

Full wwPDB X-ray Structure Validation Report (i)

Oct 6, 2024 – 08:46 PM EDT

PDB ID	:	3GXI
Title	:	Crystal structure of acid-beta-glucosidase at pH 5.5
Authors	:	Lieberman, R.L.
Deposited on	:	2009-04-02
Resolution	:	1.84 Å(reported)
Deposited on Resolution	: :	2009-04-02 1.84 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Mogul	:	2022.3.0, CSD as543be (2022)
Xtriage (Phenix)	:	1.20.1
EDS	:	3.0
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
CCP4	:	9.0.003 (Gargrove)
Density-Fitness	:	1.0.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 1.84 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$
R_{free}	164625	1150 (1.84-1.84)
Clashscore	180529	1248 (1.84-1.84)
Ramachandran outliers	177936	1240 (1.84-1.84)
Sidechain outliers	177891	1240 (1.84-1.84)
RSRZ outliers	164620	1149 (1.84-1.84)

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	497	88%	10%	•
1	В	497	86%	11%	•••
1	С	497	86%	13%	•
1	D	497	86%	12%	

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard

Mol	Type	Chain	Res	Chirality	Geometry	Clashes	Electron density
3	PO4	А	502	-	-	Х	-
3	PO4	А	517	-	-	Х	-
3	PO4	В	502	-	-	Х	-
3	PO4	С	501	-	-	Х	-
3	PO4	D	503	-	-	Х	-

residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 17770 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms			ZeroOcc	AltConf	Trace
1	Δ	407	Total	С	Ν	0	\mathbf{S}	0	0	0
1	A	497	3930	2532	671	711	16	0		U
1	р	407	Total	С	Ν	0	S	0	0	0
1	D	497	3930	2532	671	711	16	0		U
1	C	497	Total	С	Ν	0	S	0	0	0
1			3930	2532	671	711	16	0	0	0
1 D	407	Total	С	Ν	0	S	0	0	0	
1	D	497	3930	2532	671	711	16	0	0	0

• Molecule 1 is a protein called Glucosylceramidase.

There are 4 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	495	HIS	ARG	variant	UNP P04062
В	495	HIS	ARG	variant	UNP P04062
С	495	HIS	ARG	variant	UNP P04062
D	495	HIS	ARG	variant	UNP P04062

• Molecule 2 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	Atoms				ZeroOcc	AltConf
2	А	1	Total	С	Ν	0	0	0
			14	8	1	5		
2	В	1	Total	\mathbf{C}	Ν	Ο	0	0
2	Z D	1	14	8	1	5	0	0
2	С	1	Total	С	Ν	Ο	0	0
2	U	T	14	8	1	5	0	
2	р	1	Total	С	N	0	0	0
	D	L	14	8	1	5	0	0

• Molecule 3 is PHOSPHATE ION (three-letter code: PO4) (formula: O_4P).

2CVI	
JUAL	

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	А	1	Total O P 5 4 1	0	0
3	А	1	Total O P 5 4 1	0	0
3	А	1	$\begin{array}{c c} \hline Total & O & P \\ 5 & 4 & 1 \end{array}$	0	0
3	А	1	Total O P 5 4 1	0	0
3	А	1	$\begin{array}{ccc} & 1 & 1 \\ & Total & O & P \\ & 5 & 4 & 1 \end{array}$	0	0
3	А	1	Total O P 5 4 1	0	0
3	А	1	Total O P 5 4 1	0	0
3	А	1	Total O P 5 4 1	0	0
3	А	1	Total O P 5 4 1	0	0
3	А	1	$\begin{array}{c ccc} \hline 0 & 4 & 1 \\ \hline Total & O & P \\ \hline 5 & 4 & 1 \\ \end{array}$	0	0
3	А	1	$\begin{array}{c cccc} 5 & 4 & 1 \\ \hline Total & O & P \\ 5 & 4 & 1 \\ \end{array}$	0	0
3	А	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0
3	А	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0
3	А	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0	0
3	А	1	Total O P	0	0
3	А	1	Total O P	0	0
3	А	1	Total O P	0	0
3	А	1	Total O P	0	0
3	А	1	5 4 1 Total O P	0	0
3	В	1	5 4 1 Total O P	0	0
3	В	1	5 4 1 Total O P	0	0
3	В	1	$\begin{array}{cccc} 5 & 4 & 1 \\ \hline \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	В	1	Total O P	0	0
			5 4 1		-
3	В	1	Total O P 5 4 1	0	0
3	В	1	Total O P	0	0
		-	5 4 1	Ŭ	0
3	В	1	Total O P 5 4 1	0	0
3	В	1	Total O P	0	0
			$\begin{array}{ccc} 0 & 4 & 1 \\ \hline \end{array}$		
3	В	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
3	В	1	Total O P 5 4 1	0	0
3	В	1	Total O P	0	0
			5 4 1		
3	В	1	Total O P $5 4 1$	0	0
			Total O D		
3	В	1	$\begin{array}{cccc} 101a1 & O & P \\ 5 & 4 & 1 \end{array}$	0	0
3	С	1	Total O P	0	0
3	С	1	5 4 1	0	0
	a		Total O P	0	0
3	C	1	5 4 1	0	0
			Total O P		
3	C	1	5 4 1	0	0
	a		Total O P	0	0
3	C	1	5 4 1	0	0
	a		Total O P	0	0
3	C	1	5 4 1	0	0
0	Q	1	Total O P	0	0
3	C	1	5 4 1	0	0
	0	1	Total O P	0	0
5	U		5 4 1	U	U
9	C	1	Total O P	0	0
5			5 4 1		U
0	C	1	Total O P	0	0
3	U		5 4 1		U
0	C	1	Total O P	0	0
5	U		5 4 1	0	U

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
3	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
3	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
3	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
3	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
3	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
3	С	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
3	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
3	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
3	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
3	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
3	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
3	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
3	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
3	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
3	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
3	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
3	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
3	D	1	$\begin{array}{ccc} \text{Total} & \text{O} & \text{P} \\ 5 & 4 & 1 \end{array}$	0	0
3	D	1	$\begin{array}{ccc} \overline{\text{Total}} & O & P \\ 5 & 4 & 1 \end{array}$	0	0
3	D	1	$\begin{array}{ccc} \overline{\text{Total}} & O & P \\ 5 & 4 & 1 \end{array}$	0	0

• Molecule 4 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
4	А	420	Total O 420 420	0	0
4	В	410	Total O 410 410	0	0
4	С	436	Total O 436 436	0	0
4	D	413	Total O 413 413	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Glucosylceramidase

R496 P299 A1 0497 W311 I5 W312 Y11 I5 Y313 Y11 Y11 W312 Y11 Y11 Y313 L14 Y22 W312 Y313 H4 Y313 L14 Y22 A318 X321 H4 Y323 L156 H2 X324 H2 Y2 X335 L166 H2 H323 H3 H2 M333 K79 H1 K334 L166 Y1 K335 H3 H3 K345 H1 D2 K345 H1 D2 K345 H1 D2 K345 H1 D2 K345 H3 M3 K345 H1 D2 K345 M3 M3 K345 M3 M3 K345 M3 M3 <

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 1 21 1	Depositor
Cell constants	110.05Å 91.71Å 152.28Å	Deperitor
a, b, c, α , β , γ	90.00° 111.13° 90.00°	Depositor
$\mathbf{P}_{\text{assolution}}(\hat{\mathbf{A}})$	19.80 - 1.84	Depositor
Resolution (A)	19.80 - 1.84	EDS
% Data completeness	93.6 (19.80-1.84)	Depositor
(in resolution range)	93.6 (19.80-1.84)	EDS
R_{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$2.69 (at 1.85 \text{\AA})$	Xtriage
Refinement program	REFMAC	Depositor
P. P.	0.191 , 0.231	Depositor
$\mathbf{n}, \mathbf{n}_{free}$	0.191 , 0.232	DCC
R_{free} test set	11460 reflections (5.06%)	wwPDB-VP
Wilson B-factor $(Å^2)$	24.0	Xtriage
Anisotropy	0.136	Xtriage
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.36, 31.6	EDS
L-test for $twinning^2$	$< L >=0.49, < L^2>=0.33$	Xtriage
Estimated twinning fraction	0.478 for h,-k,-h-l	Xtriage
F_o, F_c correlation	0.97	EDS
Total number of atoms	17770	wwPDB-VP
Average B, all atoms $(Å^2)$	27.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.62% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: PO4, NAG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol Ch	Chain	Bo	nd lengths	Bond angles		
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.83	1/4051~(0.0%)	0.82	3/5523~(0.1%)	
1	В	0.82	0/4051	0.81	3/5523~(0.1%)	
1	С	0.81	0/4051	0.83	6/5523~(0.1%)	
1	D	0.82	0/4051	0.81	2/5523~(0.0%)	
All	All	0.82	1/16204~(0.0%)	0.82	14/22092~(0.1%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	В	0	3
1	D	0	1
All	All	0	4

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	Observed(Å)	Ideal(Å)
1	А	460	VAL	CB-CG1	5.01	1.63	1.52

All (14) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	А	433	ARG	NE-CZ-NH2	-14.15	113.22	120.30
1	С	433	ARG	NE-CZ-NH2	-10.53	115.03	120.30
1	С	286	LEU	CA-CB-CG	7.74	133.11	115.30
1	В	286	LEU	CA-CB-CG	7.66	132.92	115.30
1	D	347	PHE	N-CA-C	-7.38	91.09	111.00
1	А	433	ARG	NE-CZ-NH1	7.30	123.95	120.30

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
1	В	62	GLY	N-CA-C	6.70	129.84	113.10
1	В	480	LEU	CA-CB-CG	6.38	129.98	115.30
1	А	433	ARG	CG-CD-NE	-6.03	99.13	111.80
1	D	480	LEU	CA-CB-CG	5.82	128.69	115.30
1	С	69	LEU	CB-CG-CD2	5.63	120.56	111.00
1	С	433	ARG	NE-CZ-NH1	5.52	123.06	120.30
1	С	409	ASP	CB-CG-OD1	5.12	122.91	118.30
1	С	433	ARG	CG-CD-NE	-5.11	101.07	111.80

There are no chirality outliers.

All (4) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
1	В	344	GLY	Peptide
1	В	496	ARG	Peptide
1	В	61	THR	Peptide
1	D	496	ARG	Peptide

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	3930	0	3843	60	0
1	В	3930	0	3843	65	0
1	С	3930	0	3843	60	0
1	D	3930	0	3843	81	0
2	А	14	0	13	0	0
2	В	14	0	12	3	0
2	С	14	0	13	0	0
2	D	14	0	13	1	0
3	А	95	0	0	7	0
3	В	65	0	0	3	0
3	С	85	0	0	5	0
3	D	70	0	0	6	0
4	A	420	0	0	15	0
4	В	410	0	0	20	0
4	C	436	0	0	15	0

Control	Continueu front precious page								
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes			
4	D	413	0	0	8	0			
All	All	17770	0	15423	264	0			

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 8.

All (264) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom_1	Atom-2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:44:ARG:HH12	3:A:502:PO4:P	1.66	1.19
1:A:44:ARG:NE	4:A:763:HOH:O	1.79	1.10
1:D:495:HIS:HB3	1:D:497:GLN:HG3	1.32	1.08
1:D:329:ARG:HG2	1:D:329:ARG:HH11	1.04	1.08
1:A:44:ARG:NH1	3:A:502:PO4:O2	1.87	1.06
1:C:57:GLN:HG3	1:C:58:ALA:H	1.23	1.00
1:A:44:ARG:NH2	4:A:763:HOH:O	1.95	0.99
1:C:379:THR:HB	4:C:766:HOH:O	0.81	0.98
1:A:44:ARG:CZ	4:A:763:HOH:O	2.11	0.96
1:B:315:ASP:OD2	1:B:345:SER:HB2	1.69	0.93
1:C:410:THR:HG21	4:C:765:HOH:O	1.68	0.92
1:A:44:ARG:NH1	3:A:502:PO4:P	2.44	0.90
1:D:349:GLU:HG3	1:D:353:ARG:NH2	1.88	0.89
1:C:207:GLN:NE2	1:C:263:ASP:OD1	2.06	0.87
1:C:57:GLN:HG3	1:C:58:ALA:N	1.87	0.86
1:D:329:ARG:HG2	1:D:329:ARG:NH1	1.86	0.85
1:A:207:GLN:NE2	1:A:263:ASP:OD1	2.08	0.84
1:A:410:THR:HG21	4:A:761:HOH:O	1.78	0.83
1:B:5:ILE:HD13	2:B:498:NAG:O6	1.79	0.82
1:D:318:ALA:CB	1:D:319:PRO:HA	2.09	0.82
1:B:408:LYS:O	1:B:410:THR:HG23	1.80	0.81
1:B:11:TYR:HE2	4:B:734:HOH:O	1.63	0.80
1:D:346:LYS:H	1:D:347:PHE:CA	1.91	0.80
2:D:498:NAG:H83	4:D:1034:HOH:O	1.82	0.79
1:D:328:HIS:HD2	4:D:1383:HOH:O	1.66	0.79
1:B:207:GLN:NE2	1:B:263:ASP:OD1	2.16	0.79
1:A:262:ARG:NH1	4:A:1321:HOH:O	2.17	0.78
1:A:343:VAL:HG22	1:A:344:GLY:H	1.49	0.78
1:C:57:GLN:CG	1:C:58:ALA:H	1.97	0.77
1:B:11:TYR:CE2	4:B:734:HOH:O	2.36	0.76
1:B:328:HIS:HD2	4:B:737:HOH:O	1.68	0.76
1:D:329:ARG:HH11	1:D:329:ARG:CG	1.92	0.75

	lo uo pugom	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:44:ARG:HH11	1:A:44:ARG:HB3	1.53	0.74
1:A:39:ARG:HD2	4:A:1416:HOH:O	1.88	0.73
1:C:345:SER:HB3	4:C:921:HOH:O	1.88	0.73
1:D:207:GLN:NE2	1:D:263:ASP:OD1	2.17	0.73
1:C:57:GLN:HB3	4:C:1325:HOH:O	1.88	0.73
1:B:333:ASN:OD1	4:B:820:HOH:O	2.06	0.72
1:A:328:HIS:HD2	4:A:593:HOH:O	1.71	0.72
1:B:39:ARG:CD	4:B:712:HOH:O	2.38	0.72
1:D:345:SER:N	1:D:346:LYS:HB2	2.06	0.71
1:D:345:SER:H	1:D:346:LYS:CB	2.02	0.71
1:B:47:ARG:NE	4:B:1170:HOH:O	2.23	0.71
1:D:235:GLU:OE2	1:D:311:HIS:HD2	1.73	0.70
1:C:44:ARG:HD2	3:C:501:PO4:O1	1.92	0.69
1:A:406:ILE:HG23	4:A:1248:HOH:O	1.92	0.69
1:D:318:ALA:HB1	1:D:319:PRO:HA	1.74	0.69
1:B:349:GLU:OE2	4:B:577:HOH:O	2.12	0.68
1:D:284:GLN:OE1	1:D:313:TYR:HE1	1.76	0.68
1:D:165:LEU:HD22	1:D:172:VAL:HB	1.74	0.68
1:C:44:ARG:CD	3:C:501:PO4:O1	2.42	0.67
1:D:345:SER:N	1:D:346:LYS:CB	2.58	0.67
1:C:194:LYS:HB2	1:C:242:SER:HA	1.78	0.67
1:B:284:GLN:OE1	1:B:313:TYR:HE1	1.78	0.66
1:C:377:GLY:HA2	1:C:378:TRP:CE3	2.31	0.66
1:D:152:GLU:HA	1:D:156:LEU:HD12	1.77	0.66
1:D:31:PHE:HB2	1:D:495:HIS:CE1	2.31	0.65
1:B:39:ARG:HD3	4:B:712:HOH:O	1.96	0.65
1:D:282:ASP:OD1	1:D:311:HIS:HE1	1.80	0.65
1:A:262:ARG:NE	4:A:1178:HOH:O	2.17	0.65
1:D:5:ILE:HD12	1:D:22:TYR:CE2	2.32	0.65
1:C:199:GLY:HA3	1:C:203:ASP:OD2	1.96	0.64
1:B:31:PHE:HB3	4:B:1149:HOH:O	1.96	0.64
1:D:345:SER:H	1:D:346:LYS:HB3	1.62	0.64
1:D:346:LYS:CA	1:D:347:PHE:HB3	2.27	0.64
1:C:328:HIS:HD2	4:C:609:HOH:O	1.79	0.63
3:D:500:PO4:O4	4:D:1157:HOH:O	2.15	0.63
1:A:297:THR:O	1:A:297:THR:HG22	1.99	0.62
1:B:347:PHE:O	1:B:348:TRP:HB3	1.98	0.62
1:D:318:ALA:HB3	1:D:319:PRO:HA	1.79	0.62
1:D:346:LYS:HA	1:D:347:PHE:HB3	1.80	0.62
1:B:207:GLN:HE22	1:B:263:ASP:HA	1.65	0.62
1:C:395:ARG:O	1:C:397:PHE:CD2	2.53	0.62

	the o	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:C:406:ILE:HG23	4:C:1454:HOH:O	2.00	0.61	
1:D:199:GLY:HA3	1:D:203:ASP:OD2	2.00	0.61	
2:B:498:NAG:H61	4:B:741:HOH:O	1.99	0.61	
1:A:44:ARG:HH11	1:A:44:ARG:CB	2.14	0.61	
1:B:318:ALA:HB1	1:B:319:PRO:HD3	1.83	0.61	
1:A:199:GLY:HA3	1:A:203:ASP:OD2	1.99	0.61	
1:C:397:PHE:CD2	1:C:397:PHE:N	2.69	0.60	
1:B:5:ILE:HD12	1:B:22:TYR:CE2	2.35	0.60	
1:D:156:LEU:HD13	4:D:1262:HOH:O	2.01	0.60	
3:C:509:PO4:O2	4:C:1052:HOH:O	2.16	0.60	
1:D:60:HIS:HE1	4:D:908:HOH:O	1.83	0.59	
1:D:318:ALA:CB	1:D:319:PRO:CA	2.80	0.59	
1:D:262:ARG:NH1	4:D:683:HOH:O	2.34	0.59	
1:A:39:ARG:CD	4:A:1416:HOH:O	2.48	0.59	
1:B:59:ASN:HD22	1:B:60:HIS:H	1.50	0.59	
1:B:44:ARG:CD	3:B:502:PO4:O3	2.51	0.59	
1:B:165:LEU:HD22	1:B:172:VAL:HB	1.84	0.59	
1:D:395:ARG:NH1	4:D:1440:HOH:O	2.36	0.58	
1:D:56:ILE:HG12	1:D:480:LEU:HD22	1.85	0.58	
1:A:345:SER:HB2	4:A:696:HOH:O	2.04	0.57	
1:A:406:ILE:HG12	1:A:406:ILE:O	2.05	0.57	
1:A:1:ALA:HB2	1:A:27:ASP:OD1	2.04	0.57	
1:A:44:ARG:HH11	1:A:44:ARG:CG	2.16	0.57	
1:C:254:GLU:OE2	4:C:735:HOH:O	2.17	0.57	
1:C:345:SER:OG	4:C:534:HOH:O	2.18	0.57	
1:D:315:ASP:OD2	1:D:346:LYS:HG3	2.05	0.57	
1:A:254:GLU:OE2	4:A:1255:HOH:O	2.17	0.56	
1:B:162:HIS:HD2	4:B:755:HOH:O	1.86	0.56	
1:A:116:TYR:OH	1:A:420:LEU:HD13	2.05	0.56	
1:C:245:PRO:HD3	1:D:348:TRP:CD2	2.40	0.56	
1:C:245:PRO:HG3	1:D:348:TRP:HB3	1.86	0.56	
1:B:495:HIS:HB3	1:B:497:GLN:HG3	1.87	0.56	
1:D:333:ASN:HB2	3:D:511:PO4:O2	2.05	0.56	
1:C:165:LEU:HD22	1:C:172:VAL:HB	1.89	0.55	
1:A:165:LEU:HD22	1:A:172:VAL:HB	1.90	0.54	
1:B:5:ILE:CD1	2:B:498:NAG:O6	2.54	0.54	
1:C:377:GLY:C	1:C:378:TRP:CE3	2.80	0.54	
1:D:345:SER:CA	1:D:346:LYS:HB2	2.36	0.54	
1:D:315:ASP:CG	1:D:346:LYS:HG3	2.27	0.54	
1:B:44:ARG:HD3	3:B:502:PO4:O3	2.08	0.54	
1:D:346:LYS:N	1:D:347:PHE:CB	2.71	0.54	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:C:377:GLY:CA	1:C:378:TRP:CE3	2.90	0.53	
1:D:314:LEU:HB2	1:D:343:VAL:HG12	1.89	0.53	
1:D:347:PHE:CD2	1:D:348:TRP:HE3	2.26	0.53	
1:A:141:ASP:OD2	1:A:146:ASN:HB2	2.08	0.53	
1:A:245:PRO:HD3	1:B:348:TRP:CD2	2.43	0.53	
1:D:235:GLU:OE2	1:D:311:HIS:CD2	2.58	0.53	
1:B:60:HIS:HE1	4:B:1059:HOH:O	1.91	0.53	
1:C:408:LYS:HE2	4:C:1237:HOH:O	2.07	0.53	
1:B:66:LEU:HD11	1:B:473:LYS:HB2	1.90	0.53	
1:C:44:ARG:HD3	3:C:501:PO4:O1	2.09	0.53	
1:B:34:LEU:HD11	1:B:497:GLN:H	1.74	0.53	
1:D:347:PHE:CD2	1:D:348:TRP:CE3	2.96	0.53	
1:D:347:PHE:CD1	1:D:347:PHE:C	2.82	0.53	
1:A:343:VAL:CG2	1:A:344:GLY:H	2.18	0.52	
1:A:408:LYS:HB3	1:A:410:THR:HG23	1.91	0.52	
1:B:318:ALA:HB1	1:B:319:PRO:CD	2.39	0.52	
1:A:343:VAL:HG22	1:A:344:GLY:N	2.22	0.52	
1:B:314:LEU:HB2	1:B:343:VAL:HG12	1.90	0.52	
1:D:346:LYS:H	1:D:347:PHE:CB	2.23	0.52	
1:D:79:LYS:HE2	1:D:228:TRP:CE2	2.45	0.52	
1:C:83:GLY:CA	1:C:379:THR:HG23	2.40	0.52	
1:C:371:LEU:O	1:C:433:ARG:HD2	2.10	0.52	
1:D:44:ARG:CD	3:D:503:PO4:O4	2.57	0.52	
1:C:286:LEU:HD21	1:D:317:LEU:HD12	1.91	0.52	
1:C:120:ARG:HB2	1:C:379:THR:HG21	1.92	0.52	
1:D:346:LYS:H	1:D:347:PHE:HA	1.75	0.52	
1:B:315:ASP:OD2	1:B:344:GLY:N	2.41	0.52	
1:D:346:LYS:CA	1:D:347:PHE:CB	2.87	0.51	
1:B:56:ILE:HG12	1:B:480:LEU:HD22	1.91	0.51	
1:A:371:LEU:O	1:A:433:ARG:HD2	2.10	0.51	
1:B:199:GLY:HA3	1:B:203:ASP:OD2	2.11	0.51	
1:C:395:ARG:O	1:C:397:PHE:HD2	1.92	0.51	
1:A:306:HIS:ND1	3:A:507:PO4:O1	2.38	0.51	
1:B:284:GLN:OE1	1:B:313:TYR:CE1	2.61	0.51	
1:B:59:ASN:ND2	1:B:60:HIS:H	2.09	0.51	
1:C:79:LYS:HE2	1:C:228:TRP:CE2	2.46	0.51	
1:D:345:SER:HB3	1:D:346:LYS:HB2	1.91	0.51	
1:C:82:GLY:HA3	1:C:118:ILE:O	2.11	0.51	
1:D:207:GLN:HE22	1:D:263:ASP:HA	1.74	0.51	
1:D:44:ARG:HD2	3:D:503:PO4:O4	2.11	0.50	
1:B:319:PRO:O	1:B:320:ALA:HB3	2.10	0.50	

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:B:345:SER:O	1:B:346:LYS:C	2.49	0.50
1:D:371:LEU:O	1:D:433:ARG:HD2	2.12	0.50
1:A:377:GLY:C	1:A:378:TRP:CE3	2.85	0.50
1:B:300:GLU:HG2	4:B:784:HOH:O	2.11	0.50
1:D:318:ALA:HB1	1:D:319:PRO:CA	2.41	0.50
1:A:82:GLY:HA3	1:A:118:ILE:O	2.12	0.50
1:C:96:LEU:HB3	1:C:100:ALA:HB3	1.93	0.50
1:C:116:TYR:OH	1:C:420:LEU:HD13	2.12	0.50
1:D:5:ILE:CD1	1:D:22:TYR:CE2	2.94	0.50
1:B:353:ARG:HD3	4:B:734:HOH:O	2.12	0.49
1:C:408:LYS:O	1:C:410:THR:HG23	2.13	0.49
1:C:379:THR:HG22	1:C:380:ASP:O	2.13	0.49
1:B:44:ARG:HD2	3:B:502:PO4:O3	2.13	0.49
1:C:317:LEU:HD11	1:D:316:PHE:HD2	1.78	0.49
1:D:333:ASN:OD1	4:D:673:HOH:O	2.20	0.49
1:B:194:LYS:HB2	1:B:242:SER:HA	1.94	0.49
1:B:312:TRP:HB2	4:B:1414:HOH:O	2.13	0.48
1:C:5:ILE:HG12	1:C:22:TYR:CE2	2.47	0.48
1:D:495:HIS:CD2	1:D:497:GLN:NE2	2.81	0.48
1:C:39:ARG:HD2	4:C:1412:HOH:O	2.14	0.48
1:C:497:GLN:NE2	4:C:1131:HOH:O	2.34	0.48
1:D:277:ARG:NH1	3:D:505:PO4:O2	2.47	0.48
1:D:11:TYR:HD2	1:D:353:ARG:HH11	1.62	0.48
1:D:495:HIS:HD2	1:D:497:GLN:CD	2.16	0.48
1:D:282:ASP:OD1	1:D:311:HIS:CE1	2.65	0.47
1:B:262:ARG:NE	4:B:1056:HOH:O	2.03	0.47
1:A:483:ILE:O	1:A:485:PRO:HD3	2.13	0.47
1:C:381:TRP:HA	1:C:381:TRP:CE3	2.49	0.47
1:B:262:ARG:NH2	4:B:1056:HOH:O	2.45	0.47
1:D:34:LEU:HD11	1:D:497:GLN:H	1.79	0.47
1:B:31:PHE:HD1	1:B:495:HIS:HE1	1.61	0.47
1:B:284:GLN:HE22	1:B:313:TYR:HD1	1.63	0.47
1:A:377:GLY:HA2	1:A:378:TRP:CE3	2.50	0.47
1:B:37:PHE:CG	1:B:480:LEU:HD13	2.50	0.47
1:D:284:GLN:OE1	1:D:313:TYR:CE1	2.63	0.47
1:C:57:GLN:CG	1:C:58:ALA:N	2.63	0.46
1:D:60:HIS:HD2	1:D:481:GLU:OE2	1.98	0.46
1:B:31:PHE:HD1	1:B:495:HIS:CE1	2.33	0.46
1:A:297:THR:O	1:A:297:THR:CG2	2.62	0.46
1:D:495:HIS:HD2	1:D:497:GLN:NE2	2.13	0.46
1:B:31:PHE:CD1	1:B:495:HIS:CE1	3.04	0.46

			Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:151:GLU:HG2	1:C:155:LYS:HB3	1.97	0.46
1:C:381:TRP:HA	1:C:381:TRP:HE3	1.80	0.46
1:D:349:GLU:HG3	1:D:353:ARG:HH21	1.74	0.46
1:A:396:ASN:ND2	4:A:831:HOH:O	2.47	0.46
1:D:70:GLN:NE2	1:D:437:VAL:HG21	2.31	0.46
1:C:377:GLY:C	1:C:378:TRP:CD2	2.90	0.45
1:A:215:LYS:HE3	4:A:884:HOH:O	2.16	0.45
1:C:287:LEU:HB3	1:C:291:TRP:CD1	2.52	0.45
1:A:433:ARG:NH2	3:A:517:PO4:O4	2.48	0.45
1:B:34:LEU:HD13	1:B:497:GLN:HB2	1.98	0.45
1:B:381:TRP:HA	1:B:381:TRP:CE3	2.52	0.45
1:D:386:ASN:HB2	1:D:387:PRO:CD	2.47	0.45
1:A:396:ASN:ND2	1:A:396:ASN:H	2.12	0.44
1:A:71:PRO:HB3	1:A:450:MET:HE1	1.99	0.44
1:A:408:LYS:O	1:A:410:THR:CG2	2.65	0.44
1:B:386:ASN:HB2	1:B:387:PRO:CD	2.47	0.44
1:B:381:TRP:HA	1:B:381:TRP:HE3	1.83	0.44
1:B:284:GLN:NE2	1:B:313:TYR:HD1	2.16	0.44
1:D:298:ASP:HA	1:D:299:PRO:HD2	1.91	0.44
1:C:397:PHE:HZ	4:C:1002:HOH:O	2.00	0.43
1:D:284:GLN:NE2	1:D:313:TYR:HD1	2.17	0.43
1:A:194:LYS:HB2	1:A:242:SER:HA	2.00	0.43
1:A:215:LYS:HA	1:A:215:LYS:HD2	1.86	0.43
1:B:287:LEU:HB3	1:B:291:TRP:CD1	2.54	0.43
1:A:285:ARG:HD2	1:A:318:ALA:O	2.18	0.43
1:A:408:LYS:O	1:A:410:THR:HG22	2.19	0.43
1:C:170:ARG:HG2	3:C:511:PO4:O1	2.18	0.43
1:B:47:ARG:CZ	4:B:1170:HOH:O	2.65	0.43
1:B:374:HIS:CE1	4:B:671:HOH:O	2.71	0.43
1:B:11:TYR:CE2	1:B:353:ARG:HD3	2.54	0.43
1:C:39:ARG:CD	4:C:1412:HOH:O	2.67	0.43
1:D:44:ARG:HD3	3:D:503:PO4:O4	2.19	0.42
1:A:381:TRP:HA	1:A:381:TRP:CE3	2.54	0.42
1:B:347:PHE:O	1:B:348:TRP:HE3	2.02	0.42
1:C:462:ASN:HB2	1:C:484:SER:OG	2.19	0.42
1:A:377:GLY:CA	1:A:378:TRP:CE3	3.03	0.42
1:B:314:LEU:HB2	1:B:343:VAL:CG1	2.50	0.42
1:C:378:TRP:CE3	1:C:378:TRP:N	2.87	0.42
1:B:319:PRO:HD2	1:B:320:ALA:H	1.85	0.42
1:C:138:THR:HA	1:C:139:PRO:HD3	1.91	0.42
1:C:151:GLU:HB2	4:C:701:HOH:O	2.20	0.42

A + 1	A + 9	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:A:433:ARG:HH22	3:A:517:PO4:P	2.43	0.42
1:B:209:TRP:CZ3	1:B:212:TYR:CD2	3.08	0.42
1:C:120:ARG:CB	1:C:379:THR:HG21	2.50	0.42
1:A:381:TRP:HA	1:A:381:TRP:HE3	1.85	0.42
1:D:408:LYS:CB	1:D:410:THR:HG23	2.50	0.42
1:A:44:ARG:NH1	1:A:44:ARG:CG	2.81	0.41
1:D:11:TYR:CD2	1:D:353:ARG:NH1	2.88	0.41
1:D:326:GLU:OE1	1:D:329:ARG:NH1	2.53	0.41
1:C:111:GLU:HG3	1:C:169:GLN:CD	2.40	0.41
1:D:176:ALA:HB2	1:D:227:PHE:CE2	2.55	0.41
1:A:37:PHE:CD2	1:A:480:LEU:HG	2.56	0.41
1:A:197:LEU:HD11	1:A:209:TRP:CD1	2.55	0.41
1:B:198:LYS:HD3	1:B:205:TYR:CE1	2.56	0.41
1:D:345:SER:CB	1:D:346:LYS:HB2	2.50	0.41
1:D:285:ARG:HD2	1:D:323:THR:OG1	2.21	0.41
1:C:37:PHE:CD2	1:C:480:LEU:HG	2.55	0.41
1:B:353:ARG:NH1	4:B:734:HOH:O	2.51	0.41
1:C:245:PRO:HD3	1:D:348:TRP:CG	2.55	0.41
1:A:201:PRO:HG2	1:A:258:ASP:HB2	2.02	0.41
1:A:371:LEU:CD2	1:A:378:TRP:HH2	2.34	0.41
1:C:28:PRO:HA	1:C:29:PRO:HD3	1.90	0.41
1:D:34:LEU:HD12	1:D:34:LEU:HA	1.97	0.41
1:C:397:PHE:N	1:C:397:PHE:HD2	2.17	0.41
1:A:170:ARG:HG2	3:A:510:PO4:O3	2.21	0.40
1:A:285:ARG:HD3	1:A:323:THR:OG1	2.20	0.40
1:D:207:GLN:NE2	1:D:263:ASP:HA	2.36	0.40
1:A:406:ILE:HB	4:A:1179:HOH:O	2.20	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	495/497~(100%)	472 (95%)	21 (4%)	2~(0%)	30 18
1	В	495/497~(100%)	468 (94%)	19 (4%)	8 (2%)	8 1
1	С	495/497~(100%)	471 (95%)	20~(4%)	4 (1%)	16 5
1	D	495/497~(100%)	475~(96%)	15 (3%)	5(1%)	13 4
All	All	1980/1988~(100%)	1886 (95%)	75 (4%)	19 (1%)	13 4

All (19) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	В	320	ALA
1	D	318	ALA
1	D	346	LYS
1	D	347	PHE
1	В	233	GLU
1	В	348	TRP
1	С	233	GLU
1	А	233	GLU
1	В	319	PRO
1	D	233	GLU
1	А	281	LEU
1	В	281	LEU
1	В	381	TRP
1	С	281	LEU
1	С	381	TRP
1	D	381	TRP
1	В	346	LYS
1	В	345	SER
1	С	344	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percer	ntiles
1	А	424/424~(100%)	411 (97%)	13 (3%)	35	18
1	В	424/424~(100%)	408 (96%)	16 (4%)	28	11

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	С	424/424~(100%)	413~(97%)	11 (3%)	41	24
1	D	424/424~(100%)	407~(96%)	17 (4%)	27	10
All	All	1696/1696~(100%)	1639~(97%)	57 (3%)	32	15

All (57) residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	2	ARG
1	А	44	ARG
1	А	73	GLN
1	А	111	GLU
1	А	215	LYS
1	А	285	ARG
1	А	335	MET
1	А	346	LYS
1	А	366	SER
1	А	381	TRP
1	А	396	ASN
1	А	406	ILE
1	А	410	THR
1	В	44	ARG
1	В	59	ASN
1	В	63	THR
1	В	242	SER
1	В	270	ASN
1	В	286	LEU
1	В	317	LEU
1	В	335	MET
1	В	347	PHE
1	В	348	TRP
1	В	381	TRP
1	В	394	VAL
1	В	437	VAL
1	В	480	LEU
1	В	481	GLU
1	В	495	HIS
1	С	44	ARG
1	С	69	LEU
1	С	140	ASP
1	С	286	LEU
1	С	303	LYS

Mol	Chain	Res	Type
1	С	335	MET
1	С	343	VAL
1	С	366	SER
1	С	370	ASN
1	С	381	TRP
1	С	397	PHE
1	D	5	ILE
1	D	30	THR
1	D	200	GLN
1	D	270	ASN
1	D	311	HIS
1	D	321	LYS
1	D	329	ARG
1	D	335	MET
1	D	346	LYS
1	D	347	PHE
1	D	350	GLN
1	D	381	TRP
1	D	394	VAL
1	D	410	THR
1	D	470	LEU
1	D	480	LEU
1	D	481	GLU

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (30) such sidechains are listed below:

Mol	Chain	\mathbf{Res}	Type
1	А	57	GLN
1	А	226	GLN
1	А	328	HIS
1	А	365	HIS
1	А	495	HIS
1	А	497	GLN
1	В	59	ASN
1	В	60	HIS
1	В	70	GLN
1	В	162	HIS
1	В	200	GLN
1	В	226	GLN
1	В	328	HIS
1	В	333	ASN
1	В	362	GLN

Mol	Chain	Res	Type
1	В	365	HIS
1	В	396	ASN
1	В	495	HIS
1	С	57	GLN
1	С	328	HIS
1	С	495	HIS
1	С	497	GLN
1	D	60	HIS
1	D	200	GLN
1	D	226	GLN
1	D	284	GLN
1	D	311	HIS
1	D	328	HIS
1	D	495	HIS
1	D	497	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

67 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	T a	Chain	Dag	T : 1-	Bo	ond leng	\mathbf{ths}	В	ond ang	les
IVI01	Type	Chain	Res	LINK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
3	PO4	А	508	-	4,4,4	0.98	0	$6,\!6,\!6$	0.68	0
3	PO4	С	505	-	4,4,4	0.92	0	$6,\!6,\!6$	0.57	0
3	PO4	D	501	-	4,4,4	1.19	0	$6,\!6,\!6$	0.61	0
3	PO4	D	500	-	4,4,4	1.32	0	$6,\!6,\!6$	0.54	0
3	PO4	А	506	-	4,4,4	0.86	0	$6,\!6,\!6$	1.02	0
3	PO4	В	507	-	4,4,4	0.90	0	$6,\!6,\!6$	0.60	0
3	PO4	С	508	-	4,4,4	1.09	0	$6,\!6,\!6$	0.36	0
3	PO4	A	517	-	4,4,4	0.90	0	$6,\!6,\!6$	0.54	0
3	PO4	C	506	-	4,4,4	1.00	0	6,6,6	0.70	0
3	PO4	С	509	-	4,4,4	0.87	0	6,6,6	0.72	0
3	PO4	D	512	-	4,4,4	0.93	0	$6,\!6,\!6$	0.54	0
3	PO4	А	499	-	$4,\!4,\!4$	1.72	2(50%)	$6,\!6,\!6$	1.35	1 (16%)
3	PO4	А	514	-	4,4,4	0.81	0	$6,\!6,\!6$	0.58	0
2	NAG	А	498	1	14,14,15	0.84	1 (7%)	$17,\!19,\!21$	1.36	1 (5%)
3	PO4	D	510	_	4,4,4	0.92	0	6,6,6	0.59	0
3	PO4	D	505	-	4,4,4	0.80	0	6,6,6	0.65	0
3	PO4	В	509	-	4,4,4	0.92	0	6,6,6	0.58	0
3	PO4	А	502	-	4,4,4	1.06	0	6,6,6	0.95	0
2	NAG	С	498	1	14,14,15	0.90	1 (7%)	17,19,21	1.34	2 (11%)
3	PO4	A	513	_	4.4.4	0.95	0	6.6.6	0.71	0
3	PO4	А	507	-	4,4,4	0.87	0	6.6.6	0.69	0
3	PO4	А	510	_	4,4,4	0.94	0	6,6,6	0.73	0
3	PO4	А	511	_	4,4,4	0.97	0	6,6,6	0.64	0
3	PO4	D	508	-	4,4,4	0.76	0	6,6,6	0.87	0
3	PO4	С	502	-	4,4,4	1.27	0	6,6,6	1.19	0
3	PO4	С	501	-	4,4,4	1.14	0	6,6,6	1.10	0
2	NAG	D	498	1	14,14,15	0.65	0	17,19,21	1.83	5 (29%)
3	PO4	А	504	-	4,4,4	0.85	0	6,6,6	0.59	0
3	PO4	С	503	-	4,4,4	0.65	0	6,6,6	0.96	0
3	PO4	С	513	-	4,4,4	0.82	0	6,6,6	0.51	0
3	PO4	С	515	-	4,4,4	0.94	0	6,6,6	0.50	0
3	PO4	А	509	-	4,4,4	0.84	0	$6,\!6,\!6$	0.83	0
3	PO4	С	504	-	4,4,4	1.14	0	6,6,6	0.89	0
3	PO4	В	503	-	4,4,4	0.91	0	6,6,6	1.01	1 (16%)
3	PO4	А	505	-	4,4,4	0.92	0	6,6,6	0.73	0
3	PO4	С	500	-	4,4,4	1.44	0	6,6,6	1.25	0
3	PO4	В	508	-	4,4,4	0.91	0	6,6,6	0.51	0
3	PO4	D	507	-	4,4,4	0.88	0	6,6,6	0.69	0
3	PO4	D	509	-	4,4,4	0.73	0	6,6,6	0.86	0
3	PO4	D	511	-	4,4,4	0.90	0	6,6,6	0.60	0
3	PO4	D	502	-	4,4,4	0.80	0	6,6,6	0.67	0
3	PO4	В	501	-	4,4,4	1.16	0	$6,\!6,\!6$	0.98	0

Mal	Mol Type C		Chain Bos	Ros Link	Bo	ond leng	$_{\rm ths}$	B	ond ang	les
INIOI	туре	Unam	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z > 2
3	PO4	В	502	-	4,4,4	1.28	0	$6,\!6,\!6$	1.25	0
3	PO4	В	510	-	4,4,4	0.91	0	$6,\!6,\!6$	0.49	0
3	PO4	А	512	-	4,4,4	0.86	0	$6,\!6,\!6$	0.54	0
3	PO4	А	516	-	4,4,4	0.88	0	$6,\!6,\!6$	0.60	0
3	PO4	С	514	-	4,4,4	0.85	0	$6,\!6,\!6$	0.84	0
3	PO4	D	503	-	4,4,4	1.27	0	$6,\!6,\!6$	1.23	0
3	PO4	D	506	-	4,4,4	0.88	0	$6,\!6,\!6$	0.46	0
3	PO4	В	504	-	4,4,4	0.69	0	$6,\!6,\!6$	0.80	0
3	PO4	В	500	-	4,4,4	1.23	0	$6,\!6,\!6$	0.52	0
3	PO4	С	499	-	$4,\!4,\!4$	1.43	0	$6,\!6,\!6$	0.53	0
3	PO4	С	511	-	4,4,4	0.93	0	$6,\!6,\!6$	0.68	0
3	PO4	А	503	-	4,4,4	0.92	0	$6,\!6,\!6$	1.01	0
2	NAG	В	498	1	$14,\!14,\!15$	0.72	0	$17,\!19,\!21$	2.51	5 (29%)
3	PO4	В	506	-	4,4,4	0.95	0	$6,\!6,\!6$	0.68	0
3	PO4	В	511	-	4,4,4	0.77	0	$6,\!6,\!6$	0.68	0
3	PO4	С	507	-	4,4,4	0.97	0	$6,\!6,\!6$	0.78	0
3	PO4	С	510	-	4,4,4	0.87	0	$6,\!6,\!6$	0.70	0
3	PO4	А	501	-	$4,\!4,\!4$	1.41	1 (25%)	$6,\!6,\!6$	1.15	1 (16%)
3	PO4	В	505	-	4,4,4	0.78	0	$6,\!6,\!6$	0.62	0
3	PO4	D	504	-	4,4,4	0.92	0	$6,\!6,\!6$	0.89	0
3	PO4	А	500	-	$4,\!4,\!4$	1.22	0	$6,\!6,\!6$	0.81	0
3	PO4	D	499	-	4,4,4	1.50	1(25%)	6,6,6	1.60	2 (33%)
3	PO4	В	499	-	4,4,4	1.37	1 (25%)	6,6,6	0.96	0
3	PO4	С	512	-	4,4,4	0.94	0	6,6,6	0.39	0
3	PO4	A	515	-	4,4,4	0.78	0	6,6,6	0.56	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	NAG	А	498	1	-	0/6/23/26	0/1/1/1
2	NAG	D	498	1	-	2/6/23/26	0/1/1/1
2	NAG	С	498	1	-	0/6/23/26	0/1/1/1
2	NAG	В	498	1	-	2/6/23/26	0/1/1/1

All (7) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
2	А	498	NAG	C1-C2	2.28	1.55	1.52

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
3	А	499	PO4	P-O2	-2.24	1.48	1.54
2	С	498	NAG	C1-C2	2.24	1.55	1.52
3	А	501	PO4	P-O4	-2.08	1.48	1.54
3	В	499	PO4	P-O3	-2.08	1.48	1.54
3	А	499	PO4	P-O3	-2.07	1.48	1.54
3	D	499	PO4	P-O2	-2.00	1.48	1.54

All (18) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	В	498	NAG	C1-O5-C5	7.47	122.19	112.19
2	В	498	NAG	C6-C5-C4	-4.70	101.47	113.02
2	С	498	NAG	O5-C1-C2	-3.71	105.56	111.29
2	D	498	NAG	O5-C1-C2	-3.67	105.61	111.29
2	D	498	NAG	C8-C7-N2	3.41	121.78	116.12
2	А	498	NAG	O5-C1-C2	-3.28	106.21	111.29
3	А	499	PO4	O4-P-O2	2.80	116.64	107.91
3	D	499	PO4	O4-P-O3	2.32	115.13	107.91
2	D	498	NAG	C3-C4-C5	-2.27	106.12	110.23
2	В	498	NAG	O5-C5-C6	-2.25	103.28	107.66
3	D	499	PO4	O4-P-O1	-2.25	103.01	110.95
2	D	498	NAG	C4-C3-C2	-2.16	107.85	111.02
2	D	498	NAG	O7-C7-N2	-2.15	118.18	121.98
2	В	498	NAG	O5-C5-C4	2.09	115.92	110.83
3	A	501	PO4	O2-P-O1	-2.08	103.58	110.95
2	С	498	NAG	C1-C2-N2	2.07	113.70	110.43
3	В	503	PO4	O4-P-O2	2.05	114.30	107.91
2	В	498	NAG	O3-C3-C4	-2.02	105.61	110.38

There are no chirality outliers.

All (4) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
2	В	498	NAG	O5-C5-C6-O6
2	В	498	NAG	C4-C5-C6-O6
2	D	498	NAG	C8-C7-N2-C2
2	D	498	NAG	O7-C7-N2-C2

There are no ring outliers.

14 monomers are involved in 25 short contacts:

2CVI	
J GAI	

Mol	Chain	\mathbf{Res}	Type	Clashes	Symm-Clashes
3	D	500	PO4	1	0
3	А	517	PO4	2	0
3	С	509	PO4	1	0
3	D	505	PO4	1	0
3	А	502	PO4	3	0
3	А	507	PO4	1	0
3	А	510	PO4	1	0
3	С	501	PO4	3	0
2	D	498	NAG	1	0
3	D	511	PO4	1	0
3	В	502	PO4	3	0
3	D	503	PO4	3	0
3	С	511	PO4	1	0
2	В	498	NAG	3	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\begin{tabular}{lllllllllllllllllllllllllllllllllll$		$OWAB(Å^2)$	Q<0.9		
1	А	497/497~(100%)	-1.38	0	100	100	14, 24, 40, 52	0
1	В	497/497~(100%)	-1.41	0	100	100	15, 24, 42, 65	0
1	С	497/497~(100%)	-1.39	0	100	100	14, 24, 40, 51	0
1	D	497/497~(100%)	-1.41	0	100	100	16, 24, 42, 66	0
All	All	1988/1988~(100%)	-1.40	0	100	100	14, 24, 41, 66	0

There are no RSRZ outliers to report.

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(Å^2)$	Q<0.9
3	PO4	D	512	5/5	0.96	0.06	90,90,90,90	0
3	PO4	А	515	5/5	0.97	0.05	85,85,86,86	0
3	PO4	А	516	5/5	0.97	0.06	$97,\!98,\!98,\!99$	0
3	PO4	В	506	5/5	0.97	0.06	76,76,77,78	0

20VI	
JUAI	

NorTypeChainRes <t< th=""><th></th><th>Type</th><th>Chain</th><th>ls page</th><th>Atoms</th><th>BSCC</th><th>BSB</th><th>B-factors (λ^2)</th><th></th></t<>		Type	Chain	ls page	Atoms	BSCC	BSB	B -factors (λ^2)	
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	DO4	Cliain	511	5/5	0.07	0.07	$\frac{D-1aCtors(A)}{71,71,72,72}$	Q<0.9
3 104 C 513 $5/5$ 0.97 0.04 $30, 81, 82, 82$ 0 3 $PO4$ D 509 $5/5$ 0.97 0.05 $69, 70, 72, 72$ 0 3 $PO4$ D 510 $5/5$ 0.97 0.06 $88, 88, 88, 89$ 0 2 NAG D 498 $14/15$ 0.97 0.04 $27, 36, 40, 42$ 0 2 NAG D 498 $14/15$ 0.97 0.04 $27, 36, 40, 42$ 0 2 NAG C 498 $14/15$ 0.98 0.04 $27, 31, 33, 34$ 0 3 $PO4$ A 517 $5/5$ 0.98 0.06 $100, 100, 101, 101$ 0 3 $PO4$ B 507 $5/5$ 0.98 0.05 $76, 77, 78$ 0 3 $PO4$ B 511 $5/5$ 0.98 0.04 $70, 70, 71, 71$	3 2	PO4	C	512	5/5	0.97	0.07	20.21.22.22	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u></u> 3	1 04 PO4		500	5/5	0.97	0.04	60 70 72 72	0
3 PO4 D 510 $5/5$ 0.97 0.00 $88,88,88,89,89$ 0 3 PO4 D 511 $5/5$ 0.97 0.09 $112,112,113,113$ 0 2 NAG D 498 $14/15$ 0.97 0.04 $27,36,40,42$ 0 2 NAG C 498 $14/15$ 0.97 0.04 $27,31,33,34$ 0 3 PO4 A 517 $5/5$ 0.98 0.06 $95,95,95,96$ 0 2 NAG A 498 $14/15$ 0.98 0.04 $24,31,35,35$ 0 3 PO4 B 507 $5/5$ 0.98 0.05 $74,75,75,76$ 0 3 PO4 B 511 $5/5$ 0.98 0.05 $87,87,88,88$ 0 3 PO4 B 511 $5/5$ 0.98 0.04 $70,70,71,71$ 0 3	ວ 	1 04 DO4	D	510	5/5	0.97	0.05	09,10,12,12	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	<u> </u>	F 04	D	510	5/5	0.97	0.00	00,00,00,09	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	PU4 NAC	D	011 409	$\frac{3}{3}$	0.97	0.09	112,112,113,113 27.26,40,42	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$		NAG	D	498	14/10	0.97	0.04	27,30,40,42	0
3PO4A 517 $5/5$ 0.98 0.06 $93,95,95,95$ 00 2NAGA 498 $14/15$ 0.98 0.04 $24,31,35,35$ 0 3PO4B 507 $5/5$ 0.98 0.06 $100,100,101,101$ 0 3PO4B 509 $5/5$ 0.98 0.05 $74,75,75,76$ 0 3PO4B 510 $5/5$ 0.98 0.05 $76,76,77,78$ 0 3PO4B 511 $5/5$ 0.98 0.04 $70,70,71,71$ 0 3PO4C 507 $5/5$ 0.98 0.04 $70,70,71,71$ 0 3PO4C 508 $5/5$ 0.98 0.04 $77,77,77,77$ 0 3PO4A 503 $5/5$ 0.98 0.04 $87,87,87,88$ 0 3PO4C 512 $5/5$ 0.98 0.04 $87,87,87,87,88$ 0 3PO4A 505 $5/5$ 0.98 0.04 $87,87,87,87,88$ 0 3PO4C 514 $5/5$ 0.98 0.05 $84,85,87,87$ 0 3PO4C 515 $5/5$ 0.98 0.06 $71,72,73,74$ 0 3PO4D 505 $5/5$ 0.98 0.06 $71,72,73,74$ 0 3PO4A 507 $5/5$ 0.98 0.04 $79,80,80,81$ 0 3PO4 <td< td=""><td>2</td><td>NAG DO4</td><td></td><td>498</td><td>14/15</td><td>0.98</td><td>0.04</td><td>27,31,33,34</td><td>0</td></td<>	2	NAG DO4		498	14/15	0.98	0.04	27,31,33,34	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	PO4 NAC	A	017 400	$\frac{3}{3}$	0.98	0.00	95,95,95,90	0
3PO4B 507 $5/5$ 0.98 0.06 $100,100,101,101$ 0 3PO4B 509 $5/5$ 0.98 0.05 $74,75,75,76$ 0 3PO4B 510 $5/5$ 0.98 0.05 $76,76,77,78$ 0 3PO4B 511 $5/5$ 0.98 0.05 $87,87,88,88$ 0 3PO4C 507 $5/5$ 0.98 0.04 $70,70,71,71$ 0 3PO4C 508 $5/5$ 0.98 0.04 $57,60,60,61$ 0 3PO4C 510 $5/5$ 0.98 0.04 $87,87,87,88$ 0 3PO4C 512 $5/5$ 0.98 0.04 $87,87,87,88$ 0 3PO4C 514 $5/5$ 0.98 0.05 $84,85,87,87$ 0 3PO4C 515 $5/5$ 0.98 0.06 $71,72,73,74$ 0 3PO4D 505 $5/5$ 0.98 0.06 $71,72,73,74$ 0 3PO4A 507 $5/5$ 0.98 0.05 $68,69,69,71$ 0 3PO4A <t< td=""><td>2</td><td>NAG DO4</td><td>A</td><td>498</td><td>14/15</td><td>0.98</td><td>0.04</td><td>24,31,35,35</td><td>0</td></t<>	2	NAG DO4	A	498	14/15	0.98	0.04	24,31,35,35	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	PO4	B	507	5/5	0.98	0.06		0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	PO4	B	509	5/5	0.98	0.05	74,75,75,76	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	PO4	B	510	$\frac{5}{5}$	0.98	0.05	76,76,77,78	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	PO4	B	511	5/5	0.98	0.05	87,87,88,88	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	PO4	С	507	5/5	0.98	0.04	70,70,71,71	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	PO4	С	508	5/5	0.98	0.04	57,60,60,61	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	PO4	С	510	5/5	0.98	0.04	77,77,77,77	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	PO4	А	503	5/5	0.98	0.04	$56,\!56,\!57,\!59$	0
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	PO4	С	512	5/5	0.98	0.04	87,87,87,88	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	PO4	А	505	5/5	0.98	0.05	62,64,65,66	0
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	3	PO4	С	514	5/5	0.98	0.05	84,85,87,87	0
3 PO4 D 505 5/5 0.98 0.06 71,72,73,74 0 3 PO4 D 508 5/5 0.98 0.05 68,69,69,71 0 3 PO4 A 507 5/5 0.98 0.04 79,80,80,81 0 3 PO4 A 509 5/5 0.98 0.05 76,77,77,77 0 3 PO4 A 514 5/5 0.98 0.05 69,70,70,71 0	3	PO4	С	515	5/5	0.98	0.06	99,100,100,100	0
3 PO4 D 508 5/5 0.98 0.05 68,69,69,71 0 3 PO4 A 507 5/5 0.98 0.04 79,80,80,81 0 3 PO4 A 509 5/5 0.98 0.05 76,77,77,77 0 3 PO4 A 514 5/5 0.98 0.05 69,70,70,71 0	3	PO4	D	505	5/5	0.98	0.06	71,72,73,74	0
3 PO4 A 507 5/5 0.98 0.04 79,80,80,81 0 3 PO4 A 509 5/5 0.98 0.05 76,77,77,77 0 3 PO4 A 514 5/5 0.98 0.05 69,70,70,71 0	3	PO4	D	508	5/5	0.98	0.05	68,69,69,71	0
3 PO4 A 509 5/5 0.98 0.05 76,77,77,77 0 3 PO4 A 514 5/5 0.98 0.05 69,70,70,71 0	3	PO4	А	507	5/5	0.98	0.04	79,80,80,81	0
3 PO4 A 514 5/5 0.98 0.05 69.70.70.71 0	3	PO4	А	509	5/5	0.98	0.05	76,77,77,77	0
	3	PO4	А	514	5/5	0.98	0.05	69,70,70,71	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	2	NAG	В	498	14/15	0.98	0.04	30,35,39,40	0
3 PO4 A 510 5/5 0.99 0.04 67,67,67,68 0	3	PO4	А	510	5/5	0.99	0.04	67,67,67,68	0
3 PO4 A 511 5/5 0.99 0.03 55,55,58,59 0	3	PO4	А	511	5/5	0.99	0.03	$55,\!55,\!58,\!59$	0
3 PO4 A 512 5/5 0.99 0.04 85,85,85,86 0	3	PO4	А	512	5/5	0.99	0.04	85,85,85,86	0
3 PO4 C 500 5/5 0.99 0.04 35,36,40,42 0	3	PO4	С	500	5/5	0.99	0.04	35,36,40,42	0
3 PO4 C 501 5/5 0.99 0.03 45,45,47,48 0	3	PO4	С	501	5/5	0.99	0.03	45,45,47,48	0
3 PO4 C 502 5/5 0.99 0.03 39,40,42,42 0	3	PO4	С	502	5/5	0.99	0.03	39,40,42,42	0
3 PO4 C 503 5/5 0.99 0.04 57,59,60,60 0	3	PO4	С	503	5/5	0.99	0.04	57,59,60,60	0
3 PO4 C 504 5/5 0.99 0.05 48,48,50,50 0	3	PO4	С	504	5/5	0.99	0.05	48,48,50,50	0
3 PO4 C 505 5/5 0.99 0.04 58,58,59,61 0	3	PO4	С	505	$\frac{1}{5/5}$	0.99	0.04	58,58,59,61	0
3 PO4 C 506 5/5 0.99 0.03 60,60,62,63 0	3	PO4	С	506	5/5	0.99	0.03	60,60,62,63	0
3 PO4 A 513 5/5 0.99 0.05 77.77.79.79 0	3	PO4	А	513	5/5	0.99	0.05	77,77.79.79	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	PO4	А	504	5/5	0.99	0.04	56,58,59.60	0
3 PO4 C 509 5/5 0.99 0.04 77.77.78.78 0	3	PO4	С	509	5/5	0.99	0.04	77,77.78.78	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	PO4	Ā	501	$\frac{5}{5}$	0.99	0.03	36.41.42.42	0
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	3	PO4	A	506	$\frac{5}{5}$	0.99	0.03	63,65.65.65	0

2CVI	
JGAI	

		Chain	Bes	Atoms	BSCC	BSB	B-factors $(Å^2)$	0<0.9
2	DO4		F00	F /F	0.00		$\frac{16}{10} \frac{10}{10} 10$	
3	PO4	A	502	G/G	0.99	0.04	40,49,50,50	0
3	PO4	В	500	5/5	0.99	0.03	$40,\!41,\!43,\!45$	0
3	PO4	В	501	5/5	0.99	0.03	43,45,48,49	0
3	PO4	В	502	5/5	0.99	0.03	43,44,46,46	0
3	PO4	D	500	5/5	0.99	0.03	41,43,45,45	0
3	PO4	D	502	5/5	0.99	0.03	$51,\!51,\!52,\!55$	0
3	PO4	D	503	5/5	0.99	0.03	43,44,46,47	0
3	PO4	D	504	5/5	0.99	0.03	$64,\!65,\!66,\!68$	0
3	PO4	В	503	5/5	0.99	0.05	$49,\!49,\!50,\!51$	0
3	PO4	D	506	5/5	0.99	0.04	73,73,74,75	0
3	PO4	D	507	5/5	0.99	0.04	58,59,59,60	0
3	PO4	В	504	5/5	0.99	0.03	$61,\!61,\!62,\!63$	0
3	PO4	В	505	5/5	0.99	0.04	$61,\!62,\!63,\!65$	0
3	PO4	А	508	5/5	0.99	0.05	$49,\!49,\!50,\!50$	0
3	PO4	А	500	5/5	0.99	0.04	$35,\!39,\!39,\!42$	0
3	PO4	В	508	5/5	0.99	0.05	$77,\!78,\!79,\!79$	0
3	PO4	А	499	5/5	1.00	0.02	$27,\!28,\!29,\!37$	0
3	PO4	D	499	5/5	1.00	0.02	$3\overline{0,31,33,35}$	0
3	PO4	В	499	5/5	1.00	0.03	27,29,30,33	0
3	PO4	D	501	5/5	1.00	0.02	43,46,49,49	0
3	PO4	С	499	5/5	1.00	0.02	28,29,30,36	0

6.5 Other polymers (i)

There are no such residues in this entry.

