

Full wwPDB X-ray Structure Validation Report (i)

Nov 23, 2023 – 03:02 AM JST

PDB ID	:	8GV0
Title	:	Crystal structure of anti-FIXa IgG fab without FAST-Ig mutations
Authors	:	Koga, H.; Yamano, T.; Fukami, T.A.; Sampei, Z.; Shiraiwa, H.; Torizawa, T.
Deposited on	:	2022-09-14
Resolution	:	3.19 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 3.19 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	130704	1133 (3.20-3.20)
Clashscore	141614	1253 (3.20-3.20)
Ramachandran outliers	138981	1234 (3.20-3.20)
Sidechain outliers	138945	1233 (3.20-3.20)
RSRZ outliers	127900	1095 (3.20-3.20)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	227	70%	23%	•••
1	С	227	64%	29%	5% •
1	Е	227	63%	30%	• 5%
1	G	227	74%	18%	•••
2	В	214	62%	35%	·
2	D	214	59%	35%	6%

Mol	Chain	Length	Quality of cha	ain	
2	F	214	60%	32%	7%
2	Н	214	71%	26%	•

2 Entry composition (i)

There are 3 unique types of molecules in this entry. The entry contains 12316 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	000	Total	С	Ν	0	\mathbf{S}	0	0	0
	A		1596	1009	267	314	6	0	0	0
1	С	002	Total	С	Ν	0	S	0	0	0
		223	1576	985	264	322	5	0	0	0
1	1 E	216	Total	С	Ν	0	S	0	0	0
			1533	963	257	308	5	0	0	U
1 G	220	Total	С	Ν	0	S	0	0	0	
	220	1477	923	243	306	5			0	

• Molecule 1 is a protein called Anti-factor IXa IgG fab heavy chain.

• Molecule 2 is a protein called Anti-factor IXa IgG fab light chain.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace	
0	D	214	Total	С	Ν	0	\mathbf{S}	0	0	0	
	D	214	1551	966	259	321	5	0	0		
0	Л	014	Total	С	Ν	0	\mathbf{S}	0	0	0	
	D	214	1535	958	255	317	5	0		0	
0	2 F	F	214	Total	С	Ν	0	S	0	0	0
		214	1547	958	263	321	5	0	0	U	
0	9 II	014	Total	С	Ν	0	S	0	0	0	
	214	1461	910	239	307	5	0		U		

• Molecule 3 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	7	Total O 7 7	0	0
3	В	4	Total O 4 4	0	0
3	С	4	Total O 4 4	0	0
3	D	6	Total O 6 6	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	Ε	2	Total O 2 2	0	0
3	F	10	Total O 10 10	0	0
3	G	2	Total O 2 2	0	0
3	Н	5	$\begin{array}{cc} \text{Total} & \text{O} \\ 5 & 5 \end{array}$	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Chain A: 70% 23% • Molecule 1: Anti-factor IXa IgG fab heavy chain Chain C: 64% 29% 5% • Molecule 1: Anti-factor IXa IgG fab heavy chain Chain E: 63% 30% 5% SER LYS LYS LY 3LY ASP
- Molecule 1: Anti-factor IXa IgG fab heavy chain

• Molecule 1: Anti-factor IXa IgG fab heavy chain

Chain G:	74%	18% • •
q1 L4 S7 S7 S7 G10 U11 U12 Q13 Q13 Q13 Q13 Q13 Q13 Q13 Q13 Q13 Q13	170 170 170 171 191 191 194 194 194 194 194 19	L117 119 119 119 119 119 119 119 1160 1144 1160 1144 1160 1160 1160 1160
V159 7160 V161 V161 V163 8165 8175	200 211 2211 2211 2212 2212 2213 2215 2215	
• Molecule 2: Anti-factor IXa	a IgG fab light chain	
Chain B: 6	2%	35% •
E1 12 66 87 87 81 81 81 81 81 81 81 81 81 81 81 81 83 81 83 81 83 81 83 81 83 81 83 81 83 81 83 81 83 81 83 81 83 81 83 81 83 81 83 81 81 81 81 81 81 81 81 81 81 81 81 81	400 443 443 444 447 451 451 451 451 552 451 158 565 666 666 666 666 712 172	N76 877 877 877 877 877 883 883 883 883 886 789 789 789 789 293 893
696 797 797 699 699 6101 7103 7103 7103 7103 7103 7103 7113 7113 7113 7113 7113 7113 7124	C128 C128 C128 L136 L136 F138 F138 F138 F149 V146 V149 V146 V149 V146 V149 V150 V151 L154	8159 1164 1164 1164 1166 1166 1176 8177 8177 8177 8177 8183 8177 8183 8183
H189 K130 K191 V191 V192 A193 A193 C194 H198 G199 C200 C200 C200 C214 C214		
• Molecule 2: Anti-factor IXa	a IgG fab light chain	
Chain D: 59	%	35% 6%
E1 12 13 14 14 15 14 14 14 14 14 14 14 14 14 15 14 15 14 15 14 15 15 15 15 15 15 15 15 15 15 15 15 15	L33 L33 A35 A35 A35 A35 A35 L47 L47 L47 L48 L47 L48 L48 L48 L48 L48 L48 L48 L48 L48 L48	865 865 109 176 177 176 877 877 877 877 881 881 881 881 885 885 886 886
197 6100 6100 6101 7109 71109 7112 81114 7115 8115 811	N137 N138 1138 1141 1141 1141 1151 1151 1155 1155 115	E165 0166 0166 1167 1171 1172 1172 1175 1177 1175 1177 1177

• Molecule 2: Anti-factor IXa IgG fab light chain

N21 R21

• Molecule 2: Anti-factor IXa IgG fab light chain

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	40.94Å 162.08Å 139.01Å	Deperitor
a, b, c, α , β , γ	90.00° 98.05° 90.00°	Depositor
$\mathbf{Posolution} \left(\overset{\texttt{A}}{A} \right)$	42.50 - 3.19	Depositor
Resolution (A)	42.50 - 3.19	EDS
% Data completeness	61.0 (42.50-3.19)	Depositor
(in resolution range)	61.0(42.50-3.19)	EDS
R_{merge}	0.52	Depositor
R _{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	1.79 (at 3.19 Å)	Xtriage
Refinement program	PHENIX 1.20.1, BUSTER 2.11.8 (3-FEB-2022)	Depositor
B B.	0.196 , 0.310	Depositor
II, II free	0.197 , 0.307	DCC
R_{free} test set	855 reflections $(4.70%)$	wwPDB-VP
Wilson B-factor (Å ²)	53.4	Xtriage
Anisotropy	0.115	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.29 , 88.4	EDS
L-test for $twinning^2$	$< L > = 0.44, < L^2 > = 0.26$	Xtriage
Estimated twinning fraction	0.067 for h,-k,-h-l	Xtriage
F_o, F_c correlation	0.88	EDS
Total number of atoms	12316	wwPDB-VP
Average B, all atoms $(Å^2)$	52.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.89% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bond	lengths	Bond angles	
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.47	0/1636	0.72	0/2245
1	С	0.44	0/1614	0.69	0/2219
1	Ε	0.44	0/1567	0.68	0/2150
1	G	0.43	0/1511	0.64	0/2085
2	В	0.44	0/1584	0.67	0/2169
2	D	0.48	0/1568	0.74	0/2149
2	F	0.49	0/1578	0.76	0/2155
2	Н	0.42	0/1493	0.64	0/2057
All	All	0.45	0/12551	0.69	0/17229

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1596	0	1471	40	0
1	С	1576	0	1408	51	0
1	Е	1533	0	1403	46	0
1	G	1477	0	1251	18	0
2	В	1551	0	1420	40	0
2	D	1535	0	1399	55	0
2	F	1547	0	1423	50	0
2	Н	1461	0	1250	27	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
3	А	7	0	0	0	0
3	В	4	0	0	0	0
3	С	4	0	0	0	0
3	D	6	0	0	0	0
3	Е	2	0	0	0	0
3	F	10	0	0	0	0
3	G	2	0	0	0	0
3	Н	5	0	0	0	0
All	All	12316	0	11025	316	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 14.

All (316) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash	
Atom-1	Atom-2	$distance (\text{\AA})$	overlap (Å)	
2:D:18:ARG:HG3	2:D:76:ASN:HA	1.37	1.06	
2:B:151:ASP:HA	2:B:191:VAL:HB	1.46	0.95	
2:F:37:GLN:HB2	2:F:47:LEU:HD11	1.56	0.87	
2:D:19:ALA:HB3	2:D:75:ILE:HG12	1.58	0.86	
2:H:54:ARG:CB	2:H:58:ILE:HB	2.07	0.83	
2:B:50:GLY:HA2	2:B:91:TYR:OH	1.81	0.81	
1:E:156:PRO:O	1:E:209:HIS:HE1	1.64	0.80	
1:C:35:GLN:HE22	1:C:107:TRP:HE1	1.29	0.79	
2:D:18:ARG:CG	2:D:76:ASN:HA	2.12	0.79	
1:E:51:ILE:HG22	1:E:58:THR:HA	1.64	0.78	
1:G:12:VAL:HG11	1:G:18:LEU:HD22	1.66	0.77	
1:C:47:TRP:HE1	1:C:50:SER:HB2	1.51	0.75	
2:F:29:VAL:CB	2:F:69:THR:HA	2.15	0.75	
1:C:71:SER:HB2	1:C:80:TYR:HB2	1.68	0.75	
2:D:113:PRO:HD3	2:D:198:HIS:HD2	1.49	0.75	
2:D:115:VAL:HB	2:D:207:LYS:HD2	1.69	0.74	
1:C:165:SER:H	1:C:206:ASN:HD21	1.33	0.74	
1:E:134:ALA:HB2	1:E:220:VAL:HG12	1.69	0.74	
1:C:128:PRO:HB2	1:C:151:VAL:HG12	1.70	0.73	
2:H:120:PRO:HD3	2:H:132:VAL:HG22	1.71	0.72	
2:D:35:TRP:HB2	2:D:48:ILE:HB	1.70	0.72	
2:D:47:LEU:HA	2:D:58:ILE:HG12	1.71	0.72	
2:H:94:PRO:HB2	2:H:95:PRO:HD3	1.71	0.71	
1:E:180:GLN:HB2	1:E:184:LEU:O	1.91	0.71	
2:F:108:ARG:HD2	2:F:171:SER:HB2	1.72	0.71	

	louis page	Interatomic	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)		
1:G:160:THR:HB	1:G:208:ASP:HB3	1.72	0.70		
2:D:163:VAL:HG22	2:D:175:LEU:HD12	1.71	0.70		
1:C:64:VAL:HG13	1:C:67:ARG:HE	1.56	0.70		
2:F:115:VAL:HG21	2:F:196:VAL:HG11	1.72	0.70		
1:A:91:THR:HG22	1:A:120:VAL:H	1.57	0.69		
2:D:15:PRO:HA	2:D:78:LEU:CB	2.22	0.69		
1:C:172:VAL:HG22	1:C:191:VAL:HG12	1.75	0.68		
2:H:114:SER:HB2	2:H:137:ASN:HB3	1.77	0.67		
2:F:163:VAL:HG22	2:F:175:LEU:HD12	1.74	0.67		
1:A:83:MET:HG2	1:A:86:LEU:HD21	1.76	0.67		
1:A:153:ASP:HB3	1:A:184:LEU:HD13	1.76	0.67		
1:E:128:PRO:HA	1:E:154:TYR:HB3	1.76	0.67		
2:H:35:TRP:CD2	2:H:73:LEU:HD23	2.31	0.66		
1:C:101:GLY:HA3	1:C:105:GLY:HA3	1.78	0.66		
1:E:47:TRP:NE1	1:E:49:SER:O	2.29	0.65		
2:H:142:ARG:HE	2:H:163:VAL:HG11	1.61	0.65		
1:E:35:GLN:HG3	1:E:50:SER:HA	1.78	0.65		
2:D:13:VAL:HG23	2:D:78:LEU:HD11	1.79	0.65		
2:B:33:LEU:HD21	2:B:88:CYS:HB2	1.78	0.64		
2:D:15:PRO:HA	2:D:78:LEU:HB3	1.79	0.64		
2:F:33:LEU:HA	2:F:90:GLN:HA	1.79	0.64		
2:D:61:ARG:NH1	2:D:62:PHE:HE1	1.95	0.63		
1:C:144:THR:HG22	1:C:194:PRO:HA	1.81	0.63		
2:F:148:TRP:HB2	2:F:155:GLN:HB2	1.79	0.63		
1:E:35:GLN:HG2	1:E:49:SER:O	1.99	0.63		
2:F:136:LEU:HD22	2:F:175:LEU:HD22	1.80	0.62		
1:A:11:LEU:HD11	1:A:121:SER:HB3	1.81	0.62		
1:A:36:TRP:CD1	1:A:81:LEU:HD12	2.34	0.62		
1:E:68:PHE:HB3	1:E:82:GLN:O	1.99	0.62		
1:E:157:GLU:HG2	1:E:158:PRO:HA	1.82	0.62		
2:H:37:GLN:HB2	2:H:47:LEU:HD21	1.82	0.62		
1:E:91:THR:HG22	1:E:120:VAL:H	1.64	0.61		
2:B:151:ASP:CA	2:B:191:VAL:HB	2.26	0.61		
1:A:193:VAL:HB	1:A:194:PRO:CD	2.30	0.61		
1:G:99:ARG:HA	1:G:108:ILE:O	2.01	0.61		
1:G:204:THR:HA	1:G:219:ARG:HA	1.81	0.61		
1:C:163:TRP:HB3	1:C:168:LEU:HB3	1.81	0.61		
2:H:48:ILE:H	2:H:54:ARG:HA	1.66	0.61		
1:C:64:VAL:HG13	1:C:67:ARG:NE	2.17	0.60		
1:C:64:VAL:CG1	1:C:67:ARG:HB2	2.32	0.60		
1:E:70:ILE:HG13	1:E:80:TYR:O	2.02	0.60		

		Interatomic	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)		
2:F:47:LEU:HA	2:F:58:ILE:HG21	1.83	0.60		
1:A:52:SER:HB3	1:A:57:SER:HB2	1.83	0.59		
1:G:93:VAL:HA	1:G:117:LEU:HA	1.84	0.59		
2:D:190:LYS:HA	2:D:211:ARG:CB	2.32	0.59		
1:G:91:THR:HG23	1:G:119:THR:HA	1.83	0.59		
1:G:130:VAL:HG22	1:G:151:VAL:HG23	1.85	0.59		
2:F:4:LEU:HB3	2:F:25:ALA:HA	1.85	0.59		
1:C:161:VAL:HG13	1:C:207:VAL:HG22	1.86	0.58		
1:E:88:ALA:O	1:E:91:THR:HG23	2.02	0.58		
1:E:126:LYS:HE2	1:E:153:ASP:HB3	1.85	0.58		
1:G:151:VAL:HG12	1:G:187:LEU:HB3	1.85	0.58		
1:A:40:ALA:HB1	1:A:41:PRO:CD	2.34	0.58		
2:D:136:LEU:HD21	2:D:196:VAL:HG13	1.86	0.58		
1:C:147:LEU:HB2	1:C:220:VAL:HG11	1.86	0.57		
2:D:141:PRO:HD2	2:D:198:HIS:HE1	1.68	0.57		
2:F:161:GLU:HB3	2:F:175:LEU:HD11	1.85	0.57		
1:C:119:THR:HG21	1:C:156:PRO:HB2	1.86	0.57		
1:C:159:VAL:HG23	1:C:209:HIS:HD2	1.69	0.57		
2:H:210:ASN:HB2	2:H:213:GLU:HB2	1.86	0.57		
1:E:174:THR:HG23	1:E:189:SER:HB2	1.87	0.56		
2:F:59:PRO:HB2	2:F:61:ARG:HD2	1.87	0.56		
1:C:119:THR:HG21	1:C:156:PRO:CB	2.36	0.56		
2:D:113:PRO:HD3	2:D:198:HIS:CD2	2.38	0.56		
2:D:124:GLN:HE22	2:D:131:SER:HB3	1.69	0.56		
1:E:153:ASP:OD1	1:E:180:GLN:NE2	2.33	0.56		
1:C:165:SER:H	1:C:206:ASN:ND2	2.03	0.56		
1:E:88:ALA:HA	1:E:120:VAL:HB	1.87	0.56		
2:H:33:LEU:HA	2:H:89:GLN:O	2.05	0.56		
1:C:173:HIS:CE1	2:D:137:ASN:ND2	2.74	0.56		
2:B:151:ASP:OD2	2:B:189:HIS:HD2	1.89	0.55		
1:C:32:TYR:CE2	1:C:98:ARG:NH1	2.74	0.55		
2:D:61:ARG:HH11	2:D:62:PHE:HE1	1.53	0.55		
2:H:15:PRO:HA	2:H:78:LEU:HB3	1.88	0.55		
1:C:20:LEU:HD11	1:C:118:VAL:HG21	1.88	0.54		
1:A:35:GLN:HB3	1:A:50:SER:HA	1.88	0.54		
1:E:156:PRO:O	1:E:209:HIS:CE1	2.53	0.54		
2:B:158:ASN:HD22	2:B:159:SER:N	2.05	0.54		
1:A:128:PRO:HB3	1:A:154:TYR:HB3	1.89	0.54		
2:B:108:ARG:HG2	2:B:109:THR:H	1.72	0.54		
2:B:2:ILE:O	2:B:97:THR:HG21	2.08	0.54		
2:B:108:ARG:HG2	2:B:109:THR:N	2.23	0.54		

		Interatomic	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)		
1:C:176:PRO:HD3	2:D:164:THR:HG22	1.90	0.54		
2:D:108:ARG:HD3	2:D:109:THR:O	2.08	0.54		
2:F:175:LEU:HG	2:F:176:SER:N	2.23	0.54		
1:E:209:HIS:HD2	1:E:212:SER:CB	2.21	0.54		
2:F:113:PRO:HD3	2:F:198:HIS:HD2	1.73	0.54		
2:D:112:ALA:HA	2:D:200:GLY:HA3	1.89	0.54		
1:G:165:SER:H	1:G:206:ASN:HD21	1.54	0.54		
1:A:40:ALA:HB3	1:A:43:LYS:HB3	1.90	0.53		
1:C:162:SER:HB2	1:C:206:ASN:HB2	1.91	0.53		
2:H:35:TRP:CG	2:H:73:LEU:HD23	2.44	0.53		
2:H:154:LEU:HD23	2:H:156:SER:HB2	1.91	0.53		
2:D:148:TRP:HD1	2:D:159:SER:HB3	1.73	0.53		
2:F:4:LEU:HD22	2:F:4:LEU:H	1.73	0.53		
2:H:35:TRP:CE2	2:H:73:LEU:HD23	2.44	0.53		
2:B:165:GLU:O	2:B:166:GLN:O	2.27	0.53		
2:D:100:GLY:O	2:D:101:GLY:O	2.27	0.53		
1:C:174:THR:HG1	1:C:189:SER:HG	1.56	0.52		
2:D:37:GLN:CB	2:D:47:LEU:HD21	2.39	0.52		
2:D:148:TRP:CD1	2:D:159:SER:HB3	2.45	0.52		
1:G:191:VAL:HG12	1:G:193:VAL:HG13	1.90	0.52		
2:B:193:ALA:HB2	2:B:208:SER:CB	2.39	0.52		
1:A:89:GLU:OE2	1:A:90:ASP:OD1	2.28	0.52		
1:A:194:PRO:HG2	1:A:197:SER:HB3	1.92	0.51		
2:B:112:ALA:HB2	2:B:200:GLY:HA3	1.92	0.51		
2:D:37:GLN:HB2	2:D:47:LEU:HD21	1.92	0.51		
1:C:186:SER:O	1:C:187:LEU:HB2	2.11	0.51		
2:F:25:ALA:HB3	2:F:69:THR:HG22	1.93	0.51		
1:E:163:TRP:HD1	1:E:172:VAL:HG11	1.75	0.51		
2:F:186:TYR:O	2:F:192:TYR:OH	2.29	0.51		
2:B:6:GLN:HE22	2:B:87:TYR:HA	1.74	0.51		
1:E:16:GLY:O	1:E:83:MET:O	2.29	0.51		
1:G:13:GLN:HB2	1:G:14:PRO:HD2	1.93	0.51		
2:H:36:TYR:HB3	2:H:44:PRO:HB2	1.92	0.51		
2:D:3:VAL:HB	2:D:26:SER:HB2	1.93	0.50		
1:A:131:PHE:CE2	2:B:124:GLN:HG3	2.46	0.50		
1:E:194:PRO:HG2	1:E:197:SER:HB2	1.92	0.50		
2:F:186:TYR:CE2	2:F:211:ARG:HG3	2.46	0.50		
1:A:4:LEU:HA	1:A:24:ALA:HB2	1.94	0.50		
2:D:114:SER:O	2:D:136:LEU:HA	2.12	0.50		
1:G:164:ASN:HB2	1:G:167:ALA:HB3	1.93	0.50		
1:C:98:ARG:NH2	1:C:111:TYR:CE2	2.79	0.50		

		Interatomic	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)		
2:F:15:PRO:HG3	2:F:106:ILE:HG22	1.94	0.50		
2:F:148:TRP:CE2	2:F:179:LEU:HB2	2.47	0.50		
2:F:37:GLN:HB2	2:F:47:LEU:CD1	2.37	0.50		
2:F:6:GLN:HE22	2:F:87:TYR:HA	1.75	0.50		
2:B:38:GLN:HE21	2:B:44:PRO:HD3	1.75	0.49		
2:D:81:GLU:HA	2:D:168:SER:HA	1.93	0.49		
2:F:182:SER:HB2	2:F:185:ASP:HB2	1.94	0.49		
1:E:45:LEU:HD11	2:F:44:PRO:HG3	1.92	0.49		
1:C:5:VAL:O	1:C:22:CYS:HA	2.13	0.49		
2:F:15:PRO:HD3	2:F:107:LYS:O	2.12	0.49		
1:E:36:TRP:NE1	1:E:81:LEU:HB2	2.27	0.49		
1:E:209:HIS:HD2	1:E:212:SER:OG	1.96	0.49		
2:D:15:PRO:HA	2:D:78:LEU:HB2	1.95	0.49		
1:C:71:SER:CB	1:C:80:TYR:HB2	2.41	0.49		
2:F:6:GLN:NE2	2:F:88:CYS:SG	2.86	0.49		
1:E:174:THR:HA	1:E:189:SER:HA	1.94	0.48		
2:F:62:PHE:HE1	2:F:75:ILE:HD12	1.78	0.48		
1:A:36:TRP:CG	1:A:81:LEU:HD13	2.47	0.48		
1:C:46:GLU:HG3	1:C:61:ARG:HH12	1.79	0.48		
1:C:99:ARG:NH1	1:C:107:TRP:CZ3	2.81	0.48		
1:A:39:GLN:O	1:A:40:ALA:O	2.30	0.48		
2:D:33:LEU:HD11	2:D:88:CYS:HB2	1.95	0.48		
2:H:86:TYR:O	2:H:101:GLY:HA2	2.13	0.48		
2:B:35:TRP:CG	2:B:73:LEU:HD13	2.49	0.48		
1:G:128:PRO:HB2	1:G:151:VAL:HG22	1.96	0.48		
1:C:145:ALA:HB3	1:C:198:LEU:HD21	1.96	0.48		
1:C:130:VAL:HB	1:C:151:VAL:HG13	1.95	0.48		
1:C:174:THR:OG1	1:C:189:SER:OG	2.31	0.48		
2:D:18:ARG:HG3	2:D:76:ASN:CA	2.26	0.48		
1:A:91:THR:CG2	1:A:120:VAL:H	2.25	0.47		
2:B:181:LEU:HD11	2:B:185:ASP:HB2	1.95	0.47		
2:B:12:SER:HA	2:B:105:GLU:O	2.14	0.47		
1:A:36:TRP:CD1	1:A:81:LEU:CD1	2.97	0.47		
2:B:103:LYS:HE2	2:B:105:GLU:HB2	1.96	0.47		
1:C:39:GLN:HG3	1:C:45:LEU:HD23	1.95	0.47		
1:E:177:ALA:HB2	1:E:187:LEU:HD23	1.95	0.47		
1:C:159:VAL:HG23	1:C:209:HIS:CD2	2.49	0.47		
2:D:146:VAL:HG21	2:D:177:SER:HB2	1.96	0.47		
2:F:89:GLN:HA	2:F:98:PHE:HA	1.95	0.47		
2:F:189:HIS:O	2:F:211:ARG:HD2	2.14	0.47		
2:H:147:GLN:HE21	2:H:154:LEU:HD11	1.79	0.47		

		Interatomic	Clash		
Atom-1	Atom-2	distance (\AA)	overlap (Å)		
1:E:204:THR:HA	1:E:218:LYS:O	2.14	0.47		
1:A:174:THR:HG23	1:A:187:LEU:HD13	1.96	0.47		
2:D:151:ASP:OD1	2:D:191:VAL:HG23	2.15	0.47		
2:F:6:GLN:HB3	2:F:102:THR:HG23	1.97	0.47		
2:F:161:GLU:HG2	2:F:175:LEU:HD21	1.97	0.46		
1:C:98:ARG:HH21	1:C:111:TYR:HE2	1.63	0.46		
2:D:20:THR:HA	2:D:74:THR:HG22	1.96	0.46		
1:E:197:SER:HA	1:E:200:THR:OG1	2.15	0.46		
1:A:18:LEU:HD21	1:A:118:VAL:HG13	1.97	0.46		
2:B:113:PRO:HB3	2:B:139:PHE:CD1	2.49	0.46		
2:F:2:ILE:HG23	2:F:26:SER:HB2	1.96	0.46		
2:H:1:GLU:O	2:H:2:ILE:O	2.33	0.46		
2:B:138:ASN:OD1	2:B:174:SER:OG	2.34	0.46		
1:E:48:VAL:HG13	1:E:64:VAL:HG21	1.98	0.46		
2:B:33:LEU:H	2:B:51:ALA:HB2	1.80	0.46		
2:D:86:TYR:O	2:D:101:GLY:HA2	2.14	0.46		
1:E:38:ARG:HD3	1:E:94:TYR:OH	2.16	0.46		
2:F:4:LEU:HD23	2:F:99:GLY:HA2	1.97	0.46		
1:C:172:VAL:HG22	1:C:191:VAL:CG1	2.45	0.46		
1:G:10:GLY:HA3	1:G:118:VAL:HA	1.98	0.46		
2:H:161:GLU:HG2	2:H:175:LEU:HD11	1.98	0.46		
1:C:173:HIS:CE1	2:D:137:ASN:HD22	2.34	0.46		
2:B:136:LEU:HD11	2:B:146:VAL:HG22	1.98	0.45		
2:F:38:GLN:HG3	2:F:42:GLN:O	2.16	0.45		
2:B:37:GLN:HB2	2:B:47:LEU:HD11	1.97	0.45		
2:F:197:THR:HG22	2:F:204:PRO:HB3	1.98	0.45		
2:B:2:ILE:HG23	2:B:27:ARG:H	1.82	0.45		
2:B:158:ASN:HD22	2:B:159:SER:H	1.63	0.45		
2:D:193:ALA:HB1	2:D:206:THR:HG23	1.98	0.45		
1:A:154:TYR:O	1:A:155:PHE:HB2	2.17	0.45		
1:C:21:SER:HA	1:C:80:TYR:HA	1.99	0.45		
2:D:107:LYS:HZ2	2:D:140:TYR:HE1	1.65	0.45		
1:E:6:GLU:HG3	1:E:115:GLY:H	1.82	0.45		
1:A:34:ILE:CG2	1:A:79:LEU:HD22	2.46	0.45		
1:C:209:HIS:HB3	1:C:214:THR:OG1	2.16	0.45		
1:E:34:ILE:HD13	1:E:98:ARG:HB3	1.99	0.45		
1:E:163:TRP:CD1	1:E:172:VAL:CG1	3.00	0.45		
2:F:166:GLN:HE21	2:F:171:SER:HB3	1.81	0.45		
1:G:94:TYR:O	1:G:115:GLY:HA2	2.16	0.45		
2:D:166:GLN:HG3	2:D:171:SER:HA	1.99	0.45		
2:D:201:LEU:HG	2:D:205:VAL:HG23	1.99	0.45		

	lo us page	Interatomic	Clash	
Atom-1	Atom-2	distance $(Å)$	overlap (Å)	
2:B:86:TYB:O	2:B:101:GLY:HA2	2.17	0.45	
1:E:177:ALA:HA	1:E:187:LEU:HB3	1.98	0.45	
2:F:61:ARG:HD2	2:F:61:ABG:H	1.82	0.44	
1:A:6:GLU:HA	1:A:22:CYS:HA	2.00	0.44	
1:A:36:TRP:HD1	1:A:70:ILE:CD1	2.31	0.44	
2:B:66:GLY:HA3	2:B:70:ASP:O	2.17	0.44	
2:F:39:LYS:HG2	2:F:84:ALA:HB2	1.98	0.44	
1:E:130:VAL:HG12	1:E:218:LYS:HD3	1.99	0.44	
1:E:163:TRP:HD1	1:E:172:VAL:CG1	2.30	0.44	
1:A:154:TYR:HE1	1:A:157:GLU:HA	1.82	0.44	
2:B:35:TRP:CB	2:B:73:LEU:HD13	2.48	0.44	
1:C:190:VAL:HG21	2:D:135:LEU:CD2	2.47	0.44	
2:B:83:ALA:HB2	2:B:106:ILE:HD11	2.00	0.44	
2:B:107:LYS:HA	2:B:140:TYR:OH	2.18	0.44	
2:B:148:TRP:CZ3	2:B:194:CYS:HB3	2.53	0.44	
2:D:61:ARG:NH1	2:D:62:PHE:CE1	2.80	0.43	
1:E:5:VAL:HB	1:E:23:ALA:HB3	1.99	0.43	
1:C:173:HIS:HE1	2:D:137:ASN:ND2	2.15	0.43	
1:E:108:ILE:O	2:F:36:TYR:OH	2.28	0.43	
1:A:64:VAL:HG13	1:A:68:PHE:HB2	2.01	0.43	
1:E:49:SER:OG	1:E:70:ILE:HG21	2.19	0.43	
1:A:133:LEU:HB3	2:B:118:PHE:HB3	1.99	0.43	
1:E:99:ARG:HA	1:E:109:PHE:H	1.84	0.43	
2:B:198:HIS:CD2	2:B:200:GLY:H	2.36	0.43	
1:C:70:ILE:HA	1:C:81:LEU:HD12	2.00	0.43	
2:D:24:ARG:HD3	2:F:126:LYS:NZ	2.34	0.43	
2:D:136:LEU:HD11	2:D:196:VAL:HG22	2.00	0.43	
2:D:141:PRO:HD2	2:D:198:HIS:CE1	2.51	0.43	
1:A:40:ALA:HB3	1:A:43:LYS:CB	2.48	0.43	
1:A:68:PHE:N	1:A:68:PHE:CD1	2.87	0.43	
1:E:163:TRP:CD1	1:E:172:VAL:HG13	2.53	0.43	
1:A:176:PRO:HG2	2:B:163:VAL:O	2.19	0.42	
1:A:193:VAL:HB	1:A:194:PRO:HD3	2.00	0.42	
2:D:47:LEU:CA	2:D:58:ILE:HG12	2.45	0.42	
2:D:115:VAL:HG22	2:D:196:VAL:HG21	2.01	0.42	
2:F:90:GLN:O	2:F:96:GLY:HA3	2.19	0.42	
1:C:93:VAL:HG22	1:C:117:LEU:HD12	2.01	0.42	
2:D:19:ALA:HB3	2:D:75:ILE:CG1	2.38	0.42	
1:C:64:VAL:HG22	1:C:67:ARG:HH21	1.84	0.42	
1:E:60:TYR:CE1	1:E:70:ILE:HG22	2.55	0.42	
1:E:125:THR:HG21	1:E:211:PRO:O	2.20	0.42	

		Interatomic	Clash		
Atom-1	Atom-2	distance (Å)	overlap (Å)		
2:F:163:VAL:HG13	2:F:175:LEU:HB2	2.01	0.42		
2:H:113:PRO:HD3	2:H:198:HIS:HD2	1.83	0.42		
2:H:136:LEU:HD22	2:H:175:LEU:HD23	2.02	0.42		
2:D:190:LYS:O	2:D:210:ASN:HA	2.17	0.42		
2:F:14:SER:HB2	2:F:17:GLU:OE1	2.19	0.42		
2:F:49:TYR:O	2:F:53:THR:OG1	2.25	0.42		
1:G:11:LEU:HD22	1:G:211:PRO:HB3	2.01	0.42		
1:A:146:ALA:HB2	1:A:192:THR:HG22	2.02	0.42		
2:F:38:GLN:CG	2:F:42:GLN:O	2.68	0.42		
1:C:64:VAL:HG12	1:C:67:ARG:HB2	1.98	0.42		
1:E:100:THR:HG22	1:E:101:GLY:H	1.84	0.42		
2:D:116:PHE:HB2	2:D:135:LEU:HB3	2.01	0.42		
2:D:155:GLN:O	2:D:158:ASN:OD1	2.38	0.42		
2:F:39:LYS:O	2:F:42:GLN:HB2	2.20	0.42		
2:H:35:TRP:CD1	2:H:73:LEU:HD23	2.55	0.41		
2:H:115:VAL:HB	2:H:207:LYS:HG3	2.01	0.41		
1:C:128:PRO:HB2	1:C:151:VAL:CG1	2.46	0.41		
1:A:68:PHE:N	1:A:68:PHE:HD1	2.17	0.41		
1:C:7:SER:HB3	1:C:21:SER:H	1.85	0.41		
2:F:6:GLN:NE2	2:F:88:CYS:H	2.18	0.41		
2:F:58:ILE:HA	2:F:59:PRO:HD3	1.92	0.41		
1:A:164:ASN:HB3	1:A:167:ALA:HB3	2.03	0.41		
2:D:113:PRO:HB3	2:D:139:PHE:HB3	2.02	0.41		
2:F:113:PRO:HB3	2:F:139:PHE:CD2	2.56	0.41		
1:A:17:SER:OG	1:A:83:MET:O	2.24	0.41		
1:A:52:SER:CB	1:A:57:SER:HB2	2.49	0.41		
1:A:87:ARG:O	1:A:120:VAL:HG21	2.20	0.41		
1:A:40:ALA:HB1	1:A:41:PRO:HD3	2.02	0.41		
2:B:128:GLY:O	2:B:183:LYS:HB2	2.20	0.41		
1:E:92:ALA:O	1:E:118:VAL:HB	2.20	0.41		
1:A:22:CYS:HB3	1:A:79:LEU:HB3	2.02	0.41		
1:G:161:VAL:HG22	1:G:207:VAL:HG12	2.03	0.41		
1:C:117:LEU:HD22	1:C:158:PRO:HD3	2.02	0.40		
2:B:15:PRO:HD3	2:B:107:LYS:O	2.20	0.40		
2:H:150:VAL:CG2	2:H:155:GLN:HG3	2.51	0.40		
2:H:150:VAL:HG23	2:H:155:GLN:HG3	2.03	0.40		
1:C:164:ASN:HB2	1:C:168:LEU:HB2	2.04	0.40		
2:H:186:TYR:HA	2:H:192:TYR:OH	2.21	0.40		
2:B:6:GLN:NE2	2:B:99:GLY:HA3	2.36	0.40		
2:B:13:VAL:HG12	2:B:78:LEU:HD22	2.02	0.40		
2:B:190:LYS:O	2:B:210:ASN:HA	2.22	0.40		

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
1:C:46:GLU:HB2	1:C:61:ARG:HH12	1.86	0.40	
2:F:135:LEU:HD22	2:F:137:ASN:HB2	2.03	0.40	
1:G:39:GLN:O	1:G:39:GLN:HG3	2.22	0.40	
2:H:19:ALA:H	2:H:75:ILE:CB	2.33	0.40	

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	\mathbf{P}	\mathbf{erc}	entiles
1	А	220/227~(97%)	178 (81%)	37 (17%)	5 (2%)		6	34
1	С	221/227~(97%)	183 (83%)	28 (13%)	10 (4%)		2	18
1	E	212/227~(93%)	186 (88%)	23 (11%)	3 (1%)		11	46
1	G	216/227~(95%)	186 (86%)	27 (12%)	3 (1%)		11	46
2	В	212/214~(99%)	179 (84%)	27 (13%)	6 (3%)		5	29
2	D	212/214~(99%)	177 (84%)	26 (12%)	9 (4%)		3	20
2	F	212/214~(99%)	168 (79%)	29 (14%)	15 (7%)		1	8
2	Н	212/214~(99%)	185 (87%)	18 (8%)	9 (4%)		3	20
All	All	1717/1764 (97%)	1442 (84%)	215 (12%)	60 (4%)		3	24

All (60) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	А	43	LYS
2	В	166	GLN
1	С	7	SER
1	С	29	PHE
1	С	56	GLN
2	D	101	GLY

Mol	Chain	Res	Type
2	D	154	LEU
2	D	166	GLN
2	D	195	GLU
1	Е	138	ARG
1	Е	153	ASP
2	F	29	VAL
2	F	138	ASN
1	G	156	PRO
2	Н	2	ILE
2	Н	56	THR
2	Н	107	LYS
1	А	16	GLY
1	А	17	SER
1	А	40	ALA
2	В	95	PRO
2	В	138	ASN
1	С	33	ASP
1	С	41	PRO
1	С	153	ASP
2	D	30	ARG
2	D	110	VAL
2	F	40	PRO
2	F	99	GLY
2	F	107	LYS
2	F	110	VAL
2	F	211	ARG
2	Н	138	ASN
1	А	7	SER
2	В	143	GLU
2	В	158	ASN
1	С	106	GLY
2	D	138	ASN
2	F	26	SER
2	F	31	ARG
2	F	52	SER
2	F	69	THR
2	F	158	ASN
2	Н	48	ILE
2	Н	170	ASP
1	С	8	GLY
2	D	51	ALA
1	E	158	PRO

Mol	Chain	Res	Type
2	F	33	LEU
2	F	70	ASP
2	F	213	GLU
1	G	7	SER
1	G	158	PRO
2	Н	76	ASN
2	В	42	GLN
1	С	184	LEU
1	С	187	LEU
2	Н	166	GLN
2	Н	94	PRO
2	D	59	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	P	Percentiles	
1	А	165/193~(86%)	146 (88%)	19 (12%)		5	24
1	С	161/193~(83%)	140 (87%)	21 (13%)		4	19
1	Ε	158/193~(82%)	145~(92%)	13~(8%)		11	41
1	G	139/193~(72%)	114 (82%)	25~(18%)		1	9
2	В	162/182~(89%)	139~(86%)	23~(14%)		3	15
2	D	159/182~(87%)	133 (84%)	26 (16%)		2	11
2	F	162/182~(89%)	136 (84%)	26 (16%)		2	11
2	Н	139/182~(76%)	120 (86%)	19 (14%)		3	17
All	All	1245/1500 (83%)	1073 (86%)	172 (14%)		3	16

All (172) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	3	GLN
1	А	11	LEU
1	А	18	LEU

Mol	Chain	Res	Type
1	А	35	GLN
1	А	43	LYS
1	А	63	GLU
1	А	68	PHE
1	А	74	ASN
1	А	78	THR
1	А	83	MET
1	А	89	GLU
1	А	117	LEU
1	А	122	SER
1	А	124	SER
1	А	125	THR
1	А	129	SER
1	A	164	ASN
1	А	198	LEU
1	А	218	LYS
2	В	7	SER
2	В	11	LEU
2	В	14	SER
2	В	21	LEU
2	В	33	LEU
2	В	53	THR
2	В	58	ILE
2	В	65	SER
2	В	72	THR
2	В	76	ASN
2	В	85	THR
2	В	92	ARG
2	В	93	ASP
2	В	106	ILE
2	В	125	LEU
2	В	143	GLU
2	В	150	VAL
2	В	154	LEU
2	В	158	ASN
2	В	159	SER
2	В	175	LEU
2	В	177	SER
2	В	183	LYS
1	С	11	LEU
1	C	28	THR
1	С	33	ASP

Mol	Chain	Res	Type
1	С	35	GLN
1	С	45	LEU
1	С	78	THR
1	С	98	ARG
1	С	99	ARG
1	С	107	TRP
1	С	116	THR
1	С	117	LEU
1	С	125	THR
1	С	129	SER
1	С	138	ARG
1	С	147	LEU
1	С	155	PHE
1	С	159	VAL
1	С	179	LEU
1	С	187	LEU
1	С	195	SER
1	С	214	THR
2	D	5	THR
2	D	13	VAL
2	D	18	ARG
2	D	21	LEU
2	D	22	SER
2	D	29	VAL
2	D	42	GLN
2	D	47	LEU
2	D	53	THR
2	D	65	SER
2	D	69	THR
2	D	74	THR
2	D	75	ILE
2	D	97	THR
2	D	108	ARG
2	D	152	ASN
2	D	154	LEU
2	D	159	SER
2	D	163	VAL
2	D	166	GLN
2	D	172	THR
2	D	185	ASP
2	D	191	VAL
2	D	197	THR

Mol	Chain	Res	Type
2	D	203	SER
2	D	210	ASN
1	Е	12	VAL
1	Е	21	SER
1	Е	37	VAL
1	Е	51	ILE
1	Е	68	PHE
1	Е	81	LEU
1	Е	82	GLN
1	Е	110	ASP
1	Е	149	CYS
1	Е	162	SER
1	Е	169	THR
1	Е	192	THR
1	Е	206	ASN
2	F	1	GLU
2	F	4	LEU
2	F	26	SER
2	F	48	ILE
2	F	52	SER
2	F	53	THR
2	F	55	GLU
2	F	56	THR
2	F	61	ARG
2	F	63	SER
2	F	65	SER
2	F	75	ILE
2	F	78	LEU
2	F	85	THR
2	F	114	SER
2	F	135	LEU
2	F	154	LEU
2	F	163	VAL
2	F	164	THR
2	F	167	ASP
2	F	172	THR
2	F	175	LEU
2	F	177	SER
2	F	178	THR
2	F	179	LEU
2	F	182	SER
1	G	1	GLN

Mol	Chain	Res	Type
1	G	4	LEU
1	G	11	LEU
1	G	13	GLN
1	G	18	LEU
1	G	32	TYR
1	G	39	GLN
1	G	45	LEU
1	G	59	TYR
1	G	70	ILE
1	G	76	LYS
1	G	118	VAL
1	G	119	THR
1	G	129	SER
1	G	144	THR
1	G	149	CYS
1	G	150	LEU
1	G	151	VAL
1	G	162	SER
1	G	165	SER
1	G	187	LEU
1	G	200	THR
1	G	206	ASN
1	G	213	ASN
1	G	217	ASP
2	Н	13	VAL
2	Н	17	GLU
2	Н	21	LEU
2	Н	23	CYS
2	Н	42	GLN
2	Н	47	LEU
2	H	71	PHE
2	H	73	LEU
2	Н	78	LEU
2	H	85	THR
2	Н	88	CYS
2	H	115	VAL
2	Н	129	THR
2	Н	147	GLN
2	Н	172	THR
2	Н	179	LEU
2	H	187	GLU
2	Н	197	THR

Mol	Chain	\mathbf{Res}	Type
2	Н	214	CYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (23) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	35	GLN
1	А	206	ASN
2	В	6	GLN
2	В	38	GLN
2	В	158	ASN
2	В	189	HIS
2	В	198	HIS
1	С	173	HIS
1	С	206	ASN
2	D	137	ASN
2	D	152	ASN
2	D	158	ASN
2	D	189	HIS
1	Е	209	HIS
2	F	6	GLN
2	F	137	ASN
2	F	155	GLN
2	F	198	HIS
2	F	199	GLN
2	F	210	ASN
1	G	74	ASN
1	G	206	ASN
2	Н	147	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$\mathbf{OWAB}(\mathrm{\AA}^2)$	Q < 0.9
1	А	222/227~(97%)	-0.55	1 (0%) 91 86	14, 47, 71, 84	0
1	С	223/227~(98%)	-0.50	0 100 100	35, 56, 68, 80	0
1	Ε	216/227~(95%)	-0.49	0 100 100	26, 53, 64, 74	0
1	G	220/227~(96%)	-0.33	1 (0%) 91 86	51, 76, 88, 90	0
2	В	214/214~(100%)	-0.62	0 100 100	22, 46, 71, 78	0
2	D	214/214~(100%)	-0.62	0 100 100	17, 39, 63, 76	0
2	F	214/214~(100%)	-0.59	0 100 100	17, 41, 64, 70	0
2	Н	214/214~(100%)	-0.37	0 100 100	37, 63, 85, 89	0
All	All	1737/1764 (98%)	-0.51	2 (0%) 95 95	14, 53, 82, 90	0

All (2) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
1	А	139	SER	2.7
1	G	112	TRP	2.5

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

