

# wwPDB X-ray Structure Validation Summary Report (i)

May 14, 2020 – 10:31 am BST

PDB ID : 6G65

Title: Crystal structure of a parallel six-helix coiled coil CC-Type2-VV

Authors: Rhys, G.G.; Brady, R.L.; Woolfson, D.N.

Deposited on : 2018-04-01

Resolution : 1.15 Å(reported)

This is a wwPDB X-ray Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org

A user guide is available at

https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity : 4.02b-467

Mogul : 1.8.5 (274361), CSD as541be (2020)

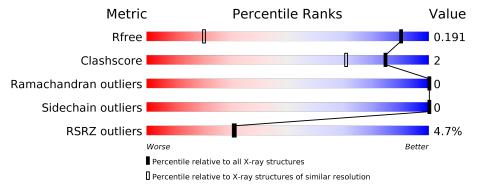
Xtriage (Phenix) : 1.13 EDS : 2.11

Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

Refmac: 5.8.0158

CCP4 : 7.0.044 (Gargrove) roteins) : Engh & Huber (2001)

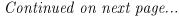
Ideal geometry (proteins) : Engh & Huber (2001)
Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.11

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X-RAY DIFFRACTION

The reported resolution of this entry is 1.15 Å.


Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric                | $\begin{array}{c} \textbf{Whole archive} \\ (\#\text{Entries}) \end{array}$ | $egin{aligned} 	ext{Similar resolution} \ (\#	ext{Entries}, 	ext{resolution range}(	ext{Å})) \end{aligned}$ |
|-----------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|
| $R_{free}$            | 130704                                                                      | 1492 (1.18-1.10)                                                                                            |
| Clashscore            | 141614                                                                      | 1537 (1.18-1.10)                                                                                            |
| Ramachandran outliers | 138981                                                                      | 1483 (1.18-1.10)                                                                                            |
| Sidechain outliers    | 138945                                                                      | 1480 (1.18-1.10)                                                                                            |
| RSRZ outliers         | 127900                                                                      | 1464 (1.18-1.10)                                                                                            |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

| Mol | Chain | Length | Quality of chain |     |  |  |
|-----|-------|--------|------------------|-----|--|--|
| 1   | A     | 32     | 100%             |     |  |  |
| 1   | В     | 32     | 6%<br>88%        | 13% |  |  |
| 1   | С     | 32     | 6%<br>97%        | •   |  |  |
| 1   | D     | 32     | 94%              | 6%  |  |  |
| 1   | Е     | 32     | 94%              | 6%  |  |  |
| 1   | F     | 32     | 100%             |     |  |  |





Continued from previous page...

| Mol | Chain | Length | Quality of chain |    |  |  |
|-----|-------|--------|------------------|----|--|--|
| -1  | C     | 20     | 3%               |    |  |  |
| 1   | G     | 32     | 100%             |    |  |  |
| 1   | H     | 20     | 6%               |    |  |  |
| 1   | П     | 32     | 94%              | 6% |  |  |
| 4   | т     | 9.0    | 6%               |    |  |  |
| 1   | I     | 32     | 97%              | •  |  |  |
|     | Т     | 2.2    | 3%               |    |  |  |
| 1   | J     | 32     | 94%              | 6% |  |  |
|     |       |        | 3%               |    |  |  |
| 1   | K     | 32     | 97%              | •  |  |  |
| _   | _     | 9.0    | 3%               |    |  |  |
| 1   | L     | 32     | 100%             |    |  |  |



# 2 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 3193 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called CC-Type2-VV.

| Mol | Chain | Residues | A     | tom | ıs  |       | ZeroOcc  | AltConf | Trace |
|-----|-------|----------|-------|-----|-----|-------|----------|---------|-------|
| 1   | A     | 32       | Total | С   | N   | О     | 9        | 2       | 1     |
| 1   | A     | 32       | 233   | 151 | 41  | 41    | 9        | 2       | 1     |
| 1   | В     | 32       | Total | С   | N   | О     | 8        | 3       | 1     |
| 1   | Б     | ] 3∠     | 244   | 159 | 41  | 44    | 0        | J       | 1     |
| 1   | С     | 32       | Total | С   | N   | О     | 7        | 1       | 1     |
| 1   |       | 32       | 227   | 146 | 40  | 41    | 1        | 1       | 1     |
| 1   | D     | 32       | Total | С   | N   | О     | 1        | 4       | 1     |
| 1   | D     | 32       | 248   | 162 | 42  | 44    | 1        | 4       | 1     |
| 1   | Е     | 32       | Total | С   | N   | О     | 4        | 2       | 1     |
| 1   | ш     | 32       | 233   | 150 | 40  | 43    | <b>±</b> |         | 1     |
| 1   | F     | 32       | Total | С   | Ν   | Ο     | 0        | 2       | 1     |
| 1   | T     | 1        | 32    | 238 | 156 | 41 41 | U        | Q.      | 1     |
| 1   | G     | 32       | Total | С   | N   | Ο     | 7        | 1       | 1     |
| 1   | G     | 32       | 227   | 145 | 39  | 43    | 1        | 1       | 1     |
| 1   | Н     | 32       | Total | С   | Ν   | Ο     | 17       | 1       | 1     |
| 1   | 11    | 32       | 227   | 146 | 40  | 41    | 11       | 1.      | 1     |
| 1   | I     | 32       | Total | С   | Ν   | Ο     | 11       | 3       | 1     |
| 1   | Ţ     | 32       | 239   | 154 | 41  | 44    | 11       | 5       | 1     |
| 1   | J     | 32       | Total | С   | Ν   | Ο     | 4        | 3       | 1     |
| 1   | J     | 32       | 239   | 154 | 40  | 45    | 4        | 5       | 1     |
| 1   | K     | 32       | Total | С   | N   | О     | 6        | 2       | 1     |
|     | 17    | J2       |       | 150 | 41  | 42    | U        |         | 1     |
| 1   | L     | 32       |       | С   | N   | О     | 7        | 3       | 1     |
| 1   | ь     | ე∠       | 255   | 170 | 43  | 42    | 1        | J       | 1     |

• Molecule 2 is water.

| Mol | Chain | Residues | Atoms            | ZeroOcc | AltConf |
|-----|-------|----------|------------------|---------|---------|
| 2   | A     | 22       | Total O<br>22 22 | 0       | 0       |
| 2   | В     | 42       | Total O<br>42 42 | 0       | 0       |

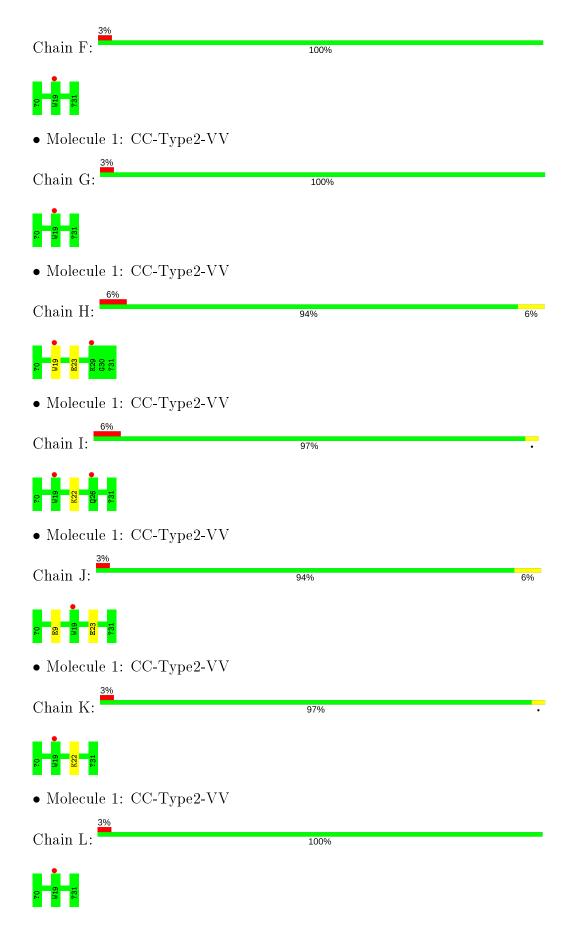
Continued on next page...



 $Continued\ from\ previous\ page...$ 

| Mol | Chain | Residues | Atoms            | ZeroOcc | AltConf |
|-----|-------|----------|------------------|---------|---------|
| 2   | С     | 29       | Total O<br>29 29 | 0       | 0       |
| 2   | D     | 25       | Total O<br>25 25 | 0       | 0       |
| 2   | E     | 32       | Total O<br>32 32 | 0       | 0       |
| 2   | F     | 31       | Total O<br>31 31 | 0       | 0       |
| 2   | G     | 36       | Total O<br>36 36 | 0       | 0       |
| 2   | Н     | 21       | Total O<br>21 21 | 0       | 0       |
| 2   | I     | 36       | Total O<br>36 36 | 0       | 0       |
| 2   | J     | 24       | Total O<br>24 24 | 0       | 0       |
| 2   | K     | 29       | Total O<br>29 29 | 0       | 0       |
| 2   | L     | 23       | Total O<br>23 23 | 0       | 0       |




# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: CC-Type2-VV Chain A: • Molecule 1: CC-Type2-VV Chain B: • Molecule 1: CC-Type2-VV Chain C: 97% • Molecule 1: CC-Type2-VV Chain D: 94% • Molecule 1: CC-Type2-VV Chain E: 94%

• Molecule 1: CC-Type2-VV







#### Data and refinement statistics (i) 4

| Property                                       | Value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Source    |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| Space group                                    | C 1 2 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Depositor |
| Cell constants                                 | $65.56 \text{\AA}  96.79 \text{Å}  56.40 \text{Å}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Donositon |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$         | $90.00^{\circ}$ $124.02^{\circ}$ $90.00^{\circ}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Depositor |
| Resolution (Å)                                 | 13.88 - 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Depositor |
| resolution (11)                                | 14.28 - 1.15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | EDS       |
| % Data completeness                            | 95.8 (13.88-1.15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Depositor |
| (in resolution range)                          | 96.3 (14.28-1.15)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | EDS       |
| $R_{merge}$                                    | 0.06                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Depositor |
| $R_{sym}$                                      | (Not available)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Depositor |
| $< I/\sigma(I) > 1$                            | 4.73 (at 1.15Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Xtriage   |
| Refinement program                             | PHENIX 1.10.1_2155                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Depositor |
| D D.                                           | 0.176 , 0.190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Depositor |
| $R, R_{free}$                                  | 0.176 , $0.191$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | DCC       |
| $R_{free}$ test set                            | 5067 reflections $(5.11%)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | wwPDB-VP  |
| Wilson B-factor (Å <sup>2</sup> )              | 7.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Xtriage   |
| Anisotropy                                     | 1.027                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Xtriage   |
| Bulk solvent $k_{sol}(e/Å^3)$ , $B_{sol}(Å^2)$ | 0.45, 91.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | EDS       |
| L-test for twinning <sup>2</sup>               | $< L >=0.50, < L^2>=0.33$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Xtriage   |
| Estimated twinning fraction                    | $\begin{array}{c} 0.000 \; \text{for -h,h+2*l,1/2*h+1/2*k} \\ 0.000 \; \text{for -h,-h-2*l,1/2*h-1/2*k} \\ 0.000 \; \text{for -1/2*h+1/2*k-l,3/2*h+1/2*k+l,1} \\ & /2*h-1/2*k \\ 0.000 \; \text{for 1/2*h-1/2*k+l,-1/2*h+1/2*k+l,-h} \\ 0.000 \; \text{for 1/2*h-1/2*k-l,-3/2*h+1/2*k-l,1/2} \\ & *h+1/2*k \\ 0.000 \; \text{for 1/2*h+1/2*k+l,1/2*h+1/2*k-l,-h-1/2*k+l,1/2*h+1/2*k-l,-h-1/2*k-l,-l} \\ 0.000 \; \text{for 1/2*h+1/2*k+l,3/2*h-1/2*k-l,-l} \\ 0.000 \; \text{for 1/2*h-1/2*k-l,-1/2*h-1/2*k-l,-l} \\ 0.000 \; for -1/2*h-1/2*k-l,-1/2*h-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*k-l,-1/2*$ | Xtriage   |
| $F_o, F_c$ correlation                         | 0.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | EDS       |
| Total number of atoms                          | 3193                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | wwPDB-VP  |
| Average B, all atoms (Å <sup>2</sup> )         | 13.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | wwPDB-VP  |

<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

<sup>2</sup>Theoretical values of  $<|L|>, < L^2>$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



Xtriage's analysis on translational NCS is as follows: The analyses of the Patterson function reveals a significant off-origin peak that is 30.73 % of the origin peak, indicating pseudo-translational symmetry. The chance of finding a peak of this or larger height randomly in a structure without pseudo-translational symmetry is equal to 1.2457e-03. The detected translational NCS is most likely also responsible for the elevated intensity ratio.



# 5 Model quality (i)

### 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ACE, NH2

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol  | Chain      | Bond | lengths | Bond | angles   |
|------|------------|------|---------|------|----------|
| MIOI | Will Chain |      | # Z >5  | RMSZ | # Z  > 5 |
| 1    | A          | 0.36 | 0/237   | 0.40 | 0/317    |
| 1    | В          | 0.41 | 0/253   | 0.49 | 0/342    |
| 1    | С          | 0.39 | 0/228   | 0.44 | 0/306    |
| 1    | D          | 0.37 | 0/256   | 0.47 | 0/344    |
| 1    | E          | 0.39 | 0/237   | 0.47 | 0/318    |
| 1    | F          | 0.38 | 0/244   | 0.43 | 0/329    |
| 1    | G          | 0.38 | 0/228   | 0.40 | 0/307    |
| 1    | Н          | 0.58 | 0/228   | 0.48 | 0/306    |
| 1    | I          | 0.34 | 0/246   | 0.41 | 0/330    |
| 1    | J          | 0.44 | 0/246   | 0.45 | 0/330    |
| 1    | K          | 0.42 | 0/237   | 0.45 | 0/318    |
| 1    | L          | 0.33 | 0/269   | 0.37 | 0/364    |
| All  | All        | 0.40 | 0/2909  | 0.44 | 0/3911   |

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | A     | 233   | 0        | 262      | 0       | 0            |

Continued on next page...



Continued from previous page...

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | В     | 244   | 0        | 260      | 5       | 0            |
| 1   | С     | 227   | 0        | 249      | 2       | 0            |
| 1   | D     | 248   | 0        | 267      | 1       | 0            |
| 1   | Ε     | 233   | 0        | 255      | 1       | 0            |
| 1   | F     | 238   | 0        | 259      | 0       | 0            |
| 1   | G     | 227   | 0        | 242      | 0       | 0            |
| 1   | Н     | 227   | 0        | 249      | 4       | 0            |
| 1   | I     | 239   | 0        | 263      | 1       | 0            |
| 1   | J     | 239   | 0        | 261      | 3       | 0            |
| 1   | K     | 233   | 0        | 257      | 1       | 0            |
| 1   | L     | 255   | 0        | 277      | 0       | 0            |
| 2   | A     | 22    | 0        | 0        | 0       | 2            |
| 2   | В     | 42    | 0        | 0        | 1       | 0            |
| 2   | С     | 29    | 0        | 0        | 1       | 2            |
| 2   | D     | 25    | 0        | 0        | 0       | 0            |
| 2   | Ε     | 32    | 0        | 0        | 0       | 0            |
| 2   | F     | 31    | 0        | 0        | 0       | 0            |
| 2   | G     | 36    | 0        | 0        | 0       | 0            |
| 2   | Н     | 21    | 0        | 0        | 2       | 0            |
| 2   | I     | 36    | 0        | 0        | 0       | 1            |
| 2   | J     | 24    | 0        | 0        | 2       | 1            |
| 2   | K     | 29    | 0        | 0        | 0       | 0            |
| 2   | L     | 23    | 0        | 0        | 0       | 1            |
| All | All   | 3193  | 0        | 3101     | 13      | 5            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

The worst 5 of 13 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

| Atom-1            | Atom-2            | $egin{aligned} 	ext{Interatomic} \ 	ext{distance} \ (	ext{Å}) \end{aligned}$ | $egin{aligned} 	ext{Clash} \ 	ext{overlap } (	ext{Å}) \end{aligned}$ |
|-------------------|-------------------|------------------------------------------------------------------------------|----------------------------------------------------------------------|
| 1:H:23:GLU:OE1    | 2:H:101:HOH:O     | 2.13                                                                         | 0.66                                                                 |
| 1:C:29[A]:LYS:NZ  | 2:C:102:HOH:O     | 2.35                                                                         | 0.60                                                                 |
| 1:B:27:ALA:HA     | 1:C:29[A]:LYS:HE3 | 1.83                                                                         | 0.59                                                                 |
| 1:B:26[A]:GLN:HG3 | 1:H:19:TRP:CZ3    | 2.39                                                                         | 0.58                                                                 |
| 1:E:19:TRP:O      | 1:E:22[B]:LYS:HG2 | 2.10                                                                         | 0.51                                                                 |

All (5) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.



| Atom-1        | Atom-2               | $egin{aligned} 	ext{Interatomic} \ 	ext{distance} & (	ext{Å}) \end{aligned}$ | $egin{array}{c} 	ext{Clash} \ 	ext{overlap } (	ext{Å}) \end{array}$ |
|---------------|----------------------|------------------------------------------------------------------------------|---------------------------------------------------------------------|
| 2:I:134:HOH:O | 2:I:134:HOH:O[2_555] | 2.16                                                                         | 0.04                                                                |
| 2:J:124:HOH:O | 2:J:124:HOH:O[2_555] | 2.17                                                                         | 0.03                                                                |
| 2:L:121:HOH:O | 2:L:121:HOH:O[2_555] | 2.17                                                                         | 0.03                                                                |
| 2:A:117:HOH:O | 2:C:104:HOH:O[2_656] | 2.18                                                                         | 0.02                                                                |
| 2:A:117:HOH:O | 2:C:122:HOH:O[2_656] | 2.19                                                                         | 0.01                                                                |

#### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain        | Analysed           | Favoured   | Allowed | Outliers | Percentiles |     |
|-----|--------------|--------------------|------------|---------|----------|-------------|-----|
| 1   | A            | $32/32 \; (100\%)$ | 32 (100%)  | 0       | 0        | 100         | 100 |
| 1   | В            | $33/32 \ (103\%)$  | 33 (100%)  | 0       | 0        | 100         | 100 |
| 1   | $\mathbf{C}$ | $31/32 \ (97\%)$   | 31 (100%)  | 0       | 0        | 100         | 100 |
| 1   | D            | $34/32 \; (106\%)$ | 34 (100%)  | 0       | 0        | 100         | 100 |
| 1   | Ε            | $32/32 \; (100\%)$ | 32 (100%)  | 0       | 0        | 100         | 100 |
| 1   | F            | $32/32 \; (100\%)$ | 32 (100%)  | 0       | 0        | 100         | 100 |
| 1   | G            | 31/32 (97%)        | 31 (100%)  | 0       | 0        | 100         | 100 |
| 1   | Н            | $31/32 \ (97\%)$   | 31 (100%)  | 0       | 0        | 100         | 100 |
| 1   | I            | $33/32\ (103\%)$   | 33 (100%)  | 0       | 0        | 100         | 100 |
| 1   | J            | $33/32\ (103\%)$   | 33 (100%)  | 0       | 0        | 100         | 100 |
| 1   | K            | $32/32 \; (100\%)$ | 32 (100%)  | 0       | 0        | 100         | 100 |
| 1   | L            | $34/32 \; (106\%)$ | 34 (100%)  | 0       | 0        | 100         | 100 |
| All | All          | 388/384 (101%)     | 388 (100%) | 0       | 0        | 100         | 100 |

There are no Ramachandran outliers to report.

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar



resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed          | Rotameric  | Outliers | Percentiles |     |
|-----|-------|-------------------|------------|----------|-------------|-----|
| 1   | Α     | $22/20 \ (110\%)$ | 22 (100%)  | 0        | 100         | 100 |
| 1   | В     | $23/20 \ (115\%)$ | 23 (100%)  | 0        | 100         | 100 |
| 1   | С     | $21/20 \ (105\%)$ | 21 (100%)  | 0        | 100         | 100 |
| 1   | D     | 23/20 (115%)      | 23 (100%)  | 0        | 100         | 100 |
| 1   | E     | 22/20 (110%)      | 22 (100%)  | 0        | 100         | 100 |
| 1   | F     | 22/20 (110%)      | 22 (100%)  | 0        | 100         | 100 |
| 1   | G     | 21/20 (105%)      | 21 (100%)  | 0        | 100         | 100 |
| 1   | Н     | 21/20  (105%)     | 21 (100%)  | 0        | 100         | 100 |
| 1   | I     | 23/20 (115%)      | 23 (100%)  | 0        | 100         | 100 |
| 1   | J     | 23/20 (115%)      | 23 (100%)  | 0        | 100         | 100 |
| 1   | K     | 22/20 (110%)      | 22 (100%)  | 0        | 100         | 100 |
| 1   | L     | 24/20 (120%)      | 24 (100%)  | 0        | 100         | 100 |
| All | All   | 267/240 (111%)    | 267 (100%) | 0        | 100         | 100 |

There are no protein residues with a non-rotameric sidechain to report.

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. There are no such sidechains identified.

#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

### 5.5 Carbohydrates (i)

There are no carbohydrates in this entry.



## 5.6 Ligand geometry (i)

There are no ligands in this entry.

# 5.7 Other polymers (i)

There are no such residues in this entry.

## 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Fit of model and data (i)

#### 6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ>2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median,  $95^{th}$  percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

| Mol | Chain | Analysed          | <rsrz></rsrz> | $\#\mathrm{RSRZ}{>}2$ | $\mathbf{OWAB}(\mathrm{\AA}^2)$ | Q < 0.9  |
|-----|-------|-------------------|---------------|-----------------------|---------------------------------|----------|
| 1   | A     | $30/32 \; (93\%)$ | 0.76          | 1 (3%) 46 46          | 7, 10, 17, 19                   | 3 (10%)  |
| 1   | В     | $30/32 \ (93\%)$  | 0.80          | 2 (6%) 17 18          | 6, 10, 16, 19                   | 4 (13%)  |
| 1   | С     | 30/32 (93%)       | 0.67          | 2 (6%) 17 18          | 7, 10, 15, 19                   | 3 (10%)  |
| 1   | D     | $30/32 \ (93\%)$  | 0.84          | 1 (3%) 46 46          | 6, 9, 17, 20                    | 1 (3%)   |
| 1   | E     | $30/32 \ (93\%)$  | 1.04          | 2 (6%) 17 18          | 6, 9, 18, 21                    | 3 (10%)  |
| 1   | F     | 30/32 (93%)       | 0.73          | 1 (3%) 46 46          | 6, 9, 17, 22                    | 0        |
| 1   | G     | 30/32 (93%)       | 0.61          | 1 (3%) 46 46          | 6, 8, 14, 18                    | 4 (13%)  |
| 1   | Н     | 30/32 (93%)       | 0.64          | 2 (6%) 17 18          | 6, 9, 17, 22                    | 7 (23%)  |
| 1   | I     | $30/32 \ (93\%)$  | 0.84          | 2 (6%) 17 18          | 6, 9, 13, 21                    | 5 (16%)  |
| 1   | J     | 30/32 (93%)       | 0.75          | 1 (3%) 46 46          | 6, 8, 16, 17                    | 2 (6%)   |
| 1   | K     | 30/32 (93%)       | 0.74          | 1 (3%) 46 46          | 6, 9, 14, 16                    | 2 (6%)   |
| 1   | L     | 30/32 (93%)       | 1.07          | 1 (3%) 46 46          | 7, 9, 19, 24                    | 3 (10%)  |
| All | All   | 360/384 (93%)     | 0.79          | 17 (4%) 31 31         | 6, 9, 18, 24                    | 37 (10%) |

The worst 5 of 17 RSRZ outliers are listed below:

| Mol | Chain | Res   | Type | RSRZ |
|-----|-------|-------|------|------|
| 1   | L     | 19[A] | TRP  | 7.5  |
| 1   | В     | 19[A] | TRP  | 7.2  |
| 1   | I     | 19    | TRP  | 6.3  |
| 1   | D     | 19[A] | TRP  | 6.1  |
| 1   | Е     | 19    | TRP  | 6.0  |

## 6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.



## 6.3 Carbohydrates (i)

There are no carbohydrates in this entry.

# 6.4 Ligands (i)

There are no ligands in this entry.

## 6.5 Other polymers (i)

There are no such residues in this entry.

