

wwPDB EM Validation Summary Report (i)

Sep 25, 2024 - 02:52 pm BST

PDB ID : 9GMO EMDB ID EMD-51452 : Title eIF6-bound pre-60S large ribosomal subunit incorporating mutant uL16 : Authors Bothe, A.; Ban, N.; Kostova, K. : Deposited on 2024-08-29 : Resolution 2.59 Å(reported) : Based on initial model 8a3d :

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev112
Mogul	:	1.8.4, CSD as541be (2020)
MolProbity	:	4.02b-467
buster-report	:	1.1.7(2018)
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.38.2

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.59 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	EM structures
	$(\# { m Entries})$	(# Entries)
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of	' chain	
1	А	5064	• 56%	11%	33%
2	В	119	93%		6% ·
3	С	157	• 84%		10% 6%
4	D	257	93%		• •
5	Е	403	97%		
6	F	427	83%		• 16%
7	G	297	97%		
8	Н	288	73%		• 24%

Mol	Chain	Length	Quality of chain	
9	Ι	203	95%	••
10	J	184	• 78% •	17%
11	Κ	188	• 97%	•••
12	L	196	7% 6%	20%
13	М	176	• 97%	•
14	Ν	160	5% 94%	6% •
15	Ο	128	12% 66% 11%	23%
16	Р	140	94%	• 6%
17	Q	157	· 61%	
18	R	156	75%	24%
19	S	145	• 89%	• 8%
20	Т	136	8%	5%•
21	U	148	• 99%	••
22	V	159	8% 58% • 38°	%
23	W	115	81%	6% 13%
24	Х	125	6% 82%	• 15%
25	Y	135	93%	• 5%
26	Z	110	96%	••
27	a	117	6% 91%	• 5%
28	b	123	93%	6% •
29	с	105	6% 91%	6% •
30	d	97	▲	• 11%
31	е	70	94%	•••
32	f	51	8%	•••
33	g	128	41% 59%	

Mol	Chain	Length	Quality of chain	
34	h	245	90%	• 8%
35	i	106	90%	8% •
36	j	92	95%	5%
37	k	137	• 91%	9%
38	1	204	98%	•
39	m	248	89%	• 10%
40	n	266	82%	• 16%
41	О	192	95%	• ••
42	р	204	97%	•
43	q	178	90%	5% •
44	r	211	96%	••
45	s	215	64%	35%
46	0	477	9% 8% • 91%	

2 Entry composition (i)

There are 53 unique types of molecules in this entry. The entry contains 132746 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 28S rRNA.

Mol	Chain	Residues			AltConf	Trace			
1	А	3394	Total 72870	C 32489	N 13334	O 23652	Р 3395	1	0

• Molecule 2 is a RNA chain called 5S rRNA.

Mol	Chain	Residues		A	AltConf	Trace			
2	В	118	Total 2518	C 1122	N 449	O 829	Р 118	0	0

• Molecule 3 is a RNA chain called 5.8S rRNA.

Mol	Chain	Residues		A	AltConf	Trace			
3	С	148	Total 3156	C 1408	N 563	O 1037	Р 148	0	0

• Molecule 4 is a protein called 60S ribosomal protein L8.

Mol	Chain	Residues		Ate	AltConf	Trace			
4	D	246	Total 1887	C 1183	N 387	0 311	S 6	0	0

• Molecule 5 is a protein called 60S ribosomal protein L3.

Mol	Chain	Residues		At	AltConf	Trace			
5	Е	395	Total 3194	C 2034	N 600	0 545	S 15	1	0

• Molecule 6 is a protein called 60S ribosomal protein L4.

Mol	Chain	Residues		At	AltConf	Trace			
6	F	360	Total 2860	C 1800	N 572	0 475	S 13	0	0

• Molecule 7 is a protein called 60S ribosomal protein L5.

Mol	Chain	Residues		At	AltConf	Trace			
7	G	292	Total 2372	C 1503	N 431	0 424	S 14	0	0

• Molecule 8 is a protein called Large ribosomal subunit protein eL6.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
8	Н	218	Total 1752	C 1128	N 333	0 287	$\frac{S}{4}$	0	0

• Molecule 9 is a protein called 60S ribosomal protein L13a.

Mol	Chain	Residues		Ate	AltConf	Trace			
9	Ι	199	Total 1634	C 1053	N 319	O 257	${ m S}{ m 5}$	0	0

• Molecule 10 is a protein called 60S ribosomal protein L17.

Mol	Chain	Residues		At	oms		AltConf	Trace	
10	J	152	Total 1233	С 771	N 240	O 213	S 9	0	0

• Molecule 11 is a protein called 60S ribosomal protein L18.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	K	187	Total 1513	C 944	N 314	O 250	${f S}{5}$	0	0

• Molecule 12 is a protein called 60S ribosomal protein L19.

Mol	Chain	Residues	Atoms					AltConf	Trace
12	L	157	Total 1304	C 813	N 280	O 202	S 9	0	0

• Molecule 13 is a protein called 60S ribosomal protein L18a.

Mol	Chain	Residues		A	toms		AltConf	Trace	
13	М	176	Total 1461	C 930	N 284	O 236	S 11	0	0

• Molecule 14 is a protein called 60S ribosomal protein L21.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	Ν	159	Total 1298	C 823	N 252	O 217	S 6	0	0

• Molecule 15 is a protein called 60S ribosomal protein L22.

Mol	Chain	Residues		At	oms		AltConf	Trace	
15	0	99	Total 804	C 516	N 140	0 146	${S \over 2}$	0	0

• Molecule 16 is a protein called 60S ribosomal protein L23.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	Р	132	Total 985	C 621	N 185	0 174	${ m S}{ m 5}$	0	0

• Molecule 17 is a protein called 60S ribosomal protein L24.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
17	Q	62	Total 519	C 332	N 101	O 83	${ m S} { m 3}$	0	0

• Molecule 18 is a protein called 60S ribosomal protein L23a.

Mol	Chain	Residues		At	oms		AltConf	Trace	
18	R	119	Total 976	C 624	N 183	0 168	S 1	0	0

• Molecule 19 is a protein called Large ribosomal subunit protein uL24.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	S	134	Total 1115	C 700	N 226	0 186	${ m S} { m 3}$	0	0

• Molecule 20 is a protein called 60S ribosomal protein L27.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	Т	135	Total 1107	С 714	N 208	0 182	${ m S} { m 3}$	0	0

• Molecule 21 is a protein called 60S ribosomal protein L27a.

Mol	Chain	Residues		At	oms			AltConf	Trace
21	U	147	Total 1162	C 736	N 237	0 186	${ m S} { m 3}$	0	0

• Molecule 22 is a protein called 60S ribosomal protein L29.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	V	99	Total 806	C 500	N 177	0 125	$\frac{S}{4}$	0	0

• Molecule 23 is a protein called 60S ribosomal protein L30.

Mol	Chain	Residues		At	oms			AltConf	Trace
23	W	100	Total 772	C 490	N 136	0 139	${f S}{7}$	0	0

• Molecule 24 is a protein called 60S ribosomal protein L31.

Mol	Chain	Residues		At	oms			AltConf	Trace
24	Х	106	Total 868	C 551	N 170	0 145	${ m S} { m 2}$	0	0

• Molecule 25 is a protein called 60S ribosomal protein L32.

Mol	Chain	Residues		At	oms			AltConf	Trace
25	Y	128	Total 1053	C 667	N 216	0 165	${ m S}{ m 5}$	0	0

• Molecule 26 is a protein called 60S ribosomal protein L35a.

Mol	Chain	Residues		At	oms			AltConf	Trace
26	Z	109	Total 879	$\begin{array}{c} \mathrm{C} \\ 557 \end{array}$	N 174	0 144	$\frac{S}{4}$	1	0

• Molecule 27 is a protein called 60S ribosomal protein L34.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	a	111	Total 882	C 552	N 182	0 142	S 6	0	0

• Molecule 28 is a protein called 60S ribosomal protein L35.

Mol	Chain	Residues		At	oms			AltConf	Trace
28	b	122	Total 1015	C 641	N 205	0 168	S 1	0	0

• Molecule 29 is a protein called 60S ribosomal protein L36.

Mol	Chain	Residues		At	oms			AltConf	Trace
29	С	102	Total 832	C 521	N 177	0 129	${ m S}{ m 5}$	0	0

• Molecule 30 is a protein called 60S ribosomal protein L37.

Mol	Chain	Residues		At	oms			AltConf	Trace
30	d	86	Total 713	C 442	N 155	0 111	${f S}{5}$	1	0

• Molecule 31 is a protein called 60S ribosomal protein L38.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
31	е	69	Total	С	N	0	S	0	0
			569	366	103	99	1		

• Molecule 32 is a protein called 60S ribosomal protein L39.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
32	f	50	Total 444	C 281	N 98	0 64	S 1	0	0

• Molecule 33 is a protein called Ubiquitin-60S ribosomal protein L40.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
33	g	52	Total 429	C 266	N 90	O 67	S 6	0	0

• Molecule 34 is a protein called Eukaryotic translation initiation factor 6.

Mol	Chain	Residues		At	AltConf	Trace			
34	h	225	Total 1712	C 1065	N 295	0 340	S 12	0	0

• Molecule 35 is a protein called 60S ribosomal protein L36a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
35	i	103	Total 842	C 528	N 172	O 136	S 6	0	0

• Molecule 36 is a protein called 60S ribosomal protein L37a.

Mol	Chain	Residues		At	oms	AltConf	Trace		
36	j	92	Total 716	C 450	N 137	0 121	S 8	0	0

• Molecule 37 is a protein called 60S ribosomal protein L28.

Mol	Chain	Residues		At	AltConf	Trace			
37	k	124	Total 992	C 615	N 206	0 167	$\begin{array}{c} \mathrm{S} \\ \mathrm{4} \end{array}$	0	0

• Molecule 38 is a protein called 60S ribosomal protein L15.

Mol	Chain	Residues		At	AltConf	Trace			
38	1	203	Total 1708	C 1077	N 360	O 267	${S \atop 4}$	1	0

• Molecule 39 is a protein called Large ribosomal subunit protein uL30.

Mol	Chain	Residues		At	AltConf	Trace			
39	m	224	Total 1856	C 1192	N 356	O 299	${ m S} 9$	0	0

• Molecule 40 is a protein called 60S ribosomal protein L7a.

Mol	Chain	Residues		At	AltConf	Trace			
40	n	223	Total 1809	C 1153	N 349	O 303	$\frac{S}{4}$	0	0

• Molecule 41 is a protein called 60S ribosomal protein L9.

Mol	Chain	Residues		At	oms	AltConf	Trace		
41	О	190	Total 1518	C 956	N 284	0 272	S 6	0	0

• Molecule 42 is a protein called Large ribosomal subunit protein uL16.

Mol	Chain	Residues		At	AltConf	Trace			
42	р	203	Total 1647	C 1045	N 318	O 272	S 12	0	0

There are 10 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
р	?	-	MET	deletion	UNP P27635
р	?	-	LEU	deletion	UNP P27635
р	?	-	SER	deletion	UNP P27635
р	?	-	CYS	deletion	UNP P27635
р	?	-	ALA	deletion	UNP P27635
р	?	-	GLY	deletion	UNP P27635
р	?	-	ALA	deletion	UNP P27635
р	?	-	ASP	deletion	UNP P27635
р	?	-	ARG	deletion	UNP P27635
р	?	-	LEU	deletion	UNP P27635

• Molecule 43 is a protein called 60S ribosomal protein L11.

Mol	Chain	Residues	Atoms				AltConf	Trace	
43	q	170	Total 1358	C 858	N 253	0 241	S 6	0	0

• Molecule 44 is a protein called 60S ribosomal protein L13.

Mol	Chain	Residues	Atoms					AltConf	Trace
44	r	206	Total 1664	C 1041	N 345	0 274	$\frac{S}{4}$	0	0

• Molecule 45 is a protein called 60S ribosomal protein L14.

Mol	Chain	Residues	Atoms				AltConf	Trace	
45	s	139	Total 1138	C 730	N 218	O 183	${ m S} 7$	0	0

• Molecule 46 is a protein called Cytoplasmic 60S subunit biogenesis factor ZNF622.

Mol	Chain	Residues	Atoms				AltConf	Trace	
46	0	43	Total 363	C 226	N 72	O 59	S 6	0	0

• Molecule 47 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
47	А	213	Total Mg 213 213	0
47	В	3	Total Mg 3 3	0
47	С	6	Total Mg 6 6	0
47	L	1	Total Mg 1 1	0
47	Р	1	Total Mg 1 1	0
47	U	1	Total Mg 1 1	0
47	i	1	Total Mg 1 1	0
47	р	1	Total Mg 1 1	0

• Molecule 48 is POTASSIUM ION (three-letter code: K) (formula: K).

Mol	Chain	Residues	Atoms	AltConf
48	А	139	Total K 139 139	0
48	В	1	Total K 1 1	0
48	D	3	Total K 3 3	0
48	F	1	Total K 1 1	0
48	J	1	Total K 1 1	0
48	Ν	1	Total K 1 1	0
48	V	1	Total K 1 1	0
48	Y	1	Total K 1 1	0
48	Ζ	1	Total K 1 1	0
48	f	1	Total K 1 1	0
48	i	1	Total K 1 1	0
48	1	2	Total K 2 2	0

Mol	Chain	Residues	Atoms	AltConf
48	О	1	Total K 1 1	0
48	р	1	Total K 1 1	0

• Molecule 49 is SODIUM ION (three-letter code: NA) (formula: Na).

Mol	Chain	Residues	Atoms	AltConf
49	А	2	Total Na 2 2	0

• Molecule 50 is GUANOSINE-5'-TRIPHOSPHATE (three-letter code: GTP) (formula: $C_{10}H_{16}N_5O_{14}P_3$).

Mol	Chain	Residues	Atoms				AltConf	
50	В	1	Total 32	C 10	N 5	0 14	Р 3	0

• Molecule 51 is 4-(2-HYDROXYETHYL)-1-PIPERAZINE ETHANESULFONIC ACID (three-letter code: EPE) (formula: $C_8H_{18}N_2O_4S$).

Mol	Chain	Residues	Atoms				AltConf	
51	М	1	Total 15	C 8	N 2	0 4	S 1	0

• Molecule 52 is ZINC ION (three-letter code: ZN) (formula: Zn).

Mol	Chain	Residues	Atoms	AltConf
52	a	1	Total Zn 1 1	0
52	d	1	Total Zn 1 1	0
52	g	1	Total Zn 1 1	0
52	i	1	Total Zn 1 1	0
52	j	1	Total Zn 1 1	0

• Molecule 53 is water.

Mol	Chain	Residues	Atoms	AltConf
53	А	4	Total O 4 4	0
53	G	1	Total O 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 28S rRNA

 \bullet Molecule 7: 60S ribosomal protein L5

Chain G:	97%	
MET GLY GLY F1 E124 D128 D136 M212 B136 M212 D215 M225	K258 K259 E260 V261 K262 K263 A294 A1A ALA GLU SER	
• Molecule 8: Large ribosom	nal subunit protein eL6	
Chain H:	73%	• 24%
MET ALA ALA GLY CLV CLU CLY CLYS CLYS CLV CLYS CLV CLYS CLU CLYS CLU CLYS CLU CLYS CLU CLYS CLU	A STA ALA ALA GLY CLYS CLYS CLYS CLYS CLYS CLYS CLYS CL	K70 S74 A14 A14 A14 A14 LYS C12 C12 C12 C12 C12 C12 C12 C12 C12 C12
ALA V92 T93 T93 T93 T99 0120 0120 T199 K210 K221 K221	LYS LYS ARG ARG ARG GLN GLN GLN GLN GLN GLU GLU GLU GLU GLU GLU GLU CV GLU GLU GLU GLU GLU GLU GLU GLU GLU GLU	
• Molecule 9: 60S ribosomal	protein L13a	
Chain I:	95%	
MET ALA GLU VALU VALU D106 B165 B113 B162 B165 B165 B165 B165 B165 B165 B165 B165	2194 2008 ←	
• Molecule 10: 60S ribosoma	al protein L17	
Chain J:	78%	• 17%
MET V2 E9 69 75 69 80 75 61 10 6110 6110 4126 4126	K153 K153 GLU GLU GLU GLU PRO GLU GLU GLU GLU CINS GLU CINS GLU GLU GLU GLU GLU GLU GLU GLU GLU GLU	LYS LYS LEU LYS LYS GLN LYS GLN MET ARG GLU
• Molecule 11: 60S ribosoma	al protein L18	
Chain K:	97%	
MET 02 03 04 04 04 02 02 02 02 02 02 02 02 02 02	N188	
• Molecule 12: 60S ribosoma	al protein L19	
Chain L:	74%	6% 20%

Chain R:	75%	•• 24%	I
MET ALA PRO LYS ALA LYS LYS CLY GLU ALA ALA	PRO PRO LYS ALA ALA ALA ALA ALA LYS LYS CLYS CLYS CLYS CLYS CLYS CLYS C	1156 ◆	
• Molecule 19:	Large ribosomal subunit protein uL24		
Chain S:	89%	• 8%	
M1 40 40 466 466 174 174 1720	E131 K132 K132 C133 K134 TTR TTR CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU		
• Molecule 20:	60S ribosomal protein L27		
Chain T:	94%	5%•	
MET G2 M5 S19 S19 D30	M57 M57 M57 M57 M78 N78 S86 S86 S86 S86 B88 S86 B99 S86 B99 S86 B103 S86 F136 S86		
• Molecule 21:	60S ribosomal protein L27a		
Chain U:	99%	••	1
MET P2 D76 K94 T95 K119	◆ 148		
• Molecule 22:	60S ribosomal protein L29		
Chain V:	58% •	38%	
MET A2 R26 K33 C36 K63	A64 M65 866 ALA ARG ALA ARG ALA ALA ARG CLU CLY CLY CLY CLY CLY CLY CLY CLY CLY CLY	L103 L104 L104 L116 L118 L118 L118 L118 R120 R121 K122	LYS ALA LYS LYS ALA ALA ALA ALA ALA ASP
GLN THR LYS ALA GLN ALA ALA ALA PRO ALA SER	VAL VAL ALA GLA GLA GLA FRO LLYS ALA ALA ALA ALA CLYS CLYS CLYS CLYS CLYS CLYS CLYS CLYS		
• Molecule 23:	60S ribosomal protein L30		
Chain W:	81%	6% 13%	I
MET VAL ALA ALA ALA LYS LYS LYS LYS LYS S10	L11 E12 R16 R15 R16 R17 L18 M15 M15 K42 K42 K42 K42 K42 K42 K44 C100 C100 C100 C100 C100 C100 C100 C1	S107 M108 P109 GLU GLU GLU CLU LYS	
• Molecule 24:	60S ribosomal protein L31		
Chain X:	82%	• 15%	

• Molecule 31: 60S ribosomal protein L38

17%		
Chain e:	94%	•
MET P2 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5 E5	K70 K70 K70 K70 K70 K70 K70 K70	
• Molecule 32: 608	S ribosomal protein L39	
Chain f:	94%	.
MET 82 82 88 88 925 925 747 747 650 650		
• Molecule 33: Ub	piquitin-60S ribosomal protein L40	
Chain g:	41% 59%	_
MET GLN TLE CLN TLF THR TLF THR CL2 THR CL2 THR CL2 THR THR THR TLE	THR LEU VAL VAL VAL CLU CLU CLU CLU CLU CLU CLU CLU CLU CL	ARG THR LEU SER ASP ASN
LLE LYS CLN CLN CLN CLN CLN CLEU LEU LEU LEU LEU ARG	ARG GLY GLY W128	
• Molecule 34: Eul	karyotic translation initiation factor 6	
Chain h:	90%	9%
	50%	,,,
M1 A2 G29 G29 E39 E44 B44	R57 N74 N75 E80 E88 E88 E88 E88 E88 E121 D120 L121 D122 L121 D122 A130 D122 A130 D122 C123 C124 D144 C152 V153 V154 D144 D144 D144 D146 D122 D122 D122 D122 D120 D120 D120 D120	L176 L177 Q178 R188 E191 E201 D201 N225 Q19 C110
ALA GLN PRO PRO SER THR THR TILE ALA ARG ASP SER SER SER	LEU ASP SER LEU THR	
• Molecule 35: 608	S ribosomal protein L36a	
Chain i:	90% 8%	.
MET V2 R8 B31 B31 S46 K58 K58 K58	E74 P75 C77 C77 S79 S79 G100 G101 PHE PHE	
• Molecule 36: 608	S ribosomal protein L37a	
Chain j:	95%	5%
M A2 21 82 183 88 88 88	1981 1991 (1982) (198)	
• Molecule 37: 608	S ribosomal protein L28	

Chain k:	91%	9%
MET S2 A55 D56 M125 M125 V124	ARG LYS ARG ARG PRO THR IYS SER SER SER	
• Molecule 38:	60S ribosomal protein L15	
Chain l:	98%	. .
MET 62 615 046 0124 0147 ◆	8171 1 204	
• Molecule 39:	Large ribosomal subunit protein uL30	
Chain m:	89% •	10%
MET GLU GLU GLU GLU CLU LYS LYS CLU CVS VAI	PARL ALA ALA ALA ALA CLU CLU CLU CLU CLU CLU CLU CLU ARG ARG ARG ARG ARG ARG ARG ARG ARG ARG	
• Molecule 40:	60S ribosomal protein L7a	
Chain n:	82% · 16	3%
MET PRO LYS GLY LYS LYS ALA CLY CLY CLY	ALA ALA ALA ALA ALA ALA ALA ALA CLYS CLYS CLYS CLYS R117 AL14 AL14 AL14 AL14 AL14 AL14 AL14 AL14	R132 D160 E165 €210 K217 D228
D231 E254 K255 K255 K256 K256 K258 K258	E260 ALM ALM LUTS LEV GLY	
• Molecule 41:	60S ribosomal protein L9	
Chain o:	95%	·
Mi S6 D11 E14	K21 B37 G49 K51 K51 K52 K141 K144 A180 A180 A180 G134 A180 G142 A180 G142 A180 G10 A180 G10 A180	
• Molecule 42:	Large ribosomal subunit protein uL16	
Chain p:	97%	·
MET G2 R24 G25 D28 D28 D28 D28	D44 S54 D55 K82 K82 K82 C71 C71 C71 C71 C71 C71 C71 C71 C71 C71	
• Molecule 43:	60S ribosomal protein L11	
Chain q:	90% 5	% •
	PROTEIN DATA BANK	

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	193000	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	60	Depositor
Minimum defocus (nm)	1000	Depositor
Maximum defocus (nm)	2500	Depositor
Magnification	81000	Depositor
Image detector	GATAN K3 $(6k \times 4k)$	Depositor
Maximum map value	2.487	Depositor
Minimum map value	-0.586	Depositor
Average map value	-0.003	Depositor
Map value standard deviation	0.070	Depositor
Recommended contour level	0.5	Depositor
Map size (Å)	593.6, 593.6, 593.6	wwPDB
Map dimensions	560, 560, 560	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.06, 1.06, 1.06	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: OMC, MG, UY1, OMG, EPE, 5MC, K, GTP, ZN, PSU, 1MA, UR3, NA, A2M, OMU, 6MZ

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.18	0/78643	0.75	16/122654~(0.0%)	
2	В	0.17	0/2813	0.72	0/4384	
3	С	0.18	0/3453	0.75	0/5376	
4	D	0.25	0/1925	0.57	1/2581~(0.0%)	
5	Е	0.24	0/3265	0.49	0/4369	
6	F	0.24	0/2914	0.53	0/3915	
7	G	0.24	0/2418	0.49	0/3239	
8	Н	0.25	0/1786	0.52	0/2395	
9	Ι	0.27	0/1666	0.53	0/2228	
10	J	0.26	0/1259	0.54	0/1689	
11	K	0.26	0/1537	0.60	1/2052~(0.0%)	
12	L	0.26	0/1320	0.62	1/1749~(0.1%)	
13	М	0.26	0/1501	0.58	1/2013~(0.0%)	
14	Ν	0.30	0/1326	0.60	0/1770	
15	0	0.31	0/818	0.69	0/1098	
16	Р	0.27	0/999	0.56	0/1340	
17	Q	0.30	0/532	0.67	1/708~(0.1%)	
18	R	0.26	0/993	0.60	1/1334~(0.1%)	
19	S	0.27	0/1132	0.58	0/1504	
20	Т	0.27	0/1130	0.60	1/1507~(0.1%)	
21	U	0.25	0/1191	0.54	0/1591	
22	V	0.26	0/819	0.67	2/1081~(0.2%)	
23	W	0.29	0/783	0.62	0/1052	
24	Х	0.25	0/883	0.59	0/1190	
25	Y	0.25	0/1071	0.55	0/1429	
26	Ζ	0.26	0/901	0.56	0/1206	
27	a	0.25	0/892	0.56	0/1189	
28	b	0.27	0/1023	0.57	0/1351	
29	с	0.29	0/843	0.60	0/1115	
30	d	0.24	0/732	0.57	0/968	
31	e	0.30	0/575	0.61	0/761	
32	f	0.24	0/454	0.57	0/599	

Mol Chair		Bond lengths		Bond angles		
WIOI	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
33	g	0.25	0/435	0.56	0/575	
34	h	0.26	0/1736	0.55	0/2362	
35	i	0.27	0/855	0.57	0/1128	
36	j	0.25	0/726	0.57	0/963	
37	k	0.23	0/1007	0.54	0/1351	
38	1	0.24	0/1753	0.55	0/2348	
39	m	0.27	0/1890	0.52	0/2519	
40	n	0.24	0/1840	0.51	1/2476~(0.0%)	
41	0	0.29	0/1537	0.61	2/2066~(0.1%)	
42	р	0.28	0/1686	0.57	0/2252	
43	q	0.25	0/1381	0.56	1/1848~(0.1%)	
44	r	0.25	0/1695	0.56	1/2270~(0.0%)	
45	S	0.27	0/1161	0.60	2/1554~(0.1%)	
46	0	0.24	0/368	0.52	0/484	
All	All	0.21	0/139667	0.69	32/205633~(0.0%)	

There are no bond length outliers.

The worst 5 of 32 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	2469	C	C2-N1-C1'	8.16	127.78	118.80
1	А	2409	U	C2-N1-C1'	7.29	126.44	117.70
41	0	150	ASP	CB-CG-OD1	7.09	124.68	118.30
45	s	81	ASP	CB-CG-OD1	6.66	124.30	118.30
1	А	1639	U	C2-N1-C1'	6.26	125.22	117.70

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
4	D	244/257~(95%)	235~(96%)	9~(4%)	0	100	100
5	Ε	394/403~(98%)	390 (99%)	4 (1%)	0	100	100
6	F	358/427~(84%)	353 (99%)	5 (1%)	0	100	100
7	G	290/297~(98%)	286 (99%)	4 (1%)	0	100	100
8	Н	212/288~(74%)	206 (97%)	6 (3%)	0	100	100
9	Ι	197/203~(97%)	196 (100%)	1 (0%)	0	100	100
10	J	150/184 (82%)	150 (100%)	0	0	100	100
11	K	185/188 (98%)	183 (99%)	2 (1%)	0	100	100
12	L	155/196~(79%)	154 (99%)	1 (1%)	0	100	100
13	М	174/176~(99%)	170 (98%)	4 (2%)	0	100	100
14	Ν	157/160~(98%)	156 (99%)	1 (1%)	0	100	100
15	Ο	97/128~(76%)	92 (95%)	5 (5%)	0	100	100
16	Р	130/140~(93%)	129 (99%)	1 (1%)	0	100	100
17	Q	60/157~(38%)	60 (100%)	0	0	100	100
18	R	117/156~(75%)	115 (98%)	2 (2%)	0	100	100
19	S	132/145~(91%)	130 (98%)	2 (2%)	0	100	100
20	Т	133/136~(98%)	130 (98%)	3 (2%)	0	100	100
21	U	145/148 (98%)	144 (99%)	1 (1%)	0	100	100
22	V	95/159~(60%)	94 (99%)	1 (1%)	0	100	100
23	W	98/115~(85%)	98 (100%)	0	0	100	100
24	Х	104/125~(83%)	104 (100%)	0	0	100	100
25	Y	126/135~(93%)	126 (100%)	0	0	100	100
26	Z	108/110 (98%)	108 (100%)	0	0	100	100
27	a	109/117~(93%)	108 (99%)	1 (1%)	0	100	100
28	b	120/123~(98%)	118 (98%)	2 (2%)	0	100	100
29	с	100/105~(95%)	100 (100%)	0	0	100	100
30	d	85/97~(88%)	85 (100%)	0	0	100	100
31	е	67/70~(96%)	67 (100%)	0	0	100	100
32	f	48/51~(94%)	48 (100%)	0	0	100	100
33	g	50/128~(39%)	50 (100%)	0	0	100	100

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
34	h	223/245~(91%)	218~(98%)	5(2%)	0	100	100
35	i	101/106~(95%)	98~(97%)	3(3%)	0	100	100
36	j	90/92~(98%)	87~(97%)	3(3%)	0	100	100
37	k	122/137~(89%)	121 (99%)	1 (1%)	0	100	100
38	1	202/204~(99%)	200 (99%)	2(1%)	0	100	100
39	m	222/248~(90%)	217~(98%)	5 (2%)	0	100	100
40	n	219/266~(82%)	216 (99%)	3 (1%)	0	100	100
41	О	188/192~(98%)	186 (99%)	2(1%)	0	100	100
42	р	201/204~(98%)	199~(99%)	2(1%)	0	100	100
43	q	168/178~(94%)	167 (99%)	1 (1%)	0	100	100
44	r	204/211~(97%)	201 (98%)	3(2%)	0	100	100
45	S	137/215~(64%)	136 (99%)	1 (1%)	0	100	100
46	0	41/477~(9%)	41 (100%)	0	0	100	100
All	All	6558/7899~(83%)	6472 (99%)	86 (1%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
4	D	189/199~(95%)	184 (97%)	5(3%)	41	67
5	Ε	345/349~(99%)	342~(99%)	3~(1%)	75	90
6	F	297/348~(85%)	291~(98%)	6(2%)	50	74
7	G	245/250~(98%)	241~(98%)	4(2%)	58	79
8	Η	193/252~(77%)	184~(95%)	9~(5%)	22	45
9	Ι	171/174~(98%)	164 (96%)	7~(4%)	26	51
10	J	133/163~(82%)	125~(94%)	8~(6%)	16	35
11	Κ	164/165~(99%)	161 (98%)	3~(2%)	54	77

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
12	L	138/175~(79%)	128~(93%)	10 (7%)	12	26
13	М	157/157~(100%)	152~(97%)	5 (3%)	34	60
14	Ν	139/140~(99%)	130 (94%)	9~(6%)	14	31
15	О	88/115~(76%)	74 (84%)	14 (16%)	2	3
16	Р	102/107~(95%)	101 (99%)	1 (1%)	73	88
17	Q	54/126~(43%)	48 (89%)	6 (11%)	5	10
18	R	107/133~(80%)	105 (98%)	2(2%)	52	75
19	S	124/135~(92%)	119 (96%)	5 (4%)	27	52
20	Т	117/118~(99%)	111 (95%)	6~(5%)	20	42
21	U	120/121~(99%)	119 (99%)	1 (1%)	79	91
22	V	82/126~(65%)	78~(95%)	4(5%)	21	43
23	W	84/97~(87%)	77 (92%)	7 (8%)	9	19
24	Х	93/110 (84%)	89 (96%)	4 (4%)	25	49
25	Y	114/121~(94%)	112 (98%)	2(2%)	54	77
26	Ζ	89/89~(100%)	86 (97%)	3~(3%)	32	58
27	a	95/100~(95%)	90~(95%)	5(5%)	19	40
28	b	109/110~(99%)	102 (94%)	7~(6%)	14	32
29	с	86/89~(97%)	80 (93%)	6~(7%)	12	27
30	d	74/80~(92%)	73~(99%)	1 (1%)	62	82
31	е	64/65~(98%)	61~(95%)	3~(5%)	22	45
32	f	47/48~(98%)	45~(96%)	2~(4%)	25	49
33	g	48/116 (41%)	48 (100%)	0	100	100
34	h	195/213~(92%)	190~(97%)	5 (3%)	41	67
35	i	91/94~(97%)	83 (91%)	8~(9%)	8	17
36	j	75/75~(100%)	70~(93%)	5(7%)	13	29
37	k	107/121~(88%)	107~(100%)	0	100	100
38	1	172/172~(100%)	168 (98%)	4(2%)	45	71
39	m	$\overline{192/215}\ (89\%)$	188 (98%)	4 (2%)	48	73
40	n	193/223~(86%)	187 (97%)	6 (3%)	35	62
41	0	$\overline{169/171}\ (99\%)$	162 (96%)	7 (4%)	26	51
42	р	$173/\overline{174~(99\%)}$	167 (96%)	6 (4%)	31	57

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles		
43	q	142/149~(95%)	134~(94%)	8 (6%)	17 38		
44	r	172/177~(97%)	170 (99%)	2(1%)	67 85		
45	s	118/161~(73%)	117~(99%)	1 (1%)	79 91		
46	0	38/404~(9%)	35~(92%)	3~(8%)	10 21		
All	All	5705/6727~(85%)	5498 (96%)	207 (4%)	32 56		

5 of 207 residues with a non-rotameric side chain are listed below:

Mol	Chain	\mathbf{Res}	Type
24	Х	18	ASN
31	е	10	ASP
43	q	118	LYS
25	Y	25	SER
28	b	19	LYS

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 11 such side chains are listed below:

Mol	Chain	\mathbf{Res}	Type
34	h	178	GLN
35	i	45	GLN
44	r	149	GLN
40	n	64	GLN
19	S	66	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	А	3364/5064~(66%)	457 (13%)	3(0%)
2	В	117/119~(98%)	7(5%)	0
3	С	145/157~(92%)	13 (8%)	0
All	All	3626/5340~(67%)	477 (13%)	3(0%)

5 of 477 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	А	13	U
1	А	39	А
1	A	42	A

Continued from previous page...

Mol	Chain	Res	Type
1	А	47	А
1	А	48	G

All (3) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	А	486	С
1	А	964	А
1	А	3734	PSU

5.4 Non-standard residues in protein, DNA, RNA chains (i)

123 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Tuno	Chain	Dog	Link	Bo	ond leng	ths	В	ond ang	les
	Type	Ullalli	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
1	A2M	А	400	1	18,25,26	1.02	1 (5%)	$18,\!36,\!39$	1.22	2 (11%)
1	OMU	А	2415	1	19,22,23	1.25	4 (21%)	26,31,34	1.71	5 (19%)
1	PSU	А	1536	1	18,21,22	1.35	2 (11%)	22,30,33	1.91	3 (13%)
1	OMG	А	4392	1	18,26,27	0.93	1 (5%)	19,38,41	1.08	2 (10%)
1	PSU	А	2508	1	18,21,22	1.34	2 (11%)	22,30,33	1.89	3 (13%)
1	PSU	А	3884	1	18,21,22	1.33	2 (11%)	22,30,33	1.90	3 (13%)
1	PSU	А	4972	1,48	18,21,22	1.33	2 (11%)	22,30,33	1.88	3 (13%)
1	PSU	А	3768	1	18,21,22	1.35	2 (11%)	22,30,33	1.85	3 (13%)
1	OMG	А	4494	1	18,26,27	0.94	1 (5%)	19,38,41	1.12	2 (10%)
1	PSU	А	4576	1,48	18,21,22	1.35	2 (11%)	22,30,33	1.86	3 (13%)
1	PSU	А	1683	1,48	18,21,22	1.35	2 (11%)	22,30,33	1.89	3 (13%)
1	A2M	А	3867	1	18,25,26	0.99	1 (5%)	18,36,39	1.25	2 (11%)
1	OMG	А	4499	1	18,26,27	0.93	1 (5%)	19,38,41	1.08	2 (10%)
1	A2M	А	1871	47,1	18,25,26	1.04	1 (5%)	18,36,39	1.20	2 (11%)
1	OMG	А	4370	1	18,26,27	0.93	1 (5%)	19,38,41	1.07	2 (10%)

Mol	Type	Chain	Bog	Link	Bond lengths		Bond angles			
	Type	Chain	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
1	OMC	A	3701	1,48	19,22,23	0.79	0	26,31,34	0.73	0
1	OMG	A	4196	1	18,26,27	0.93	1 (5%)	19,38,41	1.06	2 (10%)
1	OMC	A	4456	1	19,22,23	0.83	0	26,31,34	0.98	1 (3%)
1	PSU	A	1781	1	18,21,22	1.34	2 (11%)	22,30,33	1.89	4 (18%)
1	OMG	A	1625	1,48	18,26,27	0.93	1 (5%)	19,38,41	1.10	2(10%)
1	PSU	А	4442	1	18,21,22	1.36	2 (11%)	22,30,33	1.90	4 (18%)
1	PSU	А	3730	1	18,21,22	1.33	2 (11%)	22,30,33	1.87	3 (13%)
1	OMG	А	4623	1	18,26,27	0.93	1 (5%)	19,38,41	1.06	2 (10%)
1	OMC	А	3869	1	19,22,23	0.82	0	26,31,34	0.86	1 (3%)
1	PSU	А	4628	1	18,21,22	1.35	2 (11%)	22,30,33	1.89	3 (13%)
1	PSU	А	3715	1	18,21,22	1.35	2 (11%)	22,30,33	1.87	4 (18%)
1	A2M	А	3830	1	18,25,26	1.04	1 (5%)	18,36,39	1.20	2 (11%)
1	OMG	А	3744	1	18,26,27	0.94	1 (5%)	19,38,41	1.07	2 (10%)
1	PSU	А	2632	1	18,21,22	1.35	2 (11%)	22,30,33	1.87	3 (13%)
1	PSU	А	5001	1,48	18,21,22	1.35	2 (11%)	22,30,33	1.86	3 (13%)
3	OMG	С	75	3	18,26,27	0.95	1 (5%)	19,38,41	1.06	2 (10%)
3	PSU	С	55	3	18,21,22	1.34	2 (11%)	22,30,33	1.89	3 (13%)
1	PSU	А	4673	1,48	18,21,22	1.34	2 (11%)	22,30,33	1.89	3 (13%)
1	A2M	А	4571	1	18,25,26	1.01	1 (5%)	18,36,39	1.27	2 (11%)
1	PSU	А	4457	1	18,21,22	1.34	2 (11%)	22,30,33	1.88	4 (18%)
1	PSU	А	3920	47,1	18,21,22	1.34	2 (11%)	22,30,33	1.91	4 (18%)
1	PSU	А	2839	1	18,21,22	1.33	2 (11%)	22,30,33	1.87	3 (13%)
1	PSU	А	3695	1,48	18,21,22	1.34	2 (11%)	22,30,33	1.88	4 (18%)
1	PSU	А	1782	1	18,21,22	1.34	2 (11%)	22,30,33	1.89	3 (13%)
1	OMC	А	2861	1	19,22,23	0.82	0	26,31,34	0.93	1 (3%)
1	PSU	А	4471	1,48	18,21,22	1.34	2 (11%)	22,30,33	1.90	4 (18%)
1	OMU	А	3925	1	19,22,23	1.20	2 (10%)	26,31,34	1.69	5 (19%)
1	OMG	А	1316	1,48	18,26,27	0.94	1 (5%)	19,38,41	1.08	2 (10%)
1	PSU	А	3851	1	18,21,22	1.37	2 (11%)	22,30,33	1.85	4 (18%)
1	PSU	А	4403	1	18,21,22	1.35	2 (11%)	22,30,33	1.89	4 (18%)
1	A2M	А	1524	1	18,25,26	1.03	1 (5%)	18,36,39	1.30	2 (11%)
1	PSU	А	1677	1,48	18,21,22	1.33	2 (11%)	22,30,33	1.86	3 (13%)
1	PSU	A	5010	1	18,21,22	1.34	2 (11%)	22,30,33	1.88	3 (13%)
1	OMC	А	1881	1	19,22,23	0.83	0	26,31,34	1.09	2 (7%)
1	OMC	А	3841	1	19,22,23	0.80	0	26,31,34	0.78	0

Mal	Turne	Chain	Dec	Tiple	Bond lengths		Bond angles			
	Type	Chain	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
1	PSU	А	3639	1	18,21,22	1.35	2 (11%)	22,30,33	1.89	3 (13%)
1	OMG	А	2364	1	18,26,27	0.94	1 (5%)	19,38,41	1.06	2 (10%)
1	A2M	А	3785	1	18,25,26	0.98	1 (5%)	18,36,39	1.34	2 (11%)
1	A2M	А	2815	1,48	18,25,26	1.03	1 (5%)	18,36,39	1.21	2 (11%)
1	PSU	А	4579	1	18,21,22	1.34	2 (11%)	22,30,33	1.89	3 (13%)
1	PSU	А	4500	1	18,21,22	1.37	2 (11%)	22,30,33	1.81	3 (13%)
1	PSU	А	1744	1,48	18,21,22	1.34	2 (11%)	22,30,33	1.89	3 (13%)
1	OMC	А	2422	47,1	19,22,23	0.82	0	26,31,34	0.84	1 (3%)
1	A2M	А	2363	47,1	18,25,26	1.03	1 (5%)	18,36,39	1.19	2 (11%)
1	PSU	А	4521	47,1,48	18,21,22	1.35	2 (11%)	22,30,33	1.90	3 (13%)
1	A2M	А	4523	47,1	18,25,26	1.03	1 (5%)	18,36,39	1.23	2 (11%)
1	PSU	А	3844	1	18,21,22	1.36	2 (11%)	22,30,33	1.86	3 (13%)
1	PSU	А	3853	47,1	18,21,22	1.36	2 (11%)	22,30,33	1.87	3 (13%)
1	PSU	А	4312	1	18,21,22	1.34	2 (11%)	22,30,33	1.89	3 (13%)
1	PSU	А	4296	1	18,21,22	1.33	2 (11%)	22,30,33	1.93	4 (18%)
1	OMG	А	3792	1	18,26,27	0.93	1 (5%)	19,38,41	1.06	2 (10%)
1	A2M	А	3825	1	18,25,26	1.03	1 (5%)	18,36,39	1.19	2 (11%)
1	5MC	А	3782	47,1	18,22,23	0.96	2 (11%)	26,32,35	1.16	3 (11%)
1	PSU	А	1862	1	18,21,22	1.34	2 (11%)	22,30,33	1.88	3 (13%)
1	OMC	А	2351	47,1	19,22,23	0.82	0	26,31,34	0.87	1 (3%)
1	PSU	А	4493	1,48	18,21,22	1.34	2 (11%)	22,30,33	1.89	4 (18%)
1	PSU	А	3637	1,48	18,21,22	1.34	2 (11%)	22,30,33	1.90	3 (13%)
1	OMC	А	3808	1,48	19,22,23	0.83	0	26,31,34	0.94	1 (3%)
1	PSU	А	4431	1,48	18,21,22	1.35	2 (11%)	22,30,33	1.88	3 (13%)
1	UY1	А	3818	1,48	19,22,23	0.87	0	22,31,34	1.76	4 (18%)
1	PSU	А	4689	1	18,21,22	1.34	2 (11%)	22,30,33	1.89	3 (13%)
1	OMG	А	3899	1	18,26,27	0.93	1 (5%)	19,38,41	1.07	2 (10%)
1	OMU	А	4620	1	19,22,23	1.23	3 (15%)	26,31,34	1.69	4 (15%)
1	PSU	А	1792	1	18,21,22	1.34	2 (11%)	22,30,33	1.87	4 (18%)
1	PSU	А	4423	1	18,21,22	1.35	2 (11%)	22,30,33	1.88	3 (13%)
1	OMC	А	2804	1	19,22,23	0.81	0	26,31,34	0.77	0
1	A2M	А	4590	1	18,25,26	1.03	1 (5%)	18,36,39	1.22	2 (11%)
1	OMG	А	3944	1	18,26,27	0.94	1 (5%)	19,38,41	1.07	2 (10%)
1	1MA	А	1322	47,1	16,25,26	1.56	2 (12%)	18,37,40	1.06	2 (11%)
1	OMC	A	4536	47,1	19,22,23	$0.8\overline{4}$	0	26,31,34	0.97	1 (3%)

Mal	Turne	Chain	Dec	Tink	Bond lengths		Bond angles			
NIOI	туре	Chain	res	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z >2
1	PSU	А	1582	$1,\!48$	18,21,22	1.34	2 (11%)	22,30,33	1.91	4 (18%)
1	OMG	А	2876	1	18,26,27	0.92	1 (5%)	19,38,41	1.07	2 (10%)
1	A2M	А	2787	47,1	18,25,26	0.99	1 (5%)	18,36,39	1.34	2 (11%)
1	A2M	А	2401	47,1	18,25,26	1.02	1 (5%)	18,36,39	1.22	2 (11%)
1	PSU	А	4293	1	18,21,22	1.34	2 (11%)	22,30,33	1.88	3 (13%)
1	A2M	А	1323	1	18,25,26	1.03	1 (5%)	18,36,39	1.30	2 (11%)
1	OMG	А	2424	1	18,26,27	0.92	1 (5%)	19,38,41	1.05	2 (10%)
1	PSU	А	4532	1	18,21,22	1.35	2 (11%)	22,30,33	1.88	3 (13%)
1	A2M	А	1534	47,1	18,25,26	1.01	1 (5%)	18,36,39	1.35	2 (11%)
1	OMG	А	4637	1	18,26,27	0.94	1 (5%)	19,38,41	1.09	2 (10%)
1	OMC	А	3887	1	19,22,23	0.82	0	26,31,34	0.86	1 (3%)
1	OMG	А	3627	1	18,26,27	0.93	1 (5%)	19,38,41	1.11	2 (10%)
1	A2M	А	3724	1	18,25,26	1.05	1 (5%)	18,36,39	1.22	2 (11%)
1	OMU	А	4498	1,48	19,22,23	1.20	2 (10%)	26,31,34	1.70	5 (19%)
1	PSU	А	3734	1	18,21,22	1.34	2 (11%)	22,30,33	1.98	4 (18%)
1	PSU	А	4361	1,48	18,21,22	1.34	2 (11%)	22,30,33	1.86	3 (13%)
1	A2M	А	398	1	18,25,26	1.02	1 (5%)	18,36,39	1.24	2 (11%)
1	A2M	А	3718	1	18,25,26	1.03	1 (5%)	18,36,39	1.15	2 (11%)
1	OMG	А	1522	1	18,26,27	0.94	1 (5%)	19,38,41	1.09	2 (10%)
1	PSU	А	4420	1	18,21,22	1.40	3 (16%)	22,30,33	1.81	4 (18%)
1	PSU	А	3770	1	18,21,22	1.33	2 (11%)	22,30,33	1.89	3 (13%)
1	OMC	А	1340	1	19,22,23	0.83	0	26,31,34	0.88	1 (3%)
1	OMG	А	4618	1,48	18,26,27	0.92	1 (5%)	19,38,41	1.10	2 (10%)
1	OMG	А	4228	1	18,26,27	0.90	1 (5%)	19,38,41	1.13	2 (10%)
1	OMC	А	2824	1	19,22,23	0.82	0	26,31,34	0.84	0
1	PSU	А	4552	1	18,21,22	1.34	2 (11%)	22,30,33	1.89	<mark>3 (13%)</mark>
1	OMU	А	4306	1	19,22,23	1.23	3 (15%)	$26,\!31,\!34$	1.70	4 (15%)
1	UR3	А	4530	1	19,22,23	1.00	1 (5%)	$26,\!32,\!35$	1.41	1 (3%)
1	PSU	А	4353	$1,\!48$	18,21,22	1.34	2 (11%)	22,30,33	1.89	3 (13%)
1	5MC	A	4447	1,48	18,22,23	0.99	2 (11%)	26,32,35	1.19	2(7%)
1	OMU	А	2837	1	19,22,23	1.24	3 (15%)	26,31,34	1.71	5 (19%)
1	OMC	А	2365	47,1	19,22,23	0.81	0	26,31,34	0.79	0
1	6MZ	А	4220	1	18,25,26	0.89	1 (5%)	16,36,39	1.99	4 (25%)
1	PSU	А	4299	1	18,21,22	1.34	2 (11%)	22,30,33	1.89	3 (13%)
1	PSU	А	1860	1	18,21,22	1.34	2 (11%)	22,30,33	1.89	3 (13%)

Mol Type Chai	Type Chain	Chain	Dog	og Link	Bond lengths			Bond angles		
	Unam	nes	LIIIK	Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2	
1	OMU	А	4227	1	19,22,23	1.22	3 (15%)	26,31,34	1.70	4 (15%)
3	PSU	С	69	3	18,21,22	1.35	2 (11%)	22,30,33	1.88	4 (18%)
1	A2M	А	1326	1	18,25,26	0.99	1 (5%)	18,36,39	1.25	2 (11%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	A2M	А	400	1	-	0/5/27/28	0/3/3/3
1	OMU	А	2415	1	-	2/9/27/28	0/2/2/2
1	PSU	А	1536	1	-	0/7/25/26	0/2/2/2
1	OMG	А	4392	1	-	0/5/27/28	0/3/3/3
1	PSU	А	2508	1	-	0/7/25/26	0/2/2/2
1	PSU	А	3884	1	-	0/7/25/26	0/2/2/2
1	PSU	А	4972	1,48	-	0/7/25/26	0/2/2/2
1	PSU	А	3768	1	-	0/7/25/26	0/2/2/2
1	OMG	А	4494	1	-	0/5/27/28	0/3/3/3
1	PSU	А	4576	1,48	-	0/7/25/26	0/2/2/2
1	PSU	А	1683	1,48	-	0/7/25/26	0/2/2/2
1	A2M	А	3867	1	-	1/5/27/28	0/3/3/3
1	OMG	А	4499	1	-	0/5/27/28	0/3/3/3
1	A2M	А	1871	47,1	-	0/5/27/28	0/3/3/3
1	OMG	А	4370	1	-	0/5/27/28	0/3/3/3
1	OMC	А	3701	1,48	-	5/9/27/28	0/2/2/2
1	OMG	А	4196	1	-	0/5/27/28	0/3/3/3
1	OMC	А	4456	1	-	2/9/27/28	0/2/2/2
1	PSU	А	1781	1	-	0/7/25/26	0/2/2/2
1	OMG	А	1625	1,48	-	1/5/27/28	0/3/3/3
1	PSU	А	4442	1	-	0/7/25/26	0/2/2/2
1	PSU	А	3730	1	-	0/7/25/26	0/2/2/2
1	OMG	А	4623	1	-	0/5/27/28	0/3/3/3
1	OMC	А	3869	1	-	0/9/27/28	0/2/2/2
1	PSU	А	4628	1	-	0/7/25/26	0/2/2/2
1	PSU	А	3715	1	-	0/7/25/26	0/2/2/2
1	A2M	А	3830	1	-	0/5/27/28	0/3/3/3
1	OMG	А	3744	1	-	0/5/27/28	0/3/3/3
1	PSU	А	2632	1	-	0/7/25/26	0/2/2/2
1	PSU	А	5001	1,48	-	0/7/25/26	0/2/2/2
3	OMG	С	75	3	-	0/5/27/28	0/3/3/3

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
3	PSU	С	55	3	-	0/7/25/26	0/2/2/2
1	PSU	А	4673	1,48	-	0/7/25/26	0/2/2/2
1	A2M	А	4571	1	-	1/5/27/28	0/3/3/3
1	PSU	А	4457	1	-	0/7/25/26	0/2/2/2
1	PSU	А	3920	47,1	-	0/7/25/26	0/2/2/2
1	PSU	А	2839	1	-	0/7/25/26	0/2/2/2
1	PSU	А	3695	1,48	-	0/7/25/26	0/2/2/2
1	PSU	А	1782	1	-	0/7/25/26	0/2/2/2
1	OMC	A	2861	1	-	1/9/27/28	0/2/2/2
1	PSU	A	4471	1,48	-	0/7/25/26	0/2/2/2
1	OMU	A	3925	1	-	0/9/27/28	0/2/2/2
1	OMG	А	1316	1,48	-	0/5/27/28	0/3/3/3
1	PSU	A	3851	1	-	1/7/25/26	0/2/2/2
1	PSU	A	4403	1	-	0/7/25/26	0/2/2/2
1	A2M	A	1524	1	-	0/5/27/28	0/3/3/3
1	PSU	А	1677	1,48	-	4/7/25/26	0/2/2/2
1	PSU	А	5010	1	-	0/7/25/26	0/2/2/2
1	OMC	А	1881	1	-	5/9/27/28	0/2/2/2
1	OMC	А	3841	1	-	0/9/27/28	0/2/2/2
1	PSU	А	3639	1	-	0/7/25/26	0/2/2/2
1	OMG	А	2364	1	-	2/5/27/28	0/3/3/3
1	A2M	А	3785	1	-	2/5/27/28	0/3/3/3
1	A2M	А	2815	1,48	-	0/5/27/28	0/3/3/3
1	PSU	А	4579	1	-	0/7/25/26	0/2/2/2
1	PSU	А	4500	1	-	2/7/25/26	0/2/2/2
1	PSU	А	1744	1,48	-	0/7/25/26	0/2/2/2
1	OMC	А	2422	47,1	-	0/9/27/28	0/2/2/2
1	A2M	А	2363	47,1	-	0/5/27/28	0/3/3/3
1	PSU	А	4521	47,1,48	-	0/7/25/26	0/2/2/2
1	A2M	А	4523	47,1	-	2/5/27/28	0/3/3/3
1	PSU	А	3844	1	_	1/7/25/26	0/2/2/2
1	PSU	A	3853	47,1	_	0/7/25/26	0/2/2/2
1	PSU	А	4312	1	_	0/7/25/26	0/2/2/2
1	PSU	А	4296	1	-	0/7/25/26	0/2/2/2
1	OMG	А	3792	1	-	0/5/27/28	0/3/3/3
1	A2M	А	3825	1	-	0/5/27/28	0/3/3/3
1	5MC	А	3782	47,1	-	0/7/25/26	0/2/2/2
1	PSU	А	1862	1	-	0/7/25/26	0/2/2/2
1	OMC	А	2351	47,1	-	1/9/27/28	0/2/2/2
1	PSU	А	4493	1,48	-	0/7/25/26	0/2/2/2
1	PSU	А	3637	1.48	-	0/7/25/26	0/2/2/2

α \cdot \cdot \cdot	C	•	
Continued	from	previous	page
	9	1	1 0

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	OMC	А	3808	1,48	-	0/9/27/28	0/2/2/2
1	PSU	А	4431	1,48	-	0/7/25/26	0/2/2/2
1	UY1	A	3818	1,48	-	5/9/27/28	0/2/2/2
1	PSU	А	4689	1	-	0/7/25/26	0/2/2/2
1	OMG	А	3899	1	-	0/5/27/28	0/3/3/3
1	OMU	А	4620	1	-	0/9/27/28	0/2/2/2
1	PSU	А	1792	1	-	0/7/25/26	0/2/2/2
1	PSU	А	4423	1	-	0/7/25/26	0/2/2/2
1	OMC	А	2804	1	-	0/9/27/28	0/2/2/2
1	A2M	А	4590	1	-	1/5/27/28	0/3/3/3
1	OMG	А	3944	1	-	0/5/27/28	0/3/3/3
1	1MA	A	1322	47,1	-	0/3/25/26	0/3/3/3
1	OMC	А	4536	47,1	-	3/9/27/28	0/2/2/2
1	PSU	А	1582	1,48	-	0/7/25/26	0/2/2/2
1	OMG	А	2876	1	-	1/5/27/28	0/3/3/3
1	A2M	А	2787	47,1	-	0/5/27/28	0/3/3/3
1	A2M	А	2401	47,1	-	0/5/27/28	0/3/3/3
1	PSU	А	4293	1	-	0/7/25/26	0/2/2/2
1	A2M	А	1323	1	-	0/5/27/28	0/3/3/3
1	OMG	А	2424	1	-	0/5/27/28	0/3/3/3
1	PSU	A	4532	1	-	0/7/25/26	0/2/2/2
1	A2M	А	1534	47,1	-	2/5/27/28	0/3/3/3
1	OMG	А	4637	1	-	0/5/27/28	0/3/3/3
1	OMC	А	3887	1	-	2/9/27/28	0/2/2/2
1	OMG	А	3627	1	-	0/5/27/28	0/3/3/3
1	A2M	А	3724	1	-	0/5/27/28	0/3/3/3
1	OMU	А	4498	1,48	-	0/9/27/28	0/2/2/2
1	PSU	А	3734	1	-	4/7/25/26	0/2/2/2
1	PSU	А	4361	1,48	-	0/7/25/26	0/2/2/2
1	A2M	А	398	1	-	2/5/27/28	0/3/3/3
1	A2M	A	3718	1	-	0/5/27/28	0/3/3/3
1	OMG	А	1522	1	-	0/5/27/28	0/3/3/3
1	PSU	A	4420	1	-	3/7/25/26	0/2/2/2
1	PSU	A	3770	1	_	0/7/25/26	0/2/2/2
1	OMC	A	1340	1	-	0/9/27/28	0/2/2/2
1	OMG	A	4618	1,48	-	0/5/27/28	0/3/3/3
1	OMG	A	4228	1	-	0/5/27/28	0/3/3/3
1	OMC	А	2824	1	-	$\frac{2}{9}/\frac{27}{28}$	0/2/2/2
1	PSU	A	4552	1	-	0/7/25/26	0/2/2/2
1	OMU	A	4306	1	-	0/9/27/28	0/2/2/2

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
1	UR3	А	4530	1	-	0/7/25/26	0/2/2/2
1	PSU	А	4353	1,48	-	0/7/25/26	0/2/2/2
1	5MC	А	4447	1,48	-	4/7/25/26	0/2/2/2
1	OMU	А	2837	1	-	0/9/27/28	0/2/2/2
1	OMC	А	2365	47,1	-	0/9/27/28	0/2/2/2
1	6MZ	А	4220	1	-	0/5/27/28	0/3/3/3
1	PSU	А	4299	1	-	0/7/25/26	0/2/2/2
1	PSU	А	1860	1	-	0/7/25/26	0/2/2/2
1	OMU	А	4227	1	-	0/9/27/28	0/2/2/2
3	PSU	С	69	3	-	0/7/25/26	0/2/2/2
1	A2M	А	1326	1	-	1/5/27/28	0/3/3/3

The worst 5 of 178 bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms		Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
1	А	1322	1MA	C2-N3	4.75	1.34	1.29
1	А	4420	PSU	C6-C5	3.32	1.39	1.35
1	А	1322	1MA	C6-N6	3.26	1.35	1.27
1	А	3734	PSU	C6-C5	3.22	1.39	1.35
1	А	3768	PSU	C6-C5	3.20	1.39	1.35

The worst 5 of 319 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	1536	PSU	N1-C2-N3	6.05	121.99	115.13
1	А	3637	PSU	N1-C2-N3	6.05	121.99	115.13
1	А	4296	PSU	N1-C2-N3	6.05	121.99	115.13
1	А	1582	PSU	N1-C2-N3	6.03	121.96	115.13
1	А	3920	PSU	N1-C2-N3	6.02	121.95	115.13

There are no chirality outliers.

5 of 63 torsion outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	Atoms
1	А	1326	A2M	C1'-C2'-O2'-CM'
1	А	1677	PSU	C2'-C1'-C5-C4
1	А	1881	OMC	O4'-C1'-N1-C2
1	А	1881	OMC	O4'-C1'-N1-C6
1	А	1881	OMC	C3'-C4'-C5'-O5'

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 391 ligands modelled in this entry, 389 are monoatomic - leaving 2 for Mogul analysis.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Turno Chain	Dog	Tinle	Bo	ond leng	$_{\rm ths}$	Bond angles				
INIOI	туре	Unam	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
51	EPE	М	201	-	15,15,15	0.81	1 (6%)	18,20,20	1.73	6 (33%)
50	GTP	В	205	2	26,34,34	0.95	2 (7%)	32,54,54	0.75	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
51	EPE	М	201	-	-	5/9/19/19	0/1/1/1
50	GTP	В	205	2	-	0/18/38/38	0/3/3/3

All (3) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
51	М	201	EPE	C10-S	2.74	1.81	1.77
50	В	205	GTP	C5-C6	-2.60	1.42	1.47
50	В	205	GTP	C8-N7	-2.06	1.31	1.35

The worst 5 of 6 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
51	М	201	EPE	C5-N4-C3	4.20	118.28	108.83

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
51	М	201	EPE	C7-N4-C3	2.74	118.23	111.23
51	М	201	EPE	C7-N4-C5	2.63	117.96	111.23
51	М	201	EPE	O3S-S-C10	2.33	109.53	105.77
51	М	201	EPE	O2S-S-C10	2.20	109.56	106.92

There are no chirality outliers.

All (5) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
51	М	201	EPE	C10-C9-N1-C2
51	М	201	EPE	C9-C10-S-O1S
51	М	201	EPE	C9-C10-S-O3S
51	М	201	EPE	C9-C10-S-O2S
51	М	201	EPE	C8-C7-N4-C5

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-51452. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 280

Y Index: 280

Z Index: 280

6.2.2 Raw map

X Index: 280

Y Index: 280

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 281

Z Index: 279

6.3.2 Raw map

X Index: 282

Y Index: 252

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.5. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{51452}msk_{1.map}$ (i) 6.6.1

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 877 $\rm nm^3;$ this corresponds to an approximate mass of 792 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.386 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.386 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\mathbf{Bosolution} \text{ ostimato } (\mathbf{\hat{\lambda}})$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	2.59	-	-
Author-provided FSC curve	-	-	-
Unmasked-calculated*	3.55	5.03	3.68

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 3.55 differs from the reported value 2.59 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-51452 and PDB model 9GMO. Per-residue inclusion information can be found in section 3 on page 15.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.5 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.5).

9.4 Atom inclusion (i)

At the recommended contour level, 77% of all backbone atoms, 84% of all non-hydrogen atoms, are inside the map.

Map-model fit summary (i) 9.5

The table lists the average atom inclusion at the recommended contour level (0.5) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.8350	0.5360
0	0.1820	0.4420
А	0.9040	0.5330
В	0.9550	0.5510
С	0.9280	0.5480
D	0.7890	0.5740
Е	0.7780	0.5540
F	0.7800	0.5590
G	0.7650	0.5170
Н	0.7490	0.5260
Ι	0.7740	0.5560
J	0.7930	0.5540
K	0.7670	0.5670
L	0.7590	0.5250
М	0.7870	0.5620
Ν	0.7480	0.5390
0	0.6480	0.4540
Р	0.7450	0.5570
Q	0.7260	0.5410
R	0.7620	0.5430
S	0.7790	0.5420
Т	0.7160	0.5190
U	0.8070	0.5700
V	0.6970	0.5170
W	0.6460	0.4960
X	0.7500	0.5460
Y	0.7790	0.5700
Z	0.8230	0.5860
a	0.7200	0.5470
b	0.7530	0.5200
c	0.7030	0.5030
d	0.8290	0.5770
e	0.6300	0.4860
t	0.7550	0.5690
g	0.7670	0.5460

1.0

0.0 <0.0

Chain	Atom inclusion	Q-score
h	0.5910	0.4670
i	0.7010	0.5510
j	0.7040	0.5300
k	0.8100	0.5620
1	0.8260	0.5830
m	0.7680	0.5520
n	0.7030	0.5060
0	0.7300	0.5290
р	0.7540	0.5430
q	0.6960	0.4860
r	0.7390	0.5340
S	0.7860	0.5300

