

Full wwPDB X-ray Structure Validation Report (i)

Mar 20, 2023 – 07:15 PM EDT

PDB ID : 8FJO

Title : X-ray crystal structure of CYP124A1 from Mycobacterium Marinum in com-

plex with farnesyl acetate

Authors: Ghith, A.; Bruning, J.B.; Bell, S.G.

Deposited on : 2022-12-20

Resolution : 1.69 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.orgA user guide is available at

https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity: 4.02b-467

Mogul : 1.8.5 (274361), CSD as541be (2020)

Xtriage (Phenix) : 1.13

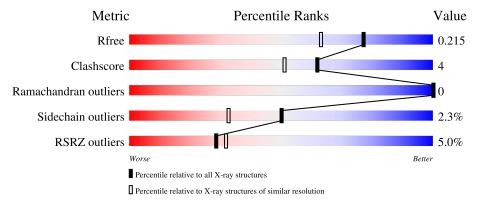
EDS : 2.32.1

buster-report : 1.1.7 (2018)
Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

 $Refmac \quad : \quad 5.8.0158$

CCP4 : 7.0.044 (Gargrove)

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.32.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\ DIFFRACTION$

The reported resolution of this entry is 1.69 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	Similar resolution
Metric	$(\# \mathrm{Entries})$	$(\# ext{Entries}, ext{ resolution range}(ext{Å}))$
R_{free}	130704	4298 (1.70-1.70)
Clashscore	141614	4695 (1.70-1.70)
Ramachandran outliers	138981	4610 (1.70-1.70)
Sidechain outliers	138945	4610 (1.70-1.70)
RSRZ outliers	127900	4222 (1.70-1.70)

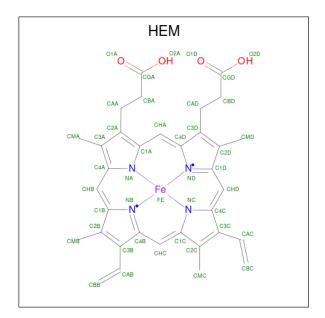
The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
			5%		
1	A	439	86%	10%	•

2 Entry composition (i)

There are 8 unique types of molecules in this entry. The entry contains 3729 atoms, of which 0 are hydrogens and 0 are deuteriums.

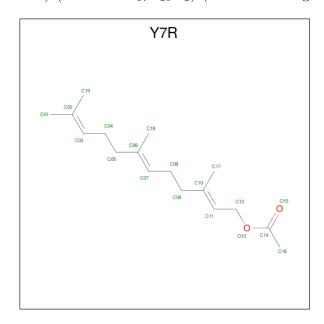
In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

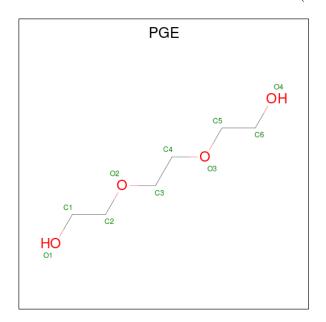

• Molecule 1 is a protein called Cytochrome P450 124A1, Cyp124A1.

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf	Trace		
1	A	423	Total 3365	C 2124	N 600	O 628	S 13	0	7	0

There are 6 discrepancies between the modelled and reference sequences:

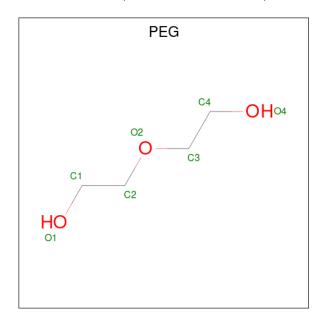
Chain	Residue	Modelled	Actual	Comment	Reference
A	430	HIS	-	expression tag	UNP B2HHT9
A	431	HIS	-	expression tag	UNP B2HHT9
A	432	HIS	-	expression tag	UNP B2HHT9
A	433	HIS	-	expression tag	UNP B2HHT9
A	434	HIS	-	expression tag	UNP B2HHT9
A	435	HIS	-	expression tag	UNP B2HHT9


• Molecule 2 is PROTOPORPHYRIN IX CONTAINING FE (three-letter code: HEM) (formula: C₃₄H₃₂FeN₄O₄).

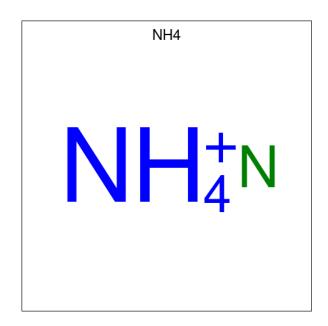

Mol	Chain	Residues	Atoms			ZeroOcc	AltConf		
9	Λ	1	Total	С	Fe	N	О	0	0
2	A	1	43	34	1	4	4	0	0

• Molecule 3 is (2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl acetate (three-letter code: Y7R) (formula: $C_{17}H_{28}O_2$) (labeled as "Ligand of Interest" by depositor).

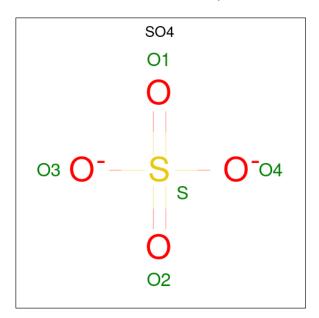
Mol	Chain	Residues	Ato	$\overline{\mathrm{oms}}$		ZeroOcc	AltConf
3	A	1	Total	C	0	0	0
			19	17	2		


• Molecule 4 is TRIETHYLENE GLYCOL (three-letter code: PGE) (formula: $C_6H_{14}O_4$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	A	1	Total C O 10 6 4	0	0
4	A	1	Total C O 10 6 4	0	0
4	A	1	Total C O 10 6 4	0	0


• Molecule 5 is DI(HYDROXYETHYL)ETHER (three-letter code: PEG) (formula: $C_4H_{10}O_3$).

Mol	Chain	Residues	Atoms		ZeroOcc	AltConf
5	A	1	Total C	O 3	0	0

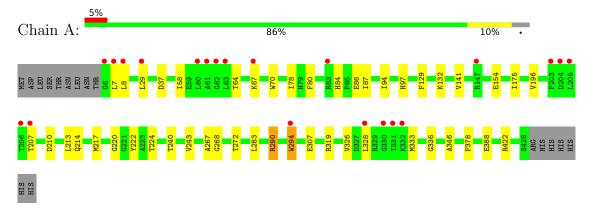

 \bullet Molecule 6 is AMMONIUM ION (three-letter code: NH4) (formula: $\mathrm{H_4N}).$

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	A	1	Total N 1 1	0	0

 \bullet Molecule 7 is SULFATE ION (three-letter code: SO4) (formula: $\mathrm{O_4S}).$

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
7	A	1	Total O S 5 4 1	0	0
7	A	1	Total O S 5 4 1	0	0
7	A	1	Total O S 5 4 1	0	0

• Molecule 8 is water.


Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
8	A	249	Total O 249 249	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Cytochrome P450 124A1, Cyp124A1

4 Data and refinement statistics (i)

Property	Value	Source
Space group	C 1 2 1	Depositor
Cell constants	97.51Å 71.64Å 64.62Å	Donositor
a, b, c, α , β , γ	90.00° 109.64° 90.00°	Depositor
Resolution (Å)	45.92 - 1.69	Depositor
Resolution (A)	45.92 - 1.69	EDS
% Data completeness	99.9 (45.92-1.69)	Depositor
(in resolution range)	99.9 (45.92-1.69)	EDS
R_{merge}	0.09	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	1.60 (at 1.69Å)	Xtriage
Refinement program	PHENIX 1.18.2-3874	Depositor
D D.	0.176 , 0.211	Depositor
R, R_{free}	0.183 , 0.215	DCC
R_{free} test set	2285 reflections (4.87%)	wwPDB-VP
Wilson B-factor (Å ²)	23.5	Xtriage
Anisotropy	0.121	Xtriage
Bulk solvent $k_{sol}(e/Å^3)$, $B_{sol}(Å^2)$	0.39, 47.9	EDS
L-test for twinning ²	$ < L > = 0.49, < L^2> = 0.32$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.97	EDS
Total number of atoms	3729	wwPDB-VP
Average B, all atoms (Å ²)	32.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 7.19% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of <|L|>, $<L^2>$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: HEM, Y7R, PGE, NH4, PEG, SO4

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond	angles
MIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	A	0.69	0/3452	0.82	0/4697

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	A	0	1

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	A	294	TRP	Mainchain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	$H(model) \mid H(added)$		Clashes	Symm-Clashes
1	A	3365	0	3232	30	0
2	A	43	0	30	1	0

Continued from previous page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	A	19	0	0	0	0
4	A	30	0	42	1	0
5	A	7	0	10	1	0
6	A	1	0	0	0	0
7	A	15	0	0	0	0
8	A	249	0	0	2	0
All	All	3729	0	3314	30	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

All (30) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	$egin{aligned} & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ &$	Clash overlap (Å)	
1:A:326:VAL:HG12	1:A:328:LEU:HD22	1.59	0.85	
1:A:328:LEU:HD21	1:A:333:MET:CE	2.14	0.83	
1:A:328:LEU:HD21	1:A:333:MET:HE2	1.75	0.78	
1:A:267:ALA:HB1				
<u> </u>	8:A:618:HOH:O	1.94	0.66	
1:A:328:LEU:HD21	1:A:333:MET:HE1	1.79	0.63	
1:A:328:LEU:N	1:A:328:LEU:HD23	2.14	0.61	
1:A:220:GLY:O	1:A:224:THR:HG23	2.03	0.59	
1:A:70:TRP:CD2	1:A:333:MET:HG2	2.40	0.57	
1:A:283:LEU:HB3	1:A:290:ARG:HG3	1.85	0.57	
1:A:67:LYS:NZ	1:A:336:GLY:O	2.38	0.56	
1:A:141:VAL:HG22	1:A:175:ILE:HD13	1.92	0.52	
1:A:70:TRP:CE2	1:A:333:MET:HG2	2.46	0.50	
1:A:210:ASP:O	1:A:214:GLN:HG3	2.12	0.49	
1:A:7:LEU:HD23	1:A:7:LEU:HA	1.76	0.48	
1:A:78:ILE:HD12	1:A:346:ALA:HB2	1.96	0.48	
1:A:129:PHE:CD1	4:A:504:PGE:H3	2.50	0.46	
1:A:64:THR:HG23	1:A:97:HIS:NE2	2.31	0.46	
1:A:328:LEU:N	1:A:328:LEU:CD2	2.76	0.46	
1:A:196:VAL:HG13	1:A:207:THR:HG21	1.98	0.46	
1:A:268:GLY:HA2	2:A:501:HEM:C2C	2.51	0.45	
1:A:378:PHE:HA	8:A:670:HOH:O	2.17	0.44	
1:A:80:PHE:CE1	1:A:84:HIS:CE1	3.06	0.44	
1:A:29:LEU:HD13	1:A:58:ILE:HG21	2.00	0.43	
1:A:213:LEU:O	1:A:217:MET:HG2	2.18	0.43	
1:A:94:ILE:H	1:A:94:ILE:HG13	1.62	0.43	
1:A:86:GLU:HG2	1:A:87:ILE:HG13	2.02	0.42	
1:A:240:THR:O	1:A:243:VAL:HG22	2.19	0.42	

Continued from previous page...

Atom-1	Atom-2	$egin{array}{ll} ext{Interatomic} \ ext{distance} \ (ext{Å}) \end{array}$	Clash overlap (Å)	
1:A:222:TYR:CE2	5:A:505:PEG:H42	2.54	0.41	
1:A:307:GLU:HA	1:A:307:GLU:OE2	2.21	0.41	
1:A:272:THR:HG21	1:A:388[B]:GLU:OE2	2.21	0.41	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain Analysed		Favoured	Allowed	Outliers	Percentiles		
1	A	428/439 (98%)	417 (97%)	11 (3%)	0	100 100		

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles	
1	A	353/368 (96%)	345 (98%)	8 (2%)	50 33	

All (8) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	A	8	LEU
1	A	37	ASP
1	A	132	LYS

Continued from previous page...

Mol	Chain	Res	Type
1	A	154	GLU
1	A	290	ARG
1	A	294	TRP
1	A	319	ARG
1	A	422	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 10 ligands modelled in this entry, 1 is modelled with single atom - leaving 9 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	ol Type Chain E		Dog Lin		Bond lengths			Bond angles		
Mol	Type	Chain	Res	Link	Counts	RMSZ	# Z > 2	Counts	Counts RMSZ	# Z >2
4	PGE	A	507	-	9,9,9	0.34	0	8,8,8	0.49	0
7	SO4	A	509	-	4,4,4	0.19	0	6,6,6	0.44	0
3	Y7R	A	502	-	18,18,18	0.82	1 (5%)	21,21,21	1.91	7 (33%)
4	PGE	A	504	-	9,9,9	0.23	0	8,8,8	0.72	0

Mol	Trino	Chain	Chain	Res	Res Link	Bond lengths			Bond angles			
MIOI	Type	Chain	ries	ii ites	rtes .	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
7	SO4	A	508	-	4,4,4	0.10	0	6,6,6	0.59	0		
7	SO4	A	510	-	4,4,4	0.35	0	6,6,6	0.60	0		
5	PEG	A	505	-	6,6,6	0.46	0	5,5,5	0.73	0		
4	PGE	A	503	-	9,9,9	0.38	0	8,8,8	0.62	0		
2	HEM	A	501	8,1	41,50,50	1.63	6 (14%)	45,82,82	2.19	16 (35%)		

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
4	PGE	A	507	-	-	3/7/7/7	-
3	Y7R	A	502	-	-	6/18/18/18	-
4	PGE	A	504	-	-	4/7/7/7	-
5	PEG	A	505	-	-	1/4/4/4	-
4	PGE	A	503	-	-	4/7/7/7	_
2	HEM	A	501	8,1	-	0/12/54/54	-

All (7) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$\operatorname{Observed}(\operatorname{\AA})$	$\operatorname{Ideal}(\text{\AA})$
2	A	501	HEM	C3C-CAC	3.65	1.55	1.47
2	A	501	HEM	CAA-C2A	3.30	1.56	1.52
2	A	501	HEM	CMB-C2B	3.11	1.57	1.50
2	A	501	HEM	CAB-C3B	2.73	1.54	1.47
2	A	501	HEM	C3C-C2C	-2.67	1.36	1.40
3	A	502	Y7R	O13-C12	-2.06	1.40	1.46
2	A	501	HEM	C1B-C2B	-2.02	1.40	1.44

All (23) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$Observed(^o)$	$\operatorname{Ideal}({}^{o})$
2	A	501	HEM	CBA-CAA-C2A	-5.50	103.23	112.62
2	A	501	HEM	CHA-C4D-ND	4.33	129.73	124.38
2	A	501	HEM	CHC-C4B-NB	4.06	128.84	124.43
2	A	501	HEM	C3B-C2B-C1B	4.05	109.49	106.49
3	A	502	Y7R	C17-C10-C09	4.00	121.99	115.27
2	A	501	HEM	C1B-NB-C4B	3.87	109.08	105.07
3	A	502	Y7R	C08-C07-C06	-3.74	118.66	127.66
2	A	501	HEM	C1D-C2D-C3D	3.32	110.45	106.96

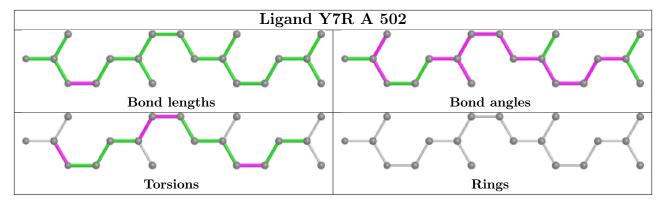
Continued from previous page...

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$Observed(^o)$	$\mathrm{Ideal}(^{o})$
2	A	501	HEM	CMA-C3A-C4A	-3.10	123.71	128.46
2	A	501	HEM	C4A-C3A-C2A	3.06	109.13	107.00
2	A	501	HEM	CMB-C2B-C1B	-2.98	120.49	125.04
2	A	501	HEM	CAD-CBD-CGD	-2.77	107.64	113.60
2	A	501	HEM	CHA-C4D-C3D	-2.73	120.20	125.33
2	A	501	HEM	CAD-C3D-C2D	2.70	132.91	127.88
3	A	502	Y7R	C04-C03-C02	-2.70	118.52	127.75
3	A	502	Y7R	C08-C09-C10	-2.60	104.44	112.98
2	A	501	HEM	CMD-C2D-C1D	-2.51	121.22	125.04
3	A	502	Y7R	C04-C05-C06	-2.34	105.28	112.98
2	A	501	HEM	C2B-C1B-NB	-2.33	107.07	109.84
3	A	502	Y7R	C09-C10-C11	-2.23	116.61	121.12
3	A	502	Y7R	O13-C14-C16	2.09	121.47	112.38
2	A	501	HEM	CBD-CAD-C3D	-2.02	107.02	112.63
2	A	501	HEM	CAA-C2A-C3A	-2.02	121.45	127.25

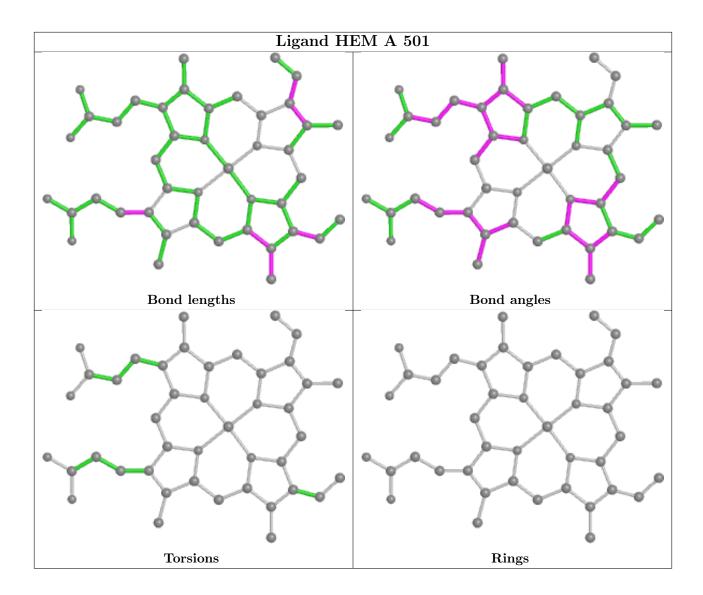
There are no chirality outliers.

All (18) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
4	A	504	PGE	C4-C3-O2-C2
3	A	502	Y7R	O15-C14-O13-C12
3	A	502	Y7R	C07-C08-C09-C10
3	A	502	Y7R	C16-C14-O13-C12
5	A	505	PEG	O1-C1-C2-O2
3	A	502	Y7R	C03-C04-C05-C06
4	A	504	PGE	O2-C3-C4-O3
4	A	503	PGE	O2-C3-C4-O3
4	A	504	PGE	O1-C1-C2-O2
3	A	502	Y7R	C08-C09-C10-C17
3	A	502	Y7R	C08-C09-C10-C11
4	A	503	PGE	O3-C5-C6-O4
4	A	507	PGE	C3-C4-O3-C5
4	A	507	PGE	O3-C5-C6-O4
4	A	504	PGE	C1-C2-O2-C3
4	A	507	PGE	O2-C3-C4-O3
4	A	503	PGE	C4-C3-O2-C2
4	A	503	PGE	C1-C2-O2-C3


There are no ring outliers.

3 monomers are involved in 3 short contacts:



Mol	Chain	Res	Type	Clashes	Symm-Clashes
4	A	504	PGE	1	0
5	A	505	PEG	1	0
2	A	501	HEM	1	0

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ>2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle { m RSRZ} \rangle$	#RSRZ	>2	$OWAB(Å^2)$	Q<0.9
1	A	423/439 (96%)	0.11	21 (4%) 28	32	20, 29, 53, 78	0

All (21) RSRZ outliers are listed below:

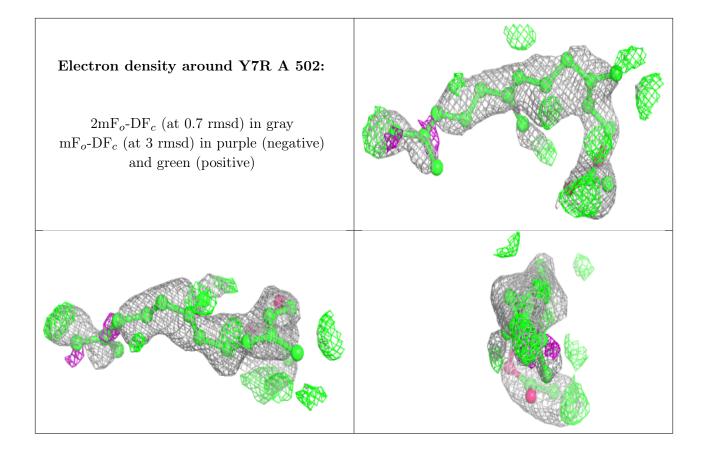
Mol	Chain	Res	Type	RSRZ
1	A	205	LEU	6.6
1	A	206	THR	6.3
1	A	60	LEU	4.1
1	A	63	LEU	4.0
1	A	328	LEU	3.7
1	A	61	ALA	3.0
1	A	7	LEU	2.9
1	A	62	GLY	2.7
1	A	294	TRP	2.5
1	A	8	LEU	2.5
1	A	6	GLY	2.4
1	A	331	THR	2.4
1	A	83	ARG	2.3
1	A	332	LYS	2.3
1	A	67	LYS	2.2
1	A	204	ASP	2.2
1	A	203	PRO	2.2
1	A	207	THR	2.1
1	A	29	LEU	2.1
1	A	330	GLY	2.0
1	A	147	ARG	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.


6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$\mathbf{B} ext{-}\mathbf{factors}(\mathbf{\mathring{A}}^2)$	Q<0.9
3	Y7R	A	502	19/19	0.57	0.23	35,51,64,65	0
4	PGE	A	503	10/10	0.76	0.17	45,53,60,63	0
5	PEG	A	505	7/7	0.83	0.15	48,48,64,65	0
4	PGE	A	504	10/10	0.86	0.11	37,45,48,73	0
6	NH4	A	506	1/1	0.89	0.26	51,51,51,51	0
4	PGE	A	507	10/10	0.90	0.10	38,43,60,65	0
7	SO4	A	509	5/5	0.93	0.13	48,49,52,53	0
7	SO4	A	508	5/5	0.97	0.08	36,44,50,57	0
2	HEM	A	501	43/43	0.97	0.12	17,20,25,31	0
7	SO4	A	510	5/5	0.98	0.07	30,40,51,55	0

The following is a graphical depiction of the model fit to experimental electron density of all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the geometry validation Tables will also be included. Each fit is shown from different orientation to approximate a three-dimensional view.

6.5 Other polymers (i)

There are no such residues in this entry.

