PDB ID : 6FNP
Title : Crystal structure of ECF-CbrT, a cobalamin transporter
Authors : Santos, J.A.; Rempel, S.; Guskov, A.; Slotboom, D.J.
Deposited on : 2018-02-05
Resolution : 3.40 Å (reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
with specific help available everywhere you see the symbol.

The following versions of software and data (see references) were used in the production of this report:

- MolProbity : 4.02b-467
- Xtriage (Phenix) : 1.13
- EDS : rb-20031172
- Percentile statistics : 20171227.v01 (using entries in the PDB archive December 27th 2017)
- Refmac : 5.8.0158
- CCP4 : 7.0 (Gargrove)
- Ideal geometry (proteins) : Engh & Huber (2001)
- Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
- Validation Pipeline (wwPDB-VP) : rb-20031172
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

X-RAY DIFFRACTION

The reported resolution of this entry is 3.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>Similar resolution (#Entries, resolution range(Å))</th>
</tr>
</thead>
<tbody>
<tr>
<td>R<sub>free</sub></td>
<td>111664</td>
<td>1928 (3.50-3.30)</td>
</tr>
<tr>
<td>Clashscore</td>
<td>122126</td>
<td>2051 (3.50-3.30)</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>120053</td>
<td>2006 (3.50-3.30)</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>120020</td>
<td>2006 (3.50-3.30)</td>
</tr>
<tr>
<td>RSRZ outliers</td>
<td>108989</td>
<td>1827 (3.50-3.30)</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%. The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>182</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>300</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>287</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>%</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>287</td>
<td>%</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>265</td>
<td>%</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>265</td>
<td>%</td>
</tr>
</tbody>
</table>
2 Entry composition

There are 4 unique types of molecules in this entry. The entry contains 15083 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called Membrane protein.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>159</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1242 847 190 199 6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>132</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>999 676 152 166 5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>280</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2147 1354 359 430 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>280</td>
<td>Total C N O S</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2147 1354 359 430 4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are 38 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>-17</td>
<td>MET</td>
<td>-</td>
<td>initiating methionine</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>B</td>
<td>-16</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>B</td>
<td>-15</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>B</td>
<td>-14</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>B</td>
<td>-13</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>B</td>
<td>-12</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>B</td>
<td>-11</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>B</td>
<td>-10</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>B</td>
<td>-9</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>B</td>
<td>-8</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>B</td>
<td>-7</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>B</td>
<td>-6</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>B</td>
<td>-5</td>
<td>GLU</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>B</td>
<td>-4</td>
<td>ASN</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>B</td>
<td>-3</td>
<td>LEU</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>B</td>
<td>-2</td>
<td>TYR</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td>-1</td>
<td>PHE</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>B</td>
<td>0</td>
<td>GLN</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>F</td>
<td>-17</td>
<td>MET</td>
<td>-</td>
<td>initiating methionine</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>F</td>
<td>-16</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>F</td>
<td>-15</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>F</td>
<td>-14</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>F</td>
<td>-13</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>F</td>
<td>-12</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>F</td>
<td>-11</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>F</td>
<td>-10</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>F</td>
<td>-9</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>F</td>
<td>-8</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>F</td>
<td>-7</td>
<td>HIS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>F</td>
<td>-6</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>F</td>
<td>-5</td>
<td>GLU</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>F</td>
<td>-4</td>
<td>ASN</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>F</td>
<td>-3</td>
<td>LEU</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>F</td>
<td>-2</td>
<td>TYR</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>F</td>
<td>-1</td>
<td>PHE</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>F</td>
<td>0</td>
<td>GLN</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
<tr>
<td>F</td>
<td>1</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP Q1GBJ0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>282</td>
<td>Total C N O S</td>
<td>2191 1399 371 412 9</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>282</td>
<td>Total C N O S</td>
<td>2191 1399 371 412 9</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 4 is a protein called Energy-coupling factor transporter transmembrane protein EcfT.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>D</td>
<td>259</td>
<td>Total C N O S</td>
<td>2083 1391 333 345 14</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>259</td>
<td>Total C N O S</td>
<td>2083 1391 333 345 14</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: Membrane protein

Chain A:

- Molecule 1: Membrane protein

Chain E:

Chain B:

Chain F:

Chain C:

Chain G:
- Molecule 4: Energy-coupling factor transporter transmembrane protein EcfT

Chain D:

- Molecule 4: Energy-coupling factor transporter transmembrane protein EcfT

Chain H:
4 Data and refinement statistics

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P 1</td>
<td>Depositor</td>
</tr>
<tr>
<td>Cell constants</td>
<td>85.47Å 92.86Å 105.51Å</td>
<td>Depositor</td>
</tr>
<tr>
<td>a, b, c, α, β, γ</td>
<td>72.57° 66.27° 62.89°</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>47.80 – 3.40</td>
<td>Depositor</td>
</tr>
<tr>
<td>% Data completeness (in range)</td>
<td>88.3 (47.80-3.40)</td>
<td>Depositor</td>
</tr>
<tr>
<td>R<sub>merge</sub></td>
<td>(Not available)</td>
<td>Depositor</td>
</tr>
<tr>
<td>R<sub>sym</sub></td>
<td>(Not available)</td>
<td>Depositor</td>
</tr>
<tr>
<td><I/σ(I)><sup>1</sup></td>
<td>0.98 (at 3.40Å)</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Refinement program</td>
<td>PHENIX (1.12_2829: ???)</td>
<td>Depositor</td>
</tr>
<tr>
<td>R, R<sub>free</sub></td>
<td>0.238 , 0.293</td>
<td>Depositor</td>
</tr>
<tr>
<td>R<sub>free</sub> test set</td>
<td>1587 reflections (5.00%)</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Wilson B-factor (Å<sup>2</sup>)</td>
<td>34.0</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Anisotropy</td>
<td>0.000</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Bulk solvent κ<sub>sol</sub>(e/Å<sup>3</sup>), B<sub>sol</sub>(Å<sup>2</sup>)</td>
<td>0.19 , -11.7</td>
<td>EDS</td>
</tr>
<tr>
<td>L-test for twinning<sup>2</sup></td>
<td><</td>
<td>L</td>
</tr>
<tr>
<td>Estimated twinning fraction</td>
<td>0.256 for h,h-k,h-l</td>
<td>Xtriage</td>
</tr>
<tr>
<td>F<sub>o</sub>-F<sub>c</sub> correlation</td>
<td>0.79</td>
<td>EDS</td>
</tr>
<tr>
<td>Total number of atoms</td>
<td>15083</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Average B, all atoms (Å<sup>2</sup>)</td>
<td>22.0</td>
<td>wwPDB-VP</td>
</tr>
</tbody>
</table>

Xtriage’s analysis on translational NCS is as follows: *The largest off-origin peak in the Patterson function is 4.64% of the height of the origin peak. No significant pseudotranslation is detected.*

¹ Intensities estimated from amplitudes.

² Theoretical values of < |L| >, < L² > for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.
5 Model quality

5.1 Standard geometry

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0.54</td>
<td>0/1276</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>0.40</td>
<td>0/1021</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0.55</td>
<td>0/2180</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>0.45</td>
<td>0/2180</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>0.54</td>
<td>0/2237</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>0.43</td>
<td>0/2237</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>0.50</td>
<td>0/2136</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>0.41</td>
<td>0/2136</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0.48</td>
<td>0/15403</td>
</tr>
</tbody>
</table>

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>#Chirality outliers</th>
<th>#Planarity outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0</td>
<td>12</td>
</tr>
</tbody>
</table>

There are no bond length outliers.

All (12) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>35</td>
<td>ASN</td>
<td>CB-CG-OD1</td>
<td>18.98</td>
<td>159.55</td>
<td>121.60</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>35</td>
<td>ASN</td>
<td>CB-CG-ND2</td>
<td>-17.75</td>
<td>74.09</td>
<td>116.70</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>187</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>7.96</td>
<td>133.61</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>35</td>
<td>ASN</td>
<td>OD1-CG-ND2</td>
<td>-7.88</td>
<td>103.77</td>
<td>121.90</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>268</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>6.69</td>
<td>130.68</td>
<td>115.30</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>204</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>5.73</td>
<td>128.49</td>
<td>115.30</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>237</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>5.72</td>
<td>128.46</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>22</td>
<td>CYS</td>
<td>CA-CB-SG</td>
<td>5.53</td>
<td>123.95</td>
<td>114.00</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>143</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>5.36</td>
<td>127.64</td>
<td>115.30</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>216</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>5.31</td>
<td>127.51</td>
<td>115.30</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>207</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>5.15</td>
<td>127.15</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>58</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>5.08</td>
<td>126.99</td>
<td>115.30</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

All (12) planarity outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>140</td>
<td>TRP</td>
<td>Peptide</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>35</td>
<td>ASN</td>
<td>Sidechain</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>37</td>
<td>GLN</td>
<td>Peptide</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>38</td>
<td>PRO</td>
<td>Peptide</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>79</td>
<td>GLN</td>
<td>Peptide</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>84</td>
<td>ALA</td>
<td>Peptide</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>26</td>
<td>LEU</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>13</td>
<td>SER</td>
<td>Peptide</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>230</td>
<td>SER</td>
<td>Peptide</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>187</td>
<td>LEU</td>
<td>Peptide</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>48</td>
<td>SER</td>
<td>Peptide</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>94</td>
<td>TRP</td>
<td>Peptide</td>
</tr>
</tbody>
</table>

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>1242</td>
<td>0</td>
<td>1289</td>
<td>116</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>999</td>
<td>0</td>
<td>1028</td>
<td>83</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>2147</td>
<td>0</td>
<td>2159</td>
<td>172</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>2147</td>
<td>0</td>
<td>2159</td>
<td>167</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>2191</td>
<td>0</td>
<td>2199</td>
<td>157</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>2191</td>
<td>0</td>
<td>2199</td>
<td>152</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>2083</td>
<td>0</td>
<td>2185</td>
<td>183</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 36.

All (1091) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:B:105:ASP:O</td>
<td>4:D:225:ARG:NH2</td>
<td>1.94</td>
<td>0.99</td>
</tr>
<tr>
<td>2:B:94:ASP:OD1</td>
<td>4:D:165:ARG:NH1</td>
<td>1.97</td>
<td>0.97</td>
</tr>
<tr>
<td>4:H:45:LEU:HA</td>
<td>4:H:48:SER:HB3</td>
<td>1.43</td>
<td>0.97</td>
</tr>
<tr>
<td>2:B:107:ALA:HB2</td>
<td>2:B:124:VAL:HG21</td>
<td>1.47</td>
<td>0.95</td>
</tr>
<tr>
<td>2:B:265:ILE:HA</td>
<td>2:B:270:LYS:HD2</td>
<td>1.48</td>
<td>0.95</td>
</tr>
<tr>
<td>3:C:4:LYS:HE2</td>
<td>3:C:65:GLU:HG3</td>
<td>1.51</td>
<td>0.93</td>
</tr>
<tr>
<td>2:B:108:PHE:O</td>
<td>2:B:112:ASN:ND2</td>
<td>2.02</td>
<td>0.93</td>
</tr>
<tr>
<td>3:C:97:GLN:O</td>
<td>4:D:181:GLN:NE2</td>
<td>2.03</td>
<td>0.91</td>
</tr>
<tr>
<td>1:E:63:MET:O</td>
<td>1:E:67:ASN:ND2</td>
<td>2.03</td>
<td>0.90</td>
</tr>
<tr>
<td>3:C:25:GLN:O</td>
<td>3:C:27:ASN:ND2</td>
<td>2.05</td>
<td>0.90</td>
</tr>
<tr>
<td>3:C:152:ARG:NH2</td>
<td>3:C:174:ALA:O</td>
<td>2.05</td>
<td>0.89</td>
</tr>
<tr>
<td>2:F:204:LEU:HD21</td>
<td>2:F:246:PHE:H</td>
<td>1.33</td>
<td>0.89</td>
</tr>
<tr>
<td>2:B:7:SER:O</td>
<td>2:B:27:SER:N</td>
<td>2.06</td>
<td>0.89</td>
</tr>
<tr>
<td>2:B:47:SER:O</td>
<td>2:B:51:LYS:NZ</td>
<td>2.05</td>
<td>0.88</td>
</tr>
<tr>
<td>3:C:251:ARG:O</td>
<td>3:C:255:LYS:NZ</td>
<td>2.06</td>
<td>0.88</td>
</tr>
<tr>
<td>3:G:187:LEU:HD13</td>
<td>3:G:190:ASP:HB2</td>
<td>1.55</td>
<td>0.87</td>
</tr>
<tr>
<td>4:D:107:ILE:HB</td>
<td>4:D:111:TYR:HE2</td>
<td>1.09</td>
<td>0.86</td>
</tr>
<tr>
<td>3:G:189:LYS:O</td>
<td>3:G:193:ALA:N</td>
<td>2.09</td>
<td>0.86</td>
</tr>
<tr>
<td>1:A:146:PHE:O</td>
<td>1:A:150:HIS:NE2</td>
<td>2.08</td>
<td>0.86</td>
</tr>
<tr>
<td>2:B:94:ASP:O</td>
<td>4:D:165:ARG:NH1</td>
<td>2.09</td>
<td>0.85</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:144:LEU:O</td>
<td>1:E:148:LEU:N</td>
<td>2.10</td>
<td>0.84</td>
</tr>
<tr>
<td>3:G:205:MET:HG2</td>
<td>3:G:208:VAL:HG11</td>
<td>1.60</td>
<td>0.83</td>
</tr>
<tr>
<td>3:G:102:THR:HB</td>
<td>3:G:140:GLU:HB2</td>
<td>1.60</td>
<td>0.83</td>
</tr>
<tr>
<td>1:E:117:LEU:HD21</td>
<td>1:E:143:GLY:HA2</td>
<td>1.61</td>
<td>0.82</td>
</tr>
<tr>
<td>3:C:97:GLN:OE1</td>
<td>4:D:184:ARG:NH1</td>
<td>2.11</td>
<td>0.81</td>
</tr>
<tr>
<td>1:A:137:ILE:HD12</td>
<td>4:D:79:THR:CG2</td>
<td>2.10</td>
<td>0.81</td>
</tr>
<tr>
<td>2:B:222:LEU:HD21</td>
<td>2:B:236:MET:SD</td>
<td>2.21</td>
<td>0.81</td>
</tr>
<tr>
<td>3:G:81:LYS:HE2</td>
<td>3:G:113:ASN:HD22</td>
<td>1.46</td>
<td>0.81</td>
</tr>
<tr>
<td>2:B:158:LEU:O</td>
<td>2:B:161:LYS:NZ</td>
<td>2.12</td>
<td>0.81</td>
</tr>
<tr>
<td>3:C:7:ASN:HB2</td>
<td>3:C:27:ASN:HD21</td>
<td>1.45</td>
<td>0.81</td>
</tr>
<tr>
<td>1:A:14:ILE:O</td>
<td>1:A:18:ILE:N</td>
<td>2.13</td>
<td>0.81</td>
</tr>
<tr>
<td>4:D:76:ILE:HD12</td>
<td>4:D:77:VAL:H</td>
<td>1.47</td>
<td>0.80</td>
</tr>
<tr>
<td>4:D:66:TRP:HA</td>
<td>4:D:69:VAL:HG22</td>
<td>1.63</td>
<td>0.80</td>
</tr>
<tr>
<td>2:F:68:THR:HB</td>
<td>2:F:73:LYS:HA</td>
<td>1.64</td>
<td>0.80</td>
</tr>
<tr>
<td>4:D:30:TYR:O</td>
<td>4:D:34:MET:N</td>
<td>2.13</td>
<td>0.80</td>
</tr>
<tr>
<td>4:D:229:GLY:HA2</td>
<td>4:D:233:ARG:HD2</td>
<td>1.63</td>
<td>0.79</td>
</tr>
<tr>
<td>2:B:95:ASN:O</td>
<td>4:D:218:LEU:HD13</td>
<td>1.81</td>
<td>0.79</td>
</tr>
<tr>
<td>3:C:64:ILE:HB</td>
<td>3:C:71:ILE:HB</td>
<td>1.65</td>
<td>0.79</td>
</tr>
<tr>
<td>4:D:85:PHE:HB2</td>
<td>4:D:89:GLY:HA2</td>
<td>1.63</td>
<td>0.79</td>
</tr>
<tr>
<td>1:A:43:ILE:HA</td>
<td>1:A:161:PHE:CZ</td>
<td>2.18</td>
<td>0.79</td>
</tr>
<tr>
<td>4:H:12:GLY:HA3</td>
<td>4:H:15:PHE:HB2</td>
<td>1.63</td>
<td>0.79</td>
</tr>
<tr>
<td>1:A:37:GLN:HB3</td>
<td>1:A:38:PRO:HD3</td>
<td>1.64</td>
<td>0.79</td>
</tr>
<tr>
<td>1:E:26:ARG:HG2</td>
<td>1:E:68:ILE:HD11</td>
<td>1.63</td>
<td>0.78</td>
</tr>
<tr>
<td>1:E:90:VAL:HA</td>
<td>1:E:93:PHE:CD2</td>
<td>2.19</td>
<td>0.78</td>
</tr>
<tr>
<td>2:B:261:LEU:HD13</td>
<td>2:B:265:ILE:HD12</td>
<td>1.65</td>
<td>0.78</td>
</tr>
<tr>
<td>4:H:60:LEU:HB2</td>
<td>4:H:65:PHE:HB2</td>
<td>1.65</td>
<td>0.78</td>
</tr>
<tr>
<td>1:A:23:VAL:HG23</td>
<td>1:A:64:VAL:HG22</td>
<td>1.65</td>
<td>0.78</td>
</tr>
<tr>
<td>3:G:205:MET:HE3</td>
<td>3:G:208:VAL:HG21</td>
<td>1.64</td>
<td>0.78</td>
</tr>
<tr>
<td>2:B:267:ASP:HB3</td>
<td>2:B:269:GLU:HG3</td>
<td>1.66</td>
<td>0.78</td>
</tr>
<tr>
<td>2:B:92:ASN:O</td>
<td>2:B:96:GLN:NE2</td>
<td>2.17</td>
<td>0.78</td>
</tr>
<tr>
<td>3:G:162:TYR:CE2</td>
<td>3:G:164:PRO:HG3</td>
<td>2.19</td>
<td>0.78</td>
</tr>
<tr>
<td>1:E:83:TYR:OH</td>
<td>4:H:120:ILE:HG12</td>
<td>1.83</td>
<td>0.78</td>
</tr>
</tbody>
</table>
| 2:B:72:VAL:HG12 | 2:B:73:LYS:H | 1.48 | 0.77

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:21:MET:SD</td>
<td>4:D:211:SER:OG</td>
<td>2.42</td>
<td>0.77</td>
</tr>
<tr>
<td>3:C:249:SER:OG</td>
<td>3:C:268:LEU:O</td>
<td>2.01</td>
<td>0.76</td>
</tr>
<tr>
<td>2:B:237:LEU:HG</td>
<td>2:B:242:LEU:HB2</td>
<td>1.67</td>
<td>0.76</td>
</tr>
<tr>
<td>1:E:57:LEU:HD12</td>
<td>1:E:58:LEU:H</td>
<td>1.47</td>
<td>0.77</td>
</tr>
<tr>
<td>3:G:238:LEU:HB2</td>
<td>3:G:241:LEU:HB6</td>
<td>1.66</td>
<td>0.77</td>
</tr>
<tr>
<td>3:G:126:LEU:HA</td>
<td>3:G:129:LEU:HB2</td>
<td>1.66</td>
<td>0.77</td>
</tr>
<tr>
<td>3:G:38:LEU:HB3</td>
<td>3:G:41:LEU:HB3</td>
<td>1.66</td>
<td>0.77</td>
</tr>
<tr>
<td>1:E:62:VAL:O</td>
<td>1:E:66:SER:OG</td>
<td>2.03</td>
<td>0.75</td>
</tr>
<tr>
<td>2:F:202:LYS:HA</td>
<td>2:B:205:LEU:H</td>
<td>1.52</td>
<td>0.75</td>
</tr>
<tr>
<td>3:G:191:TYR:O</td>
<td>3:G:196:His:ND1</td>
<td>2.20</td>
<td>0.75</td>
</tr>
<tr>
<td>2:B:154:LEU:O</td>
<td>2:B:259:ILE:N</td>
<td>2.19</td>
<td>0.75</td>
</tr>
<tr>
<td>4:D:73:ILE:HD13</td>
<td>4:H:264:LYS:N</td>
<td>2.19</td>
<td>0.75</td>
</tr>
<tr>
<td>2:B:117:ARG:NG2</td>
<td>2:B:168:ASP:OD2</td>
<td>2.04</td>
<td>0.75</td>
</tr>
<tr>
<td>4:D:118:ARG:HD2</td>
<td>4:D:129:THR:HB</td>
<td>1.66</td>
<td>0.76</td>
</tr>
<tr>
<td>1:A:83:TYR:HD1</td>
<td>1:A:84:ALA:H</td>
<td>1.32</td>
<td>0.75</td>
</tr>
<tr>
<td>2:B:11:VAL:HA</td>
<td>2:B:185:LEU:HD23</td>
<td>1.70</td>
<td>0.74</td>
</tr>
<tr>
<td>4:D:215:ALA:O</td>
<td>4:D:219:SER:OG</td>
<td>2.06</td>
<td>0.74</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:B:25:ASP:OD1</td>
<td>2:B:26:LEU:N</td>
<td>2.20</td>
<td>0.74</td>
</tr>
<tr>
<td>2:F:74:LEU:HD23</td>
<td>2:F:75:GLY:HA3</td>
<td>1.70</td>
<td>0.74</td>
</tr>
<tr>
<td>3:C:50:MET:SD</td>
<td>3:C:170:ASP:HB2</td>
<td>2.28</td>
<td>0.73</td>
</tr>
<tr>
<td>2:B:110:LEU:HD21</td>
<td>2:B:123:ILE:HG21</td>
<td>1.71</td>
<td>0.73</td>
</tr>
<tr>
<td>4:H:85:PHE:HB3</td>
<td>4:H:99:PHE:HB2</td>
<td>1.70</td>
<td>0.73</td>
</tr>
<tr>
<td>3:C:220:HIS:HB2</td>
<td>3:C:222:ARG:HH21</td>
<td>1.51</td>
<td>0.73</td>
</tr>
<tr>
<td>3:G:202:THR:O</td>
<td>3:G:203:HIS:ND1</td>
<td>2.22</td>
<td>0.73</td>
</tr>
<tr>
<td>2:B:78:THR:O</td>
<td>2:B:81:GLU:N</td>
<td>2.20</td>
<td>0.72</td>
</tr>
<tr>
<td>3:C:170:ASP:HA</td>
<td>3:C:201:VAL:HB</td>
<td>1.71</td>
<td>0.72</td>
</tr>
<tr>
<td>1:A:114:PHE:HA</td>
<td>1:A:118:GLU:HB3</td>
<td>1.71</td>
<td>0.72</td>
</tr>
<tr>
<td>3:C:45:GLY:O</td>
<td>3:C:49:LEU:HB3</td>
<td>1.89</td>
<td>0.72</td>
</tr>
<tr>
<td>1:E:40:THR:HG22</td>
<td>1:E:43:ILE:HD11</td>
<td>1.70</td>
<td>0.72</td>
</tr>
<tr>
<td>3:C:186:GLN:NE2</td>
<td>3:C:190:ASP:OD1</td>
<td>2.22</td>
<td>0.72</td>
</tr>
<tr>
<td>3:G:41:HIS:CD2</td>
<td>3:G:242:HIS:CD2</td>
<td>2.78</td>
<td>0.72</td>
</tr>
<tr>
<td>2:F:112:ASN:HA</td>
<td>4:H:233:ARG:HG2</td>
<td>1.70</td>
<td>0.72</td>
</tr>
<tr>
<td>4:D:23:ALA:O</td>
<td>4:D:27:THR:OG1</td>
<td>2.05</td>
<td>0.72</td>
</tr>
<tr>
<td>1:A:48:LEU:HD11</td>
<td>1:A:60:ILE:HD13</td>
<td>1.72</td>
<td>0.72</td>
</tr>
<tr>
<td>3:C:122:ARG:NH1</td>
<td>3:C:123:GLU:OE2</td>
<td>2.23</td>
<td>0.72</td>
</tr>
<tr>
<td>4:D:56:PHE:O</td>
<td>4:D:59:GLY:N</td>
<td>2.21</td>
<td>0.72</td>
</tr>
<tr>
<td>1:E:84:ALA:HA</td>
<td>1:E:86:CYS:N</td>
<td>2.05</td>
<td>0.72</td>
</tr>
<tr>
<td>3:G:278:LYS:O</td>
<td>3:G:280:SER:N</td>
<td>2.22</td>
<td>0.72</td>
</tr>
<tr>
<td>3:G:96:ALA:HB1</td>
<td>4:H:206:PRO:HB3</td>
<td>1.69</td>
<td>0.72</td>
</tr>
<tr>
<td>1:E:19:THR:HA</td>
<td>1:E:64:VAL:HG22</td>
<td>1.71</td>
<td>0.72</td>
</tr>
<tr>
<td>2:F:171:THR:OG1</td>
<td>2:F:179:LYS:NZ</td>
<td>2.21</td>
<td>0.72</td>
</tr>
<tr>
<td>3:G:134:LEU:HD22</td>
<td>3:G:138:LEU:HB3</td>
<td>1.72</td>
<td>0.71</td>
</tr>
<tr>
<td>3:C:246:GLU:HB2</td>
<td>3:C:251:ARG:HG2</td>
<td>1.71</td>
<td>0.71</td>
</tr>
<tr>
<td>1:A:19:THR:HG21</td>
<td>1:A:63:MET:HB2</td>
<td>1.72</td>
<td>0.71</td>
</tr>
<tr>
<td>3:G:214:ASP:OD1</td>
<td>3:G:226:HIS:NE2</td>
<td>2.20</td>
<td>0.71</td>
</tr>
<tr>
<td>1:E:85:ALA:HB1</td>
<td>1:E:123:VAL:HA</td>
<td>1.72</td>
<td>0.71</td>
</tr>
<tr>
<td>1:E:14:LEU:HD12</td>
<td>1:E:15:LEU:HD22</td>
<td>1.72</td>
<td>0.71</td>
</tr>
<tr>
<td>4:H:147:LYS:HB3</td>
<td>4:H:151:VAL:HG22</td>
<td>1.73</td>
<td>0.70</td>
</tr>
<tr>
<td>2:B:98:VAL:HG21</td>
<td>4:D:222:MET:HG2</td>
<td>1.73</td>
<td>0.70</td>
</tr>
<tr>
<td>1:E:70:LEU:N</td>
<td>1:E:71:GLY:HA3</td>
<td>2.07</td>
<td>0.70</td>
</tr>
<tr>
<td>2:F:36:THR:HG23</td>
<td>2:F:214:LEU:HD13</td>
<td>1.74</td>
<td>0.69</td>
</tr>
<tr>
<td>2:F:202:HIS:HB2</td>
<td>2:F:206:GLU:HG3</td>
<td>1.74</td>
<td>0.69</td>
</tr>
<tr>
<td>3:G:108:GLU:HG3</td>
<td>3:G:111:PRO:HG2</td>
<td>1.74</td>
<td>0.69</td>
</tr>
<tr>
<td>1:A:61:LEU:HD22</td>
<td>1:A:90:VAL:HG21</td>
<td>1.74</td>
<td>0.69</td>
</tr>
<tr>
<td>3:C:128:TRP:CD1</td>
<td>3:C:161:ALA:HA</td>
<td>2.28</td>
<td>0.69</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:161:PHE:HA</td>
<td>1:A:165:LEU:HB2</td>
<td>1.73</td>
<td>0.69</td>
</tr>
<tr>
<td>2:F:237:LEU:O</td>
<td>2:F:238:LYS:HD2</td>
<td>1.93</td>
<td>0.69</td>
</tr>
<tr>
<td>3:G:41:HIS:CD2</td>
<td>3:G:242:HIS:NE2</td>
<td>2.61</td>
<td>0.69</td>
</tr>
<tr>
<td>1:A:144:LEU:HD12</td>
<td>1:E:142:SER:HA</td>
<td>1.73</td>
<td>0.69</td>
</tr>
<tr>
<td>2:B:84:GLU:HG2</td>
<td>2:B:113:ARG:HH21</td>
<td>1.57</td>
<td>0.68</td>
</tr>
<tr>
<td>4:H:155:MET:HG2</td>
<td>4:H:156:ILE:HD13</td>
<td>1.75</td>
<td>0.68</td>
</tr>
<tr>
<td>2:F:171:THR:HG21</td>
<td>2:F:182:ILE:HG21</td>
<td>1.75</td>
<td>0.68</td>
</tr>
<tr>
<td>3:G:81:LYS:HE2</td>
<td>3:G:113:ASN:ND2</td>
<td>2.09</td>
<td>0.68</td>
</tr>
<tr>
<td>3:G:95:GLU:OE2</td>
<td>3:G:152:ARG:NE</td>
<td>2.16</td>
<td>0.68</td>
</tr>
<tr>
<td>1:E:70:LEU:O</td>
<td>4:H:8:ARG:N</td>
<td>2.27</td>
<td>0.68</td>
</tr>
<tr>
<td>3:C:233:PHE:HD1</td>
<td>3:C:239:LEU:HD11</td>
<td>1.57</td>
<td>0.68</td>
</tr>
<tr>
<td>2:B:221:LEU:HD21</td>
<td>2:B:224:GLN:HG2</td>
<td>1.76</td>
<td>0.68</td>
</tr>
<tr>
<td>1:A:77:LEU:HB3</td>
<td>1:A:78:PRO:HD2</td>
<td>1.73</td>
<td>0.68</td>
</tr>
<tr>
<td>2:B:222:LEU:CD2</td>
<td>2:B:236:MET:SD</td>
<td>2.81</td>
<td>0.68</td>
</tr>
<tr>
<td>3:C:46:LYS:HE2</td>
<td>3:C:203:HIS:NE2</td>
<td>2.09</td>
<td>0.68</td>
</tr>
<tr>
<td>3:C:152:ARG:HG3</td>
<td>3:C:156:LEU:HD23</td>
<td>1.76</td>
<td>0.68</td>
</tr>
<tr>
<td>1:A:13:THR:OG1</td>
<td>4:D:219:SER:OG</td>
<td>2.10</td>
<td>0.68</td>
</tr>
<tr>
<td>2:B:125:ALA:O</td>
<td>2:B:129:ALA:N</td>
<td>2.27</td>
<td>0.67</td>
</tr>
<tr>
<td>2:B:97:PHE:HB3</td>
<td>4:D:165:ARG:HE</td>
<td>1.60</td>
<td>0.67</td>
</tr>
<tr>
<td>2:B:106:VAL:HG21</td>
<td>2:B:128:VAL:HG12</td>
<td>1.75</td>
<td>0.67</td>
</tr>
<tr>
<td>4:D:21:PRO:HG3</td>
<td>4:D:134:GLU:HB3</td>
<td>1.76</td>
<td>0.67</td>
</tr>
<tr>
<td>1:A:172:LYS:HE2</td>
<td>4:D:213:GLU:HB2</td>
<td>1.77</td>
<td>0.67</td>
</tr>
<tr>
<td>4:D:112:VAL:HA</td>
<td>4:D:115:ARG:HG2</td>
<td>1.76</td>
<td>0.67</td>
</tr>
<tr>
<td>2:F:241:GLY:O</td>
<td>3:G:179:MET:HG3</td>
<td>1.95</td>
<td>0.67</td>
</tr>
<tr>
<td>2:B:204:LEU:HD21</td>
<td>2:B:246:PHE:HB3</td>
<td>1.77</td>
<td>0.66</td>
</tr>
<tr>
<td>4:H:95:HIS:O</td>
<td>4:H:96:TRP:HD1</td>
<td>1.77</td>
<td>0.66</td>
</tr>
<tr>
<td>4:H:95:HIS:ND1</td>
<td>4:H:95:HIS:O</td>
<td>2.27</td>
<td>0.66</td>
</tr>
<tr>
<td>3:C:4:LYS:HG2</td>
<td>3:C:65:GLU:HB2</td>
<td>1.77</td>
<td>0.66</td>
</tr>
<tr>
<td>4:D:54:TYR:O</td>
<td>4:D:57:ALA:N</td>
<td>2.29</td>
<td>0.65</td>
</tr>
<tr>
<td>2:B:93:PRO:HG3</td>
<td>2:B:150:GLN:HG2</td>
<td>1.79</td>
<td>0.65</td>
</tr>
<tr>
<td>1:E:17:LEU:O</td>
<td>1:E:21:MET:N</td>
<td>2.22</td>
<td>0.65</td>
</tr>
<tr>
<td>2:F:181:GLN:O</td>
<td>2:F:185:LEU:N</td>
<td>2.27</td>
<td>0.65</td>
</tr>
<tr>
<td>2:B:102:VAL:HG1</td>
<td>2:B:152:VAL:HG13</td>
<td>1.79</td>
<td>0.65</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:C:253:ALA:O</td>
<td>3:C:257:GLU:N</td>
<td>2.20</td>
<td>0.65</td>
</tr>
<tr>
<td>2:F:20:ARG:NH2</td>
<td>2:F:218:ASP:OD2</td>
<td>2.29</td>
<td>0.65</td>
</tr>
<tr>
<td>2:B:208:ALA:HB2</td>
<td>2:B:245:PRO:HG2</td>
<td>1.79</td>
<td>0.65</td>
</tr>
<tr>
<td>4:D:12:GLY:O</td>
<td>4:D:18:ARG:NH2</td>
<td>2.29</td>
<td>0.65</td>
</tr>
<tr>
<td>2:F:245:PRO:HD2</td>
<td>2:F:248:TYR:HB2</td>
<td>1.79</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:48:LEU:HB2</td>
<td>1:A:57:LEU:HD13</td>
<td>1.79</td>
<td>0.65</td>
</tr>
<tr>
<td>2:B:69:VAL:HG12</td>
<td>2:B:70:ASP:H</td>
<td>1.61</td>
<td>0.65</td>
</tr>
<tr>
<td>1:E:15:LEU:HD12</td>
<td>1:E:60:ILE:HB</td>
<td>1.79</td>
<td>0.65</td>
</tr>
<tr>
<td>2:B:88:ILE:HG22</td>
<td>2:B:89:VAL:O</td>
<td>1.97</td>
<td>0.64</td>
</tr>
<tr>
<td>3:C:90:ALA:O</td>
<td>3:C:170:ASP:N</td>
<td>2.21</td>
<td>0.64</td>
</tr>
<tr>
<td>2:B:54:ASN:ND2</td>
<td>4:D:224:SER:OG</td>
<td>2.30</td>
<td>0.64</td>
</tr>
<tr>
<td>2:B:7:SER:C</td>
<td>2:B:27:SER:H</td>
<td>1.99</td>
<td>0.64</td>
</tr>
<tr>
<td>3:C:108:GLU:HG2</td>
<td>3:G:121:ALA:HB1</td>
<td>1.79</td>
<td>0.64</td>
</tr>
<tr>
<td>4:H:35:ILE:HG23</td>
<td>4:H:47:ILE:HD12</td>
<td>1.79</td>
<td>0.64</td>
</tr>
<tr>
<td>2:B:237:LEU:HA</td>
<td>2:B:240:ILE:HB</td>
<td>1.79</td>
<td>0.64</td>
</tr>
<tr>
<td>3:C:276:ALA:O</td>
<td>3:C:280:SER:OG</td>
<td>2.14</td>
<td>0.64</td>
</tr>
<tr>
<td>4:D:165:ARG:NH2</td>
<td>4:D:165:ARG:O</td>
<td>2.26</td>
<td>0.64</td>
</tr>
<tr>
<td>4:D:46:VAL:O</td>
<td>4:D:50:PHE:N</td>
<td>2.17</td>
<td>0.64</td>
</tr>
<tr>
<td>3:C:193:ALA:C</td>
<td>3:C:195:GLY:H</td>
<td>2.00</td>
<td>0.64</td>
</tr>
<tr>
<td>1:E:28:PHE:HD2</td>
<td>1:E:29:LYS:HD2</td>
<td>1.62</td>
<td>0.64</td>
</tr>
<tr>
<td>4:H:122:VAL:HA</td>
<td>4:H:125:VAL:HG22</td>
<td>1.79</td>
<td>0.64</td>
</tr>
<tr>
<td>1:A:141:VAL:O</td>
<td>1:A:144:LEU:HD13</td>
<td>1.98</td>
<td>0.64</td>
</tr>
<tr>
<td>2:F:265:ILE:HG12</td>
<td>2:F:270:LYS:HD2</td>
<td>1.80</td>
<td>0.64</td>
</tr>
<tr>
<td>3:C:177:ASP:HB2</td>
<td>3:C:178:PRO:HD2</td>
<td>1.78</td>
<td>0.63</td>
</tr>
<tr>
<td>4:D:131:LYS:HB3</td>
<td>4:D:134:GLU:HG3</td>
<td>1.80</td>
<td>0.63</td>
</tr>
<tr>
<td>2:B:100:ALA:HB3</td>
<td>4:D:133:LEU:HD11</td>
<td>1.79</td>
<td>0.63</td>
</tr>
<tr>
<td>4:D:12:GLY:N</td>
<td>4:D:18:ARG:HH22</td>
<td>1.95</td>
<td>0.63</td>
</tr>
<tr>
<td>4:D:260:ILE:O</td>
<td>4:D:264:LYS:N</td>
<td>2.22</td>
<td>0.63</td>
</tr>
<tr>
<td>4:D:151:VAL:HG12</td>
<td>4:D:153:VAL:HG22</td>
<td>1.80</td>
<td>0.63</td>
</tr>
<tr>
<td>3:G:166:ILE:HG23</td>
<td>3:G:197:THR:HB</td>
<td>1.81</td>
<td>0.63</td>
</tr>
<tr>
<td>4:D:76:ILE:CD1</td>
<td>4:D:77:VAL:H</td>
<td>2.12</td>
<td>0.63</td>
</tr>
<tr>
<td>3:C:219:GLU:O</td>
<td>3:C:221:GLY:N</td>
<td>2.32</td>
<td>0.62</td>
</tr>
<tr>
<td>2:B:17:ASP:OD1</td>
<td>2:B:17:ASP:N</td>
<td>2.31</td>
<td>0.62</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:C:91:PHE:HA</td>
<td>3:C:170:ASP:HB3</td>
<td>1.81</td>
<td>0.62</td>
</tr>
<tr>
<td>1:A:29:LYS:NZ</td>
<td>1:A:34:PRO:HG3</td>
<td>2.15</td>
<td>0.62</td>
</tr>
<tr>
<td>1:A:39:VAL:HG22</td>
<td>1:A:75:TRP:CZ3</td>
<td>2.35</td>
<td>0.62</td>
</tr>
<tr>
<td>3:C:23:PH:CD1</td>
<td>3:C:239:LEU:HD11</td>
<td>2.35</td>
<td>0.62</td>
</tr>
<tr>
<td>2:B:107:ALA:HB1</td>
<td>2:B:120:MET:HE3</td>
<td>1.82</td>
<td>0.62</td>
</tr>
<tr>
<td>3:G:125:ALA:O</td>
<td>3:G:129:LEU:N</td>
<td>2.32</td>
<td>0.62</td>
</tr>
<tr>
<td>4:D:126:MET:O</td>
<td>4:D:130:THR:OG1</td>
<td>2.17</td>
<td>0.61</td>
</tr>
<tr>
<td>2:B:68:THR:HG22</td>
<td>2:B:73:LYS:HG3</td>
<td>1.81</td>
<td>0.61</td>
</tr>
<tr>
<td>2:B:126:GLN:NE2</td>
<td>2:B:130:ASP:OD1</td>
<td>2.32</td>
<td>0.61</td>
</tr>
<tr>
<td>2:B:10:HIS:HA</td>
<td>2:B:23:LEU:HB2</td>
<td>1.83</td>
<td>0.61</td>
</tr>
<tr>
<td>4:D:159:VAL:O</td>
<td>4:D:163:ALA:N</td>
<td>2.19</td>
<td>0.61</td>
</tr>
<tr>
<td>4:D:162:ILE:HA</td>
<td>4:D:165:ARG:HB3</td>
<td>1.82</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:76:THR:OG1</td>
<td>1:A:77:LEU:N</td>
<td>2.34</td>
<td>0.61</td>
</tr>
<tr>
<td>3:C:202:THR:OG1</td>
<td>3:C:203:HIS:N</td>
<td>2.34</td>
<td>0.61</td>
</tr>
<tr>
<td>4:D:212:LEU:O</td>
<td>4:D:216:LEU:HD13</td>
<td>2.01</td>
<td>0.61</td>
</tr>
<tr>
<td>1:E:48:LEU:HD12</td>
<td>1:E:56:ILE:HB</td>
<td>1.82</td>
<td>0.61</td>
</tr>
<tr>
<td>3:G:117:SER:HB3</td>
<td>3:G:120:GLU:H</td>
<td>1.65</td>
<td>0.61</td>
</tr>
<tr>
<td>4:H:250:ALA:O</td>
<td>4:H:254:LEU:N</td>
<td>2.34</td>
<td>0.61</td>
</tr>
<tr>
<td>2:B:200:ILE:HG22</td>
<td>2:B:201:THR:H</td>
<td>1.65</td>
<td>0.61</td>
</tr>
<tr>
<td>3:G:279:GLN:HA</td>
<td>3:G:282:LYS:HG2</td>
<td>1.81</td>
<td>0.61</td>
</tr>
<tr>
<td>2:F:100:GLY:H</td>
<td>4:H:225:ARG:NH2</td>
<td>1.98</td>
<td>0.60</td>
</tr>
<tr>
<td>2:F:276:TRP:O</td>
<td>2:F:279:ASN:ND2</td>
<td>2.34</td>
<td>0.60</td>
</tr>
<tr>
<td>3:G:267:PRO:HG3</td>
<td>3:G:276:ALA:HB2</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:43:ILE:HG22</td>
<td>1:A:44:MET:N</td>
<td>2.17</td>
<td>0.60</td>
</tr>
<tr>
<td>4:D:55:VAL:HG13</td>
<td>4:D:125:VAL:HG11</td>
<td>1.82</td>
<td>0.60</td>
</tr>
<tr>
<td>2:F:72:VAL:HG12</td>
<td>2:F:73:LYS:H</td>
<td>1.65</td>
<td>0.60</td>
</tr>
<tr>
<td>2:B:119:GLU:HA</td>
<td>2:B:122:LYS:HE2</td>
<td>1.84</td>
<td>0.60</td>
</tr>
<tr>
<td>2:F:184:ASP:O</td>
<td>2:F:188:LYS:N</td>
<td>2.34</td>
<td>0.60</td>
</tr>
<tr>
<td>4:D:107:ILE:CB</td>
<td>4:D:111:TYR:HE2</td>
<td>1.84</td>
<td>0.60</td>
</tr>
<tr>
<td>4:D:31:PH:E:CID</td>
<td>4:D:51:GLY:HA3</td>
<td>2.37</td>
<td>0.60</td>
</tr>
<tr>
<td>2:F:10:HIS:CG</td>
<td>2:F:60:ASP:HB2</td>
<td>2.37</td>
<td>0.60</td>
</tr>
<tr>
<td>2:B:237:LEU:O</td>
<td>2:B:242:LEU:N</td>
<td>2.30</td>
<td>0.60</td>
</tr>
<tr>
<td>3:C:250:ALA:HB2</td>
<td>3:C:268:LEU:HA</td>
<td>1.82</td>
<td>0.60</td>
</tr>
<tr>
<td>4:D:52:LEU:HD12</td>
<td>4:D:55:VAL:HB</td>
<td>1.84</td>
<td>0.60</td>
</tr>
<tr>
<td>3:C:99:PH:E:HD2</td>
<td>4:D:201:VAL:HG12</td>
<td>1.67</td>
<td>0.60</td>
</tr>
<tr>
<td>3:G:42:THR:HA</td>
<td>3:G:203:HIS:NE2</td>
<td>2.17</td>
<td>0.60</td>
</tr>
<tr>
<td>3:C:232:VAL:HG22</td>
<td>3:C:239:LEU:HD21</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>1:A:117:LEU:O</td>
<td>1:A:121:PHE:HB2</td>
<td>2.02</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:C:127:LYS:NZ</td>
<td>3:C:163:GLU:OE2</td>
<td>2.34</td>
<td>0.60</td>
</tr>
<tr>
<td>4:D:17:TYR:O</td>
<td>4:D:19:VAL:HG13</td>
<td>2.00</td>
<td>0.60</td>
</tr>
<tr>
<td>4:H:25:LEU:HG</td>
<td>4:H:126:MET:HG2</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>4:D:75:MET:O</td>
<td>4:D:79:THR:OG1</td>
<td>2.12</td>
<td>0.60</td>
</tr>
<tr>
<td>2:F:86:VAL:HB</td>
<td>2:F:164:VAL:HB</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>3:G:269:THR:OG1</td>
<td>3:G:271:PRO:HD2</td>
<td>2.01</td>
<td>0.60</td>
</tr>
<tr>
<td>4:D:166:PHB:HB3</td>
<td>4:D:170:LEU:HD23</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>2:F:252:GLN:O</td>
<td>2:F:256:GLU:N</td>
<td>2.34</td>
<td>0.59</td>
</tr>
<tr>
<td>3:G:187:LEU:HA</td>
<td>3:G:189:LYS:HB2</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>4:H:8:ARG:CZ</td>
<td>4:H:8:ARG:HB2</td>
<td>2.30</td>
<td>0.59</td>
</tr>
<tr>
<td>4:D:31:PHE:CE1</td>
<td>4:D:51:GLY:HA3</td>
<td>2.37</td>
<td>0.59</td>
</tr>
<tr>
<td>2:B:154:ILE:O</td>
<td>2:B:158:LEU:HD13</td>
<td>2.03</td>
<td>0.59</td>
</tr>
<tr>
<td>2:B:202:HIS:HB2</td>
<td>2:B:206:GLU:HG2</td>
<td>1.83</td>
<td>0.59</td>
</tr>
<tr>
<td>2:B:3:ASP:HB2</td>
<td>2:B:32:ARG:HA</td>
<td>1.85</td>
<td>0.59</td>
</tr>
<tr>
<td>4:H:133:LEU:HD23</td>
<td>4:H:133:LEU:HB</td>
<td>1.67</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:28:PHE:O</td>
<td>1:A:34:PRO:HD2</td>
<td>2.03</td>
<td>0.59</td>
</tr>
<tr>
<td>4:D:147:LYS:HA</td>
<td>4:D:151:VAL:HG13</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>1:A:31:ILE:HG13</td>
<td>1:A:32:ASP:H</td>
<td>1.67</td>
<td>0.59</td>
</tr>
<tr>
<td>3:C:261:LEU:HD22</td>
<td>3:C:263:LEU:HD12</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>4:D:107:ILE:CG2</td>
<td>4:D:111:TYR:CZ</td>
<td>2.85</td>
<td>0.59</td>
</tr>
<tr>
<td>2:F:3:ASP:O</td>
<td>2:F:70:ASP:N</td>
<td>2.36</td>
<td>0.59</td>
</tr>
<tr>
<td>2:B:46:LYS:H</td>
<td>2:B:46:LYS:HD3</td>
<td>1.68</td>
<td>0.58</td>
</tr>
<tr>
<td>3:C:238:TRP:O</td>
<td>3:C:242:HIS:HB2</td>
<td>2.03</td>
<td>0.58</td>
</tr>
<tr>
<td>3:C:162:TYR:OH</td>
<td>4:D:183:SER:O</td>
<td>2.07</td>
<td>0.58</td>
</tr>
<tr>
<td>1:E:89:THR:HG21</td>
<td>1:E:119:TYR:HA</td>
<td>1.84</td>
<td>0.58</td>
</tr>
<tr>
<td>4:D:54:TYR:HB3</td>
<td>4:D:251:TYR:OH</td>
<td>2.03</td>
<td>0.58</td>
</tr>
<tr>
<td>4:D:88:ALA:O</td>
<td>4:D:90:GLY:N</td>
<td>2.36</td>
<td>0.58</td>
</tr>
<tr>
<td>4:H:94:TRP:HB2</td>
<td>4:H:95:HIS:HA</td>
<td>1.84</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:21:MET:HB2</td>
<td>4:D:207:LEU:HD11</td>
<td>1.86</td>
<td>0.58</td>
</tr>
<tr>
<td>1:A:45:LEU:O</td>
<td>1:A:57:LEU:HD11</td>
<td>2.03</td>
<td>0.58</td>
</tr>
<tr>
<td>2:F:75:GLY:HA2</td>
<td>2:F:78:THR:HG23</td>
<td>1.85</td>
<td>0.58</td>
</tr>
</tbody>
</table>

Continued on next page...
Atom-1

<table>
<thead>
<tr>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:C:3:ILE:HG23</td>
<td>1.84</td>
</tr>
<tr>
<td>1:A:75:TRP:CE3</td>
<td>2.39</td>
</tr>
<tr>
<td>3:C:90:ALA:HB3</td>
<td>1.84</td>
</tr>
<tr>
<td>1:A:63:MET:SD</td>
<td>2.43</td>
</tr>
<tr>
<td>3:G:167:ILE:HG23</td>
<td>1.84</td>
</tr>
<tr>
<td>2:B:216:LEU:HA</td>
<td>2.03</td>
</tr>
<tr>
<td>2:B:255:LYS:HG22</td>
<td>1.85</td>
</tr>
<tr>
<td>2:B:8:PHE:CE1</td>
<td>2.39</td>
</tr>
<tr>
<td>2:F:201:THR:O</td>
<td>2.37</td>
</tr>
<tr>
<td>2:F:83:ARG:NH2</td>
<td>2.36</td>
</tr>
<tr>
<td>1:E:133:TRP:HE1</td>
<td>1.69</td>
</tr>
<tr>
<td>1:E:64:VAL:O</td>
<td>2.03</td>
</tr>
<tr>
<td>3:C:270:MET:HB2</td>
<td>1.84</td>
</tr>
<tr>
<td>2:F:115:VAL:O</td>
<td>2.15</td>
</tr>
<tr>
<td>2:F:88:ILE:HD12</td>
<td>1.86</td>
</tr>
<tr>
<td>2:B:171:THR:HG22</td>
<td>1.85</td>
</tr>
<tr>
<td>4:D:75:MET:SD</td>
<td>2.62</td>
</tr>
<tr>
<td>3:G:11:VAL:HG13</td>
<td>1.85</td>
</tr>
<tr>
<td>3:G:182:LEU:HD23</td>
<td>1.86</td>
</tr>
<tr>
<td>3:C:256:LEU:HD13</td>
<td>1.86</td>
</tr>
<tr>
<td>2:B:171:THR:HG22</td>
<td>1.85</td>
</tr>
<tr>
<td>4:D:75:MET:SD</td>
<td>2.62</td>
</tr>
<tr>
<td>3:G:11:VAL:HG13</td>
<td>1.85</td>
</tr>
<tr>
<td>3:G:182:LEU:HD23</td>
<td>1.86</td>
</tr>
<tr>
<td>4:H:225:ARG:O</td>
<td>2.38</td>
</tr>
<tr>
<td>1:A:163:LEU:O</td>
<td>2.05</td>
</tr>
<tr>
<td>2:B:72:VAL:HG23</td>
<td>1.87</td>
</tr>
<tr>
<td>4:D:66:TRP:HH2</td>
<td>1.68</td>
</tr>
<tr>
<td>2:F:179:LYS:HZ1</td>
<td>2.23</td>
</tr>
<tr>
<td>2:F:26:LEU:HB3</td>
<td>1.67</td>
</tr>
<tr>
<td>3:G:105:LYS:HA</td>
<td>1.69</td>
</tr>
<tr>
<td>3:G:63:LYS:HD2</td>
<td>1.70</td>
</tr>
<tr>
<td>3:G:247:PRO:HG2</td>
<td>1.87</td>
</tr>
<tr>
<td>2:B:202:His:HB2</td>
<td>1.87</td>
</tr>
<tr>
<td>2:B:17:ASP:N</td>
<td>2.19</td>
</tr>
<tr>
<td>3:G:41:HIS:O</td>
<td>2.17</td>
</tr>
<tr>
<td>4:H:251:TYR:HA</td>
<td>1.86</td>
</tr>
<tr>
<td>3:C:186:GLN:HA</td>
<td>1.87</td>
</tr>
<tr>
<td>3:G:182:LEU:O</td>
<td>2.05</td>
</tr>
<tr>
<td>4:D:158:LEU:O</td>
<td>2.04</td>
</tr>
<tr>
<td>3:G:81:LYS:HG3</td>
<td>1.70</td>
</tr>
<tr>
<td>4:H:10:LEU:HD22</td>
<td>1.87</td>
</tr>
<tr>
<td>2:B:69:VAL:HG12</td>
<td>2.20</td>
</tr>
<tr>
<td>4:D:253:LEU:O</td>
<td>2.17</td>
</tr>
<tr>
<td>1:E:108:GLN:HG2</td>
<td>1.87</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:16:ALA:HA</td>
<td>4:D:159:VAL:HG</td>
<td>1.86</td>
<td>0.56</td>
</tr>
<tr>
<td>1:E:85:ALA:H</td>
<td>1:E:88:LEU:HD22</td>
<td>1.70</td>
<td>0.56</td>
</tr>
<tr>
<td>3:G:261:LEU:HD22</td>
<td>3:G:263:LEU:HG</td>
<td>1.86</td>
<td>0.56</td>
</tr>
<tr>
<td>1:E:61:LEU:HD23</td>
<td>1:E:87:ALA:HA</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>1:E:57:LEU:HD12</td>
<td>1:E:58:LEU:N</td>
<td>2.19</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:142:SER:O</td>
<td>1:A:142:SER:O</td>
<td>2.19</td>
<td>0.56</td>
</tr>
<tr>
<td>4:D:16:VAL:O</td>
<td>4:D:18:ARG:HG2</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>3:C:31:GLU:HB3</td>
<td>3:C:34:LYS:HD3</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>1:E:137:ILE:O</td>
<td>1:E:141:VAL:N</td>
<td>2.26</td>
<td>0.56</td>
</tr>
<tr>
<td>3:C:46:LYS:HB3</td>
<td>3:C:201:VAL:HG13</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>2:B:254:LEU:HB3</td>
<td>2:B:259:ILE:HB</td>
<td>1.88</td>
<td>0.56</td>
</tr>
<tr>
<td>3:C:10:TYR:HB2</td>
<td>3:C:52:His:CE1</td>
<td>2.40</td>
<td>0.56</td>
</tr>
<tr>
<td>3:C:140:GLU:O</td>
<td>3:C:141:HIS:ND1</td>
<td>2.38</td>
<td>0.56</td>
</tr>
<tr>
<td>1:E:108:GLN:OE1</td>
<td>1:E:111:LEU:HB2</td>
<td>2.06</td>
<td>0.56</td>
</tr>
<tr>
<td>4:H:78:PHE:O</td>
<td>4:H:81:LEU:HD23</td>
<td>2.06</td>
<td>0.56</td>
</tr>
<tr>
<td>1:A:106:TRP:O</td>
<td>1:A:110:LEU:HG</td>
<td>2.06</td>
<td>0.56</td>
</tr>
<tr>
<td>3:C:103:VAL:O</td>
<td>3:C:106:ASP:N</td>
<td>2.32</td>
<td>0.55</td>
</tr>
<tr>
<td>2:B:275:LEU:HD23</td>
<td>2:B:278:LEU:HD12</td>
<td>1.88</td>
<td>0.55</td>
</tr>
<tr>
<td>3:C:97:GLN:HG2</td>
<td>4:D:180:ALA:HB1</td>
<td>1.87</td>
<td>0.55</td>
</tr>
<tr>
<td>3:C:249:SER:HA</td>
<td>3:C:273:LEU:HD22</td>
<td>1.88</td>
<td>0.55</td>
</tr>
<tr>
<td>3:B:275:GLN:HA</td>
<td>3:C:282:LYS:CG</td>
<td>2.37</td>
<td>0.55</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:D:88:ALA:HB2</td>
<td>4:D:94:TRP:CE2</td>
<td>2.42</td>
<td>0.55</td>
</tr>
<tr>
<td>1:E:133:TRP:CZ3</td>
<td>1:E:135:ALA:HA</td>
<td>2.42</td>
<td>0.55</td>
</tr>
<tr>
<td>2:B:214:LEU:HB3</td>
<td>2:B:221:LEU:HD11</td>
<td>1.89</td>
<td>0.55</td>
</tr>
<tr>
<td>2:B:237:LEU:O</td>
<td>2:B:241:GLY:N</td>
<td>2.37</td>
<td>0.55</td>
</tr>
<tr>
<td>3:C:72:THR:O</td>
<td>3:C:75:THR:OG1</td>
<td>2.22</td>
<td>0.55</td>
</tr>
<tr>
<td>1:E:32:ASP:OD1</td>
<td>1:E:33:ILE:N</td>
<td>2.40</td>
<td>0.55</td>
</tr>
<tr>
<td>2:B:231:PHE:HB3</td>
<td>2:B:244:ILE:HG22</td>
<td>1.88</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:70:LEU:HD13</td>
<td>4:D:135:ILE:HB</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>2:B:107:ALA:HA</td>
<td>2:B:110:LEU:HD12</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>2:B:142:SER:CB</td>
<td>4:D:168:PRO:HB2</td>
<td>2.36</td>
<td>0.54</td>
</tr>
<tr>
<td>3:G:114:PHE:HE2</td>
<td>3:G:162:TYR:CE1</td>
<td>2.25</td>
<td>0.54</td>
</tr>
<tr>
<td>3:G:4:LYS:O</td>
<td>3:G:64:ILE:HG23</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:48:LEU:O</td>
<td>1:A:52:ALA:HB3</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>2:B:50:SER:O</td>
<td>2:B:53:ILE:HG22</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>2:B:93:PRO:HG2</td>
<td>2:B:149:LYS:HB2</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>2:B:111:GLU:HA</td>
<td>4:D:234:THR:HB</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>2:B:148:GLN:O</td>
<td>2:B:152:VAL:HG23</td>
<td>2.06</td>
<td>0.54</td>
</tr>
<tr>
<td>3:C:66:ILE:HG12</td>
<td>3:C:67:ALA:H</td>
<td>1.72</td>
<td>0.54</td>
</tr>
<tr>
<td>4:H:158:LEU:O</td>
<td>4:H:162:ILE:HG12</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:61:LEU:O</td>
<td>1:A:65:ILE:HG12</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>4:D:24:LYS:HD2</td>
<td>4:D:130:THR:HG23</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>2:F:175:ASP:HB3</td>
<td>3:G:203:HIS:HB2</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>2:F:4:ASN:HA</td>
<td>2:F:70:ASP:H</td>
<td>1.73</td>
<td>0.54</td>
</tr>
<tr>
<td>1:E:13:THR:HG23</td>
<td>4:H:215:ALA:HB1</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:28:PHE:O</td>
<td>1:A:29:LYS:HG2</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:A:66:SER:OG</td>
<td>4:D:139:MET:SD</td>
<td>2.66</td>
<td>0.54</td>
</tr>
<tr>
<td>4:D:81:LEU:HA</td>
<td>4:D:84:THR:OG1</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>4:H:40:ASN:HB3</td>
<td>4:H:42:VAL:HG22</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>2:B:235:GLU:C</td>
<td>2:B:237:LEU:N</td>
<td>2.60</td>
<td>0.54</td>
</tr>
<tr>
<td>3:C:66:ILE:HG22</td>
<td>3:C:69:TYR:O</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>3:C:220:HIS:HB2</td>
<td>3:C:222:ARG: NH2</td>
<td>2.21</td>
<td>0.54</td>
</tr>
<tr>
<td>3:C:41:HIS:CG</td>
<td>3:C:243:HIS:HB2</td>
<td>2.43</td>
<td>0.54</td>
</tr>
<tr>
<td>1:E:107:LEU:HA</td>
<td>1:E:157:PHE:CZ</td>
<td>2.42</td>
<td>0.54</td>
</tr>
<tr>
<td>4:H:94:TRP:CB</td>
<td>4:H:95:HIS:HA</td>
<td>2.38</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:D:173:GLN:HA</td>
<td>4:D:176:LYS:HG2</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>4:H:131:LYS:HG3</td>
<td>4:H:134:GLU:HB2</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>3:C:23:LEU:HD11</td>
<td>3:C:48:THR:O</td>
<td>2.07</td>
<td>0.53</td>
</tr>
<tr>
<td>2:B:10:HIS:CD2</td>
<td>2:B:24:SER:H</td>
<td>2.26</td>
<td>0.53</td>
</tr>
<tr>
<td>3:C:104:LEU:O</td>
<td>3:C:108:GLU:N</td>
<td>2.38</td>
<td>0.53</td>
</tr>
<tr>
<td>4:H:8:ARG:HB2</td>
<td>4:H:8:ARG:NH1</td>
<td>2.23</td>
<td>0.53</td>
</tr>
<tr>
<td>3:G:236:SER:HA</td>
<td>3:G:239:LEU:HD12</td>
<td>1.91</td>
<td>0.53</td>
</tr>
<tr>
<td>3:G:30:LEU:HD11</td>
<td>3:G:36:ILE:HD11</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>2:F:179:LYS:HZ2</td>
<td>2:F:183:LEU:HD13</td>
<td>1.74</td>
<td>0.53</td>
</tr>
<tr>
<td>2:F:257:ARG:HH12</td>
<td>3:G:282:LYS:HE2</td>
<td>1.74</td>
<td>0.53</td>
</tr>
<tr>
<td>2:B:107:ALA:O</td>
<td>2:B:111:GLU:HG3</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>2:B:278:LEU:HB2</td>
<td>3:C:281:LEU:HD13</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>3:C:127:LYS:HE3</td>
<td>3:C:131:LYS:HE2</td>
<td>1.91</td>
<td>0.53</td>
</tr>
<tr>
<td>2:B:107:ALA:HB2</td>
<td>2:B:124:VAL:CG2</td>
<td>2.32</td>
<td>0.53</td>
</tr>
<tr>
<td>3:C:169:LEU:HD22</td>
<td>3:C:172:PRO:HG3</td>
<td>1.91</td>
<td>0.53</td>
</tr>
<tr>
<td>2:B:86:VAL:HA</td>
<td>2:B:164:VAL:HB</td>
<td>1.91</td>
<td>0.53</td>
</tr>
<tr>
<td>2:B:39:ILE:O</td>
<td>2:B:216:LEU:HD12</td>
<td>2.08</td>
<td>0.53</td>
</tr>
<tr>
<td>3:C:102:THR:HG22</td>
<td>3:C:104:LEU:H</td>
<td>1.73</td>
<td>0.53</td>
</tr>
<tr>
<td>2:F:17:ASP:N</td>
<td>2:F:17:ASP:OD1</td>
<td>2.43</td>
<td>0.53</td>
</tr>
<tr>
<td>1:A:30:ILE:HG22</td>
<td>4:D:171:PHE:HZ</td>
<td>1.73</td>
<td>0.52</td>
</tr>
<tr>
<td>2:B:177:GLU:O</td>
<td>2:B:181:GLN:NE2</td>
<td>2.42</td>
<td>0.52</td>
</tr>
<tr>
<td>2:B:91:GLN:OE1</td>
<td>2:B:172:SER:OG</td>
<td>2.26</td>
<td>0.52</td>
</tr>
<tr>
<td>4:D:107:ILE:C</td>
<td>4:D:111:TYR:CD2</td>
<td>2.82</td>
<td>0.52</td>
</tr>
<tr>
<td>4:D:88:ALA:O</td>
<td>4:D:92:VAL:HB</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>2:F:14:THR:OG1</td>
<td>2:F:15:TYR:N</td>
<td>2.42</td>
<td>0.52</td>
</tr>
<tr>
<td>2:B:110:LEU:HD11</td>
<td>2:B:159:ALA:HB1</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>2:B:33:GLY:O</td>
<td>2:B:190:LYS:NZ</td>
<td>2.29</td>
<td>0.52</td>
</tr>
<tr>
<td>3:G:26:LEU:HG</td>
<td>3:G:49:LEU:HD11</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>3:G:275:ASP:HA</td>
<td>3:G:278:LYS:HB2</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:64:VAL:O</td>
<td>1:A:68:ILE:HG22</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>3:C:44:SER:OG</td>
<td>3:C:46:LYS:NZ</td>
<td>2.42</td>
<td>0.52</td>
</tr>
<tr>
<td>3:C:252:PHE:HA</td>
<td>3:C:255:LYS:HG2</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>4:D:213:GLU:O</td>
<td>4:D:216:LEU:HB2</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:20:ALA:HB2</td>
<td>4:H:163:ALA:HA</td>
<td>1.91</td>
<td>0.52</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:H:256:THR:HA</td>
<td>4:H:259:MET:HG3</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>2:B:223:ASP:CB</td>
<td>2:B:230:ILE:HD12</td>
<td>2.35</td>
<td>0.52</td>
</tr>
<tr>
<td>2:B:78:THR:O</td>
<td>2:B:80:TRP:N</td>
<td>2.42</td>
<td>0.52</td>
</tr>
<tr>
<td>1:A:49:GLU:O</td>
<td>1:A:51:GLY:N</td>
<td>2.41</td>
<td>0.52</td>
</tr>
<tr>
<td>2:B:250:LEU:O</td>
<td>2:B:254:LEU:N</td>
<td>2.42</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:111:LEU:HD12</td>
<td>1:E:114:PHE:CD1</td>
<td>2.45</td>
<td>0.52</td>
</tr>
<tr>
<td>3:C:35:PHE:HB3</td>
<td>3:C:212:ALA:HA</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>2:B:54:ASN:OD1</td>
<td>2:B:56:LEU:HG</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>4:D:230:SER:N</td>
<td>4:D:233:ARG:HG3</td>
<td>2.21</td>
<td>0.52</td>
</tr>
<tr>
<td>2:B:53:ILE:HD12</td>
<td>2:B:67:ILE:HG21</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>3:C:41:His:CD2</td>
<td>3:C:243:His:HB2</td>
<td>2.45</td>
<td>0.52</td>
</tr>
<tr>
<td>3:G:249:SER:O</td>
<td>3:G:253:ALA:N</td>
<td>2.42</td>
<td>0.52</td>
</tr>
<tr>
<td>3:C:39:VAL:C</td>
<td>3:C:46:LYS:HE3</td>
<td>2.31</td>
<td>0.51</td>
</tr>
<tr>
<td>4:D:235:ARG:HG2</td>
<td>4:D:236:TYR:H</td>
<td>1.75</td>
<td>0.51</td>
</tr>
<tr>
<td>2:B:247:VAL:O</td>
<td>2:B:251:LYS:HG3</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>2:F:141:PRO:HA</td>
<td>2:F:144:LEU:HG</td>
<td>1.91</td>
<td>0.51</td>
</tr>
<tr>
<td>3:G:23:LEU:HB3</td>
<td>3:G:26:LEU:HD21</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>2:B:116:PRO:HG2</td>
<td>2:B:119:GLU:HB3</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>3:C:269:THR:HB</td>
<td>3:C:272:GLU:HG2</td>
<td>1.91</td>
<td>0.51</td>
</tr>
<tr>
<td>4:D:107:ILE:HG22</td>
<td>4:D:111:TYR:CZ</td>
<td>2.46</td>
<td>0.51</td>
</tr>
<tr>
<td>4:D:248:PRO:HA</td>
<td>4:D:251:TYR:HB2</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>4:D:255:LEU:O</td>
<td>4:D:259:MET:HB2</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>2:B:91:GLN:HE22</td>
<td>2:B:169:GLU:HG2</td>
<td>1.75</td>
<td>0.51</td>
</tr>
<tr>
<td>2:B:225:GLY:N</td>
<td>2:B:230:ILE:HD11</td>
<td>2.24</td>
<td>0.51</td>
</tr>
<tr>
<td>2:F:78:THR:O</td>
<td>2:F:78:THR:OG1</td>
<td>2.28</td>
<td>0.51</td>
</tr>
<tr>
<td>3:G:192:GLN:HA</td>
<td>3:C:196:HIS:HB2</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:78:PRO:HB2</td>
<td>1:A:79:GLN:CD</td>
<td>2.31</td>
<td>0.51</td>
</tr>
<tr>
<td>2:B:204:LEU:HG</td>
<td>2:B:245:PRO:HA</td>
<td>1.91</td>
<td>0.51</td>
</tr>
<tr>
<td>2:B:233:LYS:HE2</td>
<td>2:B:236:MET:SD</td>
<td>2.51</td>
<td>0.51</td>
</tr>
<tr>
<td>3:C:213:ASP:O</td>
<td>3:C:228:SER:OG</td>
<td>2.28</td>
<td>0.51</td>
</tr>
<tr>
<td>4:H:199:SER:O</td>
<td>4:H:202:PRO:HD2</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>3:C:37:ALA:HB3</td>
<td>3:C:215:VAL:HA</td>
<td>1.92</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:F:265:ILE:HG23</td>
<td>2:F:270:LYS:HB3</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>2:F:201:THR:O</td>
<td>2:F:202:HIS:CG</td>
<td>2.64</td>
<td>0.51</td>
</tr>
<tr>
<td>3:G:80:LEU:HD12</td>
<td>3:G:80:LEU:H</td>
<td>1.76</td>
<td>0.51</td>
</tr>
<tr>
<td>1:A:63:MET:O</td>
<td>1:A:67:ASN:ND2</td>
<td>2.44</td>
<td>0.50</td>
</tr>
<tr>
<td>2:B:11:VAL:HB</td>
<td>2:B:22:ALA:HB3</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>2:B:188:LYS:O</td>
<td>2:B:192:ASP:N</td>
<td>2.27</td>
<td>0.50</td>
</tr>
<tr>
<td>3:C:75:THR:HA</td>
<td>3:G:75:THR:HA</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>4:D:25:LEU:HD13</td>
<td>4:D:126:MET:CE</td>
<td>2.41</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:150:HIS:O</td>
<td>1:E:153:GLY:N</td>
<td>2.44</td>
<td>0.50</td>
</tr>
<tr>
<td>2:B:117:ARG:NH1</td>
<td>2:B:121:LEU:HD21</td>
<td>2.27</td>
<td>0.50</td>
</tr>
<tr>
<td>3:C:140:GLU:O</td>
<td>3:C:141:HIS:CG</td>
<td>2.63</td>
<td>0.50</td>
</tr>
<tr>
<td>2:B:124:VAL:O</td>
<td>2:B:128:VAL:HG13</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>3:C:126:LYS:O</td>
<td>4:H:184:ARG:O</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>4:H:78:PHE:HB2</td>
<td>4:H:81:LEU:CD2</td>
<td>2.40</td>
<td>0.50</td>
</tr>
<tr>
<td>2:F:10:HIS:NE2</td>
<td>2:F:60:ASP:OD2</td>
<td>2.44</td>
<td>0.50</td>
</tr>
<tr>
<td>3:C:108:GLU:N</td>
<td>3:C:108:GLU:OE2</td>
<td>2.44</td>
<td>0.50</td>
</tr>
<tr>
<td>3:C:97:GLN:HB2</td>
<td>4:D:184:ARG:NH1</td>
<td>2.27</td>
<td>0.50</td>
</tr>
<tr>
<td>4:D:24:LYS:HD2</td>
<td>4:D:130:THR:CG2</td>
<td>2.42</td>
<td>0.50</td>
</tr>
<tr>
<td>4:D:97:TRP:CE3</td>
<td>4:D:97:TRP:HA</td>
<td>2.46</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:84:ALA:N</td>
<td>1:E:85:ALA:HB3</td>
<td>2.26</td>
<td>0.50</td>
</tr>
<tr>
<td>3:C:38:LEU:C</td>
<td>3:C:46:LYS:HZ1</td>
<td>2.15</td>
<td>0.50</td>
</tr>
<tr>
<td>3:C:152:ARG:HA</td>
<td>3:C:155:ALA:HB3</td>
<td>1.92</td>
<td>0.50</td>
</tr>
<tr>
<td>3:C:264:PRO:HD3</td>
<td>3:C:280:SER:HB3</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>2:F:110:LEU:HB3</td>
<td>2:F:120:MET:HG2</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>3:C:104:LEU:HD12</td>
<td>3:C:125:ALA:HB3</td>
<td>1.92</td>
<td>0.50</td>
</tr>
<tr>
<td>4:H:78:PHE:CE1</td>
<td>4:H:113:PHE:HB2</td>
<td>2.47</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:172:LYS:HG3</td>
<td>4:D:212:LEU:HB3</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>2:B:202:HIS:HB2</td>
<td>2:B:206:GLU:CB</td>
<td>2.42</td>
<td>0.50</td>
</tr>
<tr>
<td>2:B:44:SER:O</td>
<td>2:B:219:GLY:HA2</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>3:C:18:LEU:HB2</td>
<td>3:C:19:GLU:HG2</td>
<td>1.92</td>
<td>0.50</td>
</tr>
<tr>
<td>4:D:30:TYR:CD2</td>
<td>4:D:34:MET:HB2</td>
<td>2.47</td>
<td>0.50</td>
</tr>
<tr>
<td>2:F:52:LEU:HB2</td>
<td>2:F:53:ILE:HD12</td>
<td>1.94</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:121:PHE:HA</td>
<td>1:A:125:LEU:HG</td>
<td>1.94</td>
<td>0.50</td>
</tr>
<tr>
<td>2:B:204:LEU:O</td>
<td>2:B:208:ALA:N</td>
<td>2.40</td>
<td>0.50</td>
</tr>
<tr>
<td>4:D:9:TYR:N</td>
<td>4:D:127:THR:O</td>
<td>2.44</td>
<td>0.50</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:D:190:ASP:OD1</td>
<td>4:D:190:ASP:N</td>
<td>2.43</td>
<td>0.50</td>
</tr>
<tr>
<td>4:H:14:THR:OG1</td>
<td>4:H:15:PHE:N</td>
<td>2.45</td>
<td>0.50</td>
</tr>
<tr>
<td>3:C:26:LEU:C</td>
<td>3:C:27:ASN:HD22</td>
<td>2.15</td>
<td>0.50</td>
</tr>
<tr>
<td>4:D:156:ILE:O</td>
<td>4:D:160:ILE:HG23</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:144:LEU:OD1</td>
<td>1:E:148:LEU:HG</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>2:B:186:VAL:HG11</td>
<td>2:B:197:VAL:HG11</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>2:B:48:THR:HA</td>
<td>2:B:51:LYS:HD2</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>4:D:25:LEU:HD13</td>
<td>4:D:126:MET:HE1</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>2:F:133:MET:SD</td>
<td>2:F:133:MET:N</td>
<td>2.85</td>
<td>0.49</td>
</tr>
<tr>
<td>2:B:118:PRO:O</td>
<td>2:B:122:LYS:HG3</td>
<td>2.11</td>
<td>0.49</td>
</tr>
<tr>
<td>2:B:246:PHE:HA</td>
<td>2:B:249:ARG:HB2</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>3:C:103:VAL:N</td>
<td>3:C:141:HIS:O</td>
<td>2.34</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:117:LEU:O</td>
<td>1:E:121:PHE:N</td>
<td>2.35</td>
<td>0.49</td>
</tr>
<tr>
<td>3:G:44:SER:HB2</td>
<td>3:G:220:HIS:H</td>
<td>1.77</td>
<td>0.49</td>
</tr>
<tr>
<td>2:F:97:PHE:HB3</td>
<td>4:H:165:ARG:HH11</td>
<td>1.77</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:75:TRP:HE3</td>
<td>1:A:76:THR:HG22</td>
<td>1.76</td>
<td>0.49</td>
</tr>
<tr>
<td>2:B:182:ILE:O</td>
<td>2:B:186:VAL:HG23</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>3:C:94:SER:O</td>
<td>3:C:96:ALA:H</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>4:D:147:LYS:NZ</td>
<td>4:D:147:LYS:HB2</td>
<td>2.28</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:59:ALA:O</td>
<td>1:E:63:MET:HG2</td>
<td>2.11</td>
<td>0.49</td>
</tr>
<tr>
<td>3:G:1:MET:O</td>
<td>3:G:32:GLU:HB2</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>4:D:31:PHE:HD2</td>
<td>4:D:122:VAL:HG11</td>
<td>1.76</td>
<td>0.49</td>
</tr>
<tr>
<td>3:G:65:GLU:HG3</td>
<td>3:G:70:THR:OG1</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>4:H:144:THR:O</td>
<td>4:H:147:LYS:HG3</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>3:C:69:TYR:HB3</td>
<td>3:G:74:GLU:OE2</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>3:G:36:ILE:O</td>
<td>3:G:200:LEU:N</td>
<td>2.42</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:88:LEU:O</td>
<td>1:A:92:LEU:HD12</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>2:B:150:GLN:O</td>
<td>2:B:154:ILE:HG13</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>3:C:54:ASN:HD21</td>
<td>3:C:56:LEU:HD13</td>
<td>1.77</td>
<td>0.49</td>
</tr>
<tr>
<td>2:F:26:LEU:HB3</td>
<td>2:F:28:PHE:CD2</td>
<td>2.46</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:163:LEU:HB2</td>
<td>1:A:164:PRO:HD3</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:139:VAL:HG22</td>
<td>1:A:75:TRP:HZ3</td>
<td>1.78</td>
<td>0.49</td>
</tr>
<tr>
<td>2:B:41:His:CE1</td>
<td>2:B:217:ASP:OD1</td>
<td>2.66</td>
<td>0.49</td>
</tr>
<tr>
<td>4:D:84:THR:O</td>
<td>4:D:85:PHE:HD1</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:152:ALA:HA</td>
<td>1:A:155:LEU:HB3</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>2:B:7:SER:O</td>
<td>2:B:9:ASP:N</td>
<td>2.44</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:F:54:ASN:HB2</td>
<td>2:F:86:VAL:HG13</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>3:C:56:LEU:HD23</td>
<td>4:D:179:ASN:HB3</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>4:D:88:ALA:HB2</td>
<td>4:D:94:TRP:NE1</td>
<td>2.28</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:121:PHE:O</td>
<td>1:E:125:LEU:HD22</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:69:PHE:C</td>
<td>1:E:71:GLY:HA3</td>
<td>2.33</td>
<td>0.48</td>
</tr>
<tr>
<td>2:F:71:GLY:HA3</td>
<td>2:F:85:LYS:NZ</td>
<td>2.28</td>
<td>0.48</td>
</tr>
<tr>
<td>2:F:75:GLY:HA2</td>
<td>2:F:78:THR:CG2</td>
<td>2.43</td>
<td>0.48</td>
</tr>
<tr>
<td>4:H:16:PHE:CE2</td>
<td>4:H:16:VAL:HG22</td>
<td>2.48</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:140:TRP:HE1</td>
<td>1:A:146:PHE:HD2</td>
<td>1.61</td>
<td>0.48</td>
</tr>
<tr>
<td>3:C:264:PRO:HD2</td>
<td>3:C:276:ALA:O</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>3:C:38:LEU:HD23</td>
<td>3:C:201:VAL:HG22</td>
<td>1.94</td>
<td>0.48</td>
</tr>
<tr>
<td>3:G:8:VAL:O</td>
<td>3:G:25:GLN:HA</td>
<td>2.12</td>
<td>0.48</td>
</tr>
<tr>
<td>3:C:171:GLU:HG2</td>
<td>3:C:202:THR:HA</td>
<td>1.94</td>
<td>0.48</td>
</tr>
<tr>
<td>3:C:219:GLU:OE2</td>
<td>3:C:242:HIS:HA</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>3:C:249:SER:HG</td>
<td>3:C:268:LEU:C</td>
<td>2.10</td>
<td>0.48</td>
</tr>
<tr>
<td>4:D:112:VAL:HG23</td>
<td>4:D:115:ARG:HE</td>
<td>1.78</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:60:ILE:O</td>
<td>1:E:63:MET:N</td>
<td>2.43</td>
<td>0.48</td>
</tr>
<tr>
<td>4:D:226:GLY:O</td>
<td>4:D:228:LYS:N</td>
<td>2.44</td>
<td>0.48</td>
</tr>
<tr>
<td>2:F:4:ASN:OD1</td>
<td>2:F:30:ILE:N</td>
<td>2.35</td>
<td>0.48</td>
</tr>
<tr>
<td>2:B:13:PHE:CE2</td>
<td>2:B:22:ALA:HB2</td>
<td>2.49</td>
<td>0.48</td>
</tr>
<tr>
<td>2:B:39:ILE:HD12</td>
<td>2:B:213:VAL:HG13</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>4:H:23:ALA:HB3</td>
<td>4:H:245:ASP:HB3</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:15:LEU:HD11</td>
<td>1:A:56:ILE:HG23</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>3:C:105:LYS:HA</td>
<td>3:C:108:GLU:HB2</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>3:C:36:ILE:HB</td>
<td>3:C:199:ILE:HA</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>4:D:224:SER:OG</td>
<td>4:D:224:SER:O</td>
<td>2.26</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:117:LEU:HD22</td>
<td>1:E:139:TYR:HA</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:63:MET:HE1</td>
<td>4:H:159:VAL:HG13</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>3:G:4:LYS:HG2</td>
<td>3:G:65:GLU:H</td>
<td>1.79</td>
<td>0.48</td>
</tr>
<tr>
<td>4:H:205:VAL:HB</td>
<td>4:H:206:PRO:HD3</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>2:B:35:TRP:HD1</td>
<td>2:B:210:ALA:CB</td>
<td>2.27</td>
<td>0.48</td>
</tr>
<tr>
<td>3:C:103:VAL:O</td>
<td>3:C:105:LYS:N</td>
<td>2.47</td>
<td>0.48</td>
</tr>
<tr>
<td>4:D:35:ILE:HG22</td>
<td>4:D:47:ILE:HG12</td>
<td>1.96</td>
<td>0.48</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:H:218:LEU:O</td>
<td>4:H:222:MET:N</td>
<td>2.47</td>
<td>0.48</td>
</tr>
<tr>
<td>3:C:181:ARG:NH2</td>
<td>3:C:207:ASP:OD1</td>
<td>2.47</td>
<td>0.48</td>
</tr>
<tr>
<td>4:D:92:VAL:CA</td>
<td>4:D:93:TYR:HB3</td>
<td>2.41</td>
<td>0.48</td>
</tr>
<tr>
<td>3:G:146:LEU:HD13</td>
<td>3:G:150:GLN:HG2</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>3:G:209:ALA:HB1</td>
<td>3:G:229:PRO:HB3</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:17:LEU:HD11</td>
<td>4:H:214:VAL:HG11</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>4:D:151:VAL:CG1</td>
<td>4:D:153:VAL:HG22</td>
<td>2.43</td>
<td>0.48</td>
</tr>
<tr>
<td>1:A:31:ILE:HG12</td>
<td>4:D:175:VAL:HG22</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>3:C:299:SER:O</td>
<td>3:C:230:LYS:N</td>
<td>2.47</td>
<td>0.48</td>
</tr>
<tr>
<td>3:C:86:LEU:O</td>
<td>3:C:84:ARG:HB2</td>
<td>2.14</td>
<td>0.47</td>
</tr>
<tr>
<td>4:H:138:ALA:HA</td>
<td>4:H:141:TRP:CE2</td>
<td>2.48</td>
<td>0.47</td>
</tr>
<tr>
<td>4:H:8:ARG:HB3</td>
<td>4:H:9:TYR:HB2</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:14:PHE:CE1</td>
<td>1:A:150:HIS:HE1</td>
<td>2.32</td>
<td>0.47</td>
</tr>
<tr>
<td>2:B:147:GLY:HA2</td>
<td>2:B:174:LEU:HD11</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>4:H:175:VAL:O</td>
<td>4:H:179:ASN:ND2</td>
<td>2.47</td>
<td>0.47</td>
</tr>
<tr>
<td>2:B:28:PHE:HD1</td>
<td>2:B:29:ALA:N</td>
<td>2.11</td>
<td>0.47</td>
</tr>
<tr>
<td>3:C:192:GLN:HB2</td>
<td>3:C:198:VAL:HG21</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:26:ARG:HG2</td>
<td>1:E:68:ILE:CD1</td>
<td>2.40</td>
<td>0.47</td>
</tr>
<tr>
<td>2:B:165:ILE:HD11</td>
<td>2:B:195:LEU:HD12</td>
<td>1.95</td>
<td>0.47</td>
</tr>
<tr>
<td>2:B:26:LEU:HD13</td>
<td>2:B:216:LEU:CD2</td>
<td>2.45</td>
<td>0.47</td>
</tr>
<tr>
<td>2:B:26:LEU:HD11</td>
<td>2:B:28:PHE:HD2</td>
<td>1.79</td>
<td>0.47</td>
</tr>
<tr>
<td>3:C:208:VAL:HG13</td>
<td>3:C:229:PRO:HG3</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>4:D:48:SER:OG</td>
<td>4:D:114:ILE:HB</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>4:D:107:ILE:O</td>
<td>4:D:111:TYR:N</td>
<td>2.38</td>
<td>0.47</td>
</tr>
<tr>
<td>2:F:221:LEU:HD12</td>
<td>2:F:222:LEU:H</td>
<td>1.78</td>
<td>0.47</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:B:131:VAL:HG23</td>
<td>2:B:133:MET:HG2</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>2:B:202:HIS:HB2</td>
<td>2:B:206:GLU:CG</td>
<td>2.45</td>
<td>0.47</td>
</tr>
<tr>
<td>2:B:214:LEU:HB3</td>
<td>2:B:221:LEU:CD1</td>
<td>2.45</td>
<td>0.47</td>
</tr>
<tr>
<td>4:D:214:VAL:O</td>
<td>4:D:218:LEU:N</td>
<td>2.44</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:89:THR:OG1</td>
<td>1:E:90:VAL:N</td>
<td>2.47</td>
<td>0.47</td>
</tr>
<tr>
<td>2:B:54:ASN:HB2</td>
<td>2:B:83:ARG:HG3</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>3:C:97:GLN:HE21</td>
<td>4:D:180:ALA:HB1</td>
<td>1.80</td>
<td>0.47</td>
</tr>
<tr>
<td>3:G:81:LYS:HG3</td>
<td>3:G:114:PHE:CD1</td>
<td>2.50</td>
<td>0.47</td>
</tr>
<tr>
<td>2:B:23:LEU:HD22</td>
<td>2:B:26:LEU:HD22</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>3:C:117:SER:HB3</td>
<td>3:C:120:GLU:OE2</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>3:C:8:VAL:HG13</td>
<td>3:C:59:PRO:HB3</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:21:MET:O</td>
<td>1:E:24:VAL:HG12</td>
<td>2.13</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:30:ILE:HG21</td>
<td>1:E:40:THR:HG21</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>3:G:41:HIS:NE2</td>
<td>3:G:242:HIS:CD2</td>
<td>2.82</td>
<td>0.47</td>
</tr>
<tr>
<td>3:C:38:LEU:N</td>
<td>3:C:200:LEU:O</td>
<td>2.46</td>
<td>0.47</td>
</tr>
<tr>
<td>4:D:140:GLU:HA</td>
<td>4:D:143:LEU:HB3</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>4:D:144:THR:O</td>
<td>4:D:147:LYS:HG3</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:81:PHE:HB2</td>
<td>1:A:127:MET:CE</td>
<td>2.45</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:43:ILE:HG13</td>
<td>1:A:161:PHE:CE1</td>
<td>2.50</td>
<td>0.47</td>
</tr>
<tr>
<td>3:C:215:VAL:HG12</td>
<td>3:C:216:LEU:N</td>
<td>2.30</td>
<td>0.47</td>
</tr>
<tr>
<td>4:D:173:GLN:O</td>
<td>4:D:177:ILE:HG13</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>2:F:266:ASP:OD1</td>
<td>2:F:266:ASP:N</td>
<td>2.45</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:28:PHE:HD2</td>
<td>1:A:30:ILE:HG13</td>
<td>1.80</td>
<td>0.46</td>
</tr>
<tr>
<td>2:B:173:MET:HB3</td>
<td>3:C:93:PHE:CZ</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>2:B:74:LEU:HD12</td>
<td>2:B:79:VAL:HG23</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>3:C:18:LEU:HA</td>
<td>3:C:19:GLU:HA</td>
<td>1.27</td>
<td>0.46</td>
</tr>
<tr>
<td>3:C:99:PHE:CD2</td>
<td>4:D:201:VAL:HG12</td>
<td>2.50</td>
<td>0.46</td>
</tr>
<tr>
<td>3:G:38:LEU:HD12</td>
<td>3:G:216:LEU:HB2</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:9:LEU:HD23</td>
<td>1:A:9:LEU:HA</td>
<td>1.67</td>
<td>0.46</td>
</tr>
<tr>
<td>3:C:38:LEU:HB3</td>
<td>3:C:201:VAL:HA</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>3:G:19:GLU:OE1</td>
<td>3:G:20:ALA:N</td>
<td>2.40</td>
<td>0.46</td>
</tr>
<tr>
<td>4:H:6:ILE:HA</td>
<td>4:H:7:GLY:HA3</td>
<td>1.70</td>
<td>0.46</td>
</tr>
<tr>
<td>3:C:77:ASN:HA</td>
<td>3:C:80:LEU:HD11</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>3:G:95:GLU:HG2</td>
<td>3:G:152:ARG:HH21</td>
<td>1.80</td>
<td>0.46</td>
</tr>
<tr>
<td>4:H:185:GLY:HA3</td>
<td>4:H:186:ALA:HB2</td>
<td>1.98</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:A:18:LEU:O</td>
<td>1:A:21:MET:HG2</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>3:C:160:LEU:HD13</td>
<td>3:C:167:ILE:HD12</td>
<td>1.96</td>
<td>0.46</td>
</tr>
<tr>
<td>3:C:269:THR:O</td>
<td>3:C:273:LEU:N</td>
<td>2.48</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:79:GLN:NE2</td>
<td>4:D:68:GLY:O</td>
<td>2.30</td>
<td>0.46</td>
</tr>
<tr>
<td>4:D:97:TRP:HE3</td>
<td>4:D:97:TRP:HA</td>
<td>1.80</td>
<td>0.46</td>
</tr>
<tr>
<td>3:G:85:ARG:HE</td>
<td>3:G:86:LYS:HG3</td>
<td>1.80</td>
<td>0.46</td>
</tr>
<tr>
<td>4:H:133:LEU:HB3</td>
<td>4:H:164:LEU:HD21</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>2:B:171:THR:O</td>
<td>2:B:179:LYS:HD3</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>3:C:192:GLN:HG3</td>
<td>3:C:198:VAL:HB</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:14:LEU:O</td>
<td>1:E:18:LEU:HD13</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>2:F:25:ASP:O</td>
<td>2:F:26:LEU:HB2</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>3:G:210:ASP:OD1</td>
<td>3:G:210:ASP:N</td>
<td>2.48</td>
<td>0.46</td>
</tr>
<tr>
<td>2:B:196:THR:O</td>
<td>2:B:196:THR:OG1</td>
<td>2.28</td>
<td>0.46</td>
</tr>
<tr>
<td>2:B:26:LEU:HD13</td>
<td>2:B:216:LEU:HD21</td>
<td>1.96</td>
<td>0.46</td>
</tr>
<tr>
<td>4:D:163:ALA:O</td>
<td>4:D:167:VAL:HG23</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:29:LYS:HD3</td>
<td>4:D:174:THR:HG22</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:111:LEU:HD23</td>
<td>1:A:150:HIS:ND1</td>
<td>2.31</td>
<td>0.46</td>
</tr>
<tr>
<td>1:A:44:MET:HG2</td>
<td>1:A:45:LEU:HD23</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>2:B:200:ILE:HG22</td>
<td>2:B:201:THR:N</td>
<td>2.30</td>
<td>0.46</td>
</tr>
<tr>
<td>4:D:155:MET:O</td>
<td>4:D:159:VAL:HG23</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>3:G:227:ALA:CB</td>
<td>3:G:232:VAL:HB</td>
<td>2.46</td>
<td>0.46</td>
</tr>
<tr>
<td>4:H:137:ASP:HB3</td>
<td>4:H:141:TRP:CZ3</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:120:GLY:HA2</td>
<td>1:E:123:VAL:HG13</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:27:ILE:HG13</td>
<td>1:E:28:PHE:N</td>
<td>2.31</td>
<td>0.46</td>
</tr>
<tr>
<td>2:F:3:ASP:C</td>
<td>2:F:70:ASP:HB2</td>
<td>2.36</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:17:LEU:HG</td>
<td>4:H:211:SER:O</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>2:B:3:ASP:OD2</td>
<td>2:B:32:ARG:HG3</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>4:D:192:GLY:HA3</td>
<td>4:D:195:LYS:HB2</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>4:H:221:ALA:HA</td>
<td>4:H:224:SER:HB3</td>
<td>1.98</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Continued on next page...
Interatomic distances and clash overlaps

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:H:74:TRP:CG</td>
<td>4:H:75:MET:N</td>
<td>2.83</td>
<td>0.46</td>
</tr>
<tr>
<td>2:B:95:ASN:O</td>
<td>4:D:218:LEU:CD1</td>
<td>2.59</td>
<td>0.45</td>
</tr>
<tr>
<td>4:D:43:SER:O</td>
<td>4:D:47:ILE:HB</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:22:CY5:HA</td>
<td>1:E:25:LEU:HB3</td>
<td>1.96</td>
<td>0.45</td>
</tr>
<tr>
<td>4:D:119:ILE:HG2</td>
<td>4:D:122:VAL:HG12</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>4:D:139:MET:HE3</td>
<td>4:D:140:GLU:OE2</td>
<td>2.15</td>
<td>0.45</td>
</tr>
<tr>
<td>4:D:19:VAL:HG23</td>
<td>4:D:245:ASP:OD1</td>
<td>2.15</td>
<td>0.45</td>
</tr>
<tr>
<td>2:F:72:VAL:HG23</td>
<td>2:F:85:LYS:HD2</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>3:G:225:LYS:HD3</td>
<td>3:G:225:LYS:HA</td>
<td>1.63</td>
<td>0.45</td>
</tr>
<tr>
<td>4:H:94:TRP:HB2</td>
<td>4:H:95:HIS:CA</td>
<td>2.46</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:26:ARG:NH1</td>
<td>1:E:41:ASP:OD1</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>2:F:35:TRP:HB2</td>
<td>2:F:190:LYS:HZ2</td>
<td>1.81</td>
<td>0.45</td>
</tr>
<tr>
<td>2:F:48:THR:HA</td>
<td>2:F:51:LYS:HZ1</td>
<td>1.81</td>
<td>0.45</td>
</tr>
<tr>
<td>4:D:158:LEU:HD11</td>
<td>4:D:233:ARG:HH12</td>
<td>1.82</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:61:LEU:O</td>
<td>1:E:65:ILE:HG13</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>4:H:133:LEU:HA</td>
<td>4:H:136:ALA:HB3</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>4:H:86:PHE:CE1</td>
<td>4:H:96:TRP:HB3</td>
<td>2.52</td>
<td>0.45</td>
</tr>
<tr>
<td>3:C:278:LYS:HB3</td>
<td>3:C:278:LYS:HE2</td>
<td>1.81</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:118:GLU:HA</td>
<td>1:E:121:PHE:CD1</td>
<td>2.52</td>
<td>0.45</td>
</tr>
<tr>
<td>3:G:40:GLY:HA2</td>
<td>3:G:242:HIS:HE1</td>
<td>1.81</td>
<td>0.45</td>
</tr>
<tr>
<td>4:H:249:VAL:HG13</td>
<td>4:H:250:ALA:N</td>
<td>2.32</td>
<td>0.45</td>
</tr>
<tr>
<td>2:B:165:ILE:HB</td>
<td>2:B:197:VAL:HG13</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:117:LEU:HB3</td>
<td>1:E:121:PHE:HB3</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>3:G:117:SER:HB3</td>
<td>3:G:120:GLU:HB3</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>4:H:85:PHE:CB</td>
<td>4:H:99:PHE:HB2</td>
<td>2.45</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:39:VAL:HG23</td>
<td>1:A:149:TYR:CE2</td>
<td>2.52</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:G:35:PHE:HB3</td>
<td>3:G:212:ALA:HA</td>
<td>1.96</td>
<td>0.45</td>
</tr>
<tr>
<td>2:B:253:LEU:O</td>
<td>2:B:257:ARG:HB2</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>3:C:90:ALA:CB</td>
<td>3:C:169:LEU:HD23</td>
<td>2.47</td>
<td>0.45</td>
</tr>
<tr>
<td>4:H:20:ASP:OD1</td>
<td>4:H:22:ARG:HB2</td>
<td>2.16</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:43:ILE:HG23</td>
<td>1:A:165:LEU:HD11</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>2:B:39:ILE:HG23</td>
<td>2:B:201:THR:HG23</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>3:C:54:ASN:ND2</td>
<td>3:C:56:LEU:HD13</td>
<td>2.33</td>
<td>0.44</td>
</tr>
<tr>
<td>2:F:51:LYS:HB2</td>
<td>2:F:51:LYS:HE2</td>
<td>1.81</td>
<td>0.44</td>
</tr>
<tr>
<td>3:G:187:LEU:HB2</td>
<td>3:G:190:ASP:N</td>
<td>2.32</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:29:LYS:CD</td>
<td>4:D:174:THR:HG22</td>
<td>2.48</td>
<td>0.44</td>
</tr>
<tr>
<td>2:B:120:MET:O</td>
<td>2:B:124:VAL:HB</td>
<td>2.18</td>
<td>0.44</td>
</tr>
<tr>
<td>3:C:108:GLU:O</td>
<td>3:C:112:ARG:HG3</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>3:C:162:TYR:CE1</td>
<td>3:C:164:PRO:HG3</td>
<td>2.52</td>
<td>0.44</td>
</tr>
<tr>
<td>3:C:219:GLU:HB2</td>
<td>3:C:224:ILE:HG21</td>
<td>1.98</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:83:TYR:HD1</td>
<td>1:A:84:ALA:N</td>
<td>2.08</td>
<td>0.44</td>
</tr>
<tr>
<td>3:C:30:LEU:HD13</td>
<td>3:C:36:ILE:HD13</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>4:D:13:THR:HA</td>
<td>4:D:14:THR:HA</td>
<td>1.47</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:156:ALA:O</td>
<td>1:A:161:PHE:CD1</td>
<td>2.70</td>
<td>0.44</td>
</tr>
<tr>
<td>4:D:165:ARG:NH2</td>
<td>4:D:169:THR:HG1</td>
<td>2.16</td>
<td>0.44</td>
</tr>
<tr>
<td>4:D:234:THR:HG22</td>
<td>4:D:235:ARG:H</td>
<td>1.82</td>
<td>0.44</td>
</tr>
<tr>
<td>2:B:96:GLN:HB3</td>
<td>4:D:221:ALA:HB3</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>4:D:6:ILE:HA</td>
<td>4:D:7:GLY:HA3</td>
<td>1.61</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:108:GLN:CD</td>
<td>1:E:111:LEU:HB2</td>
<td>2.38</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:54:THR:HB</td>
<td>1:E:95:ARG:HB2</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>2:B:228:GLU:HB3</td>
<td>2:B:264:GLU:OE1</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>3:C:257:GLU:HG2</td>
<td>3:C:263:LEU:H</td>
<td>1.83</td>
<td>0.44</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:F:91:GLN:HB2</td>
<td>2:F:169:GLU:HB2</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>3:G:219:GLU:HG2</td>
<td>3:G:224:ILE:HG21</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>3:G:75:THR:HG22</td>
<td>3:G:76:GLY:H</td>
<td>1.83</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:74:ILE:HD11</td>
<td>1:A:80:ILE:HA</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>2:B:36:THR:O</td>
<td>2:B:199:SER:N</td>
<td>2.41</td>
<td>0.44</td>
</tr>
<tr>
<td>3:C:102:THR:HG22</td>
<td>3:C:104:LEU:N</td>
<td>2.32</td>
<td>0.44</td>
</tr>
<tr>
<td>3:C:236:SER:HA</td>
<td>3:C:239:LEU:HD23</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>3:C:7:ASN:O</td>
<td>3:C:62:GLY:HA3</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>3:C:97:GLN:HB2</td>
<td>4:D:184:ARG:HH11</td>
<td>1.81</td>
<td>0.44</td>
</tr>
<tr>
<td>2:F:8:PHE:N</td>
<td>2:F:27:SER:H</td>
<td>2.15</td>
<td>0.44</td>
</tr>
<tr>
<td>3:C:156:LEU:HA</td>
<td>3:C:159:VAL:HG22</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>2:F:275:LEU:O</td>
<td>2:F:279:ASN:HB3</td>
<td>2.17</td>
<td>0.44</td>
</tr>
<tr>
<td>3:C:153:ARG:HG2</td>
<td>3:C:184:MET:HE3</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>4:D:94:TRP:HA</td>
<td>4:D:95:HIS:HA</td>
<td>1.44</td>
<td>0.44</td>
</tr>
<tr>
<td>3:G:114:PHE:HE2</td>
<td>3:G:162:TYR:HE1</td>
<td>1.66</td>
<td>0.44</td>
</tr>
<tr>
<td>2:B:106:VAL:HG21</td>
<td>2:B:128:VAL:CG1</td>
<td>2.44</td>
<td>0.43</td>
</tr>
<tr>
<td>2:B:231:PHE:CD1</td>
<td>2:B:244:ILE:HG22</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>2:F:35:TRP:HE3</td>
<td>2:F:190:LYS:HD2</td>
<td>1.82</td>
<td>0.43</td>
</tr>
<tr>
<td>3:C:253:ALA:HA</td>
<td>3:C:263:LEU:HD22</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>4:D:65:PHE:O</td>
<td>4:D:69:VAL:HG13</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:72:PHE:CG</td>
<td>1:E:72:PHE:O</td>
<td>2.71</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:74:ILE:H</td>
<td>1:A:74:ILE:CD1</td>
<td>2.09</td>
<td>0.43</td>
</tr>
<tr>
<td>2:B:147:GLY:O</td>
<td>2:B:182:ILE:HD11</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>3:C:3:ILE:HB</td>
<td>3:C:30:LEU:HD12</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>3:C:41:HIS:O</td>
<td>3:C:46:LYS:NZ</td>
<td>2.37</td>
<td>0.43</td>
</tr>
<tr>
<td>4:D:66:TRP:CD1</td>
<td>4:D:70:LYS:HB2</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>3:C:75:THR:HG22</td>
<td>3:C:76:GLY:H</td>
<td>1.83</td>
<td>0.43</td>
</tr>
<tr>
<td>2:F:10:HIS:O</td>
<td>2:F:60:ASP:N</td>
<td>2.50</td>
<td>0.43</td>
</tr>
<tr>
<td>3:G:250:ALA:HB2</td>
<td>3:G:268:LEU:HA</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>4:H:207:LEU:HD13</td>
<td>4:H:207:LEU:O</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>4:H:22:ARG:NH1</td>
<td>4:H:241:TRP:CD1</td>
<td>2.86</td>
<td>0.43</td>
</tr>
<tr>
<td>4:D:55:VAL:HG11</td>
<td>4:D:121:LEU:HB3</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>2:F:51:LYS:O</td>
<td>2:F:56:LEU:N</td>
<td>2.52</td>
<td>0.43</td>
</tr>
<tr>
<td>2:B:213:VAL:HG12</td>
<td>2:B:230:ILE:HG21</td>
<td>2.01</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:49:GLU:O</td>
<td>1:E:50:LEU:HG</td>
<td>2.17</td>
<td>0.43</td>
</tr>
<tr>
<td>2:F:4:ASN:N</td>
<td>2:F:4:ASN:OD1</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>2:B:100:ALA:HA</td>
<td>2:B:141:PRO:HD3</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>2:B:3:ASP:CG</td>
<td>2:B:32:ARG:HG3</td>
<td>2.38</td>
<td>0.43</td>
</tr>
<tr>
<td>4:D:216:LEU:O</td>
<td>4:D:220:THR:HG23</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>2:F:217:ASP:HA</td>
<td>2:F:218:ASP:HA</td>
<td>1.70</td>
<td>0.43</td>
</tr>
<tr>
<td>4:H:147:LYS:HB3</td>
<td>4:H:151:VAL:HG13</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>2:B:97:PH:CE</td>
<td>2:B:141:PRO:HB3</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>3:C:38:LEU:HD12</td>
<td>3:C:38:LEU:HA</td>
<td>1.68</td>
<td>0.43</td>
</tr>
<tr>
<td>4:D:123:SER:O</td>
<td>4:D:126:MET:HB3</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>2:F:110:LEU:CB</td>
<td>2:F:120:MET:HG2</td>
<td>2.49</td>
<td>0.43</td>
</tr>
<tr>
<td>3:G:116:PH:HB3</td>
<td>3:G:121:ALA:HB2</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>3:G:8:VAL:HG23</td>
<td>3:G:26:LEU:HB2</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>4:H:181:GLN:OE1</td>
<td>4:H:202:PRO:HB2</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>4:H:68:GLY:O</td>
<td>4:H:71:PRO:HD3</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>2:B:275:LEU:HD22</td>
<td>3:C:277:ILE:HG21</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>3:C:224:ILE:HG13</td>
<td>3:C:225:LYS:N</td>
<td>2.34</td>
<td>0.43</td>
</tr>
<tr>
<td>2:F:38:LEU:HD23</td>
<td>2:F:216:LEU:HD11</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>4:H:78:PH:HE1</td>
<td>4:H:113:PH:HB2</td>
<td>1.84</td>
<td>0.43</td>
</tr>
<tr>
<td>4:H:93:TYR:HE1</td>
<td>4:H:94:TRP:CE2</td>
<td>2.36</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:81:PH:HB2</td>
<td>1:A:127:MET:HE3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:145:THR:O</td>
<td>1:A:149:TYR:HD1</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>3:C:155:ALA:O</td>
<td>3:C:159:VAL:HG13</td>
<td>2.18</td>
<td>0.42</td>
</tr>
<tr>
<td>3:C:248:ARG:HA</td>
<td>3:C:251:ARG:HB2</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>4:D:220:THR:O</td>
<td>4:D:224:SER:HB3</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>2:F:56:LEU:CD1</td>
<td>4:H:223:GLU:HB3</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>4:H:264:LYS:HB2</td>
<td>4:H:264:LYS:HE3</td>
<td>1.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:43:ILE:C</td>
<td>1:A:45:LEU:H</td>
<td>2.23</td>
<td>0.42</td>
</tr>
<tr>
<td>2:B:131:VAL:HG23</td>
<td>2:B:133:MET:CG</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>4:D:10:LEU:HG</td>
<td>4:D:12:GLY:N</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:45:LEU:HA</td>
<td>1:A:48:LEU:HG</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>3:C:220:HIS:CB</td>
<td>3:C:222:ARG:HH21</td>
<td>2.26</td>
<td>0.42</td>
</tr>
<tr>
<td>3:C:257:GLU:HG2</td>
<td>3:C:262:LYS:HA</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>3:C:171:GLU:O</td>
<td>3:C:174:ALA:HB2</td>
<td>2.19</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:H:226:GLY:O</td>
<td>4:H:228:LYS:HG3</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:23:VAL:O</td>
<td>1:E:27:LYS:HG12</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>3:C:112:ARG:O</td>
<td>3:C:113:ASN:HB2</td>
<td>2.18</td>
<td>0.42</td>
</tr>
<tr>
<td>3:C:278:LYS:O</td>
<td>3:C:282:LYS:HG3</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>4:D:248:PRO:HA</td>
<td>4:D:251:TYR:CB</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:127:MET:O</td>
<td>1:E:130:TRP:NE1</td>
<td>2.53</td>
<td>0.42</td>
</tr>
<tr>
<td>3:G:11:VAL:HG12</td>
<td>3:G:12:TYR:H</td>
<td>1.84</td>
<td>0.42</td>
</tr>
<tr>
<td>3:G:38:LEU:CD1</td>
<td>3:G:216:LEU:HB2</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:48:LEU:HD12</td>
<td>1:A:57:LEU:HD12</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>2:B:16:PRO:HA</td>
<td>2:B:19:PRO:CG</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>3:C:248:ARG:HB2</td>
<td>3:C:248:ARG:HE</td>
<td>1.49</td>
<td>0.42</td>
</tr>
<tr>
<td>2:F:10:HIS:ND1</td>
<td>2:F:60:ASP:HB2</td>
<td>2.35</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:144:LEU:HD13</td>
<td>1:E:145:THR:HG23</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>3:C:90:ALA:HB3</td>
<td>3:C:169:LEU:HA</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>4:D:175:VAL:O</td>
<td>4:D:178:MET:N</td>
<td>2.43</td>
<td>0.42</td>
</tr>
<tr>
<td>4:D:201:VAL:O</td>
<td>4:D:205:VAL:HG23</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>3:G:130:LYS:HE2</td>
<td>3:G:135:LYS:NZ</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>3:G:130:LYS:HE2</td>
<td>3:G:135:LYS:HE3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>2:F:41:HIS:CE1</td>
<td>3:G:179:MET:HE2</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>4:H:42:VAL:HG23</td>
<td>4:H:43:SER:H</td>
<td>1.84</td>
<td>0.42</td>
</tr>
<tr>
<td>4:D:165:ARG:NH2</td>
<td>4:D:169:THR:OG1</td>
<td>2.48</td>
<td>0.42</td>
</tr>
<tr>
<td>4:D:247:ILE:O</td>
<td>4:D:251:TYR:HB2</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>4:D:85:PHE:C</td>
<td>4:D:87:MET:H</td>
<td>2.23</td>
<td>0.42</td>
</tr>
<tr>
<td>2:F:265:ILE:CG1</td>
<td>2:F:270:LYS:HD2</td>
<td>2.47</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:127:MET:HB3</td>
<td>4:H:116:PHE:CE2</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:160:ILE:O</td>
<td>1:A:165:LEU:HB2</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>4:D:235:ARG:HG2</td>
<td>4:D:236:TYR:N</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>2:F:61:ASP:OD2</td>
<td>2:F:64:LYS:HB3</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:112:ALA:HA</td>
<td>1:A:115:LEU:HB3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:32:ASP:OD2</td>
<td>4:D:182:ARG:NH2</td>
<td>2.45</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:50:LEU:CD1</td>
<td>1:A:166:VAL:HG21</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>3:C:157:ALA:O</td>
<td>3:C:161:ALA:N</td>
<td>2.53</td>
<td>0.42</td>
</tr>
<tr>
<td>3:C:251:ARG:O</td>
<td>3:C:255:LYS:HG2</td>
<td>2.20</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:E:26:ARG:CG</td>
<td>1:E:68:ILE:HD11</td>
<td>2.41</td>
<td>0.42</td>
</tr>
<tr>
<td>3:G:64:ILE:HB</td>
<td>3:G:71:ILE:CG1</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:19:THR:HA</td>
<td>1:A:22:CYS:SG</td>
<td>2.60</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:24:VAL:O</td>
<td>1:A:24:VAL:HG13</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:7:Tyr:HD2</td>
<td>1:A:8:GLN:HG3</td>
<td>1.85</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:74:LEU:HA</td>
<td>2:B:75:GLY:HA2</td>
<td>1.72</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:107:VAL:HG21</td>
<td>3:C:129:LEU:HD21</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:27:ASN:HD22</td>
<td>3:C:27:ASN:N</td>
<td>2.18</td>
<td>0.41</td>
</tr>
<tr>
<td>4:D:52:LEU:HB2</td>
<td>4:D:118:MET:HE1</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:70:LEU:N</td>
<td>1:E:71:GLY:CA</td>
<td>2.81</td>
<td>0.41</td>
</tr>
<tr>
<td>2:F:30:ILE:HG23</td>
<td>2:F:36:THR:OG1</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>4:H:89:GLY:HA2</td>
<td>4:H:92:VAL:HB</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:235:GLU:O</td>
<td>2:B:238:LYS:N</td>
<td>2.52</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:16:SER:HA</td>
<td>3:C:18:LEU:H</td>
<td>1.85</td>
<td>0.41</td>
</tr>
<tr>
<td>4:D:143:LEU:HD22</td>
<td>4:D:146:LEU:HD22</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>2:F:221:LEU:HD21</td>
<td>2:F:224:GLN:HB2</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:106:VAL:HG12</td>
<td>2:B:159:ALA:HB2</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:177:GLU:HG2</td>
<td>2:B:177:GLU:O</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:222:LEU:HD22</td>
<td>2:B:233:LYS:HE2</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:152:ARG:O</td>
<td>3:C:156:LEU:HB2</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:46:LYS:HE2</td>
<td>3:C:203:HIS:CE1</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>4:D:120:ILE:O</td>
<td>4:D:124:THR:OG1</td>
<td>2.32</td>
<td>0.41</td>
</tr>
<tr>
<td>4:D:252:CY:O</td>
<td>4:D:256:THR:HG23</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>3:G:54:ASN:OD1</td>
<td>3:G:54:ASN:N</td>
<td>2.52</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:255:LYS:HG2</td>
<td>2:B:260:VAL:HG13</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:109:TYR:CD2</td>
<td>4:D:184:ARG:HB3</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>4:D:185:GLY:HA3</td>
<td>4:D:186:ALA:HA</td>
<td>1.85</td>
<td>0.41</td>
</tr>
<tr>
<td>2:F:275:LEU:HD23</td>
<td>2:F:278:LEU:HB2</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:161:PHE:O</td>
<td>1:A:166:VAL:HG23</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:81:GLU:HA</td>
<td>2:B:84:GLU:HG3</td>
<td>2.01</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4:D:9:TYR:CE2</td>
<td>4:D:60:LEU:HD13</td>
<td>2.56</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:144:LEU:O</td>
<td>1:E:144:LEU:HD12</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>4:H:17:TYR:O</td>
<td>4:H:19:VAL:HB</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:115:LEU:HD12</td>
<td>1:A:150:HIS:CD2</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:43:ILE:O</td>
<td>1:A:45:LEU:N</td>
<td>2.53</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:65:ILE:HG21</td>
<td>1:A:83:TYR:HA</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:67:ALA:CB</td>
<td>3:C:166:ILE:HD11</td>
<td>2.51</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:29:LYS:HE3</td>
<td>4:D:203:MET:HG2</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>4:D:76:ILE:HD12</td>
<td>4:D:77:VAL:N</td>
<td>2.25</td>
<td>0.41</td>
</tr>
<tr>
<td>3:G:147:SER:O</td>
<td>3:G:151:MET:HG2</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>4:H:65:PHE:CE1</td>
<td>4:H:68:GLY:HA3</td>
<td>2.54</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:111:LEU:HA</td>
<td>1:A:114:PHE:HB3</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:8:PHE:CD1</td>
<td>2:B:65:SER:HB3</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:9:SER:O</td>
<td>3:C:60:THR:OG1</td>
<td>2.33</td>
<td>0.41</td>
</tr>
<tr>
<td>4:D:86:PHE:O</td>
<td>4:D:87:MET:HG3</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:41:ASP:C</td>
<td>1:E:43:ILE:H</td>
<td>2.24</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:69:TYR:HD2</td>
<td>3:C:74:GLU:OE2</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:157:ILE:CG2</td>
<td>2:B:162:PRO:HG3</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:228:GLU:O</td>
<td>2:B:232:PRO:HG2</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:54:ASN:CB</td>
<td>3:C:87:VAL:HB</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>4:D:170:LEU:HA</td>
<td>4:D:170:LEU:HD13</td>
<td>1.88</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:227:ALA:HB1</td>
<td>3:C:231:GLU:HB3</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:227:ALA:HB3</td>
<td>3:C:232:VAL:HB</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>2:F:56:LEU:HD13</td>
<td>4:H:223:GLU:HB3</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:29:LYS:CE</td>
<td>4:D:203:MET:HE3</td>
<td>2.51</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:112:ARG:C</td>
<td>3:C:114:PHE:H</td>
<td>2.23</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:257:GLU:HA</td>
<td>3:C:262:LYS:H</td>
<td>1.84</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:139:TYR:O</td>
<td>1:A:140:TRP:HD1</td>
<td>2.04</td>
<td>0.41</td>
</tr>
<tr>
<td>2:B:69:VAL:CG1</td>
<td>2:B:85:LYS:HZ2</td>
<td>2.34</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:190:ASP:OD1</td>
<td>3:C:190:ASP:N</td>
<td>2.53</td>
<td>0.41</td>
</tr>
<tr>
<td>4:D:33:ILE:HG22</td>
<td>4:D:33:ILE:O</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:21:MET:HB2</td>
<td>4:H:170:LEU:HD23</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>2:F:35:TRP:CZ3</td>
<td>2:F:187:ARG:HG3</td>
<td>2.56</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:69:PHE:CE1</td>
<td>1:A:74:ILE:HG13</td>
<td>2.56</td>
<td>0.41</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3:C:269:THR:HG22</td>
<td>3:C:271:PRO:HD2</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>3:C:54:ASN:HB3</td>
<td>3:C:87:VAL:HB</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:49:GLU:HG2</td>
<td>1:E:49:GLU:O</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>4:H:78:PHE:CE1</td>
<td>4:H:113:PHE:CD1</td>
<td>3.08</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:77:LEU:HB3</td>
<td>1:A:78:PRO:CD</td>
<td>2.48</td>
<td>0.40</td>
</tr>
<tr>
<td>3:C:166:ILE:HG23</td>
<td>3:C:197:THR:HB</td>
<td>2.02</td>
<td>0.40</td>
</tr>
<tr>
<td>3:C:249:SER:O</td>
<td>3:C:273:LEU:HD22</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>4:D:203:MET:HE2</td>
<td>4:D:203:MET:HB2</td>
<td>1.94</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:117:LEU:HA</td>
<td>1:A:121:PHE:CD1</td>
<td>2.56</td>
<td>0.40</td>
</tr>
<tr>
<td>3:C:35:PHE:CE2</td>
<td>3:C:198:VAL:HG11</td>
<td>2.56</td>
<td>0.40</td>
</tr>
<tr>
<td>3:G:64:ILE:HB</td>
<td>3:G:71:ILE:HG12</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:160:ILE:HG23</td>
<td>1:A:165:LEU:HD13</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>1:E:114:PHE:CD2</td>
<td>1:E:119:TYR:HB2</td>
<td>2.56</td>
<td>0.40</td>
</tr>
<tr>
<td>3:G:135:LYS:O</td>
<td>3:G:137:ASP:N</td>
<td>2.54</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:169:ASP:HA</td>
<td>4:D:212:LEU:CD2</td>
<td>2.45</td>
<td>0.40</td>
</tr>
<tr>
<td>2:B:34:SER:OG</td>
<td>2:B:35:TRP:N</td>
<td>2.54</td>
<td>0.40</td>
</tr>
<tr>
<td>3:C:93:PHE:HA</td>
<td>3:C:152:ARG:NH1</td>
<td>2.37</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:11:ARG:HH12</td>
<td>1:A:174:LYS:H</td>
<td>1.69</td>
<td>0.40</td>
</tr>
<tr>
<td>1:A:80:ILE:O</td>
<td>1:A:81:PHE:CG</td>
<td>2.75</td>
<td>0.40</td>
</tr>
<tr>
<td>2:B:217:ASP:HA</td>
<td>2:B:218:ASP:HA</td>
<td>1.95</td>
<td>0.40</td>
</tr>
<tr>
<td>2:B:54:ASN:HB3</td>
<td>2:B:86:VAL:HG11</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>3:G:86:LYS:HB3</td>
<td>3:G:165:GLU:HG3</td>
<td>2.04</td>
<td>0.40</td>
</tr>
<tr>
<td>4:H:11:PRO:HD3</td>
<td>4:H:131:LYS:N</td>
<td>2.36</td>
<td>0.40</td>
</tr>
</tbody>
</table>

All (2) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:B:122:LYS:NZ</td>
<td>2:F:160:VAL:O[1_564]</td>
<td>2.15</td>
<td>0.05</td>
</tr>
</tbody>
</table>
5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>155/182 (85%)</td>
<td>107 (69%)</td>
<td>46 (30%)</td>
<td>2 (1%)</td>
<td>13</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>126/182 (69%)</td>
<td>96 (76%)</td>
<td>28 (22%)</td>
<td>2 (2%)</td>
<td>11</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>278/300 (93%)</td>
<td>215 (77%)</td>
<td>60 (22%)</td>
<td>3 (1%)</td>
<td>16</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>278/300 (93%)</td>
<td>206 (74%)</td>
<td>71 (26%)</td>
<td>1 (0%)</td>
<td>36</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>280/287 (98%)</td>
<td>212 (76%)</td>
<td>65 (23%)</td>
<td>3 (1%)</td>
<td>16</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>280/287 (98%)</td>
<td>203 (72%)</td>
<td>75 (27%)</td>
<td>2 (1%)</td>
<td>24</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>257/265 (97%)</td>
<td>179 (70%)</td>
<td>75 (29%)</td>
<td>3 (1%)</td>
<td>14</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>257/265 (97%)</td>
<td>164 (64%)</td>
<td>89 (35%)</td>
<td>4 (2%)</td>
<td>11</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1911/2068 (92%)</td>
<td>1382 (72%)</td>
<td>509 (27%)</td>
<td>20 (1%)</td>
<td>17</td>
</tr>
</tbody>
</table>

All (20) Ramachandran outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>H</td>
<td>94</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>38</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>39</td>
<td>VAL</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>279</td>
<td>GLN</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>26</td>
<td>LEU</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>8</td>
<td>PHE</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>220</td>
<td>HIS</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>89</td>
<td>GLY</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>252</td>
<td>GLN</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>71</td>
<td>PRO</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>7</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>104</td>
<td>LEU</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>79</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>137</td>
<td>ILE</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>139</td>
<td>ILE</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>49</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>43</td>
<td>ILE</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>162</td>
<td>PRO</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>145</td>
<td>PRO</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>151</td>
<td>VAL</td>
</tr>
</tbody>
</table>

5.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>125/146 (86%)</td>
<td>118 (94%)</td>
<td>7 (6%)</td>
<td>23 59</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>98/146 (67%)</td>
<td>85 (87%)</td>
<td>13 (13%)</td>
<td>4 21</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>240/259 (93%)</td>
<td>223 (93%)</td>
<td>17 (7%)</td>
<td>16 50</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>240/259 (93%)</td>
<td>233 (97%)</td>
<td>7 (3%)</td>
<td>45 76</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>231/234 (99%)</td>
<td>225 (97%)</td>
<td>6 (3%)</td>
<td>49 78</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>231/234 (99%)</td>
<td>215 (93%)</td>
<td>16 (7%)</td>
<td>17 52</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>227/233 (97%)</td>
<td>217 (96%)</td>
<td>10 (4%)</td>
<td>31 66</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>227/233 (97%)</td>
<td>210 (92%)</td>
<td>17 (8%)</td>
<td>15 47</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1619/1744 (93%)</td>
<td>1526 (94%)</td>
<td>93 (6%)</td>
<td>23 58</td>
</tr>
</tbody>
</table>

All (93) residues with a non-rotameric sidechain are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>22</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>44</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>69</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>70</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>83</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>107</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>170</td>
<td>ARG</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>2</td>
<td>SER</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>8</td>
<td>PHE</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>9</td>
<td>ASP</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>26</td>
<td>LEU</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>28</td>
<td>PHE</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>B</td>
<td>32</td>
<td>ARG</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>41</td>
<td>HIS</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>46</td>
<td>LYS</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>60</td>
<td>ASP</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>97</td>
<td>PHE</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>108</td>
<td>PHE</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>112</td>
<td>ASN</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>191</td>
<td>GLU</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>203</td>
<td>ASP</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>246</td>
<td>PHE</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>257</td>
<td>ARG</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>261</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>18</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>34</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>51</td>
<td>GLN</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>106</td>
<td>ASP</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>190</td>
<td>ASP</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>222</td>
<td>ARG</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>17</td>
<td>TYR</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>54</td>
<td>TYR</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>56</td>
<td>PHE</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>74</td>
<td>TRP</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>96</td>
<td>TRP</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>101</td>
<td>LEU</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>150</td>
<td>LYS</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>208</td>
<td>PHE</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>213</td>
<td>GLU</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>237</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>11</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>26</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>35</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>37</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>48</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>49</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>107</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>110</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>122</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>136</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>148</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>149</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>157</td>
<td>PHE</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>77</td>
<td>ASP</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>F</td>
<td>150</td>
<td>GLN</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>163</td>
<td>GLN</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>170</td>
<td>SER</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>217</td>
<td>ASP</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>263</td>
<td>ASP</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>279</td>
<td>ASN</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>10</td>
<td>TYR</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>18</td>
<td>LEU</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>63</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>85</td>
<td>ARG</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>88</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>93</td>
<td>PHE</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>122</td>
<td>ARG</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>131</td>
<td>LYS</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>142</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>144</td>
<td>PHE</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>162</td>
<td>TYR</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>168</td>
<td>CYS</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>177</td>
<td>ASP</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>179</td>
<td>MET</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>228</td>
<td>SER</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>262</td>
<td>LYS</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>8</td>
<td>ARG</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>17</td>
<td>TYR</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>18</td>
<td>ARG</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>30</td>
<td>TYR</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>44</td>
<td>TYR</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>52</td>
<td>LEU</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>61</td>
<td>LYS</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>65</td>
<td>PHE</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>78</td>
<td>PHE</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>93</td>
<td>TYR</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>110</td>
<td>LEU</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>133</td>
<td>LEU</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>182</td>
<td>ARG</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>196</td>
<td>ARG</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>204</td>
<td>LEU</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>213</td>
<td>GLU</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>233</td>
<td>ARG</td>
</tr>
</tbody>
</table>

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (10) such sidechains are listed above:
There are no RNA molecules in this entry.

There are no non-standard protein/DNA/RNA residues in this entry.

There are no carbohydrates in this entry.

There are no ligands in this entry.

There are no such residues in this entry.

There are no chain breaks in this entry.
6 Fit of model and data

6.1 Protein, DNA and RNA chains

In the following table, the column labelled ‘#RSRZ> 2’ contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled ‘Q< 0.9’ lists the number of (and percentage) of residues with an average occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th><RSRZ></th>
<th>#RSRZ>2</th>
<th>OWAB(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>159/182 (87%)</td>
<td>-0.57</td>
<td>1 (0%)</td>
<td>89</td>
<td>88</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>132/182 (72%)</td>
<td>-0.47</td>
<td>1 (0%)</td>
<td>86</td>
<td>84</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>280/300 (93%)</td>
<td>-0.62</td>
<td>1 (0%)</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>280/300 (93%)</td>
<td>-0.34</td>
<td>10 (3%)</td>
<td>42</td>
<td>41</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>282/287 (98%)</td>
<td>-0.63</td>
<td>1 (0%)</td>
<td>92</td>
<td>92</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>282/287 (98%)</td>
<td>-0.38</td>
<td>4 (1%)</td>
<td>75</td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>259/265 (97%)</td>
<td>-0.59</td>
<td>3 (1%)</td>
<td>79</td>
<td>76</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>259/265 (97%)</td>
<td>-0.16</td>
<td>19 (7%)</td>
<td>15</td>
<td>16</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1933/2068 (93%)</td>
<td>-0.46</td>
<td>40 (2%)</td>
<td>63</td>
<td>62</td>
</tr>
</tbody>
</table>

All (40) RSRZ outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>G</td>
<td>2</td>
<td>ALA</td>
<td>5.1</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>52</td>
<td>LEU</td>
<td>5.0</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>13</td>
<td>SER</td>
<td>4.8</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>131</td>
<td>GLY</td>
<td>4.7</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>142</td>
<td>SER</td>
<td>4.1</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>64</td>
<td>VAL</td>
<td>4.0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>168</td>
<td>ASP</td>
<td>3.7</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>53</td>
<td>ALA</td>
<td>3.7</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>9</td>
<td>TYR</td>
<td>3.6</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>201</td>
<td>THR</td>
<td>3.6</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>160</td>
<td>ILE</td>
<td>3.6</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>15</td>
<td>GLY</td>
<td>3.5</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>54</td>
<td>TYR</td>
<td>3.5</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>194</td>
<td>ALA</td>
<td>3.2</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>8</td>
<td>PHE</td>
<td>3.2</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>62</td>
<td>LEU</td>
<td>3.1</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>H</td>
<td>55</td>
<td>VAL</td>
<td>3.1</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>144</td>
<td>THR</td>
<td>2.9</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>230</td>
<td>SER</td>
<td>2.8</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>10</td>
<td>LEU</td>
<td>2.8</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>15</td>
<td>PHE</td>
<td>2.8</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>262</td>
<td>PRO</td>
<td>2.8</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>14</td>
<td>THR</td>
<td>2.8</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>12</td>
<td>GLY</td>
<td>2.7</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>240</td>
<td>GLU</td>
<td>2.7</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>154</td>
<td>GLY</td>
<td>2.6</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>82</td>
<td>LEU</td>
<td>2.4</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>50</td>
<td>PHE</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>14</td>
<td>THR</td>
<td>2.3</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>243</td>
<td>LYS</td>
<td>2.3</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>249</td>
<td>VAL</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>63</td>
<td>ASP</td>
<td>2.3</td>
</tr>
<tr>
<td>4</td>
<td>D</td>
<td>242</td>
<td>ASP</td>
<td>2.3</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>16</td>
<td>PRO</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>263</td>
<td>ASP</td>
<td>2.1</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>245</td>
<td>ASP</td>
<td>2.1</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>91</td>
<td>GLN</td>
<td>2.0</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>153</td>
<td>VAL</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>17</td>
<td>ASP</td>
<td>2.0</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>262</td>
<td>THR</td>
<td>2.0</td>
</tr>
</tbody>
</table>

6.2 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates

There are no carbohydrates in this entry.

6.4 Ligands

There are no ligands in this entry.

6.5 Other polymers

There are no such residues in this entry.