

wwPDB EM Validation Summary Report (i)

Dec 21, 2024 - 07:30 am GMT

PDB ID	:	9G6K
EMDB ID	:	EMD-51104
Title	:	LSU structure derived from the LSU sample of the mitoribosome from T.
		gondii.
Authors	:	Rocha, R.E.O.; Barua, S.; Boissier, F.; Nguyen, T.T.; Hashem, Y.
Deposited on	:	2024-07-18
Resolution	:	2.89 Å(reported)
Based on initial model	:	

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.40

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.89 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	210492	15764
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for ≥ 3 , 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq 5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion $\leq 40\%$). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain				
1	L0	405	5% 67%	19%	·	13%	-
2	L1	92	11%		27%		•
3	L2	270	9%			13%	•
4	L3	331	• 66%	15%	•	18%	-
5	L4	430	• 87%			11%	·
6	L5	30	57%	43%			-
7	L6	57	21%			79	%

Mol	Chain	Length	Quality of chain	
8	L7	114	9% 75%	23% •
9	L8	246	• 76%	20% · ·
10	L9	475	91%	9%
11	LA	217	• 77%	22% •
12	LB	121	• 70%	26% •
13	LC	527	5% 57% 15%	• 28%
14	LD	282	5% 65%	14% 20%
15	LE	338	7%	9% 21%
16	LF	88	83%	15% •
17	LG	148	● 81%	18% •
18	LH	87	79%	21%
19	LI	79	8% 	25%
20	LJ	443	74%	22% •
21	LK	219	● 80%	20%
22	LL	855	8% 66% 8	3% 26%
23	LM	177	26%	16% •
24	LN	113	6 3%	35% •
25	LO	344	9%	
26	LP	230	• 70%	17% • 12%
27	LO	70	- 59%	40% •
28	LR	132	7%	35%
29	LS	228	● 77%	21%
30	LT	117	10%	20% ••
31	LU	79	• 77%	23%
32	LV	880	7% 66%	9% • 25%

Mol	Chain	Length	Quality of chain	
			• •	
33	LW	306	9%	29% •
34	LX	92	74%	21% 5%
35	LY	346	81%	18%
36	LZ	197	• 81%	19% ·
37	La	214	• 74%	26%
38	Lb	733	6 3% 20%	17%
39	Lc	512	19% 76%	16% 8%
40	Ld	437	84%	15%
41	Le	376	88%	12%
42	Lf	226	8%	12% ·
43	Lg	214	79%	21%
44	Lh	464	81%	14% 5%
45	Li	602	6% 70% 8%	21%
46	Lj	122	7%	27% •
47	Lk	184	86%	14%
48	Ll	190	6% 79%	21%
49	Lm	189	10%	25% •
50	Ln	60	90%	10%
51	Lo	283	75%	24%
52	Lp	368	77%	23%
53	Lq	787	13%	9% 13%
54	Lr	281	85%	15%
55	Ls	311	9%	16% •
56	Lt	240	66% 12%	22%
57	Lu	232	11%	14%

Mol	Chain	Length	Quality of c	chain	
58	Lv	112	80%		20%
59	Lw	179	5%		16%
60	Lx	98	8%		18%
61	Lv	404	630/	21%	16%
62	Ly	190	03%	2170	10%
02		120	7%		18%
63	UA	85	80%		20%
64	UB	174	78%		22%
65	UC	105	86%		13% •
66	UD	35	66%	34%	
67	UE	113	81%		19% •
68	UF	78	• 67%	33%	
69	UG	158	<mark>6%</mark> 85%		15%
70	UH	47	70%	30%	6
71	UI	35	29%		14%
72	10	44	<u>9%</u> 52%	43%	5%
73	11	50	44%	42%	14%
74	12	31	16%	55%	10%
75	13	59	36%	54%	10%
76	14	94	• 30% 54	1%	16%
77	15	36	47%	39%	14%
78	16	50	46%	44%	10%
79	17	69	<mark>6%</mark>	51%	10%
80	18	33	58%	36%	6%
81	19	91	33%	55%	12%
82	lA	65	48%	43%	8% •

83 IB 45	
OJ ID 4D 33% 49%	18%
84 lC 27 ^{15%} 30%	19%
85 lD 16 19%	
86 lE 29 28% 45%	28%
87 lF 88 48% 41%	11%
88 lG 26 58% 42%	5
89 lH 27 56% 30%	15%
90 lI 48 19%	8%
91 lJ 279 41% 51%	7% •
92 lK 38 53% 37%	11%
93 IL 91 46% 47%	7%
94 lM 194 53% 37%	10% •
95 lN 62 55% 39%	6%
96 10 180 6% 30% 59%	11%
97 IP 29 31% 45%	21%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	5%
99 1B 28 7%	7%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	14%
101 1T 14 50% 36%	14%
101 IW 14 50% 50%	14 /0
101 111 15 27%	1.20/
102 10 10 10 40% 47%	13%
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	2001
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	20%

2 Entry composition (i)

There are 104 unique types of molecules in this entry. The entry contains 175729 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called RRM domain-containing protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	LO	353	Total 2984	C 1911	N 557	O 503	S 13	0	0

• Molecule 2 is a protein called Large ribosomal subunit protein mL54.

Mol	Chain	Residues		At	oms	AltConf	Trace		
2	L1	92	Total 768	C 502	N 130	0 134	${S \over 2}$	0	0

• Molecule 3 is a protein called mL162.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	L2	270	Total 2111	C 1329	N 384	O 392	S 6	0	0

• Molecule 4 is a protein called Ribosomal 125 family protein.

Mol	Chain	Residues		At	AltConf	Trace			
4	L3	272	Total 2196	C 1411	N 389	O 383	S 13	0	0

• Molecule 5 is a protein called RAP domain-containing protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
5	L4	424	Total 3430	C 2184	N 620	O 609	S 17	0	0

• Molecule 6 is a protein called mL183.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
6	L5	30	Total 264	C 164	N 62	O 36	${S \over 2}$	0	0

• Molecule 7 is a protein called uL1m.

Mol	Chain	Residues		Ato	\mathbf{ms}		AltConf	Trace	
7	L6	57	Total 476	C 312	N 92	0 71	S 1	0	0

• Molecule 8 is a protein called uL14m.

Mol	Chain	Residues		At	oms	AltConf	Trace		
8	L7	114	Total 906	C 571	N 181	0 149	${ m S}{ m 5}$	0	0

• Molecule 9 is a protein called Putative 50S ribosomal protein L17.

Mol	Chain	Residues		Ate		AltConf	Trace		
9	L8	239	Total 2008	C 1276	N 384	0 341	${ m S} 7$	0	0

• Molecule 10 is a protein called DUF6832 domain-containing protein.

Mol	Chain	Residues		At	AltConf	Trace			
10	L9	475	Total 3888	C 2511	N 683	O 679	S 15	0	0

• Molecule 11 is a protein called Putative 50S ribosomal protein L13.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
11	LA	217	Total 1708	C 1094	N 322	0 284	S 8	0	0

• Molecule 12 is a protein called Putative ribosomal protein L20.

Mol	Chain	Residues	Atoms					AltConf	Trace
12	LB	121	Total 1033	C 663	N 200	0 165	${ m S}{ m 5}$	0	0

• Molecule 13 is a protein called Macro domain-containing protein.

Mol	Chain	Residues		At	AltConf	Trace			
13	LC	380	Total 2909	C 1822	N 549	O 528	S 10	0	0

• Molecule 14 is a protein called Ribosomal protein L46.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	LD	225	Total 1847	C 1197	N 319	O 328	${ m S} { m 3}$	0	0

• Molecule 15 is a protein called FAS1 domain-containing protein.

Mol	Chain	Residues		Ate		AltConf	Trace		
15	LE	267	Total 2118	C 1345	N 398	O 367	S 8	0	0

• Molecule 16 is a protein called bL36m.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	LF	88	Total 731	C 466	N 152	O 109	$\frac{S}{4}$	0	0

• Molecule 17 is a protein called Ribosomal protein RPL22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
17	LG	148	Total 1253	C 804	N 235	0 211	${ m S} { m 3}$	0	0

• Molecule 18 is a protein called Ribosomal protein L9, N-terminal domain-containing protein.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
18	LH	87	Total 693	C 442	N 135	O 116	0	0

• Molecule 19 is a protein called Putative 60S ribosomal protein L27.

Mol	Chain	Residues		Ate	oms	AltConf	Trace		
10	TT	70	Total	С	Ν	Ο	S	0	0
19		19	613	402	109	98	4	0	0

• Molecule 20 is a protein called RAP domain-containing protein.

Mol	Chain	Residues		At	AltConf	Trace			
20	LJ	443	Total 3640	C 2316	N 690	0 616	S 18	0	0

• Molecule 21 is a protein called BIR protein.

Mol	Chain	Residues		At	AltConf	Trace			
21	LK	219	Total 1905	C 1211	N 364	O 324	S 6	0	0

• Molecule 22 is a protein called AMP-dependent synthetase/ligase domain-containing protein.

Mol	Chain	Residues		At	AltConf	Trace			
22	LL	633	Total 4847	C 3061	N 882	O 883	S 21	0	0

• Molecule 23 is a protein called Large ribosomal subunit protein uL11m.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	AltConf	Trace			
23	LM	177	Total 1376	C 867	N 258	0 240	S 11	0	0

• Molecule 24 is a protein called bL35m.

Mol	Chain	Residues		At	AltConf	Trace			
24	LN	113	Total 986	C 626	N 205	0 153	${S \over 2}$	0	0

• Molecule 25 is a protein called LSU ribosomal protein L2P, putative.

Mol	Chain	Residues		At	AltConf	Trace			
25	LO	344	Total 2647	C 1662	N 530	0 448	${ m S} 7$	0	0

• Molecule 26 is a protein called Peptidyl-prolyl cis-trans isomerase.

Mol	Chain	Residues		At	AltConf	Trace			
26	LP	202	Total 1636	C 1041	N 297	O 288	S 10	0	0

• Molecule 27 is a protein called mL175.

Mol	Chain	Residues		Ator	\mathbf{ns}	AltConf	Trace	
27	LQ	70	Total 600	C 383	N 120	O 97	0	0

• Molecule 28 is a protein called mL172.

Mol	Chain	Residues		At	oms	AltConf	Trace		
28	LR	86	Total 738	C 461	N 146	O 127	$\frac{S}{4}$	0	0

• Molecule 29 is a protein called Large ribosomal subunit protein uL24c.

Mol	Chain	Residues		At	oms			AltConf	Trace
29	LS	228	Total 1812	C 1154	N 333	0 314	S 11	0	0

• Molecule 30 is a protein called Putative 50S ribosomal protein L33.

Mol	Chain	Residues		At	oms			AltConf	Trace
30	LT	113	Total 965	C 622	N 184	0 156	$\frac{S}{3}$	0	0

• Molecule 31 is a protein called Large ribosomal subunit protein mL49.

Mol	Chain	Residues		At	oms			AltConf	Trace
31	LU	79	Total 623	C 398	N 118	O 105	${S \over 2}$	0	0

• Molecule 32 is a protein called mL148.

Mol	Chain	Residues		At	oms			AltConf	Trace
32	LV	662	Total 5149	C 3256	N 961	O 913	S 19	0	0

• Molecule 33 is a protein called Putative 50S ribosomal protein L3.

Mol	Chain	Residues		At	oms			AltConf	Trace
33	LW	306	Total 2433	C 1553	N 441	0 425	S 14	0	0

• Molecule 34 is a protein called mL176.

Mol	Chain	Residues		At	oms			AltConf	Trace
34	LX	92	Total 779	C 496	N 132	0 146	${S \atop 5}$	0	0

 $\bullet\,$ Molecule 35 is a protein called Ribosomal L22p/L17e protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	LY	346	Total 2909	C 1858	N 561	0 483	S 7	0	0

• Molecule 36 is a protein called mL174.

Mol	Chain	Residues		Ate		AltConf	Trace		
36	LZ	197	Total 1591	C 1012	N 304	O 267	S 8	0	0

• Molecule 37 is a protein called Large ribosomal subunit protein uL23m.

Mol	Chain	Residues		Ate	AltConf	Trace			
37	La	214	Total 1769	C 1146	N 320	O 297	S 6	0	0

• Molecule 38 is a protein called RAP domain-containing protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
38	Lb	609	Total 4929	C 3140	N 925	0 849	S 15	0	0

• Molecule 39 is a protein called RAP domain-containing protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
39	Lc	473	Total 3797	C 2416	N 681	O 686	S 14	0	0

• Molecule 40 is a protein called RAP domain-containing protein.

Mol	Chain	Residues		At	oms			AltConf	Trace
40	Ld	437	Total 3507	C 2233	N 626	O 633	S 15	0	0

• Molecule 41 is a protein called RAP domain-containing protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
41	Le	376	Total 3057	C 1925	N 573	0 549	S 10	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	sidue Modelled Actual		Comment	Reference
Le	?	-	LEU	deletion	UNP S8GIP4

• Molecule 42 is a protein called HECT-domain (Ubiquitin-transferase) domain-containing protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
42	Lf	216	Total 1709	C 1093	N 315	0 294	${ m S} 7$	0	0

• Molecule 43 is a protein called Large ribosomal subunit protein uL29m.

Mol	Chain	Residues	Atoms					AltConf	Trace
43	Lg	214	Total 1824	C 1156	N 345	0 314	S 9	0	0

• Molecule 44 is a protein called Large ribosomal subunit protein uL4m.

Mol	Chain	Residues	Atoms					AltConf	Trace
44	Lh	443	Total 3675	C 2351	N 682	O 628	S 14	0	0

• Molecule 45 is a protein called RAP domain-containing protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
45	Li	473	Total 3833	C 2459	N 702	O 656	S 16	0	0

• Molecule 46 is a protein called mL177.

Mol	Chain	Residues	Atoms					AltConf	Trace
46	Lj	122	Total 977	C 610	N 200	0 164	${ m S} { m 3}$	0	0

• Molecule 47 is a protein called AP2 domain transcription factor AP2VIIb-2.

Mol	Chain	Residues	Atoms					AltConf	Trace
47	Lk	184	Total 1502	C 969	N 267	O 260	S 6	0	0

• Molecule 48 is a protein called Large ribosomal subunit protein mL43.

Mol	Chain	Residues	Atoms					AltConf	Trace
48	Ll	190	Total 1573	C 996	N 307	O 267	${ m S} { m 3}$	0	0

• Molecule 49 is a protein called Large ribosomal subunit protein uL24c.

Mol	Chain	Residues	Atoms					AltConf	Trace
49	Lm	184	Total 1501	С 944	N 285	O 265	${ m S} 7$	0	0

• Molecule 50 is a protein called mL185.

Mol	Chain	Residues	Atoms					AltConf	Trace
50	Ln	60	Total 442	C 280	N 80	O 79	${ m S} { m 3}$	0	0

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Ln	?	-	SER	deletion	UNP S8G210
Ln	?	-	ALA	deletion	UNP S8G210

• Molecule 51 is a protein called Transmembrane protein.

Mol	Chain	Residues		Ate		AltConf	Trace		
51	Lo	283	Total 2219	C 1405	N 421	0 384	${ m S} 9$	0	0

• Molecule 52 is a protein called bL19m.

Mol	Chain	Residues		At	AltConf	Trace			
52	Lp	368	Total 3074	C 1954	N 595	0 514	S 11	0	0

• Molecule 53 is a protein called RAP domain-containing protein.

Mol	Chain	Residues		At	AltConf	Trace			
53	Lq	687	Total 5268	C 3323	N 958	O 966	S 21	0	0

• Molecule 54 is a protein called Putative ribosomal protein L28.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
54	Lr	281	Total 2342	C 1475	N 461	O 398	S 8	0	0

• Molecule 55 is a protein called Ribosomal protein L15, putative.

Mol	Chain	Residues		Ate	AltConf	Trace			
55	Ls	311	Total 2565	C 1615	N 507	0 438	${f S}{5}$	0	0

• Molecule 56 is a protein called mL40.

Mol	Chain	Residues		At	oms	AltConf	Trace		
56	Lt	188	Total 1556	C 999	N 276	0 274	S 7	0	0

• Molecule 57 is a protein called mL164.

Mol	Chain	Residues		At	AltConf	Trace			
57	Lu	232	Total 1834	C 1158	N 328	O 339	S 9	0	0

• Molecule 58 is a protein called mL180.

Mol	Chain	Residues	Atoms					AltConf	Trace
58	Lv	112	Total 928	C 599	N 165	O 159	${ m S}{ m 5}$	0	0

• Molecule 59 is a protein called Putative 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms			AltConf	Trace
59	Lw	179	Total 1440	C 916	N 282	0 240	${ m S} { m 2}$	0	0

• Molecule 60 is a protein called mL173.

Mol	Chain	Residues		At	oms			AltConf	Trace
60	Lx	98	Total 796	C 504	N 149	0 138	${f S}{5}$	0	0

• Molecule 61 is a protein called Large ribosomal subunit protein bL21m.

Mol	Chain	Residues		At	AltConf	Trace			
61	Ly	340	Total 2821	C 1777	N 551	O 482	S 11	0	0

• Molecule 62 is a protein called mL182.

Mol	Chain	Residues		At	oms	AltConf	Trace		
62	Lz	120	Total 994	C 620	N 188	0 184	${S \over 2}$	0	0

• Molecule 63 is a protein called mL178.

Mol	Chain	Residues		At	oms			AltConf	Trace
63	UA	85	Total 709	C 464	N 133	0 111	S 1	0	0

• Molecule 64 is a protein called bL27m.

Mol	Chain	Residues		At	oms	AltConf	Trace		
64	UB	174	Total 1451	C 921	N 281	0 245	$\frac{S}{4}$	0	0

• Molecule 65 is a protein called mL179.

Mol	Chain	Residues		At	oms	AltConf	Trace		
65	UC	105	Total 864	C 567	N 150	0 141	S 6	0	0

• Molecule 66 is a protein called Transmembrane protein.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
66	UD	35	Total	C 102	N 79	0 42	S 1	0	0
			308	192	(2	43	T		

• Molecule 67 is a protein called mL53.

Mol	Chain	Residues		At	oms	AltConf	Trace		
67	UE	113	Total 935	C 598	N 165	0 166	${f S}{f 6}$	0	0

• Molecule 68 is a protein called bL32m.

Mol	Chain	Residues		At	oms	AltConf	Trace		
68	UF	78	Total 672	C 443	N 122	O 105	${ m S} { m 2}$	0	0

• Molecule 69 is a protein called AP2 domain transcription factor AP2IV-1.

Mol	Chain	Residues		At	oms	AltConf	Trace		
69	UG	158	Total 1343	C 846	N 266	0 227	S 4	0	0

• Molecule 70 is a protein called mL181.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
70	UH	47	Total 401	C 254	N 80	O 64	${ m S} { m 3}$	0	0

• Molecule 71 is a protein called mL184.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
71	TT	25	Total	С	Ν	Ο	\mathbf{S}	0	0
	UI	- 35	293	178	71	41	3	0	0

• Molecule 72 is a RNA chain called RNA23t.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	toms	AltConf	Trace		
72	10	44	Total 936	C 419	N 170	O 303	Р 44	0	0

• Molecule 73 is a RNA chain called RNA29.

Mol	Chain	Residues		A	toms		AltConf	Trace	
73	11	50	Total 1070	C 480	N 197	0 343	Р 50	0	0

• Molecule 74 is a RNA chain called LSUB.

Mol	Chain	Residues		\mathbf{A}	toms	AltConf	Trace		
74	12	31	Total 660	C 296	N 116	0 217	Р 31	0	0

• Molecule 75 is a RNA chain called RNA6.

Mol	Chain	Residues		A	AltConf	Trace			
75	13	59	Total 1254	$\begin{array}{c} \mathrm{C} \\ 563 \end{array}$	N 227	O 405	Р 59	0	0

• Molecule 76 is a RNA chain called RNA1.

Mol	Chain	Residues		A	AltConf	Trace			
76	14	94	Total 1991	C 893	N 346	O 658	Р 94	0	0

• Molecule 77 is a RNA chain called RNA31.

Mol	Chain	Residues		\mathbf{A}	toms			AltConf	Trace
77	15	36	Total 761	C 341	N 129	O 255	Р 36	0	0

• Molecule 78 is a RNA chain called RNA14.

Mol	Chain	Residues		A	toms		AltConf	Trace	
78	16	50	Total 1072	C 483	N 209	O 330	Р 50	0	0

• Molecule 79 is a RNA chain called RNA11.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	toms	AltConf	Trace		
79	17	69	Total 1481	C 666	N 279	0 467	Р 69	0	0

• Molecule 80 is a RNA chain called RNA36.

Mol	Chain	Residues		A	toms	AltConf	Trace		
80	18	33	Total 707	C 318	N 136	O 220	Р 33	0	0

• Molecule 81 is a RNA chain called RNA3.

Mol	Chain	Residues		A	toms	AltConf	Trace		
81	19	91	Total 1926	C 864	N 336	O 635	Р 91	0	0

• Molecule 82 is a RNA chain called RNA2.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	AltConf	Trace			
82	lA	65	Total 1387	C 622	N 253	0 447	Р 65	0	0

• Molecule 83 is a RNA chain called RNA38.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	toms			AltConf	Trace
83	lB	45	Total 985	C 439	N 197	0 304	Р 45	0	0

• Molecule 84 is a RNA chain called RNA35.

Mol	Chain	Residues		\mathbf{A}	toms			AltConf	Trace
84	lC	27	Total 583	C 261	N 112	0 183	Р 27	0	0

• Molecule 85 is a RNA chain called RNA32.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
85	lD	16	Total 338	C 153	N 62	O 107	Р 16	0	0

• Molecule 86 is a RNA chain called RNA15.

Mol	Chain	Residues		A	toms	AltConf	Trace		
86	lE	29	Total 630	C 282	N 124	0 195	Р 29	0	0

• Molecule 87 is a RNA chain called RNA10.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	toms		AltConf	Trace	
87	lF	88	Total 1880	C 842	N 339	0 611	Р 88	0	0

• Molecule 88 is a RNA chain called LSUC.

Mol	Chain	Residues		\mathbf{A}	toms		AltConf	Trace	
88	lG	26	Total 561	C 252	N 110	0 173	Р 26	0	0

• Molecule 89 is a RNA chain called RNA16.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
89	lH	27	Total 572	C 256	N 96	0 193	Р 27	0	0

• Molecule 90 is a RNA chain called RNA13.

Mol	Chain	Residues		A	toms		AltConf	Trace	
90	lI	48	Total 1039	C 467	N 206	0 318	Р 48	0	0

 $\bullet\,$ Molecule 91 is a RNA chain called LSUD/E.

Mol	Chain	Residues		A	AltConf	Trace			
91	lJ	279	Total 5929	C 2654	N 1045	O 1951	Р 279	0	0

• Molecule 92 is a RNA chain called SSUF.

Mol	Chain	Residues		A	toms		AltConf	Trace	
92	lK	38	Total 821	C 367	N 157	0 259	Р 38	0	0

• Molecule 93 is a RNA chain called RNA7.

Mol	Chain	Residues		A	toms			AltConf	Trace
93	lL	91	Total 1948	C 875	N 361	O 621	Р 91	0	0

 $\bullet\,$ Molecule 94 is a RNA chain called LSUF/G.

Mol	Chain	Residues		А	toms			AltConf	Trace
94	lM	194	Total 4121	C 1843	N 719	O 1365	Р 194	0	0

• Molecule 95 is a RNA chain called RNA37.

Mol	Chain	Residues		\mathbf{A}	toms			AltConf	Trace
95	lN	62	Total 1316	C 592	N 234	0 428	Р 62	0	0

• Molecule 96 is a RNA chain called LSUA.

Mol	Chain	Residues		А	toms			AltConf	Trace
96	lO	180	Total 3841	C 1722	N 691	0 1248	Р 180	0	0

• Molecule 97 is a RNA chain called ulr1.

Mol	Chain	Residues		At	\mathbf{oms}		AltConf	Trace	
97	lP	29	Total 580	C 261	N 58	0 232	Р 29	0	0

• Molecule 98 is a RNA chain called ulr2.

Mol	Chain	Residues		At	oms	AltConf	Trace		
98	lQ	37	Total 740	C 333	N 74	O 296	Р 37	0	0

• Molecule 99 is a RNA chain called ulr3.

Mol	Chain	Residues		At	AltConf	Trace			
99	lR	28	Total 560	C 252	N 56	0 224	Р 28	0	0

• Molecule 100 is a RNA chain called ulr4.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
100	lS	7	Total 140	C 63	N 14	O 56	Р 7	0	0

• Molecule 101 is a RNA chain called ulr5.

Mol	Chain	Residues		At	AltConf	Trace			
101	١T	14	Total	С	Ν	Ο	Р	0	0
101	11	14	280	126	28	112	14	0	0
101	IW	14	Total	С	Ν	0	Р	0	0
101	1 VV	1W 14	280	126	28	112	14	0	0

• Molecule 102 is a RNA chain called ulr6.

Mol	Chain	Residues		At	AltConf	Trace			
102	lU	15	Total 300	C 135	N 30	0 120	Р 15	0	0

• Molecule 103 is a RNA chain called ulr7,ulr8.

Mol	Chain	Residues		At	oms	AltConf	Trace		
109	117	10	Total	С	Ν	0	Р	0	0
105	1 V	10	200	90	20	80	10	0	
102	lV	10	Total	С	Ν	0	Р	0	0
105	11	10	200	90	20	80	10	0	0

 $\bullet\,$ Molecule 104 is a RNA chain called ulr9.

Mol	Chain	Residues		A	AltConf	Trace			
104	lX	58	Total 1160	C 522	N 116	0 464	Р 58	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: RRM domain-containing protein

• Molecule 9: Putative 50S ribosomal protein L17

R242 SS3 N244 N65 N244 N65 V249 N65 V249 N79 S67 S67 V249 N79 S67 N65 V249 N65 V249 N79 S67 N79 R64 N95 R33 N44 N115 N116 N116 N116 N117 N118 N116 N116 N116 N116 N117 N116 N116 N116 N116 N116 N117 N116 N117 N116 N116 N116 N116 N116 N116 N117 N116 N118 N116 N119 N116 N116 N116 N117 N118</t

• Molecule 22: AMP-dependent synthetase/ligase domain-containing protein

• Molecule 23: Large ribosomal subunit protein uL11m

 \bullet Molecule 28: mL172

• Molecule 37: Large ribosomal subunit protein uL23m

• Molecule 38: RAP domain-containing protein

• Molecule 42: HECT-domain (Ubiquitin-transferase) domain-containing protein

• Molecule 43: Large ribosomal subunit protein uL29m

Y208 S209 W217 K218 K219 K219 R230 R230 R231 K234 F235

• Molecule 44: Large ribosomal subunit protein uL4m

• Molecule 48: Large ribosomal subunit protein mL43

M664 V521 V665 K533 V666 K533 V667 K533 V668 K533 V690 K533 V691 K533 V693 K534 V693 K534 V693 K534 V693 K534 V693 K546 V693 K556 V716 K566 K706 K566 K713 K566 K714 K606 K714 K606 K714 K616 K744 K616 K744 K616 K623 K623 K744 K616 K623 K623 K744 K616 K623 K623 K744</t

• Molecule 65: mL17	9	
Chain UC:	86%	13% •
A197 K198 K198 F209 F210 F211 F211 F211 F211 F211 F215 F211 F215 F215 F215 F215 F215 F215 F206	(755 1266 1266 1266 2279 (729 1290 1290 (7294 1290	
• Molecule 66: Trans	smembrane protein	
Chain UD:	66%	34%
1168 1169 1172 1184 1184 1184 1184 1184 1188 1184 1188 1194 0194	200 201	
• Molecule 67: mL53	;	
Chain UE:	81%	19% •
P100 P109 F110 V119 V121 A120 A120 A120 A124 B125 S128 S128	V130 W130 M138 M138 S140 S141 S143 S153 V143 V143 S153 S153 S153 S153 S153 S153 S153 S153 M187 M187 M187 M203	P212
• Molecule 68: bL32	m	
Chain UF:	67%	33%
A2 66 66 88 88 88 88 88 88 81 11 81 15 81 15 81 15 81 15 81 15 81 15 81 15 81 15 81 15 81 15 81 81 81 81 81 81 81 81 81 81 81 81 81	627 V28 R32 R33 R33 R33 R33 S4 F40 F40 S54 S55 S54 S58 S58 S58 S58 S58 S58 S58 S58 S58 S58	<mark>910 0</mark>
• Molecule 69: AP2 of	domain transcription factor $AP2\Gamma$	V-1
Chain UG:	85%	15%
2254 R257 V258 V258 Q260 R261 R261 R261 R263 R263 R263 R263 R263 R263 R313 R313	0317 8321 8321 8325 8325 03256 8335 8335 8335 8335 8335 8335 8336 8336	W300 W300 Y401 K402 E403 E403 E406 E406 E407 H408 E407 L410
• Molecule 70: mL18	51	
Chain UH:	70%	30%
C234 ◆ 1245 8247 8247 8247 8250 8250 8251 8251 8257 8257 8260 8260 8260	K269 K273 K277 K277 K277 F279 T280	
• Molecule 71: mL18	54	
Chain UI:	86%	14%

• Molecule 84:	RNA35			
Chain lC:	52%	30%	19%	-
U1 A4 A10 C11 A12 U16 G17	A21 A21 C22 A23 A24 A26 G26 G26			
• Molecule 85:	RNA32			
Chain lD:	19% 25%	75%		
A1 U2 U3 A4 A5 C5 U3 A10 C11 C11				
• Molecule 86:	RNA15			
Chain lE:	28%	45%	28%	-
C1 C2 C3 C3 C3 C4 C4 A6 C5 A6 C1 C1	615 016 017 017 017 013 020 020 022 022 022 022 022 022 022 02	A 28		
• Molecule 87:	RNA10			
Chain lF:	48%	41%	11%	I
61 14 110 110 111 111 113 113 115 115	016 017 018 019 019 021 022 023 024 025 026	467 467 467 467 467 467 467 467 467 467	A63 664 665 0665 0665 0665 0665 0767 077 079 A80 A80 C82 C82	A83 A84 A85 A86 A87 A87 A87
• Molecule 88:	LSUC			
Chain lG:	58%		42%	•
C1 U2 A3 A3 A3 C1 C11 C11 A15	A16 A17 G19 C19 A24 A26 A26 A26			
• Molecule 89:	RNA16			
Chain lH:	56%	30%	15%	-
<mark>U1</mark> U2 C3 66 61 61 61 61 61	617 U18 U24 A26 A26 A26			
• Molecule 90:	RNA13			
Chain II:	48%	44%	8%	
A2 A3 G5 G5 G14 G14 C16 C16 C17	618 619 721 622 622 632 632 636 836 836 836	A38 A38 A40 A41 A43 A43 A44 A47 A48 A48 A48		
		WORLDWIDE PROTEIN DATA BANK		

• Molecule 101: u	ulr5		
Chain lT:	50%	36%	14%
U U2 U3 U5 U5 U4 U5			
• Molecule 101: u	ulr5		
Chain lW:	50%	50%	
<mark>U1</mark> U2 U1 U11 U13 U13 U13 U13			
• Molecule 102: u	ılr6		
Chain lU:	40%	47%	13%
U1 U2 U3 U5 U5 U10 U10 U14			
• Molecule 103: u	ulr7,ulr8		
Chain lV:	40%	60%	
11 12 14 15 16 17 10 17 10			
• Molecule 103: 1	ulr7,ulr8		
Chain lY:	30%	100% 50%	20%
U1 U3 U3 U5 U5 U5 U1 U10			
• Molecule 104: 1	ulr9		
Chain lX:	é 47%	43%	9%
UI UZ UI UI UI UI UI UI	U1 4 U1 5 U1 6 U1 8 U1 8 U2 8 U2 8 U2 8 U2 8 U2 8 U2 8 U2 8 U2	u3 103 103 103 103 104 104 104 104 105 105 105 105 105 105 105 105 105 105	U58

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	22169	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TALOS ARCTICA	Depositor
Voltage (kV)	200	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	500	Depositor
Maximum defocus (nm)	2500	Depositor
Magnification	59000	Depositor
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	2.021	Depositor
Minimum map value	-0.059	Depositor
Average map value	0.003	Depositor
Map value standard deviation	0.032	Depositor
Recommended contour level	0.15	Depositor
Map size (Å)	520.785, 520.785, 520.785	wwPDB
Map dimensions	450, 450, 450	wwPDB
Map angles ($^{\circ}$)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.1573, 1.1573, 1.1573	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	LO	2.08	101/3065~(3.3%)	1.70	27/4138~(0.7%)	
2	L1	1.86	25/789~(3.2%)	1.54	5/1064~(0.5%)	
3	L2	1.59	42/2147~(2.0%)	1.34	13/2899~(0.4%)	
4	L3	1.88	62/2259~(2.7%)	1.55	21/3068~(0.7%)	
5	L4	1.26	42/3505~(1.2%)	1.04	14/4737~(0.3%)	
6	L5	2.80	20/270~(7.4%)	2.23	5/355~(1.4%)	
7	L6	1.47	7/491~(1.4%)	1.20	2/664~(0.3%)	
8	L7	1.87	32/920~(3.5%)	1.49	5/1230~(0.4%)	
9	L8	1.95	64/2066~(3.1%)	1.55	17/2794~(0.6%)	
10	L9	0.92	18/3996~(0.5%)	0.85	10/5422~(0.2%)	
11	LA	1.91	59/1758~(3.4%)	1.53	12/2387~(0.5%)	
12	LB	2.10	41/1059~(3.9%)	1.68	11/1427~(0.8%)	
13	LC	1.82	98/2963~(3.3%)	1.43	24/4015~(0.6%)	
14	LD	1.92	49/1900~(2.6%)	1.63	13/2566~(0.5%)	
15	LE	1.38	12/2172~(0.6%)	1.18	11/2948~(0.4%)	
16	LF	1.69	21/757~(2.8%)	1.37	2/1025~(0.2%)	
17	LG	1.47	26/1295~(2.0%)	1.26	9/1758~(0.5%)	
18	LH	1.84	25/707~(3.5%)	1.47	4/953~(0.4%)	
19	LI	1.74	22/628~(3.5%)	1.43	4/840~(0.5%)	
20	LJ	2.10	142/3731~(3.8%)	1.68	52/5048~(1.0%)	
21	LK	1.85	60/1961~(3.1%)	1.53	11/2643~(0.4%)	
22	LL	1.26	62/4945~(1.3%)	1.07	14/6705~(0.2%)	
23	LM	1.81	39/1403~(2.8%)	1.45	7/1893~(0.4%)	
24	LN	2.39	52/1009~(5.2%)	1.99	15/1346~(1.1%)	
25	LO	2.01	109/2708~(4.0%)	1.61	31/3659~(0.8%)	
26	LP	1.74	41/1683~(2.4%)	1.43	13/2272~(0.6%)	
27	LQ	2.56	40/614~(6.5%)	2.03	11/822~(1.3%)	
28	LR	2.28	40/757~(5.3%)	1.80	12/1018~(1.2%)	
29	LS	1.83	71/1858~(3.8%)	1.46	14/2522~(0.6%)	
30	LT	1.82	30/986~(3.0%)	1.51	10/1317~(0.8%)	
31	LU	2.00	24/635 $(3.8%)$	1.61	$2/858$ $\overline{(0.2\%)}$	
32	LV	1.58	73/5258~(1.4%)	1.31	24/7127~(0.3%)	
33	LW	2.00	$\overline{101/2500}~(4.0\%)$	1.64	$\overline{16/3377}~(0.5\%)$	
34	LX	2.15	$\overline{30/797}~(3.8\%)$	1.76	8/1071~(0.7%)	

	Chain	I	Bond lengths]	Bond angles
INIOI	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
35	LY	1.81	78/2977~(2.6%)	1.51	23/3997~(0.6%)
36	LZ	1.94	43/1638~(2.6%)	1.55	19/2217~(0.9%)
37	La	2.07	76/1823 $(4.2%)$	1.66	22/2471~(0.9%)
38	Lb	2.21	207/5031 (4.1%)	1.79	66/6788~(1.0%)
39	Lc	1.98	114/3872 (2.9%)	1.62	32/5251 (0.6%)
40	Ld	1.70	83/3576~(2.3%)	1.39	27/4852~(0.6%)
41	Le	1.67	65/3118 (2.1%)	1.40	21/4192 (0.5%)
42	Lf	1.56	37/1751 (2.1%)	1.34	6/2364 (0.3%)
43	Lg	2.02	58/1862 (3.1%)	1.71	19/2499 (0.8%)
44	Lh	1.82	103/3781 (2.7%)	1.49	24/5115 (0.5%)
45	Li	1.54	72/3927 (1.8%)	1.29	23/5332 (0.4%)
46	Lj	2.31	49/994 (4.9%)	1.77	17/1333 (1.3%)
47	Lk	1.76	34/1544 (2.2%)	1.43	6/2074~(0.3%)
48	Ll	1.94	53/1618 (3.3%)	1.59	13/2181 (0.6%)
49	Lm	1.99	67/1525 (4.4%)	1.61	9/2043 (0.4%)
50	Ln	1.53	6/457 (1.3%)	1.42	1/624 (0.2%)
51	Lo	2.17	97/2288 (4.2%)	1.70	$28/3100 \ (0.9\%)$
52	Lp	2.11	126/3153 (4.0%)	1.71	36/4245 (0.8%)
53	Lq	1.50	94/5374 $(1.7%)$	1.22	19/7299 (0.3%)
54	Lr	1.57	55/2409 (2.3%)	1.32	18/3241 (0.6%)
55	Ls	1.80	71/2617~(2.7%)	1.48	26/3512~(0.7%)
56	Lt	2.04	42/1604 (2.6%)	1.64	14/2174~(0.6%)
57	Lu	1.74	42/1873~(2.2%)	1.45	7/2532~(0.3%)
58	Lv	1.75	31/952~(3.3%)	1.43	3/1286~(0.2%)
59	Lw	1.63	31/1477~(2.1%)	1.36	12/1994~(0.6%)
60	Lx	1.91	25/812~(3.1%)	1.54	6/1093~(0.5%)
61	Ly	2.12	120/2895~(4.1%)	1.71	30/3911~(0.8%)
62	Lz	1.81	27/1021~(2.6%)	1.48	6/1377~(0.4%)
63	UA	1.66	16/728~(2.2%)	1.39	4/976~(0.4%)
64	UB	1.99	55/1489~(3.7%)	1.58	14/2016~(0.7%)
65	UC	0.96	8/890~(0.9%)	0.85	1/1201~(0.1%)
66	UD	1.93	13/316~(4.1%)	1.61	3/416~(0.7%)
67	UE	1.67	24/960~(2.5%)	1.39	11/1289~(0.9%)
68	UF	2.23	32/698~(4.6%)	1.82	14/935~(1.5%)
69	UG	1.89	34/1377~(2.5%)	1.53	8/1856~(0.4%)
70	UH	2.00	15/408~(3.7%)	1.77	5/537~(0.9%)
71	UI	1.56	6/298~(2.0%)	1.36	1/393~(0.3%)
72	10	1.78	26/1046~(2.5%)	1.78	37/1627~(2.3%)
73	11	2.52	$\overline{73/1199}~(6.1\%)$	2.41	$1\overline{04/1866}~(5.6\%)$
74	12	2.57	50/738~(6.8%)	2.52	73/1147~(6.4%)
75	13	2.64	94/1403~(6.7%)	2.49	$\overline{132/2182}~(6.0\%)$
76	14	2.72	$1\overline{65/2225}\ (7.4\%)$	2.62	$2\overline{41/3461}\ (7.0\%)$
77	15	2.30	43/849(5.1%)	2.29	69/1319~(5.2%)

Mal	Chain	Bond lengths		Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
78	l6	2.39	61/1204~(5.1%)	2.41	98/1873~(5.2%)	
79	17	2.48	94/1663~(5.7%)	2.53	155/2589~(6.0%)	
80	18	1.19	1/793~(0.1%)	1.60	11/1233~(0.9%)	
81	19	2.82	177/2152~(8.2%)	2.60	242/3347~(7.2%)	
82	lA	2.02	53/1553~(3.4%)	2.08	89/2417~(3.7%)	
83	lB	2.72	85/1108~(7.7%)	2.56	115/1730~(6.6%)	
84	lC	1.80	15/653~(2.3%)	1.97	33/1014~(3.3%)	
85	lD	3.16	38/378~(10.1%)	2.87	54/585~(9.2%)	
86	lE	2.60	49/708~(6.9%)	2.52	79/1103~(7.2%)	
87	lF	2.27	104/2105~(4.9%)	2.28	150/3278~(4.6%)	
88	lG	1.84	20/630~(3.2%)	1.83	30/980~(3.1%)	
89	lH	1.67	16/638~(2.5%)	1.80	26/991~(2.6%)	
90	lI	2.51	72/1169~(6.2%)	2.44	107/1821~(5.9%)	
91	lJ	2.36	361/6628~(5.4%)	2.29	518/10319~(5.0%)	
92	lK	1.96	29/921~(3.1%)	1.99	46/1435~(3.2%)	
93	lL	2.58	142/2185~(6.5%)	2.50	213/3402~(6.3%)	
94	lM	2.03	177/4604~(3.8%)	2.01	268/7167~(3.7%)	
95	lN	2.28	78/1473~(5.3%)	2.19	106/2290~(4.6%)	
96	lO	2.65	298/4302~(6.9%)	2.58	457/6700~(6.8%)	
97	lP	2.36	30/637~(4.7%)	2.64	54/982~(5.5%)	
98	lQ	2.17	32/813~(3.9%)	2.38	53/1254~(4.2%)	
99	lR	2.66	38/615~(6.2%)	2.87	63/948~(6.6%)	
100	lS	0.08	0/153	0.69	0/234	
101	lT	2.09	12/307~(3.9%)	2.26	18/472~(3.8%)	
101	lW	2.04	9/307~(2.9%)	2.29	16/472~(3.4%)	
102	lU	2.28	14/329 (4.3%)	2.48	23/506~(4.5%)	
103	lV	2.46	12/219~(5.5%)	2.64	18/336~(5.4%)	
103	lY	1.35	0/219	2.32	12/336~(3.6%)	
104	lX	1.69	26/1275~(2.0%)	1.96	47/1968~(2.4%)	
All	All	1.97	6283/183926~(3.4%)	1.77	4800/258068~(1.9%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
2	L1	0	1
22	LL	0	1
37	La	0	1
40	Ld	0	1
53	Lq	0	1

Mol	Chain	#Chirality outliers	#Planarity outliers
61	Ly	0	1
72	10	0	1
78	16	0	1
79	17	0	1
80	18	0	1
82	lA	0	2
84	lC	0	3
91	lJ	0	5
92	lK	0	2
94	lM	0	3
95	lN	0	1
96	lO	0	1
97	lP	0	1
101	lW	0	1
103	lY	0	6
104	lX	0	1
All	All	0	36

The worst 5 of 6283 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
96	lO	99	А	C6-N6	-13.05	1.23	1.33
96	lO	48	А	C6-N6	-12.96	1.23	1.33
83	lB	19	А	C6-N6	-12.90	1.23	1.33
93	lL	74	А	C6-N6	-12.82	1.23	1.33
85	lD	10	А	C6-N6	-12.80	1.23	1.33

The worst 5 of 4800 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
96	lO	60	A	N1-C2-N3	13.24	135.92	129.30
78	16	25	A	N1-C2-N3	13.01	135.80	129.30
91	lJ	278	A	N7-C8-N9	12.66	120.13	113.80
94	lM	184	A	N7-C8-N9	12.57	120.09	113.80
96	lO	60	А	N7-C8-N9	12.53	120.06	113.80

There are no chirality outliers.

5 of 36 planarity outliers are listed below:

	Onam	Ites	Type	Group
2	L1	481	TYR	Sidechain

	5	1	1 5	
Mol	Chain	\mathbf{Res}	Type	Group
22	LL	296	HIS	Mainchain
37	La	134	TYR	Sidechain
40	Ld	489	SER	Mainchain
53	Lq	765	ARG	Sidechain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	LO	2984	0	2988	5	0
2	L1	768	0	774	1	0
3	L2	2111	0	2147	5	0
4	L3	2196	0	2156	3	0
5	L4	3430	0	3454	12	0
6	L5	264	0	288	0	0
7	L6	476	0	503	0	0
8	L7	906	0	973	3	0
9	L8	2008	0	1998	2	0
10	L9	3888	0	3896	15	0
11	LA	1708	0	1745	5	0
12	LB	1033	0	1052	4	0
13	LC	2909	0	2949	11	0
14	LD	1847	0	1840	2	0
15	LE	2118	0	2118	10	0
16	LF	731	0	744	2	0
17	LG	1253	0	1225	7	0
18	LH	693	0	729	0	0
19	LI	613	0	652	1	0
20	LJ	3640	0	3677	19	0
21	LK	1905	0	1879	3	0
22	LL	4847	0	4916	14	0
23	LM	1376	0	1435	4	0
24	LN	986	0	1036	2	0
25	LO	2647	0	2725	5	0
26	LP	1636	0	1577	4	0
27	LQ	600	0	618	1	0
28	LR	738	0	728	1	0
29	LS	1812	0	1884	3	0

Mol	Chain	Non-H	$\mathbf{H}(\mathbf{model})$	H(added)	Clashes	Symm-Clashes
30	LT	965	0	1013	3	0
31	LU	623	0	665	1	0
32	LV	5149	0	5211	21	0
33	LW	2433	0	2442	12	0
34	LX	779	0	762	1	0
35	LY	2909	0	2976	3	0
36	LZ	1591	0	1608	4	0
37	La	1769	0	1799	0	0
38	Lb	4929	0	5042	0	0
39	Lc	3797	0	3835	0	0
40	Ld	3507	0	3563	0	0
41	Le	3057	0	3083	0	0
42	Lf	1709	0	1711	0	0
43	Lg	1824	0	1879	0	0
44	Lh	3675	0	3687	0	0
45	Li	3833	0	3922	0	0
46	Lj	977	0	1019	0	0
47	Lk	1502	0	1491	0	0
48	Ll	1573	0	1585	0	0
49	Lm	1501	0	1559	0	0
50	Ln	442	0	417	0	0
51	Lo	2219	0	2223	0	0
52	Lp	3074	0	3164	0	0
53	Lq	5268	0	5324	0	0
54	Lr	2342	0	2310	0	0
55	Ls	2565	0	2644	0	0
56	Lt	1556	0	1518	0	0
57	Lu	1834	0	1841	0	0
58	Lv	928	0	960	0	0
59	Lw	1440	0	1483	0	0
60	Lx	796	0	824	0	0
61	Ly	2821	0	2849	0	0
62	Lz	994	0	944	0	0
63	UA	709	0	752	2	0
64	UB	1451	0	1477	1	0
65	UC	864	0	888	4	0
66	UD	308	0	321	0	0
67	UE	935	0	927	2	0
68	UF	672	0	664	0	0
69	UG	1343	0	1341		0
70	UH	401	0	427		0
71	UI	293	0	320	0	0

	Choin	Non H	H(model)	H(addad)	Clashes	Symm Clashes
70		0.26		II(audeu)	Clashes	Symm-Clashes
72	10	930	0	401	0	0
73		1070	0	494	0	0
74	12	660	0	300	0	0
75	13	1254	0	581	0	0
76	14	1991	0	906	0	0
77	15	761	0	358	0	0
78	16	1072	0	503	0	0
79	17	1481	0	683	0	0
80	18	707	0	357	0	0
81	19	1926	0	867	0	0
82	lA	1387	0	666	0	0
83	lB	985	0	433	0	0
84	lC	583	0	283	0	0
85	lD	338	0	152	0	0
86	lE	630	0	285	0	0
87	lF	1880	0	883	0	0
88	lG	561	0	271	0	0
89	lH	572	0	273	0	0
90	lI	1039	0	471	0	0
91	lJ	5929	0	2780	0	0
92	lK	821	0	396	0	0
93	lL	1948	0	890	0	0
94	lM	4121	0	1965	0	0
95	lN	1316	0	619	0	0
96	10	3841	0	1750	0	0
97	lP	580	0	276	0	0
98	lQ	740	0	355	0	0
99	lR	560	0	262	0	0
100	lS	140	0	71	0	0
101	lT	280	0	135	0	0
101	lW	280	0	136	0	0
102	lU	300	0	144	0	0
103	lV	200	0	95	0	0
103	lY	200	0	101	0	0
104	IX	1160	0	568	0	0
All	All	175729	0	154946	188	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 2.

The worst 5 of 188 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:L0:470:SER:O	1:L0:473:ASN:ND2	2.20	0.75
36:LZ:42:LEU:HD23	36:LZ:51:GLN:OE1	1.87	0.74
3:L2:118:LEU:O	3:L2:122:VAL:HG23	1.90	0.72
15:LE:464:ARG:NH2	15:LE:506:GLN:OE1	2.23	0.72
32:LV:407:ARG:O	32:LV:411:VAL:HG22	1.90	0.70

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	LO	349/405~(86%)	335~(96%)	14 (4%)	0	100	100
2	L1	90/92~(98%)	89~(99%)	1 (1%)	0	100	100
3	L2	268/270~(99%)	263~(98%)	5 (2%)	0	100	100
4	L3	268/331~(81%)	258~(96%)	10 (4%)	0	100	100
5	L4	420/430~(98%)	413 (98%)	7 (2%)	0	100	100
6	L5	28/30~(93%)	26~(93%)	2 (7%)	0	100	100
7	L6	53/57~(93%)	53~(100%)	0	0	100	100
8	L7	112/114~(98%)	110 (98%)	2 (2%)	0	100	100
9	L8	235/246~(96%)	226 (96%)	9 (4%)	0	100	100
10	L9	473/475~(100%)	461 (98%)	12 (2%)	0	100	100
11	LA	215/217~(99%)	206 (96%)	9 (4%)	0	100	100
12	LB	119/121~(98%)	115 (97%)	4 (3%)	0	100	100
13	LC	370/527~(70%)	359~(97%)	11 (3%)	0	100	100
14	LD	221/282~(78%)	213 (96%)	8 (4%)	0	100	100
15	LE	259/338~(77%)	255 (98%)	4 (2%)	0	100	100
16	LF	86/88~(98%)	84 (98%)	2 (2%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	\mathbf{ntiles}
17	LG	146/148~(99%)	139 (95%)	7 (5%)	0	100	100
18	LH	85/87~(98%)	83 (98%)	2 (2%)	0	100	100
19	LI	77/79~(98%)	75 (97%)	2 (3%)	0	100	100
20	LJ	441/443~(100%)	423 (96%)	18 (4%)	0	100	100
21	LK	217/219~(99%)	210 (97%)	6 (3%)	1 (0%)	25	56
22	LL	615/855~(72%)	598 (97%)	17 (3%)	0	100	100
23	LM	175/177~(99%)	167 (95%)	8 (5%)	0	100	100
24	LN	111/113~(98%)	109 (98%)	2 (2%)	0	100	100
25	LO	342/344~(99%)	318 (93%)	24 (7%)	0	100	100
26	LP	198/230~(86%)	191 (96%)	7 (4%)	0	100	100
27	LQ	68/70~(97%)	63 (93%)	5 (7%)	0	100	100
28	LR	82/132~(62%)	81 (99%)	1 (1%)	0	100	100
29	LS	226/228~(99%)	219 (97%)	7 (3%)	0	100	100
30	LT	109/117~(93%)	108 (99%)	1 (1%)	0	100	100
31	LU	77/79~(98%)	73 (95%)	4 (5%)	0	100	100
32	LV	642/880~(73%)	629 (98%)	13 (2%)	0	100	100
33	LW	304/306~(99%)	287 (94%)	17 (6%)	0	100	100
34	LX	90/92~(98%)	87 (97%)	3 (3%)	0	100	100
35	LY	344/346~(99%)	337~(98%)	7 (2%)	0	100	100
36	LZ	195/197~(99%)	189 (97%)	6 (3%)	0	100	100
37	La	212/214~(99%)	203~(96%)	9 (4%)	0	100	100
38	Lb	601/733~(82%)	584 (97%)	17 (3%)	0	100	100
39	Lc	469/512~(92%)	442 (94%)	27 (6%)	0	100	100
40	Ld	435/437~(100%)	419 (96%)	16 (4%)	0	100	100
41	Le	374/376~(100%)	366 (98%)	8 (2%)	0	100	100
42	Lf	212/226~(94%)	204 (96%)	8 (4%)	0	100	100
43	Lg	$\overline{212/214}\ (99\%)$	209 (99%)	3 (1%)	0	100	100
44	Lh	437/464~(94%)	428 (98%)	9 (2%)	0	100	100
45	Li	463/602~(77%)	450 (97%)	13 (3%)	0	100	100
46	Lj	120/122 (98%)	118 (98%)	2 (2%)	0	100	100
47	Lk	$\overline{182/184}\ (99\%)$	172 (94%)	10 (6%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
48	Ll	188/190~(99%)	179~(95%)	9~(5%)	0	100	100
49	Lm	180/189~(95%)	176 (98%)	4 (2%)	0	100	100
50	Ln	58/60~(97%)	51 (88%)	7 (12%)	0	100	100
51	Lo	281/283~(99%)	268~(95%)	13 (5%)	0	100	100
52	Lp	366/368~(100%)	353~(96%)	13 (4%)	0	100	100
53	Lq	677/787~(86%)	649 (96%)	28 (4%)	0	100	100
54	Lr	279/281~(99%)	272~(98%)	7(2%)	0	100	100
55	Ls	309/311~(99%)	294~(95%)	15~(5%)	0	100	100
56	Lt	184/240~(77%)	180 (98%)	4 (2%)	0	100	100
57	Lu	228/232~(98%)	218 (96%)	10 (4%)	0	100	100
58	Lv	110/112~(98%)	108~(98%)	2(2%)	0	100	100
59	Lw	177/179~(99%)	168 (95%)	9~(5%)	0	100	100
60	Lx	96/98~(98%)	92~(96%)	4 (4%)	0	100	100
61	Ly	336/404~(83%)	325~(97%)	11 (3%)	0	100	100
62	Lz	118/120~(98%)	118 (100%)	0	0	100	100
63	UA	83/85~(98%)	83 (100%)	0	0	100	100
64	UB	172/174~(99%)	169 (98%)	3 (2%)	0	100	100
65	UC	103/105~(98%)	100 (97%)	3(3%)	0	100	100
66	UD	33/35~(94%)	32 (97%)	1 (3%)	0	100	100
67	UE	111/113~(98%)	109 (98%)	2(2%)	0	100	100
68	UF	76/78~(97%)	74 (97%)	2(3%)	0	100	100
69	UG	156/158~(99%)	156 (100%)	0	0	100	100
70	UH	45/47~(96%)	44 (98%)	1 (2%)	0	100	100
71	UI	33/35~(94%)	29 (88%)	4 (12%)	0	100	100
All	All	16226/17933~(90%)	15694 (97%)	531 (3%)	1 (0%)	100	100

All (1) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
21	LK	184	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	LO	317/359~(88%)	315~(99%)	2(1%)	84	95
2	L1	83/83~(100%)	82~(99%)	1 (1%)	67	89
3	L2	227/227~(100%)	226 (100%)	1 (0%)	89	97
4	L3	232/281~(83%)	231 (100%)	1 (0%)	89	97
5	L4	371/375~(99%)	369 (100%)	2 (0%)	86	96
6	L5	26/26~(100%)	26 (100%)	0	100	100
7	L6	51/51~(100%)	51 (100%)	0	100	100
8	L7	95/96~(99%)	95 (100%)	0	100	100
9	L8	212/218~(97%)	211 (100%)	1 (0%)	86	96
10	L9	418/418 (100%)	416 (100%)	2 (0%)	86	96
11	LA	180/180 (100%)	180 (100%)	0	100	100
12	LB	105/105~(100%)	104 (99%)	1 (1%)	73	91
13	LC	309/423~(73%)	309 (100%)	0	100	100
14	LD	194/241~(80%)	193 (100%)	1 (0%)	86	96
15	LE	222/281~(79%)	222 (100%)	0	100	100
16	LF	78/78~(100%)	78 (100%)	0	100	100
17	LG	131/131 (100%)	129 (98%)	2 (2%)	60	85
18	LH	71/71~(100%)	71 (100%)	0	100	100
19	LI	65/65~(100%)	65 (100%)	0	100	100
20	LJ	381/382~(100%)	377~(99%)	4 (1%)	73	91
21	LK	199/199~(100%)	199 (100%)	0	100	100
22	LL	523/701~(75%)	519 (99%)	4 (1%)	79	93
23	LM	149/149~(100%)	149 (100%)	0	100	100
24	LN	106/106 (100%)	104 (98%)	2 (2%)	52	81
25	LO	271/272~(100%)	269 (99%)	2 (1%)	81	94
26	LP	$\overline{171/195}\ (88\%)$	167 (98%)	4 (2%)	45	77

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
27	LQ	62/62~(100%)	62~(100%)	0	100	100
28	LR	82/114~(72%)	82 (100%)	0	100	100
29	LS	205/205~(100%)	205 (100%)	0	100	100
30	LT	102/106~(96%)	100 (98%)	2 (2%)	50	79
31	LU	69/69~(100%)	69 (100%)	0	100	100
32	LV	538/705~(76%)	532 (99%)	6 (1%)	70	90
33	LW	262/263~(100%)	258 (98%)	4 (2%)	60	85
34	LX	85/85~(100%)	81 (95%)	4 (5%)	22	55
35	LY	300/302~(99%)	297~(99%)	3 (1%)	73	91
36	LZ	166/166~(100%)	166 (100%)	0	100	100
37	La	193/193~(100%)	193 (100%)	0	100	100
38	Lb	520/626~(83%)	513 (99%)	7 (1%)	65	88
39	Lc	412/450~(92%)	403 (98%)	9 (2%)	47	78
40	Ld	387/388~(100%)	377 (97%)	10 (3%)	41	74
41	Le	311/311~(100%)	310 (100%)	1 (0%)	91	97
42	Lf	174/181~(96%)	174 (100%)	0	100	100
43	Lg	192/192~(100%)	192 (100%)	0	100	100
44	Lh	391/406~(96%)	389 (100%)	2 (0%)	86	96
45	Li	421/526~(80%)	417 (99%)	4 (1%)	73	91
46	Lj	105/105~(100%)	102 (97%)	3 (3%)	37	72
47	Lk	156/156~(100%)	156 (100%)	0	100	100
48	Ll	169/169~(100%)	169 (100%)	0	100	100
49	Lm	165/170~(97%)	165 (100%)	0	100	100
50	Ln	44/44 (100%)	44 (100%)	0	100	100
51	Lo	235/236~(100%)	232 (99%)	3 (1%)	65	88
52	Lp	329/330~(100%)	328 (100%)	1 (0%)	91	97
53	Lq	557/637~(87%)	555 (100%)	2 (0%)	89	97
54	Lr	241/242~(100%)	239 (99%)	2 (1%)	79	93
55	Ls	268/268~(100%)	265~(99%)	3 (1%)	70	90
56	Lt	165/201~(82%)	164 (99%)	1 (1%)	84	95
57	Lu	196/197~(100%)	196 (100%)	0	100	100

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
58	Lv	101/101~(100%)	100 (99%)	1 (1%)	73	91
59	Lw	152/152~(100%)	151 (99%)	1 (1%)	81	94
60	Lx	86/86~(100%)	86 (100%)	0	100	100
61	Ly	303/351~(86%)	301~(99%)	2 (1%)	81	94
62	Lz	103/103~(100%)	102 (99%)	1 (1%)	73	91
63	UA	76/76~(100%)	76 (100%)	0	100	100
64	UB	159/159~(100%)	158 (99%)	1 (1%)	84	95
65	UC	95/95~(100%)	93~(98%)	2 (2%)	48	78
66	UD	30/30~(100%)	29~(97%)	1 (3%)	33	68
67	UE	103/103~(100%)	102 (99%)	1 (1%)	73	91
68	UF	71/71~(100%)	70 (99%)	1 (1%)	62	86
69	UG	139/139~(100%)	139 (100%)	0	100	100
70	UH	43/43~(100%)	42 (98%)	1 (2%)	45	77
71	UI	30/30~(100%)	29 (97%)	1 (3%)	33	68
All	All	14180/15357~(92%)	14070 (99%)	110 (1%)	77	93

 $5~{\rm of}~110$ residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
39	Lc	150	GLN
40	Ld	537	LEU
71	UI	389	ARG
61	Ly	370	TRP
39	Lc	235	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 13 such sidechains are listed below:

Mol	Chain	Res	Type
29	LS	110	GLN
45	Li	191	HIS
67	UE	118	HIS
53	Lq	522	HIS
59	Lw	106	HIS

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
100	lS	6/7~(85%)	1 (16%)	0
101	lT	13/14~(92%)	3~(23%)	0
101	lW	13/14~(92%)	1 (7%)	0
102	lU	14/15~(93%)	4 (28%)	0
103	lV	9/10~(90%)	0	0
103	lY	9/10~(90%)	5~(55%)	0
104	lX	57/58~(98%)	21 (36%)	0
72	10	43/44~(97%)	12 (27%)	0
73	11	49/50~(98%)	11 (22%)	0
74	12	29/31~(93%)	6(20%)	0
75	13	58/59~(98%)	12 (20%)	0
76	14	93/94~(98%)	26 (27%)	0
77	15	35/36~(97%)	7~(20%)	0
78	16	47/50~(94%)	7(14%)	0
79	17	67/69~(97%)	11 (16%)	0
80	18	31/33~(93%)	9~(29%)	0
81	19	90/91~(98%)	15 (16%)	0
82	lA	64/65~(98%)	16 (25%)	0
83	lB	43/45~(95%)	12 (27%)	0
84	lC	25/27~(92%)	4 (16%)	0
85	lD	15/16~(93%)	0	0
86	lE	25/29~(86%)	11 (44%)	0
87	lF	87/88~(98%)	19 (21%)	0
88	lG	25/26~(96%)	4 (16%)	0
89	lH	26/27~(96%)	8~(30%)	0
90	lI	45/48~(93%)	5(11%)	0
91	lJ	277/279~(99%)	58 (20%)	0
92	lK	36/38~(94%)	8 (22%)	0
93	lL	89/91~(97%)	7~(7%)	0
94	lM	192/194~(98%)	41 (21%)	0
95	lN	$\overline{58/62}$ (93%)	7 (12%)	0
96	lO	179/180~(99%)	36 (20%)	0
97	lP	$\overline{28/29}$ (96%)	11 (39%)	0
98	lQ	36/37~(97%)	8 (22%)	0
99	lR	27/28~(96%)	3 (11%)	0
All	All	1940/1994~(97%)	409 (21%)	0

5 of 409 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
72	10	12	А
72	10	13	С
72	10	14	А
72	10	15	G

\mathbf{Mol}	Chain	\mathbf{Res}	Type
72	10	19	С

There are no RNA pucker outliers to report.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

The following chains have linkage breaks:

Mol	Chain	Number of breaks
7	L6	1
57	Lu	1
94	lM	1
91	lJ	1
84	lC	1

All chain breaks are listed below:

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	L6	267:ALA	С	533:ARG	Ν	44.09
1	Lu	451:GLY	С	462:GLU	Ν	29.06
1	lM	166:U	O3'	174:G	Р	22.23
1	lJ	103:U	O3'	108:U	Р	11.87

Model	Chain	Residue-1	Atom-1	Residue-2	Atom-2	Distance (Å)
1	lC	26:G	O3'	27:G	Р	3.50

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-51104. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 225

Z Index: 225

6.2.2 Raw map

X Index: 225

Y Index: 225

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

6.3.2 Raw map

X Index: 320

Y Index: 300

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.15. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_51104_msk_1.map$ (i) 6.6.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 871 $\rm nm^3;$ this corresponds to an approximate mass of 787 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.346 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.346 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{Bosolution} \text{ ostimato } (\mathbf{\hat{\lambda}})$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	2.89	-	-
Author-provided FSC curve	2.89	3.17	2.92
Unmasked-calculated*	3.39	4.15	3.44

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.39 differs from the reported value 2.89 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-51104 and PDB model 9G6K. Per-residue inclusion information can be found in section 3 on page 23.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.15 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.15).

9.4 Atom inclusion (i)

At the recommended contour level, 85% of all backbone atoms, 76% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.15) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score
All	0.7590	0.4820
LO	0.7970	0.5210
L1	0.7040	0.4720
L2	0.7320	0.4540
L3	0.8040	0.5190
L4	0.7980	0.5150
L5	0.7310	0.4910
L6	0.6090	0.4260
L7	0.6780	0.4810
L8	0.8520	0.5520
L9	0.7770	0.4980
LA	0.8410	0.5520
LB	0.8640	0.5600
LC	0.7640	0.4930
LD	0.7240	0.4780
LE	0.7590	0.5080
m LF	0.8790	0.5590
LG	0.8490	0.5420
LH	0.7190	0.4940
LI	0.7910	0.5350
LJ	0.8660	0.5550
LK	0.8180	0.5250
LL	0.7160	0.4680
LM	0.5640	0.3890
LN	0.8640	0.5720
LO	0.7640	0.5090
LP	0.8430	0.5430
LQ	0.8480	0.5480
LR	0.7570	0.5260
LS	0.8330	0.5430
LT	0.7210	0.4830
$L\overline{U}$	0.8450	0.5600
LV	0.7500	0.4880
LW	0.8170	0.5450
LX	0.7530	0.4910

 $Continued \ on \ next \ page...$

Continued from previous page...

Chain	Atom inclusion	Q-score
LY	0.8260	0.5450
LZ	0.8150	0.5380
La	0.8570	0.5640
Lb	0.8030	0.5230
Lc	0.5540	0.2980
Ld	0.5930	0.3190
Le	0.7060	0.4890
Lf	0.7690	0.5000
Lg	0.8590	0.5490
Lh	0.7570	0.5050
Li	0.7330	0.4750
Lj	0.7980	0.5370
Lk	0.8050	0.5160
Ll	0.8040	0.5280
Lm	0.7480	0.5230
Ln	0.8120	0.5000
Lo	0.7970	0.5100
Lp	0.8030	0.5270
Lq	0.6820	0.4190
Lr	0.8440	0.5550
Ls	0.7690	0.5080
Lt	0.6980	0.4670
Lu	0.7490	0.4960
Lv	0.6490	0.4380
Lw	0.7810	0.4930
Lx	0.7390	0.4940
Ly	0.8140	0.5370
Lz	0.7920	0.5240
UA	0.8060	0.5490
UB	0.8540	0.5470
UC	0.7060	0.4980
UD	0.8720	0.5650
UE	0.7600	0.5040
UF	0.8520	0.5550
UG	0.7970	0.5340
UH	0.8300	0.5540
UI	0.5490	0.2930
10	0.8140	0.4580
<u>l1</u>	0.8700	0.5130
12	0.6390	0.3320
13	0.8200	0.4840
14	0.8620	0.5000

Continued on next page...

Chain	Atom inclusion	Q-score
15	0.6660	0.4220
16	0.8520	0.4920
17	0.8570	0.5200
18	0.7570	0.4220
19	0.8690	0.5050
lA	0.8420	0.4720
lB	0.8270	0.4510
lC	0.7670	0.4090
lD	0.7100	0.4240
lE	0.7630	0.4360
lF	0.7700	0.4700
lG	0.8130	0.4690
lH	0.7590	0.4380
lI	0.7060	0.4610
lJ	0.4820	0.2990
lK	0.7530	0.4470
lL	0.8490	0.5110
lM	0.5990	0.3750
lN	0.7970	0.4960
lO	0.8230	0.4950
lP	0.8170	0.4200
lQ	0.7840	0.4170
lR	0.8230	0.4590
lS	0.6000	0.4180
lT	0.8070	0.4370
lU	0.5800	0.3320
lV	0.8550	0.4880
lW	0.8500	0.4700
lX	0.7100	0.3880
lY	0.1550	0.0000

Continued from previous page...

