

wwPDB EM Validation Summary Report (i)

Nov 9, 2024 – 11:03 am GMT

PDB ID	:	9G8O
EMDB ID	:	EMD-51134
Title	:	human 40S ribosome bound by a SKI238-exosome complex
Authors	:	Koegel, A.; Keidel, A.; Loukeri, M.J.; Kuhn, C.C.; Langer, L.M.; Schaefer,
		I.B.; Conti, E.
Deposited on	:	2024-07-23
Resolution	:	3.40 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motrie	Whole archive	EM structures
Metric	$(\# { m Entries})$	$(\# { m Entries})$
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	В	1568	59% 59% 40%	
2	С	305	100%	
2	D	305	100%	
3	F	295	97%	
4	J	199	92%	• 8%
5	K	443	80%	20%
6	L	280	95%	5%
7	N	245	98%	

Continued on next page...

Mol	Chain	Length	Quality of chain	
	<u>_</u>		87%	
8	0	239	87%	13%
9	А	1246	89%	11%
10	Б	074	24%	
10	E	274	24% 76%	
11	G	272	92%	8%
12	Н	279	85%	15%
12	-	210	97%	77%
13	l	297	97%	•
14	Х	250	19% 30% • 51%	
15	Ln	25	12%	
	1211	20	89%	
16	М	1096	89%	11%
17	S2	1869	67% 25%	• 7%
18	SA	295	74%	25%
19	SB	264	80% .	19%
20	\mathbf{SC}	293	• 75% •	24%
21	SD	243	92%	8%
22	SE	263	98%	·
23	\mathbf{SF}	204	89%	11%
24	SG	249	92%	• 5%
25	CII	104	14%	
20	л	194	96%	• •
26	SI	208	98%	••
27	SJ	194	93%	• 5%
28	SK	165	9% 59% 41%	
29	SL	158	96%	••
30	SM	132	36%	21%
31	SN	151	<mark>6%</mark> 97%	••
32	SO	151	5% 90%	• 7%

Continued from previous page...

Continued on next page...

Mol	Chain	Length	Quality of chain	
33	SP	145	85%	15%
34	SQ	146	95%	5%
35	SR	135	96%	•••
36	SS	152	94%	6%
37	ST	145	99%	•
38	SU	119	87%	13%
39	SV	83	96%	•
40	SW	130	99%	•
41	SX	143	98%	••
42	SY	133	96%	••
43	SZ	125	58% 42%	
44	Sa	115	<u>8%</u> 92%	• 7%
45	Sb	84	99%	•
46	Sc	69	84% •	14%
47	Sd	56	98%	•
48	Se	59	98%	•
49	Sf	156	41% 59%	
50	Sg	317	98%	·

Continued from previous page...

2 Entry composition (i)

There are 50 unique types of molecules in this entry. The entry contains 125225 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Superkiller complex protein 3.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	В	934	Total 7299	C 4637	N 1259	O 1359	S 44	0	0

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
В	-3	GLY	-	expression tag	UNP Q6PGP7
В	-2	PRO	-	expression tag	UNP Q6PGP7
В	-1	ASP	-	expression tag	UNP Q6PGP7
В	0	SER	-	expression tag	UNP Q6PGP7

• Molecule 2 is a protein called WD repeat-containing protein 61.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	С	305	Total 2373	C 1507	N 399	O 462	${ m S}{ m 5}$	0	0
2	D	305	Total 2373	C 1507	N 399	0 462	${f S}{5}$	0	0

• Molecule 3 is a protein called Exosome complex component RRP42.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	F	286	Total 2194	C 1373	N 374	0 432	S 15	0	0

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
F	-3	GLY	-	expression tag	UNP Q15024
F	-2	PRO	-	expression tag	UNP Q15024
F	-1	ASP	-	expression tag	UNP Q15024
F	0	SER	-	expression tag	UNP Q15024

• Molecule 4 is a protein called Exosome complex component CSL4.

Mol	Chain	Residues		\mathbf{A}	AltConf	Trace			
4	J	184	Total 1414	C 889	N 248	O 267	S 10	0	0

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
J	-3	GLY	-	expression tag	UNP Q9Y3B2
J	-2	PRO	-	expression tag	UNP Q9Y3B2
J	-1	ASP	-	expression tag	UNP Q9Y3B2
J	0	SER	-	expression tag	UNP Q9Y3B2

• Molecule 5 is a protein called Exosome complex component RRP45.

Mol	Chain	Residues		At	AltConf	Trace			
5	K	353	Total 2764	С 1734	N 482	O 529	S 19	0	0

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
K	-3	GLY	-	expression tag	UNP Q06265
K	-2	PRO	-	expression tag	UNP Q06265
K	-1	ASP	-	expression tag	UNP Q06265
K	0	SER	-	expression tag	UNP Q06265

• Molecule 6 is a protein called Exosome complex component RRP43.

Mol	Chain	Residues		At	oms			AltConf	Trace
6	L	265	Total 2020	C 1272	N 337	O 397	S 14	0	0

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
L	-3	GLY	-	expression tag	UNP Q96B26
L	-2	PRO	-	expression tag	UNP Q96B26
L	-1	ASP	-	expression tag	UNP Q96B26
L	0	SER	-	expression tag	UNP Q96B26

• Molecule 7 is a protein called Exosome complex component RRP41.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	Ν	241	Total 1819	C 1123	N 343	O 344	S 9	0	0

• Molecule 8 is a protein called Exosome complex component RRP46.

Mol	Chain	Residues		A	AltConf	Trace			
8	0	208	Total 1566	C 979	N 278	O 297	S 12	0	0

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
0	-3	GLY	-	expression tag	UNP Q9NQT4
0	-2	PRO	-	expression tag	UNP Q9NQT4
0	-1	ASP	-	expression tag	UNP Q9NQT4
0	0	SER	-	expression tag	UNP Q9NQT4

• Molecule 9 is a protein called Helicase SKI2W.

Mol	Chain	Residues	Atoms					AltConf	Trace
9	А	1112	Total 8706	C 5519	N 1526	0 1613	S 48	0	0

• Molecule 10 is a protein called Isoform 2 of HBS1-like protein.

Mol	Chain	Residues	Atoms					AltConf	Trace
10	Е	66	Total 525	C 340	N 89	O 95	S 1	0	0

There are 10 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
E	365	GLY	-	expression tag	UNP $Q9Y450$
E	366	PRO	-	expression tag	UNP $Q9Y450$
Е	367	ASP	-	expression tag	UNP $Q9Y450$
E	368	SER	-	expression tag	UNP $Q9Y450$
Е	633	LEU	-	expression tag	UNP $Q9Y450$
Е	634	GLU	-	expression tag	UNP Q9Y450
Е	635	VAL	-	expression tag	UNP $Q9Y450$
Е	636	LEU	-	expression tag	UNP $Q9Y450$
Е	637	PHE	-	expression tag	UNP Q9Y450
Е	638	GLN	-	expression tag	UNP Q9Y450

• Molecule 11 is a protein called Exosome complex component MTR3.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
11	G	251	Total 1852	C 1149	N 352	0 344	${f S}7$	0	0

• Molecule 12 is a protein called Exosome complex component RRP40.

Mol	Chain	Residues		At	oms			AltConf	Trace
12	Н	237	Total 1806	C 1136	N 329	O 329	S 12	0	0

There are 5 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Н	-3	GLY	-	expression tag	UNP Q9NQT5
Н	-2	PRO	-	expression tag	UNP Q9NQT5
Н	-1	ASP	-	expression tag	UNP Q9NQT5
Н	0	SER	-	expression tag	UNP Q9NQT5
Н	225	HIS	TYR	variant	UNP Q9NQT5

• Molecule 13 is a protein called Exosome complex component RRP4.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	Ι	289	Total 2263	C 1424	N 405	0 419	S 15	0	0

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Ι	-3	GLY	-	expression tag	UNP Q13868
Ι	-2	PRO	-	expression tag	UNP Q13868
Ι	-1	ASP	-	expression tag	UNP Q13868
Ι	0	SER	-	expression tag	UNP Q13868

• Molecule 14 is a RNA chain called CrPV-IRES RNA.

Mol	Chain	Residues		A	toms			AltConf	Trace
14	Х	123	Total 2514	C 1126	N 375	O 890	Р 123	0	0

• Molecule 15 is a protein called 60S ribosomal protein L41.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
15	Ln	24	Total 230	C 139	N 62	O 26	${ m S} { m 3}$	0	0

• Molecule 16 is a protein called DIS3-like exonuclease 1.

Mol	Chain	Residues		Α	AltConf	Trace			
16	м	075	Total	С	Ν	Ο	\mathbf{S}	0	0
10	IVI	970	7903	4986	1405	1471	41	0	0

There are 43 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
М	-41	MET	-	initiating methionine	UNP Q8TF46
М	-40	SER	-	expression tag	UNP Q8TF46
М	-39	ALA	-	expression tag	UNP Q8TF46
М	-38	TRP	-	expression tag	UNP Q8TF46
М	-37	SER	-	expression tag	UNP Q8TF46
М	-36	HIS	-	expression tag	UNP Q8TF46
М	-35	PRO	-	expression tag	UNP Q8TF46
М	-34	GLN	-	expression tag	UNP Q8TF46
М	-33	PHE	-	expression tag	UNP Q8TF46
М	-32	GLU	-	expression tag	UNP Q8TF46
М	-31	LYS	-	expression tag	UNP Q8TF46
М	-30	GLY	-	expression tag	UNP Q8TF46
М	-29	GLY	-	expression tag	UNP Q8TF46
М	-28	GLY	-	expression tag	UNP Q8TF46
М	-27	SER	-	expression tag	UNP Q8TF46
М	-26	GLY	-	expression tag	UNP Q8TF46
М	-25	GLY	-	expression tag	UNP Q8TF46
М	-24	GLY	-	expression tag	UNP Q8TF46
М	-23	SER	-	expression tag	UNP Q8TF46
М	-22	GLY	-	expression tag	UNP Q8TF46
M	-21	GLY	-	expression tag	UNP Q8TF46
М	-20	SER	-	expression tag	UNP Q8TF46
М	-19	ALA	-	expression tag	UNP Q8TF46
М	-18	TRP	-	expression tag	UNP Q8TF46
М	-17	SER	-	expression tag	UNP Q8TF46
М	-16	HIS	-	expression tag	UNP Q8TF46
М	-15	PRO	-	expression tag	UNP Q8TF46
М	-14	GLN	-	expression tag	UNP Q8TF46
М	-13	PHE	-	expression tag	UNP Q8TF46
Μ	-12	GLU	-	expression tag	UNP Q8TF46
M	-11	LYS	-	expression tag	UNP Q8TF46

Continued on next page...

Chain	Residue	Modelled	Actual	Comment	Reference
М	-10	THR	-	expression tag	UNP Q8TF46
М	-9	ALA	-	expression tag	UNP Q8TF46
М	-8	GLY	-	expression tag	UNP Q8TF46
М	-7	LEU	-	expression tag	UNP Q8TF46
М	-6	GLU	-	expression tag	UNP Q8TF46
М	-5	VAL	-	expression tag	UNP Q8TF46
М	-4	LEU	-	expression tag	UNP Q8TF46
М	-3	PHE	-	expression tag	UNP Q8TF46
М	-2	GLN	-	expression tag	UNP Q8TF46
М	-1	GLY	-	expression tag	UNP Q8TF46
M	0	PRO	-	expression tag	UNP Q8TF46
M	486	ASN	ASP	conflict	UNP Q8TF46

Continued from previous page...

• Molecule 17 is a RNA chain called 18S ribosomal RNA.

Mol	Chain	Residues		A	Atoms			AltConf	Trace
17	S2	1739	Total 36835	C 16429	N 6582	O 12086	Р 1738	0	0

• Molecule 18 is a protein called 40S ribosomal protein SA.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
18	SA	222	Total 1747	C 1109	N 306	0 324	S 8	0	0

• Molecule 19 is a protein called 40S ribosomal protein S3a.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	SB	214	Total 1738	C 1103	N 310	0 311	S 14	0	0

• Molecule 20 is a protein called 40S ribosomal protein S2.

Mol	Chain	Residues		At	AltConf	Trace			
20	\mathbf{SC}	222	Total 1725	C 1115	N 298	O 302	S 10	0	0

• Molecule 21 is a protein called 40S ribosomal protein S3.

Mol	Chain	Residues		Ate	AltConf	Trace			
21	SD	224	Total 1745	C 1112	N 314	0 312	S 7	0	0

• Molecule 22 is a protein called 40S ribosomal protein S4, X isoform.

Mol	Chain	Residues		At	AltConf	Trace			
22	SE	262	Total 2076	C 1324	N 386	O 358	S 8	0	0

• Molecule 23 is a protein called 40S ribosomal protein S5.

Mol	Chain	Residues		At	oms	AltConf	Trace		
23	SF	182	Total 1445	C 906	N 271	O 261	${f S}7$	0	0

• Molecule 24 is a protein called 40S ribosomal protein S6.

Mol	Chain	Residues		Ate	AltConf	Trace			
24	SG	237	Total 1923	C 1200	N 387	O 329	${f S}{7}$	0	0

• Molecule 25 is a protein called 40S ribosomal protein S7.

Mol	Chain	Residues		At	\mathbf{oms}	AltConf	Trace		
25	SH	189	Total 1521	C 969	N 280	0 271	S 1	0	0

• Molecule 26 is a protein called 40S ribosomal protein S8.

Mol	Chain	Residues		Ate	AltConf	Trace			
26	SI	206	Total 1686	C 1058	N 332	0 291	${f S}{5}$	0	0

• Molecule 27 is a protein called 40S ribosomal protein S9.

Mol	Chain	Residues		At	oms	AltConf	Trace		
27	SJ	185	Total 1525	C 969	N 306	0 248	${ m S} { m 2}$	0	0

• Molecule 28 is a protein called 40S ribosomal protein S10.

Mol	Chain	Residues		At	AltConf	Trace			
28	SK	97	Total 816	C 533	N 144	0 133	S 6	0	0

• Molecule 29 is a protein called 40S ribosomal protein S11.

Mol	Chain	Residues		At	oms	AltConf	Trace		
29	SL	153	Total 1247	C 793	N 234	0 214	S 6	0	0

• Molecule 30 is a protein called 40S ribosomal protein S12.

Mol	Chain	Residues		At	oms	AltConf	Trace		
30	SM	104	Total 793	C 496	N 139	0 152	S 6	0	0

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
SM	52	GLN	LEU	conflict	UNP P25398
SM	69	LEU	CYS	conflict	UNP P25398
SM	99	ASN	LYS	conflict	UNP P25398

• Molecule 31 is a protein called 40S ribosomal protein S13.

Mol	Chain	Residues		At	oms	AltConf	Trace		
31	SN	150	Total 1208	С 773	N 229	O 205	S 1	0	0

• Molecule 32 is a protein called 40S ribosomal protein S14.

Mol	Chain	Residues		At	AltConf	Trace			
32	SO	140	Total 1049	C 642	N 204	0 197	${ m S}{ m 6}$	0	0

• Molecule 33 is a protein called 40S ribosomal protein S15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
33	SP	123	Total 1005	C 638	N 188	0 172	S 7	0	0

• Molecule 34 is a protein called 40S ribosomal protein S16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
34	SQ	139	Total 1105	С 704	N 207	0 191	${ m S} { m 3}$	0	0

• Molecule 35 is a protein called 40S ribosomal protein S17.

Mol	Chain	Residues		At	oms			AltConf	Trace
35	SR	131	Total 1064	C 668	N 198	0 194	$\frac{S}{4}$	0	0

• Molecule 36 is a protein called 40S ribosomal protein S18.

Mol	Chain	Residues		At	oms	AltConf	Trace		
36	SS	143	Total 1184	C 743	N 240	O 200	S 1	0	0

• Molecule 37 is a protein called 40S ribosomal protein S19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
37	ST	143	Total 1112	C 697	N 214	0 198	${ m S} { m 3}$	0	0

• Molecule 38 is a protein called 40S ribosomal protein S20.

Mol	Chain	Residues		At	oms			AltConf	Trace
38	SU	104	Total 821	C 514	N 155	0 148	$\frac{S}{4}$	0	0

• Molecule 39 is a protein called 40S ribosomal protein S21.

Mol	Chain	Residues		At	AltConf	Trace			
39	SV	83	Total 636	C 393	N 117	0 121	${ m S}{ m 5}$	0	0

• Molecule 40 is a protein called 40S ribosomal protein S15a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
40	SW	129	Total 1034	C 659	N 193	0 176	S 6	0	0

• Molecule 41 is a protein called 40S ribosomal protein S23.

Mol	Chain	Residues		At	oms	AltConf	Trace		
41	SX	141	Total 1098	C 693	N 219	0 183	${ m S} { m 3}$	0	0

• Molecule 42 is a protein called 40S ribosomal protein S24.

Mol	Chain	Residues		At	oms			AltConf	Trace
42	SY	131	Total 1065	C 673	N 209	0 178	${f S}{5}$	0	0

• Molecule 43 is a protein called 40S ribosomal protein S25.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
43	SZ	72	Total 570	C 366	N 104	O 99	S 1	0	0

• Molecule 44 is a protein called 40S ribosomal protein S26.

Mol	Chain	Residues		At	oms			AltConf	Trace
44	Sa	107	Total 847	C 528	N 176	0 138	$\frac{\mathrm{S}}{5}$	0	0

• Molecule 45 is a protein called 40S ribosomal protein S27.

Mol	Chain	Residues		At	oms			AltConf	Trace
45	Sb	83	Total 651	C 408	N 121	O 115	${ m S} 7$	0	0

• Molecule 46 is a protein called 40S ribosomal protein S28.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
46	Sc	59	Total 464	C 281	N 93	O 88	S 2	0	0

• Molecule 47 is a protein called 40S ribosomal protein S29.

Mol	Chain	Residues		Ato	\mathbf{ms}			AltConf	Trace
47	Sd	55	Total	С	Ν	0	S	0	0
	24		459	286	94	74	5		Ŭ

• Molecule 48 is a protein called 40S ribosomal protein S30.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
48	Se	58	Total 459	C 284	N 100	0 74	S 1	0	0

• Molecule 49 is a protein called Ubiquitin.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
49	Sf	64	Total 522	C 329	N 99	O 87	${ m S} 7$	0	0

 $\bullet\,$ Molecule 50 is a protein called Receptor of activated protein C kinase 1.

Mol	Chain	Residues		At	oms			AltConf	Trace
50	Sg	312	Total 2429	C 1531	N 423	0 463	S 12	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Superkiller complex protein 3

••	-	••		•			•	••			•	•			•			-	•	•					•			•			•			••			•			•			• •	
717 718	719	720	722	723	724 775	726	727	728	730	731	732	733	735 735	736	737	738	740	741	742	743	744	745 716	747	748	749	750 751	752	753	754 755	756	757	758 759	760	761	763	764	765	767 767	168	769	770	772	773	775 776
N N	L I	. A	5 6	A.	ο F	4 Đ	Ц	X	Α.Λ	A.	P	ŝ	Y N	.N	Ň	H	> -	1 8	Ň	5	5	5	зX	Ш	5	Y C	3 >	1	M 7	4 N	Ξ	55	H	ы ;	5 8	В.	5	ۍ بر د		A.	ч х	ü	Συ	α H Ω
••	•	••	•	•			•	••			•	••			•			•	•	•	••		•		••		•	••	• •	•	•	••		••		•	••			••	••	•••	• 1	
777	677	780	782	783	784 705	786	787	788	790	791	792	793	794 795	796	797	798	667	801	802	803	804	805	807	808	809	810	812	813	814 01 F	816 8	817	818 819	820	821	823	824	825	826	828	829	831 831	832	833	835 836 836
2 F	. M	υà	ц Ц	5	Ηż	a ≻	ΥΫ́	ier i	3.⊴		H	Ц :	A H	i i-i	9	ίΩ	zΪ	Ň	Ä	ä	X	<u></u> й;	<u>ت</u> נ	ü	Ϋ́Υ Ι	Ω -	iΞ	Ü	ы s	ά Χ	A	N N	Ë,	ă ĉ	δŻ	Ň	Ξ,	Ξ×	i n	Ñ.	A.	ö		S A D
••	•	••		•			•	••			•	••			•			•	•	•	•				••		•	••			•	••		••			••			••		•	• •	
837 838	839	840	842	843	844 845	846	847	848	849 850	851	852	853	854 855	856	857	818 1 81	660	861	862	863	864	865 865	867	868	869	870 e71	872	873	874 075	876	877	878 879	880	881	88 2	884	885	886		889	890 891	892	893	895 896
ж X	Ö	йł	δŻ	Ϋ́Υ.	A	Ā	ë	Ξt	ΞĒ	ι Ĥ	K	Ω i	ĤÖ	rõõ	ä	ër i	ΗŻ	A	Ň	A	M	Ë i	Ξ	ö	×.	i >	: <u>3</u>	Ë :	Ζů	άŻ	Ĥ	й ё	Ā	Ξi	à À	Ë,	X :	Ψ	ëë	ŝ	ä ä	ä	α >	Ϋ́ς Υ
••	•	••	•	•			•	••			•	••			•			•	•	•	••		•		••		•	••	• •	•	•	••		••		•	••			••	••	•••	• 1	
897 898	668	006	902	903	904 005	906	907	808	909 010	911	912	913	914 915	916	917	918	919	921	922	923	924	925	927 927	928	929	930	932	933	934 035	936 936	937	939 939	940	941	943	944	945	946 947	948	949	950 951	952	953 Pr.4	956 956
U 3	÷	90	8 A	1	H <	с Ш	A	> 0	ש פי	2 7	D	н;			щ	ж :	Ξ F		ш	1	Z	¥ ‡		ш	.	A	1.0	Y	A v	- 3	~	υF	· F·	Ц C	зD	К	ທ ;	N N	<u>:</u> Ш	E I	ыц	Y	a >	- N H
••	•	••	•	••		•	•	••		•	•	••			••			•	•	••	••		•		••		•	••	•4	••	•	••		••	••		••			••	••	•	•4	•••
57 58	26	60	62	63	64 6 E	99	67	89	6.0	21	72	73	75 75	76	77	78	80	81	82	83	84	85	87	88	68	0 0	92	63	94 0 F	0 0 0	97	8 6	000	001	003	004	005	006	800	600	010	012	013	015 016
109 L9	6W	6N	e A 9 I 9	P9	A9 A0	6 D	٨O	EI 19	NO NO	K9 K9	Υ9	0 T	E9 R9	19	60	6N	19 19	P9	A 9	F9	T9	6W -	61 65	Υ9	L9	N9 EO	H9	L9	60	K9 K9	K9	E9 A9	A1	EN 3	Y1	Q1	R1	A1 T1	: 3	3	3 8	, E	A1 F1	105
017 018	019	020	121	023	024 10 E	26 126	127	28	129	31	32	33	34 35	36	37	38	139 040	141	942	043	944)45 116	047	048	949	050 F 1	52	53	154 Ne e	56	157	58 59	960)61 200	0 Z 00 Z	64	065 20	966 167	890	69	070 071	72	73 7.4	75 76 76
D10	Y10	0 FN	A10	II	R10	Y10	G10	R10		1 U	S10	E S	610 E1 E1	Y10	D10	K10	T10	q 10	A10	F10	K10	S10	P10	L10	E		i II	D10	E E	610	F10	A10	A10	E	U EN	K10	610		K10	E	S10 S10	K10	A10	E10 R10
				_												_									_				_															
<u>د</u>	<u>ه</u>	8.2	2 C		34 a	2 g	₹ 2		n c		92	8	4 7	9	5	<u></u>		- -	2	e B	4	90	2 2	به. و	6	<u> </u>	: 9	<u>.</u>	4 u	. v	• 	<mark>ی م</mark>		.	2 g	24	22 22	9		6	0 T	C C	20 T	a و م
A107 1.107	S107	1108	E108	S108	E108	D108	K108	A108	H100	L109	T109	A109	L105 A109	1109	T109	E109	K110	Q110	G110	K110	T110	D110	A110	K110	T110		FII	K111	C111		L111	E111 E111	P112	T112	E112	S112	L112	Q112 A113	L112	C112	A113 L113	G113	L113 A113	M113 Q113
							•				•				••			•	•	•				•																				
D113	T113	L114	K114	A114	A114	N114	E114	L114	L114 K115	H115	I115	K115	H115 K115	D115	S115	N115	Y115 0116	R116	C116	L116	L116	T116	A116	I116	Y116	A117	Q117	G117	R117.	V117	A117	V117	K118	Q118	S118	K118	A118	V118 H118	S118	N118	P119 G119	D119	P119	L119 W119
••	•	••	•	••		•	••	• •		•	••	• •		-	•			•	•	•	• •		•		••		•	••	• •	••	•	••		• •	•	•	• •			••	••		••	***
S1197 1.1198	L1199	S1200	V1202	V1203	A1204	41206 Y1206	A1207	Q1208	N1 210	A1211	K1212	G1213	G1214 V1215	V1216	A1217	G1218	9121V V1220	A1221	H1222	I1223	L1224	D1225	N1227	H1228	G1229	K1230 v1231	A1232	L1233	L1234 v1235	T1236	A1237	V1238 N1239	q 1240	L1241	A1 242 M1 243	G1244	S1245	S1246 S1247	A1248	E1249	D1250 E1251	K1252	N1253 ** 254	L1256
••	•	••	•	••		•	•	••		•	•	••		•	••			•	•	••	••		•	•	••		•	••	• •	••	••	••	•	••	•	•	••		•	••	••	•	• •	•••
1257	1259	1260	1262	1263	1264 1265	31266	1267	1268	1269	1271	:1272	11273	11274 1275	.1276	11277	1278	1279 1280	11281	1282	1283	1284	1085	1287	1288	1289	11290	1292	1293	1294	1296	1297	1298	1300	1301	1303	.1304	1305	11306	1308	1309	31310 1311	(1312	1313	1315 1316
XF		: ^ب	4	4		- 03	ц	6		. 4	н		- C		2	• •	4 0	, <u>н</u>	¥.			X F		-	2	4 4			цз	<u>с н</u>	П		4	1.	-		. 10	4 2	• 01	4		×		іхц
••	•	••	•	••		•	•	••		•	•	••		•	••			•	<u>م</u>	•			•	•	••		•	••	• •	••	•	••		••	•	•	••		•	••	••	•	•4	•••
1317	1319	1320	1322	1323	1324 1325	1326	1327	1328	1329	1331	1332	1333	1334 1335	1336	1337	1338	1339	1341	1342	1343	1344	1345	1347	1348	1349	1350 1361	1352	1353	1354 1355	1356	1357	1358 1359	1360	1361	1363	1364	1365	1366	1368	1369	1370 1371	1372	1373	1375 1376 1376
i i i	Ï	Y	z Gr	ι Ω	i i	i X	M	Ω. ⊦	u i	i ë	A	> 1	H 8		Ĥ		- e	E H	Ĥ	ŝ	Ξ.	A 1	4 H	ä	Ü	ΗÀ	N	Ц I	Υ ü	άŻ	Ц.		гЩ	A	> H	Ë	ц,				ਤ ਹ	K:	è, r	1 1 1
••	•	••	•	•			•	••			•	••			•			•	•	•	• •		•		••		•	••	• •	•	•	••		••		•	••			••	•	•	•4	
377 378	379	380	382	383	384 20 F	386	387	388	389	391	392	393	394 395	396	397	398	399 400	401	402	403	404	405	407	408	409	410	412	413	414 115	416	417	418 419	420	421	423 423	424	425	426 427	428	429	430 431	432	433	435 435 436
S1 01:	K1.	F1	1 H	D1	A1 V1	1 1	Ε1.	표 :	3 5	K1.	T1	LV	M S	IN	S1	E 8		P1.	A1	W1	6	T T	A1	H1.	LV .	E E	5. 12	Q1	5 5	Ĩ	R1	A1 A1-	E1.	EM 5	Υ.Υ.	R1	K1	12 II	1 12	1	A1 S14	Q1	ER 5	S1 N1
							•												•																									
37	39	40	42	43	44	46	47	48	49 FO	51	52	53	54 55	56	57	200	р с С	61	62	63	64	65	67	88	69	2 7	12	73	74 75	20		78 79	80	81	83	84	85	86 87	5 88	83	90	92	93	96 96
S140	K14.	L14	S14	L14.	L14	L14	A14.	L14	L14	L14	K14	V14	C14 M14	A14	N14.	114	S14	D14(H14	W14	P14	S14	V14(q14(E14	A14 T14	T14	E14	A14	K14.	L14	C14 F14	C148	P14	A148	V14	L14	L14	414	L14	L14.0	F14	K14.	К14 М14

• Molecule 3: Exosome complex component RRP42

****	••••	•••••
A259 F260 V261 R262 R262 GLY GLY GLY ALA SER ASP SER ASP SER ASP SER ASP SER SER SER	Ser 1277 1277 1279 1279 1279 8281 8281 8281 8283 8283 8288 8288 8288	D292 V293 V294
YS LA ER ER ER ER 327 332 332 333 333 333 333 333 333 333	335 335 335 335 335 341 341 345 345 345 345 345 345 345 345 345 345	351 352 355 355 355 355 355 355 355 356 351 352 355 356 356 356 356 356 356 357 371 377 377 377 377 377 377 377 377 37
TANDONUN HUEVEN	• > O H T Q K Z Z K O Y > > H F F	0 X U U > O 0 O 0 X X 4 O X H J > H 0 X O 7 A H 0 X H A
••••	***********	•••••••
1379 S380 C382 C382 C382 C382 C382 C382 C382 C382	V3933 V3955 R3955 R3958 V3958 V3399 R3958 V3399 R3399 R3399 R3399 R3399 R3399 R3399 R3399 R3399 R3399 R3399 R3400	H409 F410 L4114 L4144 L4144 L4144 L4144 L414 L41
439 441 442 442 444 445 444 445 445 449 450 451 451 452	453 454 455 455 455 455 461 464 463 465 465 465 465 465	6659 4771 4771 4775 4775 4775 4777 4777 4778 4778 4819 4819 4814 4814 4814 4814 4814 481
の 日本 G 本 G 本 G 本 G 本 G 本 G 本 G 本 G 本 G 本	νΥ 3 Χ > ΝΥ Η Η Η Ο Χ Κ Χ Ο ΤΙ	***************************************
•••••	************	• • • • • • • • • • • • • • • • • • • •
L499 E500 L501 C502 C502 V503 H504 L505 A506 D507 V508 T509 H510 F511 V512	A513 P514 N615 S516 Y517 Y517 1518 D519 D519 D519 D523 R522 R522 R522 R522 R522 R522 R522 R	 Y529 Y529 Y530 Y530 Y533 Y536 Y536 Y536 Y541 Y542 Y543 Y544 Y544 Y544 Y554 Y557
559 561 562 562 563 564 565 565 565 565 565 565 568 568 568 568	573 574 577 577 577 577 581 582 583 588 588 588 588 588 588	88 89 89 89 89 89 89 89 80 80 80 80 80 80 80 80 80 80
	N N N N N N N N N N N N N N N N N N N	
•••••	***********	• • • • • • • • • • • • • • • • • • • •
q619 A620 K621 L622 E624 E624 L625 V626 W627 A628 T623 C630 C630 K631 L632	T633 D634 L635 A636 R637 H638 V639 R641 R642 R643 D644 C645 C645 G647 G647 G647 G647	1649 1661 1661 16651 16651 6655 6655 6655 8655 8
579 581 582 582 583 584 585 585 586 586 586 588 589 589 589 589 589	593 594 595 595 599 700 701 702 705 706	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
Не 166 166 166 166 166 166 166 16	A N N N N N N N N N N N N N N N N N N N	HT P 7 P 7 P 7 P 7 P 7 P 7 P 7 P 7 P 7 P 7
•••••	· · · · · · · · · · · · · · · · · · ·	•••••
L739 A740 D741 S742 L743 L745 D744 N745 N747 D748 P749 P749 H750 D751	1753 V754 N755 R755 L757 L757 L758 R759 S760 M761 A762 T763 Q764 A765 N766 N766	A769 L/770 L/770 F771 F772 F772 F773 F775 F775 F775 F775 F777 F778 F778 F778
99 00 00 00 00 00 00 00 00 00 00 00 00 0		2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 4 4 4
17 R88 S88 S88 S88 C88 V88 V88 V88 V88 V88 C88 C88 C88 C	A 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	 S8 N888 E888 E888 E888 E888 E888 E888 A888 A888
•••••	*************	•••••
q859 C860 M861 Y862 F863 K864 D865 K866 D867 P868 P867 P868 T370 E871 E872	R873 C874 I875 S876 D877 G878 C877 G877 V879 V879 V879 V881 S882 S882 S882 S882 S882 S882 S883 V888 V888 V888	L889 L890 L890 L890 L890 L890 L890 L890
		9 9 1 8 8 7 9 9 6 9 9 7 9 9 9 7 9 9 9 7 9 9 9 9 9
	1933 1934 1934 1936 1937 1938 1938 1938 1938 1938 1938 1944 1944 1945 1945	D949 H950 Y951 Y955 Y955 Y955 Y955 Y955 H955 H951 Y956 H963 Y971 Y971 Y975 Y975 Y976 Y976 Y977
	1933 1934 1934 1937 1937 1938 1938 0940 6940 6941 1944 1944 1944 1944	D949 H950 Y953 Y955 Y955 Y955 Y956 Y956 P956 H961 P961 P965 H963 Y974 Y977 S964 Y975 H963 T965 H963 Y972 Y975 Y975 Y975 Y975

 \bullet Molecule 17: 18S ribosomal RNA

Chain SP:	85% 1	15%
MET ALA GLU CLU GLU GLU CYS LYS LYS ARG	THR THR ARG ARG C48 C48 C48 C48 C48 C48 C48 C48	LEU LYS
• Molecule 34	4: 40S ribosomal protein S16	
Chain SQ:	95%	5%
MET PRO SER LY GLY PRO L7 L7 EGG	E81 F81 F81 F81 F81 F81 F81 F81 F81 F81 F	
• Molecule 35	5: 40S ribosomal protein S17	
Chain SR:	96%	•••
MET C2 K7 2 K7 8	RIJ RIJ VAL	
• Molecule 36	5: 40S ribosomal protein S18	
Chain SS:	94%	6%
MET SER L3 K8 K8 L13	N17 T18 N19 E63 E63 E63 F66 V67 F86 V67 F810 600 C103 C103 C103 C103 C103 C103 C103 C1	
• Molecule 37	7: 40S ribosomal protein S19	
Chain ST:	99%	
MET P2 D35 0117 D118	K143 K144 HIS	
• Molecule 38	8: 40S ribosomal protein S20	
Chain SU:	87%	13%
MET ALA PHE LYS LYS ASP ASP THR CLY THR THR	VAL VAL PRD GLU VAL A16 H13 H13 K49 E17 E106 E106 E106 A116 A116 A116 A119	
• Molecule 39	9: 40S ribosomal protein S21	
Chain SV:	96%	·
M1 N35 V36 F78 F83		

• Molecule 40: 4	40S ribosomal protein S15a	
Chain SW:	99%	
MET V2 F130		
• Molecule 41: 4	40S ribosomal protein S23	
Chain SX:	98%	
MET C2 A10 F140 F141 SER		
• Molecule 42: 4	40S ribosomal protein S24	
Chain SY:	96%	
MET N2 D3 R20 K120 K122 K122	K132 F131 GLU	
• Molecule 43: 4	40S ribosomal protein S25	
Chain SZ:	58% 42%	
MET PRO PRO LYS ASP LYS LYS LYS ASP ALA	GLY SIER SIER ALA ASP ASP ASP ASP PRO ASP CLYS CLYS CLYS CLYS CLYS CLYS CLYS CLYS	A71 Q89 Q89 S101 S101 S113 K114 C115 G115
ASP ALA PRO ALA ALA ALA GLY GLY ASP ALA		
• Molecule 44: 4	40S ribosomal protein S26	
Chain Sa:	92%	• 7%
MET T2 A61 R100 F101 F101 P103 P103 A104	A105 A107 P108 PR0 PR0 PR0 PR0 PR0 PR0 PR0	
• Molecule 45: 4	40S ribosomal protein S27	
Chain Sb:	99%	·
MET P2 G58 G58 G76 G76 G78 G78 G78 G78 G78 G78 G78 G78 G78 G78		
• Molecule 46: 4	40S ribosomal protein S28	
Chain Sc:	84%	• 14%

W O R L D W I D E PROTEIN DATA BANK

• Molecule 47: 40S ribosomal protein S29

Chain Sd: 98% MET • Molecule 48: 40S ribosomal protein S30 14% Chain Se: 98% • Molecule 49: Ubiquitin 21% Chain Sf: 41% 59% ILE GGLN GGLU GGLU CGLN LLEU LLEU LLEU ARG GLY ARG GLY LLYS SCR LLYS SSER LLYS SSER TTYR TTRR LYS PRO GLU ASP LYS • Molecule 50: Receptor of activated protein C kinase 1 9% Chain Sg: 98%

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	53460	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	64.2	Depositor
Minimum defocus (nm)	600	Depositor
Maximum defocus (nm)	2400	Depositor
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor
Maximum map value	0.053	Depositor
Minimum map value	-0.013	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.001	Depositor
Recommended contour level	0.01	Depositor
Map size (Å)	708.19836, 708.19836, 708.19836	wwPDB
Map dimensions	832, 832, 832	wwPDB
Map angles ($^{\circ}$)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	0.8512, 0.8512, 0.8512	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Chain		Bond	lengths	B	ond angles
	Ullaill	RMSZ	# Z > 5	RMSZ	# Z > 5
1	В	0.25	0/7429	0.48	0/10058
2	С	0.25	0/2432	0.54	0/3311
2	D	0.27	0/2432	0.54	0/3311
3	F	0.26	0/2225	0.52	0/3007
4	J	0.25	0/1438	0.54	0/1942
5	Κ	0.25	0/2807	0.52	0/3792
6	L	0.26	0/2053	0.52	0/2786
7	Ν	0.25	0/1843	0.56	0/2492
8	0	0.27	0/1586	0.55	0/2145
9	А	0.26	0/8881	0.54	1/12039~(0.0%)
10	Е	0.25	0/535	0.52	0/722
11	G	0.25	0/1881	0.59	0/2551
12	Н	0.25	0/1832	0.54	0/2467
13	Ι	0.25	0/2296	0.56	0/3092
14	Х	0.35	0/2792	0.99	11/4331~(0.3%)
15	Ln	0.34	0/231	0.80	0/294
16	М	0.24	0/8072	0.50	0/10916
17	S2	0.61	0/41169	0.90	48/64139~(0.1%)
18	SA	0.38	0/1784	0.63	1/2424~(0.0%)
19	SB	0.36	0/1765	0.60	0/2362
20	SC	0.40	0/1762	0.61	0/2381
21	SD	0.33	0/1773	0.57	0/2387
22	SE	0.36	0/2118	0.65	0/2849
23	\mathbf{SF}	0.34	0/1465	0.56	0/1969
24	SG	0.32	0/1946	0.65	1/2590~(0.0%)
25	SH	0.31	0/1544	0.58	0/2068
26	SI	0.36	0/1715	0.62	0/2287
27	SJ	0.39	0/1550	0.70	1/2069~(0.0%)
28	SK	0.32	0/840	0.53	0/1133
29	\overline{SL}	0.40	$0/1\overline{268}$	0.63	$1/1696\ (0.1\%)$
30	SM	0.28	0/799	0.50	0/1076
31	SN	0.36	0/1232	0.59	0/1656
32	SO	0.33	0/1062	0.67	0/1425
33	SP	0.32	0/1024	0.55	0/1369

Mal	Chain	Bond	lengths	E	Bond angles
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
34	SQ	0.35	0/1122	0.59	0/1503
35	SR	0.33	0/1078	0.59	0/1447
36	SS	0.29	0/1202	0.60	0/1610
37	ST	0.33	0/1131	0.53	0/1515
38	SU	0.31	0/831	0.57	0/1115
39	SV	0.34	0/643	0.60	0/860
40	SW	0.39	0/1051	0.64	0/1406
41	SX	0.37	0/1116	0.60	0/1490
42	SY	0.37	0/1083	0.63	0/1438
43	SZ	0.30	0/576	0.54	0/774
44	Sa	0.38	0/863	0.65	0/1159
45	Sb	0.33	0/665	0.59	0/891
46	Sc	0.31	0/465	0.64	0/621
47	Sd	0.34	0/470	0.56	0/623
48	Se	0.33	0/465	0.62	0/612
49	Sf	0.29	0/533	0.53	0/706
50	Sg	0.30	0/2486	0.54	0/3384
All	All	0.42	0/131361	0.71	64/186290~(0.0%)

There are no bond length outliers.

The worst 5 of 64 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
17	S2	1442	U	OP1-P-O3'	-11.25	80.45	105.20
17	S2	1442	U	OP2-P-O3'	-9.56	84.17	105.20
14	Х	215	U	C2-N1-C1'	7.87	127.14	117.70
27	SJ	4	ALA	C-N-CA	7.75	141.07	121.70
17	S2	1646	С	N1-C2-O2	7.64	123.49	118.90

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	В	932/1568~(59%)	874 (94%)	58~(6%)	0	100	100
2	С	303/305~(99%)	272 (90%)	31 (10%)	0	100	100
2	D	303/305~(99%)	259 (86%)	44 (14%)	0	100	100
3	F	284/295~(96%)	267 (94%)	16 (6%)	1 (0%)	30	60
4	J	182/199~(92%)	158 (87%)	23 (13%)	1 (0%)	25	54
5	K	351/443~(79%)	331 (94%)	20~(6%)	0	100	100
6	L	263/280~(94%)	247 (94%)	16 (6%)	0	100	100
7	Ν	239/245~(98%)	225 (94%)	14 (6%)	0	100	100
8	Ο	206/239~(86%)	199 (97%)	7 (3%)	0	100	100
9	А	1104/1246~(89%)	1023 (93%)	80 (7%)	1 (0%)	48	78
10	Е	60/274~(22%)	51 (85%)	9~(15%)	0	100	100
11	G	247/272~(91%)	239 (97%)	8(3%)	0	100	100
12	Н	233/279~(84%)	213 (91%)	20 (9%)	0	100	100
13	Ι	285/297~(96%)	261 (92%)	24 (8%)	0	100	100
15	Ln	22/25~(88%)	19 (86%)	3(14%)	0	100	100
16	М	965/1096~(88%)	921 (95%)	44~(5%)	0	100	100
18	SA	220/295~(75%)	191 (87%)	26 (12%)	3~(1%)	9	31
19	SB	212/264~(80%)	181 (85%)	29~(14%)	2(1%)	14	41
20	SC	220/293~(75%)	186 (84%)	32 (14%)	2(1%)	14	41
21	SD	222/243~(91%)	216 (97%)	6 (3%)	0	100	100
22	SE	260/263~(99%)	219 (84%)	36 (14%)	5 (2%)	6	26
23	SF	178/204~(87%)	167 (94%)	11 (6%)	0	100	100
24	SG	$\overline{235/249}~(94\%)$	197 (84%)	31 (13%)	7 (3%)	3	19
25	SH	$\overline{187/194}\ (96\%)$	154 (82%)	31 (17%)	2 (1%)	12	37
26	SI	204/208~(98%)	177 (87%)	25 (12%)	2 (1%)	13	39

Continued on next page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
27	SJ	183/194~(94%)	160 (87%)	20 (11%)	3~(2%)	8	29
28	SK	95/165~(58%)	87 (92%)	8 (8%)	0	100	100
29	SL	151/158~(96%)	127 (84%)	24 (16%)	0	100	100
30	SM	100/132~(76%)	90 (90%)	10 (10%)	0	100	100
31	SN	148/151~(98%)	142 (96%)	3 (2%)	3(2%)	6	25
32	SO	138/151~(91%)	107 (78%)	27 (20%)	4 (3%)	3	19
33	SP	121/145~(83%)	115 (95%)	6 (5%)	0	100	100
34	SQ	137/146~(94%)	130 (95%)	7 (5%)	0	100	100
35	SR	129/135~(96%)	125 (97%)	4 (3%)	0	100	100
36	SS	141/152~(93%)	137 (97%)	4 (3%)	0	100	100
37	ST	141/145~(97%)	140 (99%)	1 (1%)	0	100	100
38	SU	102/119~(86%)	96 (94%)	6 (6%)	0	100	100
39	SV	81/83~(98%)	65 (80%)	14 (17%)	2(2%)	4	22
40	SW	127/130~(98%)	115 (91%)	12 (9%)	0	100	100
41	SX	139/143~(97%)	126 (91%)	12 (9%)	1 (1%)	19	47
42	SY	129/133~(97%)	115 (89%)	12 (9%)	2(2%)	8	29
43	SZ	70/125~(56%)	65 (93%)	5 (7%)	0	100	100
44	Sa	105/115~(91%)	81 (77%)	23 (22%)	1 (1%)	13	39
45	Sb	81/84~(96%)	66 (82%)	15 (18%)	0	100	100
46	Sc	57/69~(83%)	53 (93%)	4 (7%)	0	100	100
47	Sd	53/56~(95%)	52 (98%)	1 (2%)	0	100	100
48	Se	56/59~(95%)	43 (77%)	13 (23%)	0	100	100
49	Sf	62/156~(40%)	57 (92%)	5 (8%)	0	100	100
50	Sg	310/317~(98%)	288 (93%)	22 (7%)	0	100	100
All	All	10773/12844 (84%)	9829 (91%)	902 (8%)	42 (0%)	32	60

Continued from previous page...

5 of 42 Ramachandran outliers are listed below:

Mol	Chain	Res	Type
18	SA	32	PHE
19	SB	147	ASN
22	SE	76	VAL
24	SG	25	ARG
24	SG	122	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	В	780/1316~(59%)	778 (100%)	2~(0%)	91	95
2	С	260/260~(100%)	260 (100%)	0	100	100
2	D	260/260~(100%)	259~(100%)	1 (0%)	89	93
3	F	249/255~(98%)	247 (99%)	2(1%)	79	87
4	J	160/173~(92%)	160 (100%)	0	100	100
5	K	307/384~(80%)	307 (100%)	0	100	100
6	L	227/238~(95%)	226 (100%)	1 (0%)	89	93
7	Ν	183/186~(98%)	183 (100%)	0	100	100
8	Ο	172/196~(88%)	172 (100%)	0	100	100
9	А	953/1062~(90%)	950 (100%)	3 (0%)	91	95
10	Е	57/251~(23%)	57 (100%)	0	100	100
11	G	178/188~(95%)	178 (100%)	0	100	100
12	Н	196/224~(88%)	196 (100%)	0	100	100
13	Ι	251/257~(98%)	250 (100%)	1 (0%)	89	93
15	Ln	23/24~(96%)	23~(100%)	0	100	100
16	М	873/973~(90%)	872 (100%)	1 (0%)	92	97
18	SA	184/243~(76%)	183 (100%)	1 (0%)	86	91
19	SB	195/231~(84%)	193 (99%)	2(1%)	73	83
20	\mathbf{SC}	188/225~(84%)	188 (100%)	0	100	100
21	SD	188/202~(93%)	188 (100%)	0	100	100
22	SE	224/225~(100%)	224 (100%)	0	100	100
23	SF	$\overline{155/170~(91\%)}$	155 (100%)	0	100	100
24	SG	207/218~(95%)	207~(100%)	0	100	100
25	SH	$\overline{169/174}~(97\%)$	168 (99%)	1 (1%)	84	90
26	SI	178/180~(99%)	178 (100%)	0	100	100
27	SJ	161/168~(96%)	161 (100%)	0	100	100

Continued on next page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles	3
28	SK	88/136~(65%)	88 (100%)	0	100	100	
29	SL	137/142~(96%)	137~(100%)	0	100	100	
30	SM	86/108~(80%)	86 (100%)	0	100	100	
31	SN	130/131~(99%)	130 (100%)	0	100	100	
32	SO	110/119~(92%)	110 (100%)	0	100	100	
33	SP	109/130~(84%)	109 (100%)	0	100	100	
34	SQ	115/121~(95%)	115 (100%)	0	100	100	
35	SR	119/122~(98%)	117 (98%)	2 (2%)	56	74	
36	SS	124/132~(94%)	124 (100%)	0	100	100	
37	ST	113/115~(98%)	113 (100%)	0	100	100	
38	SU	94/107~(88%)	94 (100%)	0	100	100	
39	SV	67/67~(100%)	66~(98%)	1 (2%)	60	76	
40	SW	112/113~(99%)	112 (100%)	0	100	100	
41	SX	113/115~(98%)	113 (100%)	0	100	100	
42	SY	113/115~(98%)	112 (99%)	1 (1%)	75	86	
43	SZ	63/103~(61%)	63~(100%)	0	100	100	
44	Sa	90/98~(92%)	90 (100%)	0	100	100	
45	Sb	75/76~(99%)	75~(100%)	0	100	100	
46	Sc	52/62~(84%)	51 (98%)	1 (2%)	52	71	
47	Sd	48/49~(98%)	48 (100%)	0	100	100	
48	Se	47/48~(98%)	47 (100%)	0	100	100	
49	Sf	57/140 (41%)	57 (100%)	0	100	100	
50	Sg	271/275~(98%)	270 (100%)	1 (0%)	89	93	-
All	All	9311/10907~(85%)	9290 (100%)	21 (0%)	91	96	

Continued from previous page...

5 of 21 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
25	SH	15	LYS
39	SV	35	ASN
50	Sg	280	LYS
42	SY	20	ARG
35	SR	78	ARG

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 20 such side chains are listed below:

Mol	Chain	Res	Type
24	SG	186	GLN
31	SN	90	HIS
37	ST	126	GLN
35	SR	116	ASN
1	В	1432	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
14	Х	121/250~(48%)	72~(59%)	3~(2%)
17	S2	1712/1869~(91%)	463 (27%)	19 (1%)
All	All	1833/2119~(86%)	535~(29%)	22 (1%)

5 of 535 RNA backbone outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
14	Х	77	U
14	Х	78	А
14	Х	81	U
14	Х	82	А
14	Х	83	U

5 of 22 RNA pucker outliers are listed below:

Mol	Chain	\mathbf{Res}	Type
17	S2	980	А
17	S2	1137	U
17	S2	1061	U
17	S2	1325	G
17	S2	339	А

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-51134. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 416

Y Index: 416

Z Index: 416

6.2.2 Raw map

X Index: 416

Y Index: 416

Z Index: 416

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 433

Y Index: 414

Z Index: 462

6.3.2 Raw map

X Index: 433

Y Index: 414

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.01. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_51134_msk_1.map$ (i) 6.6.1

Х

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 840 $\rm nm^3;$ this corresponds to an approximate mass of 759 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.294 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.294 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{Bosolution} \text{ ostimato } (\mathbf{\hat{\lambda}})$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.40	-	-
Author-provided FSC curve	3.42	4.47	3.51
Unmasked-calculated*	5.67	10.22	6.69

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 5.67 differs from the reported value 3.4 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-51134 and PDB model 9G8O. Per-residue inclusion information can be found in section 3 on page 16.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.01 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.01).

9.4 Atom inclusion (i)

At the recommended contour level, 51% of all backbone atoms, 54% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.01) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.5380	0.3070
А	0.0070	0.1160
В	0.0180	0.1110
С	0.0010	0.0890
D	0.0080	0.1020
Е	0.0000	0.0830
F	0.0000	0.0810
G	0.0000	0.0790
Н	0.0000	0.0750
Ι	0.0000	0.0670
J	0.0000	0.0770
K	0.0000	0.0750
L	0.0000	0.0950
Ln	0.8130	0.4340
М	0.0000	0.0030
N	0.0000	0.0570
0	0.0000	0.0840
S2	0.9450	0.4670
SA	0.8690	0.4550
SB	0.8860	0.4580
SC	0.9220	0.4970
SD	0.8130	0.4480
SE	0.8440	0.4780
SF	0.8180	0.4700
SG	0.7160	0.3400
SH	0.6920	0.3960
SI	0.8340	0.4340
SJ	0.9020	0.4780
SK	0.6710	0.4530
SL	0.7950	0.4740
SM	0.4430	0.2760
SN	0.8380	0.4840
SO	0.8680	0.4560
SP	0.6950	0.4450
SQ	0.8250	0.4960

Continued on next page...

Chain	Atom inclusion	Q-score
SR	0.8330	0.4370
SS	0.6580	0.4200
ST	0.7530	0.4680
SU	0.7250	0.4440
SV	0.8760	0.4750
SW	0.9190	0.5020
SX	0.9520	0.5080
SY	0.8310	0.4380
SZ	0.6390	0.4010
Sa	0.8830	0.4700
Sb	0.8450	0.4400
Sc	0.8660	0.4890
Sd	0.9160	0.5360
Se	0.7610	0.3800
Sf	0.4040	0.2960
Sg	0.7540	0.3860
Х	0.3770	0.1040

Continued from previous page...

