:450:LYS:HD3	1.69	0.74
1:E:92:ASP:OD1	1:E:95:SER:OG	2.05	0.74
1:G:258:SER:OG	1:G:261:VAL:HG12	1.88	0.74
1:B:443:VAL:O	1:B:465:ILE:O	2.06	0.74
1:F:327:TYR:CD2	1:F:421:LYS:HE2	2.23	0.74
1:A:426:GLU:OE2	1:B:84:ARG:NH2	2.21	0.73
1:E:191:LEU:HD12	1:E:201:MET:SD	2.29	0.73
1:A:186:MET:CE	3:A:602:REA:H14	2.18	0.73
1:G:103:LEU:HD12	1:G:141:LEU:HD13	1.70	0.73
1:H:296:ASP:OD1	1:H:333:ARG:NH1	2.22	0.73
1:C:204:LYS:NZ	2:C:601:NAD:O2B	2.20	0.73
1:C:345:ASP:O	1:C:351:THR:HG21	1.89	0.73

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:F:322:VAL:HG21	1:F:330:PHE:CD2	2.23	0.73
1:F:356:GLN:OE1	1:F:356:GLN:N	2.21	0.73
1:B:247:HIS:O	1:B:275:LYS:NZ	2.22	0.72
1:F:180:TRP:CE3	1:F:357:ILE:HG21	2.24	0.72
1:D:361:GLN:OE1	2:D:601:NAD:O3D	2.03	0.72
1:G:33:LYS:HE3	1:G:40:TRP:HB3	1.69	0.72
1:A:252:LYS:NZ	1:A:278:THR:OG1	2.22	0.72
1:E:476:PRO:HG3	1:E:492:TYR:CD2	2.24	0.72
1:C:296:ASP:OD1	1:C:333:ARG:NH1	2.23	0.71
1:C:119:THR:HG23	1:C:124:LYS:O	1.92	0.70
1:D:27:LEU:HB3	1:D:120:MET:CE	2.20	0.70
1:B:119:THR:HG23	1:B:124:LYS:O	1.92	0.70
1:A:335:VAL:HG13	1:A:381:CYS:SG	2.32	0.70
1:B:245:SER:O	1:B:275:LYS:HE3	1.92	0.70
1:D:204:LYS:NZ	2:D:601:NAD:O2B	2.25	0.70
1:A:236:PHE:HB2	1:A:239:THR:CG2	2.22	0.69
1:D:421:LYS:O	1:D:431:ARG:NH2	2.24	0.69
1:D:92:ASP:OD1	1:D:95:SER:OG	2.06	0.69
1:B:180:TRP:CE3	1:B:357:ILE:CD1	2.71	0.69
1:H:143:TYR:CE1	1:H:474:GLN:HB3	2.27	0.69
1:H:119:THR:HG23	1:H:124:LYS:O	1.92	0.69
1:C:161:ASN:OD1	1:C:162:VAL:HG23	1.93	0.69
1:D:425:ILE:O	1:D:428:VAL:HG12	1.93	0.69
1:B:180:TRP:CZ3	1:B:357:ILE:HD12	2.29	0.68
3:A:602:REA:H181	3:A:602:REA:H8	1.76	0.68
1:H:107:VAL:HG23	1:H:138:ILE:HG12	1.76	0.68
1:H:284:LYS:NZ	1:H:435:THR:OG1	2.26	0.68
1:C:284:LYS:NZ	1:C:318:SER:OG	2.20	0.67
1:F:32:THR:OG1	1:F:62:GLU:O	2.12	0.67
1:H:99:LEU:HB3	1:H:225:PHE:CZ	2.30	0.67
1:B:134:LEU:O	1:B:138:ILE:HG13	1.95	0.66
1:C:167:ARG:NH2	1:C:169:GLU:OE2	2.28	0.66
1:E:476:PRO:HG3	1:E:492:TYR:HD2	1.61	0.66
1:G:336:GLU:O	1:G:340:LYS:HG3	1.96	0.66
1:H:53:ASN:HB3	1:H:56:THR:HG22	1.78	0.66
1:C:299:VAL:HG12	1:C:330:PHE:CD1	2.31	0.65
1:A:207:GLU:HG2	1:A:236:PHE:CD1	2.32	0.65
1:A:266:LYS:O	1:A:270:SER:OG	2.13	0.65
1:G:178:THR:CG2	1:G:186:MET:HB3	2.26	0.65
1:H:406:ARG:NE	1:H:410:GLU:OE1	2.29	0.65
1:B:43:SER:N	1:B:64:GLU:OE1	2.29	0.65

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:F:179:PRO:HD3	1:F:256:THR:HB	1.79	0.65
1:A:313:CYS:HB2	3:A:602:REA:H201	1.77	0.65
1:F:32:THR:OG1	1:F:63:VAL:HA	1.98	0.64
1:F:252:LYS:HG2	1:F:253:ILE:N	2.11	0.64
1:G:292:ASP:OD2	1:G:445:THR:OG1	2.10	0.64
1:G:143:TYR:CE1	1:G:474:GLN:HG3	2.32	0.64
1:G:327:TYR:CD2	1:G:421:LYS:HD3	2.33	0.64
1:E:207:GLU:HG2	1:E:236:PHE:CD1	2.33	0.63
1:D:313:CYS:HB2	3:D:602:REA:H202	1.80	0.63
1:H:279:LEU:HD12	1:H:485:ASN:OD1	1.98	0.63
1:A:98:ARG:NH1	4:A:701:HOH:O	2.29	0.63
1:C:268:ALA:O	1:C:272:SER:OG	2.12	0.63
1:H:197:CYS:SG	1:H:494:LEU:HD22	2.38	0.63
1:G:380:GLU:HB2	1:G:397:VAL:HG13	1.81	0.63
1:A:314:CYS:SG	3:A:602:REA:C15	2.87	0.62
1:F:331:VAL:O	1:F:335:VAL:HG23	2.00	0.62
1:F:329:GLU:OE1	1:F:332:ARG:NH2	2.33	0.62
1:A:284:LYS:HE3	1:A:319:ARG:CD	2.30	0.62
1:F:369:ILE:HG21	1:F:383:GLY:HA3	1.80	0.62
1:B:52:CYS:O	1:B:54:PRO:HD3	2.01	0.61
1:D:313:CYS:HB2	3:D:602:REA:C20	2.30	0.61
1:E:117:LEU:HD23	1:E:211:LEU:HB3	1.81	0.61
1:G:119:THR:HG23	1:G:124:LYS:O	2.00	0.61
1:H:124:LYS:NZ	1:H:133:ASP:OD2	2.33	0.61
1:A:19:ALA:N	4:A:702:HOH:O	2.33	0.61
1:A:314:CYS:N	3:A:602:REA:O1	2.33	0.61
1:F:250:ILE:HG22	1:F:275:LYS:HZ1	1.65	0.61
1:A:190:LYS:HD3	1:A:254:ALA:HB3	1.83	0.61
1:B:150:LYS:HE3	1:D:147:TRP:CD1	2.36	0.61
1:C:299:VAL:HG12	1:C:330:PHE:CE1	2.36	0.61
1:F:245:SER:HA	1:F:253:ILE:HD11	1.83	0.61
1:A:119:THR:HG23	1:A:124:LYS:O	2.01	0.60
1:D:324:GLU:OE1	1:D:423:LYS:NZ	2.27	0.60
1:A:151:ILE:HG12	1:A:494:LEU:HD13	1.83	0.60
1:A:139:ARG:HD2	3:A:602:REA:H21	1.82	0.60
1:D:56:THR:HG22	1:D:56:THR:O	2.00	0.60
1:D:284:LYS:O	1:D:319:ARG:NH1	2.33	0.60
1:D:214:LEU:HD21	1:D:234:PRO:HG3	1.84	0.60
1:D:314:CYS:HG	3:D:602:REA:C15	2.15	0.59
1:A:237:GLY:HA3	2:A:601:NAD:C8A	2.32	0.59
1:G:184:LEU:HB2	1:G:212:THR:HG21	1.84	0.59

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:245:SER:O	1:A:275:LYS:HE2	2.03	0.59
1:A:505:ILE:HG12	1:B:465:ILE:HG13	1.84	0.59
1:B:170:PRO:HB3	1:B:197:CYS:O	2.03	0.59
1:A:67:ASP:OD2	1:A:239:THR:OG1	2.19	0.59
1:E:44:LYS:O	1:E:45:SER:OG	2.15	0.59
1:G:331:VAL:O	1:G:335:VAL:HG23	2.02	0.59
3:A:602:REA:H181	3:A:602:REA:C8	2.33	0.59
1:G:306:VAL:HG12	1:G:317:ALA:O	2.03	0.58
1:D:187:LEU:CD2	1:D:203:LEU:HD23	2.32	0.58
1:E:253:ILE:CG2	1:E:277:VAL:HG22	2.33	0.58
1:D:371:SER:HA	1:D:374:LYS:HE2	1.85	0.58
1:E:394:LYS:HD2	1:E:395:PRO:HD2	1.85	0.58
1:H:410:GLU:O	1:H:412:ILE:HD12	2.03	0.58
3:D:602:REA:H181	3:D:602:REA:H8	1.84	0.58
1:C:204:LYS:HG3	1:C:204:LYS:O	2.02	0.58
1:C:379:LEU:HD11	1:C:383:GLY:HA3	1.85	0.58
1:F:102:GLN:O	1:F:106:LEU:HG	2.03	0.58
1:D:269:ALA:HB1	1:D:275:LYS:HG3	1.86	0.58
1:C:329:GLU:OE2	1:C:333:ARG:NH2	2.37	0.58
1:G:378:LYS:HG2	1:G:399:SER:HB3	1.84	0.58
1:C:178:THR:O	2:C:601:NAD:O3B	2.15	0.57
1:E:207:GLU:HG2	1:E:236:PHE:HA	1.87	0.57
1:E:184:LEU:O	1:E:187:LEU:HB3	2.05	0.57
1:A:26:ASN:O	1:A:26:ASN:OD1	2.23	0.57
1:C:426:GLU:OE1	1:D:84:ARG:NH2	2.38	0.57
1:A:27:LEU:HB3	1:A:120:MET:CE	2.34	0.57
1:G:179:PRO:HG3	1:G:256:THR:HG22	1.87	0.57
1:C:185:LEU:HD11	3:C:602:REA:H173	1.86	0.57
1:D:427:GLU:O	1:D:431:ARG:HG3	2.05	0.57
1:F:476:PRO:HG3	1:F:492:TYR:HD2	1.70	0.57
1:H:279:LEU:HD22	1:H:281:LEU:HD21	1.87	0.57
1:E:236:PHE:HB2	1:E:239:THR:HG22	1.85	0.56
1:H:107:VAL:CG2	1:H:138:ILE:HG12	2.34	0.56
1:C:203:LEU:HD13	1:C:230:VAL:HG13	1.87	0.56
1:F:404:ASN:OD1	1:F:405:MET:N	2.38	0.56
1:B:190:LYS:HG2	1:B:254:ALA:HB3	1.86	0.56
1:D:471:LEU:HD12	3:D:602:REA:H10	1.86	0.56
1:H:124:LYS:HG2	1:H:309:ASN:OD1	2.05	0.56
1:B:207:GLU:HG3	1:B:235:GLY:O	2.05	0.56
1:E:27:LEU:HB3	1:E:120:MET:HE1	1.88	0.56
1:G:266:LYS:HG2	1:G:277:VAL:HG11	1.88	0.56

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:E:207:GLU:CG	1:E:236:PHE:HA	2.36	0.56
1:F:421:LYS:O	1:F:431:ARG:NH2	2.38	0.56
1:A:247:HIS:O	1:A:275:LYS:NZ	2.38	0.56
1:A:279:LEU:HD12	1:A:485:ASN:OD1	2.05	0.56
1:F:295:LEU:HD13	1:F:326:VAL:HG11	1.88	0.56
1:D:118:GLU:OE2	1:D:212:THR:HG21	2.06	0.55
1:G:38:ASN:HB3	1:G:221:LYS:HD3	1.87	0.55
1:H:323:GLU:HG2	1:H:422:PHE:CE2	2.41	0.55
1:F:245:SER:HA	1:F:253:ILE:CD1	2.37	0.55
1:G:111:ARG:HG2	1:G:130:PHE:CE1	2.41	0.55
1:H:29:VAL:HG21	1:H:211:LEU:HD13	1.89	0.55
1:H:336:GLU:O	1:H:340:LYS:HG2	2.06	0.55
1:B:42:GLU:HA	1:B:64:GLU:OE1	2.07	0.55
1:C:310:GLN:HB3	1:C:356:GLN:HE22	1.70	0.55
1:B:177:ILE:HD12	1:B:253:ILE:HD11	1.89	0.55
1:E:365:ILE:HD11	1:E:393:ILE:HD13	1.88	0.55
1:G:109:ARG:NH2	1:G:222:GLU:OE1	2.39	0.55
1:A:139:ARG:HD2	3:A:602:REA:C2	2.36	0.55
1:B:43:SER:HB2	1:B:46:GLY:H	1.71	0.55
1:E:306:VAL:O	1:E:311:GLY:HA2	2.07	0.55
1:A:245:SER:HA	1:A:253:ILE:HD11	1.88	0.55
1:C:33:LYS:HA	1:C:64:GLU:HG3	1.88	0.55
1:C:348:ASP:O	1:C:351:THR:HG22	2.07	0.55
1:F:35:PHE:CZ	1:F:38:ASN:HA	2.42	0.55
1:B:151:ILE:HG12	1:B:494:LEU:HD23	1.88	0.54
1:A:310:GLN:HE22	1:A:353:GLN:HA	1.71	0.54
1:E:101:HIS:CE1	1:E:142:ARG:HG3	2.43	0.54
1:E:366:LEU:CD2	1:E:384:SER:HB2	2.38	0.54
1:G:319:ARG:NH1	1:G:431:ARG:O	2.36	0.54
1:H:273:ASN:OD1	1:H:275:LYS:HG3	2.08	0.54
1:C:33:LYS:HB3	1:C:41:HIS:O	2.07	0.54
1:D:404:ASN:HA	1:D:409:LYS:NZ	2.21	0.54
1:F:365:ILE:O	1:F:369:ILE:HG13	2.07	0.54
1:F:80:VAL:O	1:F:83:GLN:HB2	2.07	0.54
1:E:283:GLY:HA2	1:E:437:TYR:CD2	2.42	0.54
1:G:261:VAL:CG1	2:G:601:NAD:O1A	2.54	0.54
1:A:27:LEU:HB3	1:A:120:MET:HE1	1.89	0.54
1:A:499:GLU:HB3	1:B:480:PHE:CE1	2.43	0.54
3:D:602:REA:C18	3:D:602:REA:H8	2.36	0.54
1:G:179:PRO:HD3	1:G:256:THR:HB	1.90	0.54
1:A:124:LYS:HE2	1:A:309:ASN:OD1	2.07	0.54

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:F:476:PRO:HG3	1:F:492:TYR:CD2	2.42	0.54
1:C:189:TRP:HE1	3:C:602:REA:H172	1.73	0.53
1:C:284:LYS:HE2	1:C:409:LYS:C	2.29	0.53
1:H:53:ASN:HB3	1:H:56:THR:CG2	2.38	0.53
1:C:151:ILE:HG12	1:C:494:LEU:HD13	1.89	0.53
1:C:371:SER:HA	1:C:374:LYS:HD2	1.89	0.53
1:E:365:ILE:HD11	1:E:393:ILE:HG21	1.89	0.53
1:A:313:CYS:SG	3:A:602:REA:C20	2.96	0.53
1:F:327:TYR:CE2	1:F:421:LYS:HE2	2.44	0.53
1:G:255:PHE:HB3	1:G:279:LEU:HD23	1.89	0.53
1:C:149:ASP:OD1	1:C:150:LYS:NZ	2.40	0.53
1:G:306:VAL:HG21	1:G:417:GLN:HB2	1.91	0.53
1:B:269:ALA:HB1	1:B:275:LYS:HG2	1.91	0.53
1:C:341:ARG:HH22	1:C:353:GLN:NE2	2.07	0.53
1:B:147:TRP:HB3	1:B:494:LEU:HD21	1.90	0.53
1:B:338:ALA:HB1	1:B:395:PRO:HB2	1.91	0.53
1:B:51:THR:HG1	1:B:121:ASP:CG	2.12	0.53
1:E:348:ASP:HB2	1:E:351:THR:OG1	2.09	0.53
1:E:56:THR:O	1:E:56:THR:HG23	2.09	0.53
1:A:421:LYS:O	1:A:431:ARG:NH1	2.36	0.53
1:H:75:VAL:HG11	1:H:249:GLN:HB2	1.91	0.53
1:D:111:ARG:HG2	1:D:130:PHE:CE1	2.43	0.53
1:E:182:PHE:HB2	1:E:186:MET:HG2	1.91	0.53
1:H:27:LEU:HB3	1:H:120:MET:HE1	1.91	0.53
1:B:83:GLN:O	1:B:86:SER:HB3	2.10	0.52
1:C:383:GLY:N	1:C:396:THR:HG22	2.23	0.52
1:C:35:PHE:CZ	1:C:38:ASN:HA	2.44	0.52
1:D:252:LYS:HE3	1:D:496:GLU:O	2.09	0.52
1:B:111:ARG:HG2	1:B:130:PHE:CE1	2.45	0.52
1:D:27:LEU:CB	1:D:120:MET:HE1	2.37	0.52
1:H:250:ILE:C	1:H:275:LYS:HD3	2.29	0.52
1:F:119:THR:HG23	1:F:346:PRO:HB2	1.91	0.52
1:A:236:PHE:HB2	1:A:239:THR:HG22	1.91	0.52
1:B:327:TYR:CE2	1:B:419:ILE:HG22	2.45	0.52
1:F:143:TYR:CZ	1:F:474:GLN:HA	2.45	0.52
1:G:307:PHE:HB3	1:G:341:ARG:NH1	2.25	0.52
1:B:280:GLU:OE2	1:B:478:GLY:HA2	2.10	0.52
1:D:253:ILE:HG12	1:D:275:LYS:HD3	1.92	0.51
1:G:268:ALA:O	1:G:272:SER:OG	2.16	0.51
1:D:329:GLU:OE1	1:D:332:ARG:NH2	2.40	0.51
1:H:117:LEU:HD11	1:H:212:THR:HA	1.93	0.51

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:G:154:LYS:HE2	1:H:491:GLU:OE1	2.10	0.51
1:A:296:ASP:OD1	1:A:333:ARG:NH1	2.43	0.51
1:B:337:TYB:HA	1:B:340:LYS:HE2	1.92	0.51
1:D:139:ARG:HD2	3:D:602:REA:H21	1.92	0.51
1:H:322:VAL:HG22	1:H:327:TYR:HD1	1.75	0.51
1:A:82:PHE:CZ	1:A:172:GLY:HA2	2.46	0.51
1:E:191:LEU:HD11	1:E:195:LEU:HD11	1.93	0.51
1:G:313:CYS:HG	1:G:315:THR:HG1	1.58	0.51
1:B:306:VAL:HG22	1:B:317:ALA:O	2.10	0.51
1:B:310:GLN:HG3	1:B:356:GLN:NE2	2.25	0.51
1:D:171:ILE:HD12	1:D:252:LYS:HD2	1.93	0.51
1:G:114:LEU:HD22	1:G:212:THR:HG23	1.93	0.51
1:C:214:LEU:HD21	1:C:234:PRO:HG3	1.93	0.51
1:C:456:SER:HA	1:D:167:ARG:NH1	2.26	0.51
1:D:471:LEU:HD12	3:D:602:REA:C10	2.41	0.51
1:D:33:LYS:HB3	1:D:41:HIS:O	2.11	0.50
1:F:204:LYS:HD3	1:F:204:LYS:O	2.11	0.50
1:H:75:VAL:HG11	1:H:247:HIS:CE1	2.46	0.50
1:E:306:VAL:HG23	1:E:307:PHE:CD2	2.47	0.50
1:A:220:ILE:HD13	1:A:230:VAL:HG11	1.92	0.50
1:A:35:PHE:CZ	1:A:38:ASN:HA	2.47	0.50
1:C:172:GLY:O	1:C:199:ASN:HB3	2.12	0.50
1:C:245:SER:HA	1:C:253:ILE:HD11	1.93	0.50
1:A:266:LYS:HD2	1:A:279:LEU:HD11	1.93	0.50
1:C:288:ILE:HG23	1:C:428:VAL:HG21	1.94	0.50
1:E:300:GLU:O	1:E:304:GLN:HG2	2.12	0.50
1:F:178:THR:HG23	1:F:179:PRO:HD2	1.93	0.50
1:A:187:LEU:HD21	1:A:203:LEU:HD13	1.93	0.50
1:A:313:CYS:CB	3:A:602:REA:H201	2.42	0.50
1:A:42:GLU:HB2	1:A:64:GLU:OE1	2.11	0.50
1:A:368:LEU:CD2	1:A:412:ILE:HG12	2.41	0.50
1:E:180:TRP:CD2	1:E:357:ILE:HD13	2.44	0.50
1:A:368:LEU:HD23	1:A:412:ILE:HG12	1.94	0.50
1:G:266:LYS:HD3	1:H:274:LEU:CD2	2.42	0.50
1:A:137:CYS:SG	1:A:184:LEU:HG	2.52	0.49
1:E:44:LYS:O	1:E:45:SER:CB	2.60	0.49
1:C:379:LEU:HD11	1:C:383:GLY:CA	2.42	0.49
1:C:444:PHE:CD2	1:C:466:ASN:HA	2.47	0.49
1:F:250:ILE:O	1:F:275:LYS:NZ	2.46	0.49
1:H:53:ASN:CB	1:H:56:THR:HG22	2.42	0.49
1:A:245:SER:O	1:A:275:LYS:CE	2.60	0.49

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlan (Å)
1:A:284:LYS:HE3	1:A:319:ARG:HD3	1.93	0.49
1:C:56:THR:C	1:C:58:GLU:H	2.16	0.49
1:A:365:ILE:O	1:A:369:ILE:HG13	2.13	0.49
1:H:364:LYS:O	1:H:367:GLU:HG2	2.10	0.49
1:G:359:GLN:O	1:G:362:PHE:HB3	2.12	0.49
1:C:56:THR:OG1	1:C:56:THR:O	2.27	0.49
1:E:149:ASP:HB2	1:G:474:GLN:HG2	1.93	0.49
1:C:284:LYS:NZ	1:C:410:GLU:O	2.46	0.49
1:H:425:ILE:O	1:H:429:ILE:HG13	2.12	0.49
1:A:471:LEU:O	3:A:602:REA:H173	2.12	0.49
1:B:143:TYR:CE1	1:B:474:GLN:HB3	2.48	0.49
1:C:365:ILE:HD13	1:C:415:PRO:HD2	1.95	0.49
1:A:313:CYS:SG	3:A:602:REA:H201	2.53	0.49
1:G:184:LEU:HB2	1:G:212:THR:CG2	2.43	0.49
1:E:421:LYS:O	1:E:431:ARG:NH1	2.46	0.48
1:E:27:LEU:HB3	1:E:120:MET:CE	2.43	0.48
1:G:273:ASN:OD1	1:G:275:LYS:HG2	2.13	0.48
1:C:241:GLY:C	2:C:601:NAD:H2A	2.34	0.48
1:C:436:ASP:O	1:C:482:MET:HB2	2.13	0.48
1:G:266:LYS:CG	1:G:277:VAL:HG11	2.43	0.48
1:C:365:ILE:HD11	1:C:416:VAL:HG23	1.96	0.48
1:C:420:LEU:N	1:C:420:LEU:HD12	2.28	0.48
1:H:114:LEU:HB2	1:H:134:LEU:HD21	1.94	0.48
1:B:185:LEU:HD21	3:B:602:REA:C17	2.44	0.48
1:E:280:GLU:OE1	1:E:477:PHE:O	2.31	0.48
1:G:253:ILE:HD11	1:G:275:LYS:HE2	1.96	0.48
2:E:601:NAD:H6N	2:E:601:NAD:O5D	2.14	0.48
1:G:174:CYS:SG	1:G:252:LYS:HB3	2.54	0.48
1:G:204:LYS:NZ	2:G:601:NAD:H1B	2.29	0.48
1:A:169:GLU:OE2	1:A:501:LYS:NZ	2.32	0.48
1:B:207:GLU:CG	1:B:236:PHE:HA	2.44	0.48
1:H:328:SER:O	1:H:331:VAL:HG12	2.14	0.48
1:C:184:LEU:HD11	1:C:216:LEU:HD22	1.96	0.48
1:C:245:SER:HA	1:C:253:ILE:CD1	2.44	0.48
1:A:33:LYS:HA	1:A:64:GLU:CG	2.44	0.47
1:C:336:GLU:O	1:C:340:LYS:HB3	2.13	0.47
1:G:134:LEU:O	1:G:137:CYS:HB2	2.14	0.47
1:G:184:LEU:HD13	1:G:212:THR:HG22	1.95	0.47
1:G:197:CYS:SG	1:G:494:LEU:HD22	2.54	0.47
1:A:122:THR:HG22	1:A:209:THR:HG21	1.96	0.47
1:B:412:ILE:HD13	1:B:416:VAL:HB	1.96	0.47

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlan (Å)
1:C:407:ILE:O	1:C:412:ILE:HD11	2.13	0.47
1:D:207:GLU:HB3	1:D:235:GLY:O	2.14	0.47
1:H:171:ILE:HG22	1:H:251:ASN:HB3	1.95	0.47
1:A:245:SER:HA	1:A:253:ILE:CD1	2.44	0.47
2:G:601:NAD:H4D	2:G:601:NAD:O2A	2.15	0.47
1:A:194:ALA:O	1:A:199:ASN:OD1	2.33	0.47
1:D:194:ALA:HB2	1:D:497:TYR:CE1	2.49	0.47
1:E:179:PRO:HD3	1:E:256:THR:HB	1.96	0.47
1:G:484:GLY:C	1:G:485:ASN:HD22	2.17	0.47
1:E:220:ILE:HD13	1:E:230:VAL:HG11	1.94	0.47
1:E:92:ASP:OD1	1:E:95:SER:CB	2.62	0.47
1:F:327:TYR:CD1	1:F:421:LYS:HG2	2.49	0.47
1:G:71:VAL:HG11	1:G:243:ALA:HB1	1.96	0.47
1:B:92:ASP:OD1	1:B:95:SER:OG	2.24	0.47
1:D:67:ASP:HB3	1:D:69:PRO:HD2	1.96	0.47
1:F:204:LYS:HG3	1:F:240:VAL:HG12	1.97	0.47
1:F:190:LYS:HD2	1:F:254:ALA:HB3	1.97	0.47
1:G:176:ALA:HB3	1:G:203:LEU:HD23	1.97	0.47
1:G:312:GLN:HE21	1:G:361:GLN:NE2	2.13	0.47
1:A:153:GLY:HA3	1:D:155:THR:OG1	2.15	0.47
1:C:456:SER:HA	1:D:167:ARG:HH11	1.80	0.47
1:G:186:MET:HE2	1:G:256:THR:HG21	1.96	0.47
1:B:210:PRO:O	1:B:214:LEU:HG	2.14	0.47
1:D:404:ASN:HA	1:D:409:LYS:HZ2	1.79	0.47
1:E:181:ASN:HD21	2:E:601:NAD:C4N	2.27	0.47
1:E:400:GLU:OE2	1:E:421:LYS:HE2	2.15	0.47
1:A:335:VAL:HG13	1:A:381:CYS:HG	1.79	0.47
1:B:422:PHE:CD2	1:B:428:VAL:HB	2.50	0.47
1:H:349:VAL:HG23	1:H:350:LYS:H	1.80	0.47
1:H:379:LEU:HD11	1:H:396:THR:HG23	1.97	0.47
3:A:602:REA:H8	3:A:602:REA:C18	2.44	0.47
1:C:383:GLY:H	1:C:396:THR:HG22	1.79	0.47
1:C:421:LYS:O	1:C:431:ARG:NH2	2.37	0.47
1:F:186:MET:O	1:F:190:LYS:HG2	2.15	0.47
1:F:208:GLN:N	1:F:208:GLN:OE1	2.46	0.47
1:G:165:PHE:CE1	1:G:503:VAL:HB	2.50	0.47
1:D:102:GLN:O	1:D:105:ASP:HB2	2.15	0.46
1:G:124:LYS:NZ	1:G:133:ASP:OD2	2.38	0.46
1:A:92:ASP:HB2	1:A:95:SER:OG	2.15	0.46
1:D:118:GLU:OE1	1:D:183:PRO:HD2	2.16	0.46
$1:E:1\overline{43:TYR:CZ}$	1:E:474:GLN:HA	2.50	0.46

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap(Å)
1.G.177.ILE.O	1·G·255·PHE·HA	2.15	0.46
1:C:67:ASP:O	1:C:68:LYS:C	2.10	0.46
1:D:203:LEU:HD13	1:D:230:VAL:HG13	1.97	0.46
1:E:204:LYS:HD2	1:E:240:VAL:HG23	1.97	0.46
1:F:93:ALA:HB1	1:F:149:ASP:HA	1.97	0.46
1:A:102:GLN:O	1:A:105:ASP:HB2	2.15	0.46
1:A:331:VAL:O	1:A:335:VAL:HG23	2.16	0.46
1:B:146:GLY:O	1:B:150:LYS:HD2	2.15	0.46
1:C:185:LEU:HD11	3:C:602:REA:C17	2.45	0.46
1:B:68:LYS:HE2	4:B:702:HOH:O	2.15	0.46
1:H:284:LYS:O	1:H:284:LYS:HE2	2.15	0.46
1:H:322:VAL:CG2	1:H:327:TYR:HA	2.46	0.46
1:A:360:LYS:HE2	1:A:360:LYS:HB3	1.75	0.46
1:A:476:PRO:HG3	1:A:492:TYR:CD2	2.50	0.46
1:B:181:ASN:C	1:B:183:PRO:HD3	2.35	0.46
1:C:284:LYS:HE2	1:C:410:GLU:N	2.31	0.46
1:D:237:GLY:HA3	2:D:601:NAD:C8A	2.46	0.46
1:A:25:ARG:NH1	1:A:345:ASP:OD2	2.49	0.46
1:C:365:ILE:HD12	1:C:414:GLY:HA3	1.97	0.46
1:D:171:ILE:CD1	1:D:252:LYS:HD2	2.45	0.46
1:D:335:VAL:HG11	1:D:380:GLU:HB3	1.98	0.46
1:F:447:ASN:HB3	1:F:450:LYS:HB2	1.97	0.46
1:A:370:GLU:HA	1:A:373:LYS:HE3	1.97	0.46
3:A:602:REA:O1	3:A:602:REA:H201	2.16	0.45
1:A:76:GLU:O	1:A:80:VAL:HG23	2.16	0.45
1:C:185:LEU:HD21	3:C:602:REA:C17	2.46	0.45
1:A:136:GLY:HA2	3:A:602:REA:H42	1.99	0.45
1:A:313:CYS:HB2	3:A:602:REA:C20	2.43	0.45
1:F:272:SER:O	1:F:273:ASN:HB3	2.16	0.45
1:H:237:GLY:HA3	2:H:601:NAD:C8A	2.46	0.45
1:H:82:PHE:CZ	1:H:172:GLY:HA2	2.51	0.45
1:A:143:TYR:CZ	1:A:474:GLN:HA	2.51	0.45
1:C:476:PRO:HG3	1:C:492:TYR:CD2	2.51	0.45
1:E:118:GLU:OE2	1:E:212:THR:OG1	2.29	0.45
1:F:295:LEU:HD21	1:F:329:GLU:HG3	1.97	0.45
1:G:75:VAL:HG22	1:G:202:VAL:HG21	1.97	0.45
1:H:306:VAL:O	1:H:311:GLY:HA2	2.16	0.45
1:A:263:LYS:O	1:A:267:GLU:HB2	2.16	0.45
1:A:284:LYS:HE3	$1:A:319:ARG:C\overline{G}$	2.47	0.45
1:C:369:ILE:HG21	1:C:383:GLY:O	2.16	0.45
1:B:147:TRP:CD1	1:D:150:LYS:HE3	2.51	0.45

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:B:235:GLY:HA3	1:B:240:VAL:HG21	1.99	0.45
1:B:266:LYS:HG3	1:B:279:LEU:HD11	1.98	0.45
1:B:425:ILE:O	1:B:429:ILE:HG13	2.16	0.45
1:C:416:VAL:O	1:C:418:PRO:HD3	2.15	0.45
1:F:82:PHE:O	1:F:89:ARG:NH1	2.50	0.45
1:H:151:ILE:HD11	1:H:196:CYS:SG	2.57	0.45
1:H:285:ASN:ND2	1:H:440:THR:HB	2.31	0.45
1:H:326:VAL:O	1:H:326:VAL:HG12	2.17	0.45
1:B:67:ASP:O	1:B:68:LYS:C	2.55	0.45
1:E:75:VAL:HG12	1:E:79:GLN:NE2	2.32	0.45
1:F:118:GLU:OE2	1:F:212:THR:HG21	2.16	0.45
1:G:106:LEU:HB3	1:G:219:LEU:HD22	1.98	0.45
1:H:318:SER:O	1:H:418:PRO:HG2	2.16	0.45
1:H:367:GLU:HG3	1:H:368:LEU:N	2.32	0.45
1:C:146:GLY:O	1:C:150:LYS:HD2	2.17	0.45
1:D:88:TRP:CH2	1:D:96:ARG:HD2	2.52	0.45
1:H:160:ASP:OD1	1:H:160:ASP:N	2.45	0.45
1:H:508:GLY:O	4:H:701:HOH:O	2.21	0.45
1:B:329:GLU:OE1	1:H:333:ARG:NH2	2.38	0.45
1:G:102:GLN:O	1:G:105:ASP:HB2	2.17	0.45
1:G:335:VAL:HG22	1:G:397:VAL:HG11	1.98	0.45
1:B:324:GLU:HG2	1:B:421:LYS:HD3	1.98	0.45
1:F:200:THR:HG22	1:F:229:VAL:HA	1.99	0.45
1:A:310:GLN:CD	1:A:354:GLY:H	2.20	0.44
1:A:386:MET:O	1:A:387:GLU:HG2	2.17	0.44
1:D:368:LEU:O	1:D:371:SER:OG	2.28	0.44
1:E:124:LYS:HG2	1:E:309:ASN:OD1	2.17	0.44
1:E:439:LEU:HD11	1:E:477:PHE:CZ	2.52	0.44
1:H:192:ALA:HB3	1:H:193:PRO:CD	2.46	0.44
3:C:602:REA:H8	3:C:602:REA:C18	2.47	0.44
1:E:68:LYS:HB3	1:E:69:PRO:HD3	2.00	0.44
1:F:361:GLN:NE2	2:F:601:NAD:O2D	2.50	0.44
1:F:189:TRP:HE3	1:F:488:GLU:OE1	2.00	0.44
1:G:318:SER:O	1:G:319:ARG:HB2	2.17	0.44
1:G:31:PHE:CD1	1:G:40:TRP:CZ2	3.06	0.44
1:H:295:LEU:HD13	1:H:326:VAL:HG11	1.99	0.44
1:H:289:VAL:O	1:H:322:VAL:HA	2.16	0.44
1:C:360:LYS:O	1:C:364:LYS:HD2	2.17	0.44
1:C:40:TRP:HH2	1:C:214:LEU:O	2.00	0.44
1:F:327:TYR:CE1	1:F:421:LYS:HG3	2.53	0.44
1:B:171:ILE:HD12	1:B:252:LYS:HG3	2.00	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:D:204:LYS:HE3	1:D:240:VAL:HG23	1.98	0.44
1:G:381:CYS:SG	1:G:397:VAL:HG12	2.57	0.44
1:C:341:ARG:NH1	1:C:353:GLN:HB2	2.33	0.44
1:D:379:LEU:HD21	1:D:382:GLY:O	2.18	0.44
1:E:204:LYS:NZ	2:E:601:NAD:O2B	2.25	0.44
1:F:119:THR:HG21	1:F:347:PHE:CD1	2.52	0.44
1:G:158:THR:HB	1:H:472:TYR:CE2	2.53	0.44
1:H:295:LEU:HD21	1:H:329:GLU:HG2	1.99	0.44
1:H:325:GLN:N	1:H:325:GLN:OE1	2.40	0.44
1:A:158:THR:OG1	1:A:159:ASP:N	2.45	0.44
3:C:602:REA:H171	3:C:602:REA:H7	1.86	0.44
1:D:258:SER:HB2	2:D:601:NAD:C2N	2.47	0.44
1:G:258:SER:OG	1:G:261:VAL:CG1	2.63	0.44
1:G:396:THR:HB	1:G:416:VAL:HG12	1.99	0.44
1:B:335:VAL:HG21	1:B:380:GLU:HB3	2.00	0.44
1:B:436:ASP:O	1:B:482:MET:HB2	2.18	0.44
1:B:204:LYS:NZ	2:B:601:NAD:O2B	2.30	0.44
1:C:191:LEU:HD21	1:C:195:LEU:HD12	1.99	0.44
1:D:261:VAL:O	1:D:265:VAL:HG23	2.18	0.44
1:G:397:VAL:HG23	1:G:417:GLN:HB3	1.99	0.44
1:G:167:ARG:NH1	1:H:456:SER:HA	2.32	0.44
1:C:338:ALA:HB3	1:C:381:CYS:SG	2.57	0.44
1:C:39:GLU:OE1	1:C:39:GLU:HA	2.18	0.44
1:D:203:LEU:N	1:D:203:LEU:HD12	2.33	0.44
1:E:88:TRP:NE1	1:E:198:GLY:O	2.50	0.44
1:G:312:GLN:HG2	1:G:361:GLN:HE22	1.82	0.44
1:H:35:PHE:CD2	1:H:232:ILE:HD12	2.53	0.44
1:G:61:CYS:SG	1:G:211:LEU:HD21	2.58	0.44
1:H:27:LEU:HB3	1:H:120:MET:CE	2.48	0.43
1:A:193:PRO:HA	1:A:196:CYS:HB3	2.00	0.43
1:F:125:PRO:HG2	1:F:128:HIS:CD2	2.54	0.43
1:F:326:VAL:O	1:F:326:VAL:HG12	2.17	0.43
1:F:442:ALA:HB2	1:F:468:TYR:CD1	2.53	0.43
1:H:193:PRO:HA	1:H:196:CYS:HB3	2.00	0.43
1:A:82:PHE:CE2	1:A:172:GLY:HA2	2.53	0.43
1:D:195:LEU:HD13	1:D:225:PHE:CE1	2.53	0.43
1:E:293:ALA:O	1:E:295:LEU:HD22	2.19	0.43
1:E:383:GLY:O	1:E:384:SER:CB	2.65	0.43
1:G:335:VAL:HG22	1:G:380:GLU:HB3	1.99	0.43
1:H:219:LEU:O	1:H:223:ALA:N	2.46	0.43
3:B:602:REA:H8	3:B:602:REA:C18	2.48	0.43

		Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap (Å)
1:E:111:ARG:NH2	1:E:135:GLU:OE2	2.46	0.43
1:G:146:GLY:O	1:G:150:LYS:HD2	2.18	0.43
1:F:380:GLU:N	1:F:380:GLU:OE1	2.51	0.43
1:E:247:HIS:CD2	1:E:248:PRO:HD2	2.53	0.43
1:F:216:LEU:O	1:F:220:ILE:HG12	2.18	0.43
1:H:250:ILE:HG22	1:H:275:LYS:HD3	1.99	0.43
1:A:187:LEU:HD11	1:A:203:LEU:HB3	2.00	0.43
1:B:393:ILE:HG22	1:B:394:LYS:O	2.18	0.43
1:C:203:LEU:CD1	1:C:230:VAL:HG13	2.48	0.43
1:H:117:LEU:C	1:H:117:LEU:HD12	2.38	0.43
1:H:214:LEU:HD21	1:H:234:PRO:HG3	2.00	0.43
1:A:132:ILE:CG2	3:A:602:REA:H192	2.49	0.43
1:A:303:HIS:CE1	1:A:307:PHE:CD2	3.07	0.43
1:E:295:LEU:HD21	1:E:326:VAL:HG11	2.00	0.43
1:E:401:VAL:HG13	1:E:405:MET:HE2	2.01	0.43
1:F:122:THR:HG22	1:F:209:THR:HG21	2.01	0.43
1:G:241:GLY:HA3	2:G:601:NAD:C2A	2.48	0.43
1:A:34:ILE:HG12	1:A:234:PRO:HD2	2.00	0.43
1:C:57:ARG:NH1	1:C:389:LYS:O	2.52	0.43
1:C:42:GLU:HB2	1:C:64:GLU:OE1	2.18	0.43
1:D:27:LEU:CB	1:D:120:MET:CE	2.95	0.43
1:F:100:LEU:HD21	1:F:195:LEU:HB2	2.00	0.43
1:G:425:ILE:HD11	1:G:450:LYS:HD3	2.01	0.43
1:G:68:LYS:O	1:G:71:VAL:HG12	2.19	0.43
1:H:252:LYS:HG2	1:H:253:ILE:N	2.34	0.43
1:A:340:LYS:HD3	1:A:340:LYS:N	2.33	0.43
1:B:269:ALA:HB1	1:B:275:LYS:CG	2.49	0.43
1:B:253:ILE:CG2	1:B:277:VAL:HG22	2.49	0.43
1:B:33:LYS:HA	1:B:64:GLU:HG3	2.00	0.43
1:C:343:VAL:HG12	1:C:353:GLN:HB3	1.99	0.43
1:E:366:LEU:HD21	1:E:384:SER:HB2	2.01	0.43
1:F:128:HIS:O	1:F:132:ILE:HB	2.19	0.43
1:H:247:HIS:HA	1:H:248:PRO:HD3	1.88	0.43
1:C:310:GLN:HB3	1:C:356:GLN:NE2	2.34	0.42
1:C:505:ILE:HG12	1:D:465:ILE:HD12	2.01	0.42
1:F:183:PRO:O	1:F:187:LEU:HD13	2.18	0.42
1:G:324:GLU:HA	1:G:421:LYS:HD2	2.00	0.42
1:H:33:LYS:HA	1:H:64:GLU:HG3	2.01	0.42
1:A:119:THR:OG1	1:A:126:PHE:HA	2.20	0.42
1:A:88:TRP:CZ2	1:A:96:ARG:HD2	2.54	0.42
1:B:55:SER:HA	1:B:355:PRO:HG3	2.01	0.42

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	$overlan(\mathbf{\hat{A}})$
1.C.191.LEU.HA	1.C.201.MET.SD	2.59	0.42
1:F:147:TRP:0	1:F:151:ILE:HG13	2.39	0.12
1:A·150·LYS·HE3	1.C.147.TRP.CD1	2.55	0.12
1.A.33.LYS.HA	1.A.64.GLU.HG3	2.00	0.12
3:C:602:REA:C8	3:C:602:REA:H181	2.49	0.42
1:D:151:ILE:HG12	1:D:494:LEU:HD13	2.00	0.42
1:D:57:ARG:NH2	1:D:391:LEU:HD21	2.34	0.42
1:D:314:CYS:SG	3:D:602:REA:C15	3.07	0.42
1:H:284:LYS:CE	1:H:319:ARG:CZ	2.96	0.42
1:A:284:LYS:HG2	1:A:318:SER:OG	2.20	0.42
1:B:207:GLU:HG2	1:B:236:PHE:HA	2.01	0.42
1:B:488:GLU:O	1:B:489:LEU:HB2	2.18	0.42
1:C:169:GLU:O	1:C:498:THR:HA	2.20	0.42
1:G:151:ILE:HD11	1:G:196:CYS:SG	2.60	0.42
1:G:379:LEU:HD11	1:G:396:THR:HG23	2.00	0.42
1:H:194:ALA:O	1:H:199:ASN:HB2	2.20	0.42
1:F:143:TYR:CE1	1:F:474:GLN:HB3	2.54	0.42
1:F:91:LEU:HD22	1:F:95:SER:HB3	2.01	0.42
1:H:273:ASN:OD1	1:H:275:LYS:HE3	2.20	0.42
1:A:84:ARG:HH12	1:B:426:GLU:CD	2.22	0.42
1:B:237:GLY:HA3	2:B:601:NAD:C8A	2.50	0.42
1:B:476:PRO:HG3	1:B:492:TYR:CD2	2.54	0.42
1:C:71:VAL:CG2	1:C:240:VAL:HG13	2.50	0.42
1:D:118:GLU:OE2	1:D:212:THR:CG2	2.68	0.42
1:D:403:ASP:OD2	1:D:431:ARG:HD2	2.20	0.42
1:B:218:SER:OG	1:B:219:LEU:N	2.52	0.42
1:G:309:ASN:C	1:G:310:GLN:OE1	2.57	0.42
1:H:151:ILE:HG12	1:H:494:LEU:HD13	2.01	0.42
1:C:68:LYS:HB3	1:C:69:PRO:HD3	2.00	0.42
1:E:365:ILE:HD12	1:E:365:ILE:C	2.40	0.42
1:F:43:SER:HB2	1:F:46:GLY:H	1.85	0.42
1:G:118:GLU:O	1:G:122:THR:OG1	2.28	0.42
1:H:34:ILE:HD13	1:H:234:PRO:HD2	2.01	0.42
1:H:94:LEU:O	1:H:98:ARG:HG2	2.19	0.42
1:B:121:ASP:OD1	1:B:208:GLN:O	2.38	0.42
1:B:370:GLU:O	1:B:373:LYS:N	2.53	0.42
1:D:182:PHE:HB3	1:D:185:LEU:HB3	2.02	0.42
1:D:310:GLN:HG3	1:D:353:GLN:HG3	2.02	0.42
1:E:151:ILE:HG12	1:E:494:LEU:HD13	2.01	0.42
1:H:322:VAL:CG2	1:H:327:TYR:HD1	2.32	0.42
1:A:247:HIS:HA	1:A:248:PRO:HD3	1.86	0.42

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:404:ASN:HA	1:A:409:LYS:HD2	2.02	0.42
1:B:356:GLN:HG2	1:B:391:LEU:O	2.20	0.42
1:D:244:ILE:HG22	1:D:253:ILE:CD1	2.50	0.42
1:D:309:ASN:C	1:D:310:GLN:OE1	2.58	0.42
1:E:309:ASN:C	1:E:310:GLN:OE1	2.58	0.42
1:F:51:THR:HG21	1:F:211:LEU:HD21	2.02	0.42
1:B:189:TRP:HE1	3:B:602:REA:H172	1.85	0.41
2:C:601:NAD:O1N	2:C:601:NAD:H52A	2.20	0.41
1:D:49:PHE:HD1	1:D:65:GLU:HB2	1.85	0.41
1:H:117:LEU:HD12	1:H:118:GLU:N	2.35	0.41
1:B:416:VAL:O	1:B:418:PRO:HD3	2.20	0.41
1:D:203:LEU:CD1	1:D:230:VAL:HG13	2.50	0.41
1:D:75:VAL:HG21	1:D:247:HIS:CD2	2.55	0.41
1:E:237:GLY:N	1:E:238:PRO:HD2	2.36	0.41
1:G:148:ALA:O	1:G:151:ILE:HD12	2.20	0.41
1:C:143:TYR:CE1	1:C:474:GLN:HG3	2.55	0.41
1:C:359:GLN:HA	1:C:391:LEU:CD2	2.49	0.41
1:E:425:ILE:O	1:E:428:VAL:HG12	2.20	0.41
1:F:99:LEU:HB3	1:F:225:PHE:CZ	2.54	0.41
1:H:284:LYS:HE3	1:H:319:ARG:CZ	2.49	0.41
1:B:150:LYS:HE3	1:D:147:TRP:NE1	2.36	0.41
1:B:185:LEU:HD21	3:B:602:REA:H171	2.01	0.41
1:C:147:TRP:CZ2	1:C:491:GLU:HG3	2.55	0.41
1:C:386:MET:O	1:C:386:MET:HG3	2.20	0.41
1:D:176:ALA:HB1	1:D:190:LYS:HD2	2.02	0.41
1:E:205:PRO:HG3	1:E:213:ALA:HB3	2.02	0.41
1:E:366:LEU:HD22	1:E:384:SER:HB2	2.01	0.41
1:G:327:TYR:O	1:G:331:VAL:HG23	2.19	0.41
1:G:341:ARG:HD3	1:G:353:GLN:HE21	1.85	0.41
1:H:169:GLU:O	1:H:498:THR:HA	2.21	0.41
1:A:169:GLU:O	1:A:498:THR:HA	2.20	0.41
1:A:276:ARG:NH1	1:A:499:GLU:OE2	2.53	0.41
1:B:35:PHE:CZ	1:B:38:ASN:HA	2.55	0.41
1:C:30:LYS:HB3	1:C:30:LYS:HE2	1.85	0.41
2:F:601:NAD:H6N	2:F:601:NAD:H52N	2.03	0.41
1:G:204:LYS:HD3	$1:\overline{G:240:VAL:HG12}$	2.01	0.41
1:H:284:LYS:HE3	1:H:319:ARG:NE	2.35	0.41
1:A:204:LYS:HD2	1:A:240:VAL:HB	2.02	0.41
1:B:106:LEU:HB3	1:B:219:LEU:HD22	2.03	0.41
1:B:379:LEU:HD21	1:B:382:GLY:O	2.20	0.41
1:E:282:GLY:HA2	2:E:601:NAD:H72N	1.85	0.41

	lo uo puge	Interatomic	Clash
Atom-1	Atom-2	distance $(Å)$	overlap(Å)
1.F.203.LEU.HD12	1·F·232·ILE·HG12	2.02	0.41
1:F:68:LYS:HB3	1:F:69:PRO:HD3	2.03	0.41
1:F:75:VAL:O	1:F:79:GLN:HG2	2 21	0.41
1:H:124:LYS:HZ1	1:H:182:PHE:HA	1.86	0.41
1:H:474:GLN:N	1:H:474:GLN:OE1	2.53	0.41
1:A:103:LEU:O	1:A:107:VAL:HG23	2.21	0.41
1:C:368:LEU:O	1:C:371:SER:HB2	2.21	0.41
1:D:51:THR:HG21	1:D:121:ASP:OD1	2.20	0.41
1:D:248:PRO:HG2	1:D:249:GLN:OE1	2.21	0.41
1:D:192:ALA:HB3	1:D:193:PRO:CD	2.50	0.41
1:E:204:LYS:CE	1:E:240:VAL:HG23	2.50	0.41
1:F:365:ILE:HG13	1:F:366:LEU:N	2.35	0.41
1:F:76:GLU:O	1:F:80:VAL:HG23	2.20	0.41
1:G:427:GLU:OE1	1:G:431:ARG:NH2	2.53	0.41
1:H:82:PHE:CE2	1:H:172:GLY:HA2	2.56	0.41
3:B:602:REA:H8	3:B:602:REA:H181	2.03	0.41
1:D:253:ILE:CG1	1:D:275:LYS:HD3	2.51	0.41
1:G:137:CYS:HA	1:G:188:VAL:HG21	2.03	0.41
1:H:93:ALA:HA	1:H:96:ARG:CZ	2.51	0.41
1:A:502:THR:OG1	1:B:476:PRO:HG2	2.20	0.41
1:C:296:ASP:O	1:C:299:VAL:HG22	2.21	0.41
1:D:119:THR:HG23	1:D:124:LYS:O	2.21	0.41
1:E:108:GLU:OE1	1:E:138:ILE:HD13	2.21	0.41
1:D:322:VAL:HG21	1:D:330:PHE:CD2	2.56	0.41
1:G:422:PHE:CD2	1:G:428:VAL:HB	2.56	0.41
1:B:276:ARG:HB3	1:B:276:ARG:HE	1.72	0.40
3:B:602:REA:C8	3:B:602:REA:H181	2.51	0.40
1:C:54:PRO:HG3	1:C:357:ILE:O	2.21	0.40
1:E:175:GLY:HA2	1:E:202:VAL:O	2.21	0.40
1:E:239:THR:HG23	1:E:240:VAL:H	1.85	0.40
1:H:192:ALA:HB3	1:H:193:PRO:HD3	2.03	0.40
1:H:56:THR:HG23	1:H:58:GLU:N	2.35	0.40
1:A:118:GLU:OE1	1:A:183:PRO:HD2	2.21	0.40
1:A:27:LEU:HB3	1:A:120:MET:HE2	2.01	0.40
1:A:67:ASP:O	1:A:70:ASP:N	2.53	0.40
1:B:255:PHE:CE2	2:B:601:NAD:H52A	2.56	0.40
1:B:356:GLN:HB2	1:B:391:LEU:HB2	2.03	0.40
1:B:447:ASN:HB3	1:B:450:LYS:HB2	2.02	0.40
1:B:478:GLY:HA3	1:B:487:ARG:HD3	2.03	0.40
1:B:82:PHE:O	1:B:82:PHE:CG	2.75	0.40
1:C:294:ASP:C	1:C:294:ASP:OD1	2.60	0.40

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:335:VAL:HG11	1:C:380:GLU:CB	2.46	0.40
1:D:121:ASP:OD2	1:D:211:LEU:HB2	2.21	0.40
1:E:82:PHE:CZ	1:E:172:GLY:HA2	2.56	0.40
1:A:108:GLU:O	1:A:111:ARG:HB2	2.21	0.40
1:C:42:GLU:CB	1:C:64:GLU:OE1	2.69	0.40
1:C:53:ASN:O	1:C:57:ARG:HA	2.21	0.40
1:D:366:LEU:HD23	1:D:369:ILE:HD12	2.03	0.40
1:E:181:ASN:HB2	1:E:182:PHE:HD1	1.86	0.40
1:E:204:LYS:CD	1:E:240:VAL:HG23	2.52	0.40
1:E:478:GLY:HA3	1:E:487:ARG:HD3	2.02	0.40
1:F:38:ASN:O	1:F:221:LYS:NZ	2.38	0.40
1:F:440:THR:HG21	1:F:464:TRP:CZ3	2.56	0.40
1:F:474:GLN:CD	1:F:474:GLN:H	2.25	0.40
1:G:103:LEU:HD13	1:G:103:LEU:O	2.22	0.40
1:G:324:GLU:HA	1:G:421:LYS:CD	2.51	0.40
1:H:178:THR:CG2	1:H:179:PRO:HD2	2.51	0.40
1:H:331:VAL:O	1:H:335:VAL:HG23	2.21	0.40
1:A:261:VAL:HA	1:A:264:LEU:HD12	2.03	0.40
1:C:111:ARG:HG2	1:C:130:PHE:CE1	2.57	0.40
1:C:404:ASN:O	1:C:409:LYS:NZ	2.44	0.40
1:E:171:ILE:HD11	1:E:496:GLU:O	2.20	0.40
1:E:207:GLU:HG2	1:E:236:PHE:HD1	1.83	0.40
1:E:327:TYR:CD2	1:E:421:LYS:HB3	2.56	0.40
1:E:327:TYR:CE2	1:E:421:LYS:HB3	2.57	0.40
1:G:486:GLY:O	1:G:487:ARG:NH1	2.52	0.40
1:A:319:ARG:HB3	1:A:321:PHE:CE1	2.56	0.40
1:B:75:VAL:HG11	1:B:247:HIS:CE1	2.56	0.40
1:C:127:LEU:HD11	1:C:349:VAL:HA	2.03	0.40
1:D:106:LEU:HD12	1:D:223:ALA:HB2	2.03	0.40
1:E:331:VAL:O	1:E:335:VAL:HG23	2.22	0.40
1:F:187:LEU:HD21	1:F:213:ALA:HB1	2.03	0.40
1:F:303:HIS:CG	1:F:337:TYR:HD2	2.39	0.40
1:F:323:GLU:HA	1:F:422:PHE:O	2.21	0.40
1:G:185:LEU:HD11	1:G:189:TRP:HE1	1.87	0.40
1:G:52:CYS:SG	1:G:59:GLN:HA	2.62	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percer	ntiles
1	А	487/529~(92%)	464 (95%)	23~(5%)	0	100	100
1	В	469/529~(89%)	434~(92%)	35~(8%)	0	100	100
1	С	487/529~(92%)	459 (94%)	24~(5%)	4 (1%)	19	51
1	D	486/529~(92%)	462~(95%)	23~(5%)	1 (0%)	47	78
1	Е	472/529~(89%)	443 (94%)	25~(5%)	4 (1%)	19	51
1	F	437/529~(83%)	419 (96%)	18 (4%)	0	100	100
1	G	456/529~(86%)	432~(95%)	22~(5%)	2 (0%)	34	66
1	Н	486/529~(92%)	454 (93%)	30 (6%)	2(0%)	34	66
All	All	3780/4232 (89%)	3567(94%)	200 (5%)	13 (0%)	41	71

All (13) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	С	57	ARG
1	D	57	ARG
1	Ε	384	SER
1	Н	349	VAL
1	С	387	GLU
1	Е	45	SER
1	Ε	57	ARG
1	Ε	206	ALA
1	G	324	GLU
1	G	272	SER
1	С	409	LYS
1	Н	272	SER
1	С	438	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	А	405/437~(93%)	399~(98%)	6 (2%)	65	87
1	В	392/437~(90%)	387~(99%)	5(1%)	69	90
1	С	405/437~(93%)	398~(98%)	7(2%)	60	86
1	D	405/437~(93%)	397~(98%)	8 (2%)	55	82
1	Ε	396/437~(91%)	387~(98%)	9(2%)	50	80
1	F	370/437~(85%)	362~(98%)	8 (2%)	52	81
1	G	383/437~(88%)	374~(98%)	9(2%)	50	80
1	Н	404/437~(92%)	396~(98%)	8 (2%)	55	82
All	All	3160/3496 (90%)	3100 (98%)	60(2%)	57	84

All (60) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	196	CYS
1	А	239	THR
1	А	275	LYS
1	А	313	CYS
1	А	413	PHE
1	А	440	THR
1	В	196	CYS
1	В	272	SER
1	В	275	LYS
1	В	336	GLU
1	В	337	TYR
1	С	89	ARG
1	С	118	GLU
1	С	133	ASP
1	С	196	CYS
1	С	272	SER
1	С	284	LYS
1	С	364	LYS
1	D	20	LEU

Mol	Chain	Res	Type
1	D	29	VAL
1	D	45	SER
1	D	55	SER
1	D	121	ASP
1	D	272	SER
1	D	313	CYS
1	D	413	PHE
1	Е	127	LEU
1	Е	181	ASN
1	Е	196	CYS
1	Е	212	THR
1	Е	292	ASP
1	Е	381	CYS
1	Е	392	PHE
1	Е	413	PHE
1	Е	507	LEU
1	F	30	LYS
1	F	101	HIS
1	F	121	ASP
1	F	196	CYS
1	F	314	CYS
1	F	337	TYR
1	F	399	SER
1	F	435	THR
1	G	30	LYS
1	G	71	VAL
1	G	127	LEU
1	G	150	LYS
1	G	270	SER
1	G	318	SER
1	G	328	SER
1	G	402	THR
1	G	416	VAL
1	Н	121	ASP
1	Н	133	ASP
1	H	159	ASP
1	Н	196	CYS
1	Н	337	TYR
1	H	351	THR
1	Н	370	GLU
1	H	499	GLU

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (17) such

sidechains are listed below:

Mol	Chain	Res	Type
1	А	247	HIS
1	В	312	GLN
1	В	325	GLN
1	С	310	GLN
1	С	353	GLN
1	С	356	GLN
1	D	79	GLN
1	Е	41	HIS
1	Е	79	GLN
1	Е	485	ASN
1	F	79	GLN
1	F	128	HIS
1	F	361	GLN
1	G	312	GLN
1	G	353	GLN
1	G	361	GLN
1	Н	303	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

12 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the

Mal	Trees	Chain	Dec Link	Bo	Bond lengths			Bond ang	gles	
	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
3	REA	D	602	-	19,22,22	1.25	3 (15%)	26,30,30	2.81	12 (46%)
3	REA	В	602	-	19,22,22	0.88	0	26,30,30	2.44	10 (38%)
3	REA	А	602	-	19,22,22	0.97	1 (5%)	26,30,30	2.21	<mark>6 (23%)</mark>
2	NAD	В	601	-	42,48,48	0.84	2 (4%)	50,73,73	1.44	8 (16%)
2	NAD	D	601	-	42,48,48	0.97	2 (4%)	50,73,73	1.50	11 (22%)
2	NAD	F	601	-	42,48,48	0.89	2 (4%)	50,73,73	1.18	6 (12%)
2	NAD	Н	601	-	42,48,48	0.92	2 (4%)	50,73,73	1.32	6 (12%)
2	NAD	А	601	-	42,48,48	1.08	2 (4%)	50,73,73	1.55	8 (16%)
2	NAD	С	601	-	42,48,48	0.88	1 (2%)	50,73,73	1.24	5 (10%)
2	NAD	Е	601	-	42,48,48	0.94	3 (7%)	50,73,73	1.49	7 (14%)
2	NAD	G	601	-	42,48,48	0.92	<mark>3 (7%)</mark>	50,73,73	1.27	6 (12%)
3	REA	С	602	-	19,22,22	0.96	0	26,30,30	2.16	8 (30%)

expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	REA	D	602	-	-	2/13/32/32	0/1/1/1
3	REA	В	602	-	-	2/13/32/32	0/1/1/1
3	REA	А	602	-	-	2/13/32/32	0/1/1/1
2	NAD	В	601	-	-	12/26/62/62	0/5/5/5
2	NAD	D	601	-	-	11/26/62/62	0/5/5/5
2	NAD	F	601	-	-	7/26/62/62	0/5/5/5
2	NAD	Н	601	-	-	7/26/62/62	0/5/5/5
2	NAD	А	601	-	-	8/26/62/62	0/5/5/5
2	NAD	С	601	-	-	13/26/62/62	0/5/5/5
2	NAD	Е	601	-	-	10/26/62/62	0/5/5/5
2	NAD	G	601	-	-	15/26/62/62	0/5/5/5
3	REA	С	602	-	-	2/13/32/32	0/1/1/1

All (21) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(\text{\AA})$	Ideal(Å)
2	А	601	NAD	O4D-C1D	3.59	1.46	1.41
2	D	601	NAD	O4D-C1D	3.23	1.45	1.41
2	А	601	NAD	C2B-C1B	-3.16	1.49	1.53
2	С	601	NAD	O4D-C1D	3.11	1.45	1.41
2	Е	601	NAD	O4D-C1D	2.83	1.45	1.41
3	D	602	REA	C5-C6	2.71	1.39	1.34
2	F	601	NAD	O4D-C1D	2.70	1.44	1.41
3	А	602	REA	C5-C6	2.67	1.39	1.34
2	Е	601	NAD	C2A-N3A	2.34	1.35	1.32
2	Н	601	NAD	O4D-C1D	2.34	1.44	1.41
2	D	601	NAD	O4B-C1B	2.31	1.44	1.41
2	F	601	NAD	C2A-N3A	2.31	1.35	1.32
2	G	601	NAD	C5A-C4A	2.31	1.47	1.40
2	G	601	NAD	O4D-C1D	2.27	1.44	1.41
3	D	602	REA	C8-C9	2.25	1.50	1.45
2	Ε	601	NAD	C5A-C4A	2.20	1.46	1.40
2	В	601	NAD	O4D-C1D	2.10	1.44	1.41
2	G	601	NAD	C2A-N3A	2.07	1.35	1.32
3	D	602	REA	C7-C6	2.05	1.52	1.45
2	В	601	NAD	C5A-C4A	2.05	1.46	1.40
2	Н	601	NAD	C2B-C1B	-2.00	1.50	1.53

All (93) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
3	D	602	REA	C8-C9-C10	-7.24	107.83	118.94
3	А	602	REA	C8-C9-C10	-6.81	108.49	118.94
3	D	602	REA	С11-С10-С9	6.62	136.76	127.31
3	В	602	REA	C3-C4-C5	-5.70	103.89	114.08
3	В	602	REA	C2-C1-C6	5.42	118.83	110.48
3	А	602	REA	C19-C9-C8	5.21	126.28	118.08
2	D	601	NAD	N3A-C2A-N1A	-4.92	121.00	128.68
3	В	602	REA	C4-C5-C6	-4.82	115.74	122.73
3	С	602	REA	C2-C1-C6	4.79	117.85	110.48
2	А	601	NAD	N3A-C2A-N1A	-4.60	121.49	128.68
3	С	602	REA	C1-C6-C5	-4.33	116.52	122.61
3	D	602	REA	C19-C9-C8	4.22	124.73	118.08
3	С	602	REA	C4-C5-C6	-4.17	116.68	122.73
2	Е	601	NAD	PN-O3-PA	-4.15	118.58	132.83
2	В	601	NAD	N3A-C2A-N1A	-3.99	122.44	128.68
2	G	601	NAD	C3D-C2D-C1D	3.98	106.97	100.98
2	Е	601	NAD	N3A-C2A-N1A	-3.93	122.54	128.68
2	Н	601	NAD	N3A-C2A-N1A	-3.85	122.66	128.68

Ideal(°) 126.23 128.68 128.68100.98 114.08 132.83 100.98 123.22 122.61 126.23113.62109.40 117.75 122.92 122.61 118.57126.64 123.22 109.40 109.40 128.68 117.75110.30 126.42 100.98 118.57114.08120.35 102.64118.94 100.98 100.98102.64

Page 4	0		Full w	wPDB X-ray Stru	icture V	Validation Repo
Conti	mund from	n nravi	OUE DAAR			
Mol	Chain	\mathbf{Res}	Type	Atoms	Z	Observed(°
3	В	602	REA	C7-C8-C9	-3.77	120.55
2	С	601	NAD	N3A-C2A-N1A	-3.72	122.86
2	F	601	NAD	N3A-C2A-N1A	-3.71	122.88
2	Е	601	NAD	C3D-C2D-C1D	3.61	106.42
3	А	602	REA	C3-C4-C5	-3.61	107.64
2	А	601	NAD	PN-O3-PA	-3.50	120.81
2	Н	601	NAD	C3D-C2D-C1D	3.50	106.25
3	D	602	REA	C10-C11-C12	-3.47	112.38
3	В	602	REA	C1-C6-C5	-3.40	117.82
3	D	602	REA	C7-C8-C9	3.37	131.33
3	В	602	REA	C18-C5-C4	3.35	120.04
2	G	601	NAD	C4A-C5A-N7A	-3.30	105.96
2	А	601	NAD	C3N-C7N-N7N	3.30	121.71
3	D	602	REA	C19-C9-C10	3.21	127.43
3	D	602	REA	C1-C6-C5	-3.20	118.11
2	D	601	NAD	N6A-C6A-N1A	3.18	125.17
2	Н	601	NAD	C1B-N9A-C4A	-3.16	121.10
3	А	602	REA	C10-C11-C12	-3.13	113.45
2	Е	601	NAD	C4A-C5A-N7A	-3.09	106.18
2	Н	601	NAD	C4A-C5A-N7A	-3.05	106.22
2	G	601	NAD	N3A-C2A-N1A	-2.98	124.02
2	D	601	NAD	C3N-C7N-N7N	2.96	121.30
3	D	602	REA	C17-C1-C6	2.95	115.09
3	С	602	REA	C11-C12-C13	-2.92	118.21
2	С	601	NAD	C3D-C2D-C1D	2.91	105.36
2	А	601	NAD	N6A-C6A-N1A	2.91	124.60
3	D	602	REA	C3-C4-C5	-2.89	108.92
2	D	601	NAD	C5A-C6A-N6A	-2.85	116.02
2	D	601	NAD	C2D-C3D-C4D	2.84	108.16
3	С	602	REA	C8-C9-C10	-2.83	114.60
2	D	601	NAD	C3B-C2B-C1B	-2.79	96.78
2	F	601	NAD	C3D-C2D-C1D	2.78	105.17
2	A	601	NAD	C2D-C3D-C4D	2.78	108.04

2

2

3

3

 $\overline{2}$

2

2

2

2

Е

В

D

А

В

В

G

 $\overline{\mathbf{C}}$

D

NAD

NAD

REA

REA

NAD

NAD

NAD

NAD

NAD

601

601

602

602

601

601

601

601

601

O4B-C1B-C2B

C3B-C2B-C1B

C18-C5-C6

C16-C1-C6

C3N-C7N-N7N

C3D-C2D-C1D

C6N-N1N-C2N

C4A-C5A-N7A

PN-O3-PA

Continued on next page...

102.93

105.02

127.53

114.59

120.88

104.88

119.62

106.74

124.09

106.93

100.98

124.53

110.30

117.75

100.98

121.97

109.40

132.83

-2.73

2.68

2.68

2.64

2.61

2.59

-2.58

-2.55

-2.54

Mol	Chain	\mathbf{Res}	Type	Atoms		$\mathbf{Observed}(^{o})$	$Ideal(^{o})$
2	В	601	NAD	PN-O3-PA	-2.51	124.20	132.83
3	В	602	REA	C16-C1-C6	-2.51	106.23	110.30
3	С	602	REA	C8-C7-C6	-2.51	120.16	127.20
3	D	602	REA	C2-C1-C6	-2.50	106.63	110.48
3	С	602	REA	C18-C5-C4	2.48	118.38	113.62
2	С	601	NAD	C2D-C3D-C4D	2.47	107.45	102.64
2	Е	601	NAD	C6N-N1N-C2N	-2.47	119.72	121.97
2	D	601	NAD	C3D-C2D-C1D	2.46	104.68	100.98
2	F	601	NAD	N6A-C6A-N1A	2.43	123.62	118.57
2	Е	601	NAD	C2D-C3D-C4D	2.43	107.36	102.64
2	А	601	NAD	C5A-C6A-N6A	-2.42	116.68	120.35
2	D	601	NAD	O7N-C7N-N7N	-2.42	119.14	122.58
3	А	602	REA	C18-C5-C4	-2.37	109.05	113.62
2	В	601	NAD	PA-O5B-C5B	-2.34	107.93	121.68
2	С	601	NAD	C3N-C7N-N7N	2.32	120.53	117.75
2	Н	601	NAD	C6N-N1N-C2N	-2.28	119.90	121.97
2	В	601	NAD	N6A-C6A-N1A	2.27	123.28	118.57
2	А	601	NAD	C3D-C2D-C1D	2.22	104.31	100.98
2	В	601	NAD	C2A-N1A-C6A	2.17	122.47	118.75
2	G	601	NAD	O5B-C5B-C4B	2.17	116.45	108.99
2	Н	601	NAD	C3N-C7N-N7N	2.17	120.35	117.75
3	В	602	REA	C11-C12-C13	-2.16	120.36	126.42
3	В	602	REA	С11-С10-С9	-2.16	124.23	127.31
2	G	601	NAD	C1B-N9A-C4A	-2.15	122.87	126.64
2	F	601	NAD	C2N-C3N-C4N	2.14	120.68	118.26
3	D	602	REA	C8-C7-C6	-2.12	121.23	127.20
3	В	602	REA	C8-C9-C10	-2.08	115.76	118.94
3	С	602	REA	C11-C10-C9	-2.06	124.37	127.31
2	A	$\overline{601}$	NAD	O3B-C3B-C2B	-2.05	105.18	111.82
2	F	601	NAD	C4A-C5A-N7A	-2.05	107.26	109.40
2	D	601	NAD	C6N-N1N-C2N	-2.04	120.11	121.97
2	D	601	NAD	C2A-N1A-C6A	2.01	122.19	118.75
2	F	601	NAD	C6N-N1N-C2N	-2.01	120.15	121.97

There are no chirality outliers.

All (91) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
3	D	602	REA	C1-C6-C7-C8
3	D	602	REA	C5-C6-C7-C8
3	В	602	REA	C1-C6-C7-C8
3	В	602	REA	C5-C6-C7-C8

	Choir	P oc	Turna	Atoma
		nes		
2	B	001 601	NAD	USB-USB-PA-UZA
2	B	601 C01	NAD NAD	C5B-O5B-PA-O3
2	B	601	NAD	C5D-O5D-PN-O3
2	В	601	NAD	C2N-C3N-C7N-O7N
2	B	601	NAD	C2N-C3N-C7N-N7N
2	D	601	NAD	C5B-O5B-PA-O3
2	D	601	NAD	C5D-O5D-PN-O3
2	D	601	NAD	O4D-C1D-N1N-C6N
2	F	601	NAD	C3D-C4D-C5D-O5D
2	Н	601	NAD	PN-O3-PA-O5B
2	H	601	NAD	O4D-C1D-N1N-C2N
2	Н	601	NAD	O4D-C1D-N1N-C6N
2	Н	601	NAD	C2D-C1D-N1N-C2N
2	H	601	NAD	C2D-C1D-N1N-C6N
2	A	601	NAD	C5D-O5D-PN-O3
2	A	601	NAD	C2N-C3N-C7N-N7N
2	С	601	NAD	C5B-O5B-PA-O1A
2	С	601	NAD	C5B-O5B-PA-O2A
2	С	601	NAD	C5B-O5B-PA-O3
2	С	601	NAD	O4B-C4B-C5B-O5B
2	С	601	NAD	C3B-C4B-C5B-O5B
2	С	601	NAD	C5D-O5D-PN-O3
2	С	601	NAD	C2N-C3N-C7N-O7N
2	С	601	NAD	C2N-C3N-C7N-N7N
2	Е	601	NAD	C5B-O5B-PA-O1A
2	G	601	NAD	C5B-O5B-PA-O1A
2	G	601	NAD	C5B-O5B-PA-O2A
2	G	601	NAD	PN-O3-PA-O5B
2	G	601	NAD	O4B-C4B-C5B-O5B
2	G	601	NAD	C5D-O5D-PN-O3
2	B	601	NAD	C4N-C3N-C7N-O7N
2	B	601	NAD	C4N-C3N-C7N-N7N
2	C	601	NAD	C4N-C3N-C7N-O7N
2	Č	601	NAD	C4N-C3N-C7N-N7N
$\frac{-}{2}$	A	601	NAD	C4N-C3N-C7N-N7N
$\frac{-2}{2}$	A	601	NAD	C4N-C3N-C7N-O7N
2	Δ	601	NAD	$\frac{C2N_C3N_C7N_07N}{C2N_C3N_C7N_07N}$
$\frac{2}{2}$	R	601	NAD	$0.4B_{C}/R_{C}/SR_{O}/SR_{O}$
$\frac{2}{2}$		601	NAD	04B-C4B-C5B-05B
2 0		601	NAD	04D C4D C5D 05D
2 0		601	NAD NAD	$\begin{array}{c} 04D - 04D - 05D - 05D \\ \hline 04D - 04D - 05D - 05D \\ \hline 05D \\ \hline 05D - 05D \\ \hline 05D \\$
<u></u>	A	001 601	NAD	$\bigcirc 4D \bigcirc 4D \bigcirc 0D \bigcirc 0D \bigcirc 0D \bigcirc 0D \bigcirc 0D \bigcirc 0D $
2	l G	001	NAD	U4D-U4D-U5D-U5D

Continued from previous page...

Mol	Chain	Res	Type	Atoms
2	G	601	NAD	C3D-C4D-C5D-O5D
2	G	601	NAD	C4N-C3N-C7N-N7N
2	G	601	NAD	C2N-C3N-C7N-O7N
2	G	601	NAD	C2N-C3N-C7N-N7N
2	G	601	NAD	C4N-C3N-C7N-O7N
2	D	601	NAD	O4D-C4D-C5D-O5D
2	F	601	NAD	O4D-C4D-C5D-O5D
2	G	601	NAD	C3B-C4B-C5B-O5B
2	D	601	NAD	C3D-C4D-C5D-O5D
2	F	601	NAD	C4N-C3N-C7N-N7N
2	Е	601	NAD	C4N-C3N-C7N-N7N
2	F	601	NAD	C4N-C3N-C7N-O7N
2	D	601	NAD	C3B-C4B-C5B-O5B
3	А	602	REA	C1-C6-C7-C8
3	А	602	REA	C5-C6-C7-C8
3	С	602	REA	C1-C6-C7-C8
3	С	602	REA	C5-C6-C7-C8
2	F	601	NAD	C2N-C3N-C7N-N7N
2	F	601	NAD	C2N-C3N-C7N-O7N
2	Е	601	NAD	C4N-C3N-C7N-O7N
2	Е	601	NAD	C2N-C3N-C7N-N7N
2	Е	601	NAD	PN-O3-PA-O1A
2	В	601	NAD	PN-O3-PA-O5B
2	D	601	NAD	PA-O3-PN-O5D
2	F	601	NAD	PN-O3-PA-O5B
2	Н	601	NAD	C5D-O5D-PN-O3
2	Е	601	NAD	C5B-O5B-PA-O3
2	G	601	NAD	C4D-C5D-O5D-PN
2	B	601	NAD	C5D-O5D-PN-O1N
2	В	601	NAD	C5D-O5D-PN-O2N
2	D	601	NAD	C5B-O5B-PA-O1A
2	D	601	NAD	C5B-O5B-PA-O2A
2	D	601	NAD	C5D-O5D-PN-O1N
2	A	601	NAD	C5D-O5D-PN-O1N
2	С	601	NAD	C5D-O5D-PN-O1N
2	C	601	NAD	C5D-O5D-PN-O2N
2	Е	601	NAD	C5B-O5B-PA-O2A
2	E	601	NAD	C2N-C3N-C7N-O7N
2	Н	601	NAD	C3D-C4D-C5D-O5D
2	В	601	NAD	O4D-C4D-C5D-O5D
2	Е	601	NAD	PN-O3-PA-O5B
2	G	601	NAD	C5B-O5B-PA-O3

Continued from previous page...

Mol	Chain	Res	Type	Atoms
2	Е	601	NAD	C5D-O5D-PN-O1N
2	G	601	NAD	C5D-O5D-PN-O1N
2	С	601	NAD	O4D-C4D-C5D-O5D

Continued from previous page...

There are no ring outliers.

12 monomers are involved in 68 short contacts:

Mol	Chain	\mathbf{Res}	Type	Clashes	Symm-Clashes
3	D	602	REA	10	0
3	В	602	REA	7	0
3	А	602	REA	18	0
2	В	601	NAD	3	0
2	D	601	NAD	4	0
2	F	601	NAD	3	0
2	Н	601	NAD	2	0
2	А	601	NAD	1	0
2	С	601	NAD	4	0
2	Е	601	NAD	4	0
2	G	601	NAD	5	0
3	С	602	REA	7	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ>2	$\mathbf{OWAB}(\mathrm{\AA}^2)$	$Q{<}0.9$
1	А	489/529~(92%)	-0.53	0 100 100	8,21,53,82	0
1	В	475/529~(89%)	-0.48	1 (0%) 95 95	8,19,65,104	0
1	С	489/529~(92%)	-0.41	2 (0%) 92 93	8, 20, 73, 108	0
1	D	488/529~(92%)	-0.56	0 100 100	8, 21, 48, 85	0
1	E	478/529~(90%)	0.01	8 (1%) 70 69	37,61,86,105	0
1	F	449/529~(84%)	-0.10	8 (1%) 68 67	36, 55, 89, 111	0
1	G	462/529~(87%)	0.04	12 (2%) 56 52	39, 57, 87, 107	0
1	Н	488/529~(92%)	0.00	9 (1%) 68 67	37, 59, 83, 109	0
All	All	3818/4232~(90%)	-0.26	40 (1%) 82 82	8, 47, 82, 111	0

All (40) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	F	308	PHE	4.2
1	G	392	PHE	3.8
1	G	178	THR	3.7
1	G	362	PHE	3.5
1	С	389	LYS	3.4
1	G	361	GLN	3.1
1	F	382	GLY	3.1
1	Е	376	GLY	3.0
1	Н	442	ALA	2.9
1	G	182	PHE	2.7
1	Н	214	LEU	2.7
1	F	364	LYS	2.7
1	F	127	LEU	2.6
1	В	389	LYS	2.6
1	Е	408	ALA	2.5
1	F	309	ASN	2.5

Mol	Chain	Res	Type	RSRZ
1	F	383	GLY	2.5
1	G	212	THR	2.5
1	Н	404	ASN	2.4
1	Н	200	THR	2.4
1	G	308	PHE	2.4
1	F	307	PHE	2.4
1	F	433	ASN	2.3
1	G	363	ASP	2.3
1	G	316	ALA	2.3
1	Е	319	ARG	2.3
1	G	179	PRO	2.3
1	Н	452	LEU	2.2
1	Е	430	LYS	2.2
1	Е	407	ILE	2.2
1	Н	310	GLN	2.2
1	G	393	ILE	2.1
1	Е	49	PHE	2.1
1	Н	430	LYS	2.1
1	G	318	SER	2.0
1	Е	448	LEU	2.0
1	С	413	PHE	2.0
1	Н	377	ALA	2.0
1	E	203	LEU	2.0
1	Н	27	LEU	2.0

Continued from previous page...

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} extsf{-}\mathbf{B} extsf{-}\mathbf{factors}(\mathbf{A}^2)$	Q<0.9
3	REA	А	602	22/22	0.86	0.27	$17,\!28,\!40,\!43$	0
3	REA	D	602	22/22	0.88	0.32	$19,\!27,\!37,\!39$	0
3	REA	В	602	22/22	0.90	0.31	$16,\!35,\!57,\!64$	0
3	REA	С	602	22/22	0.90	0.24	12,28,75,85	7
2	NAD	Е	601	44/44	0.92	0.23	56,73,103,104	0
2	NAD	G	601	44/44	0.94	0.17	44,53,81,82	0
2	NAD	Н	601	44/44	0.94	0.21	43,60,92,95	0
2	NAD	F	601	44/44	0.95	0.17	$41,\!52,\!101,\!103$	0
2	NAD	В	601	44/44	0.96	0.19	11,25,84,84	0
2	NAD	D	601	44/44	0.96	0.19	$18,\!29,\!89,\!92$	0
2	NAD	А	601	44/44	0.96	0.19	17,27,76,78	0
2	NAD	С	601	44/44	0.97	0.17	$14,\!20,\!64,\!70$	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

