

Dec 5, 2022 - 06:39 PM JST

PDB ID	:	8H7G
EMDB ID	:	EMD-34520
Title	:	Cryo-EM structure of the human SAGA complex
Authors	:	Huang, J.; Zhang, Y.
Deposited on	:	2022-10-20
Resolution	:	3.70 Å(reported)

This is a Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

:	0.0.1. dev 43
:	4.02b-467
:	20191225.v01 (using entries in the PDB archive December 25th 2019)
:	1.9.9
:	Engh & Huber (2001)
:	Parkinson et al. (1996)
:	2.31.3
	::

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.70 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	158937	4297
Ramachandran outliers	154571	4023
Sidechain outliers	154315	3826

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length			Qua	ality of c	hain			
1	C	2950	19%							
	U	3009			73%	0.20/		12%		15%
2	Δ	1917			700/	92%			170/	
	11	1211		49%	79%				17%	•
3	В	86		45%		7%		48%		
4	D	779	13%	35%	6%		59%)		
				32%						
5	Ε	317			64%		7%		29%	
6	G	374	8%	43%		7%		50%		
7	Н	589	20%		70%			17%		13%
8	Ι	455	8%	34%	•		62%			

Mol	Chain	Length		Qual	ity of chain		
			32%				
9	Κ	622		49%	7%	43%	
10		2.5.4	<u> </u>				
10	М	264	37%	6 8%		55%	
			5%				-
11	0	218	32%	10%		58%	
			7%				
12	R	161	34%	12%		54%	
					100%		
13	Х	19			95%		5%
14	т	000					_
14	\mathbf{L}	892	• •		95%		

2 Entry composition (i)

There are 14 unique types of molecules in this entry. The entry contains 52609 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Transformation/transcription domain-associated protein.

Mol	Chain	Residues		Α	AltConf	Trace			
1	С	3261	Total 26251	C 16890	N 4519	0 4654	S 188	0	0

• Molecule 2 is a protein called Splicing factor 3B subunit 3.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	Λ	1168	Total	С	N	Ō	S	0	0
	A	1108	9158	5817	1558	1738	45	0	0

• Molecule 3 is a protein called Splicing factor 3B subunit 5.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	В	45	Total 383	C 245	N 67	O 67	$\begin{array}{c} \mathrm{S} \\ 4 \end{array}$	0	0

• Molecule 4 is a protein called Transcription factor SPT20 homolog.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	D	318	Total 2595	C 1641	N 448	O 490	S 16	0	0

• Molecule 5 is a protein called Transcription initiation protein SPT3 homolog.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	Е	225	Total 1770	C 1116	N 324	0 318	S 12	0	0

• Molecule 6 is a protein called Transcriptional adapter 1.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	G	188	Total 1505	C 951	N 271	О 277	S 6	0	0

Chain	Residue	Modelled	Actual	Comment	Reference
G	-38	MET	-	initiating methionine	UNP Q96BN2
G	-37	ASP	_	expression tag	UNP Q96BN2
G	-36	TYR	_	expression tag	UNP Q96BN2
G	-35	LYS	-	expression tag	UNP Q96BN2
G	-34	ASP	-	expression tag	UNP Q96BN2
G	-33	HIS	-	expression tag	UNP Q96BN2
G	-32	ASP	-	expression tag	UNP Q96BN2
G	-31	GLY	-	expression tag	UNP Q96BN2
G	-30	ASP	-	expression tag	UNP Q96BN2
G	-29	TYR	-	expression tag	UNP Q96BN2
G	-28	LYS	-	expression tag	UNP Q96BN2
G	-27	ASP	-	expression tag	UNP Q96BN2
G	-26	HIS	-	expression tag	UNP Q96BN2
G	-25	ASP	-	expression tag	UNP Q96BN2
G	-24	ILE	-	expression tag	UNP Q96BN2
G	-23	ASP	-	expression tag	UNP Q96BN2
G	-22	TYR	-	expression tag	UNP Q96BN2
G	-21	LYS	-	expression tag	UNP Q96BN2
G	-20	ASP	-	expression tag	UNP Q96BN2
G	-19	ASP	-	expression tag	UNP Q96BN2
G	-18	ASP	-	expression tag	UNP Q96BN2
G	-17	ASP	-	expression tag	UNP Q96BN2
G	-16	LYS	-	expression tag	UNP Q96BN2
G	-15	GLY	-	expression tag	UNP Q96BN2
G	-14	GLY	-	expression tag	UNP Q96BN2
G	-13	SER	-	expression tag	UNP Q96BN2
G	-12	GLY	-	expression tag	UNP Q96BN2
G	-11	GLY	-	expression tag	UNP Q96BN2
G	-10	SER	-	expression tag	UNP Q96BN2
G	-9	LEU	-	expression tag	UNP Q96BN2
G	-8	GLU	-	expression tag	UNP Q96BN2
G	-7	VAL	-	expression tag	UNP Q96BN2
G	-6	LEU	-	expression tag	UNP Q96BN2
G	-5	PHE	-	expression tag	UNP Q96BN2
G	-4	GLN	-	expression tag	UNP Q96BN2
G	-3	GLY	-	expression tag	UNP Q96BN2
G	-2	PRO	-	expression tag	UNP Q96BN2
G	-1	LEU	-	expression tag	UNP Q96BN2
G	0	ASP	-	expression tag	UNP Q96BN2

There are 39 discrepancies between the modelled and reference sequences:

 \bullet Molecule 7 is a protein called TAF5-like RNA polymerase II p300/CBP-associated factor-associated factor 65 kDa subunit 5L.

Mol	Chain	Residues	Atoms					AltConf	Trace
7	Н	514	Total 4084	C 2580	N 706	O 778	S 20	0	0

• Molecule 8 is a protein called STAGA complex 65 subunit gamma.

Mol	Chain	Residues		At	oms			AltConf	Trace
8	Ι	175	Total 1419	C 901	N 253	O 260	${ m S}{ m 5}$	0	0

There are 41 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Ι	415	GLY	-	expression tag	UNP O94864
Ι	416	SER	-	expression tag	UNP O94864
Ι	417	GLU	-	expression tag	UNP O94864
Ι	418	ASN	-	expression tag	UNP O94864
Ι	419	LEU	-	expression tag	UNP O94864
Ι	420	TYR	-	expression tag	UNP O94864
Ι	421	PHE	-	expression tag	UNP O94864
Ι	422	GLN	-	expression tag	UNP O94864
Ι	423	GLY	-	expression tag	UNP O94864
Ι	424	SER	-	expression tag	UNP O94864
Ι	425	GLY	-	expression tag	UNP O94864
Ι	426	THR	-	expression tag	UNP O94864
Ι	427	SER	-	expression tag	UNP O94864
Ι	428	THR	-	expression tag	UNP O94864
Ι	429	ALA	-	expression tag	UNP O94864
Ι	430	TRP	-	expression tag	UNP O94864
Ι	431	SER	-	expression tag	UNP O94864
Ι	432	HIS	-	expression tag	UNP O94864
Ι	433	PRO	-	expression tag	UNP O94864
Ι	434	GLN	-	expression tag	UNP O94864
Ι	435	PHE	-	expression tag	UNP O94864
Ι	436	GLU	-	expression tag	UNP O94864
Ι	437	LYS	-	expression tag	UNP O94864
Ι	438	THR	-	expression tag	UNP O94864
Ι	439	GLY	-	expression tag	UNP O94864
Ι	440	VAL	-	expression tag	UNP O94864
I	441	SER	-	expression tag	UNP O94864
Ι	442	ILE	-	expression tag	UNP 094864
Ι	443	THR	-	expression tag	UNP O94864
Ι	444	SER	-	expression tag	UNP 094864
Ι	445	SER	-	expression tag	UNP 094864

Chain	Residue	Modelled	Actual	Comment	Reference
Ι	446	GLY	-	expression tag	UNP O94864
Ι	447	SER	-	expression tag	UNP O94864
Ι	448	TRP	-	expression tag	UNP O94864
Ι	449	SER	-	expression tag	UNP O94864
Ι	450	HIS	-	expression tag	UNP O94864
Ι	451	PRO	-	expression tag	UNP O94864
Ι	452	GLN	-	expression tag	UNP O94864
Ι	453	PHE	-	expression tag	UNP O94864
Ι	454	GLU	-	expression tag	UNP 094864
Ι	455	LYS	-	expression tag	UNP O94864

 \bullet Molecule 9 is a protein called TAF6-like RNA polymerase II p300/CBP-associated factor-associated factor 65 kDa subunit 6L.

Mol	Chain	Residues		At	oms			AltConf	Trace
9	K	352	Total 2703	C 1720	N 478	0 493	S 12	0	0

• Molecule 10 is a protein called Transcription initiation factor TFIID subunit 9.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	М	119	Total 957	C 607	N 168	0 176	S 6	0	0

• Molecule 11 is a protein called Transcription initiation factor TFIID subunit 10.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	Ο	91	Total 722	C 466	N 116	0 136	${S \atop 4}$	0	0

• Molecule 12 is a protein called Transcription initiation factor TFIID subunit 12.

Mol	Chain	Residues		At	oms			AltConf	Trace
12	R	74	Total 605	C 379	N 105	0 118	${ m S} { m 3}$	0	0

• Molecule 13 is a protein called Unassigned sequence.

Mol	Chain	Residues	1	Ator	ns		AltConf	Trace
13	Х	19	Total 95	C 57	N 19	O 19	0	0

• Molecule 14 is a protein called Ataxin-7.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
14	т	4.4	Total	С	Ν	Ο	\mathbf{S}	0	0
14	L	44	362	228	70	60	4	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

GLY GLY PIO MST MST Q3623 MST Q3623 MST Q3623 MST Q3626 V8815 Q3646 C3830 M3544 G3831 M3546 G3831 M3546 G3831 M3546 G3831 M3546 G3833 M3546 G3831 M3726 G3933 M3726 G3743 M3726 M3773 M3726 M3773 M3775 M3773 M3775 M3773 M3775 M3773 M3775 M3773 M3775 M

• Molecule 2: Splicing factor 3B subunit 3

Chain A:	92% 79%	17% •	
MI 13 13 14 11 14 11 14 11 14 11	LIS F16 A17 A17 H19 A17 C20 C20 C20 C20 C22 C22 C22 C22 C22 C22	V32 V32 S33 S33 C35 C35 C35 C35 C35 C35 C35 C35 C35 C	N46 147 648 749 755 155 155 155 155 155 155 759 759 759 759 759
I 62 R63 S64 S64 L65 A67 A67 R69 R69 R69 R69 C71 C72 C73	T74 K75 P76 Y77 Y77 V79 V80 V80 S82 S84 S84 S84 S84 S84 S84 S84 S84 S84 S84	E91 Y92 Y92 P94 S95 K96 K96 F99 F102 K101 T102 H103 Q104	T106 F107 G108 K109 G111 C112 R113 R113 R114 P117 P117 C112 R114 F115 F117 C118 F120 F120
A122 V123 P124 P125 K126 A129 A129 V130 N131 I132 S133	A134 1135 E136 E136 C138	R151 L152 T153 T154 S155 S155 S155 F155 F156 F158 R160 H161 K162 K162 M163 M164	T1465 T1465 V167 V168 H169 H169 H169 0171 0174 0174 0175 0176 0176 0176 0176 0176 0176 0176 0176 0177 0170
F182 A183 C184 L185 E186 M187 Y189 F190 E190 E190 A192 A192	N194 1195 1197 1197 1197 1197 1197 1197 1198 1198 1198 1204 1204 1204 1205 1206	Y211 E212 E213 D214 D214 C215 G216 G216 H219 V221 V221 Y223 Y223	5225 E226 P227 L228 E229 E229 E229 C233 C233 C233 C235 C235 C235 C241
2242 2243 7245 2246 2246 7246 7248 1249 1250 2251 2251 2253	N254 Y255 T256 Y256 Y258 Y258 Y258 R261 P263 Q263 Q264 P265 P265 C269 R266 R266 P265	1271 1271 1272 1273 1277 1278 1279 1279 1279 1279 1280	1286 F287 V288 C289 S290 S290 F293 K296 K296 K296 K296 F292 F292 F290 F300
L302 A303 Q304 T305 E306 C308 C308 C308 D309 F311 F311 K312 F311	T314 L315 E316 T317 D318 B319 B3219 M321 V322 T325 E324 T325 E324 C326 R326 R326 R326 R326 R326 R326 R326 R	D331 T332 P334 P334 A335 A335 A335 A336 A336 A336 A336 A336	Casts Ca
A362 H363 H365 C365 D366 D366 D366 E369 E369 E369 E372 E372 E372	S374 S375 M376 M376 P377 P378 CLU CLU CLU CLU CLU CLU CLU CLU CLU CLU	L392 K393 K394 K394 L395 L395 L397 L398 L398 L398 L398 L401 L401 L401 L401 L403 L403 L403 L403 L403 L403 L403 L403	P406 F407 F408 6410 6411 6411 6411 6413 6413 6413 6413 6415 6415 6415 6415 6415 6415 6415 6415 6415 6410 6411
04.22 1.4.23 1.4.25 1.4.25 1.4.25 1.4.25 04.27 04.27 04.27 04.30 04.31 04.32 04.30 04.33 04.33 04.33 04.33 04.33 04.33 04.33	L435 L435 R436 V437 L438 H440 H440 C441 C441 C441 C441 C445 S450 S450	L452 P453 C454 N455 N455 N455 N455 N455 N456 N460 N460 N460 R463 R463 R463 R465	I466 P468 P468 F469 F470 A472 A472 A473 Y475 Y475 Y476 Y476 Y476 Y476 Y476 Y476 Y476 Y476 Y481 Y481
1482 1483 V484 1485 1485 1485 1485 1486 1487 1486 1485 1486 1487 1487 1488 1489 1490 1491 1492 1493 1493	V494 1495 1496 1498 1499 1499 1500 1500 1500 1504 1503 1506 1506 1506 1506 1506 1506 1506 1506	L511 6512 0513 0513 A515 A515 1516 0518 0521 0522 0523 0523 0523	H525 H527 1527 N528 N529 N531 N531 N531 N533 N533 N533 N535 N535
K542 T543 I544 V545 K546 C547 C547 C547 V548 V548 V548 V548 V548 V548 V558 R552 R552 R553	V554 V555 1556 A557 L558 C561 C561 C561 C561 C561 C561 C561 C561	S571 G572 G573 L574 N575 E576 Y577 T578 E579 R580 K681 E579 R580 K681 E579 R580 K581 K581	A585 D586 V587 V587 V588 A589 A593 A593 A593 A593 A593 C599 P596 P597 C599 P596 P597 C599 P597 C599 P597 C599 P597 C599 C599 C599 C599 C599 C599 C599 C

• Molecule 4: Transcription factor SPT20 homolog

• Molecule 5: Transcription initiation protein SPT3 homolog

32% Chain E: 64% 7% 29%

 \bullet Molecule 7: TAF5-like RNA polymerase II p300/CBPassociated factor-associated factor 65 kDa subunit 5L

 \bullet Molecule 9: TAF6-like RNA polymerase II p300/CBP-associated factor-associated factor 65 kDa subunit 6L

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	378168	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	50	Depositor
Minimum defocus (nm)	800	Depositor
Maximum defocus (nm)	3000	Depositor
Magnification	Not provided	
Image detector	GATAN K3 (6k x 4k)	Depositor
Maximum map value	0.115	Depositor
Minimum map value	-0.060	Depositor
Average map value	-0.000	Depositor
Map value standard deviation	0.003	Depositor
Recommended contour level	0.015	Depositor
Map size (Å)	440.0, 440.0, 440.0	wwPDB
Map dimensions	400, 400, 400	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.1, 1.1, 1.1	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bo	ond angles
	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5
1	С	0.24	0/26794	0.47	2/36236~(0.0%)
2	А	0.25	0/9345	0.49	1/12680~(0.0%)
3	В	0.23	0/393	0.42	0/528
4	D	0.23	0/2638	0.48	0/3559
5	Е	0.23	0/1793	0.49	0/2408
6	G	0.26	0/1538	0.51	2/2089~(0.1%)
7	Н	0.24	0/4167	0.49	0/5647
8	Ι	0.23	0/1449	0.45	0/1959
9	K	0.23	0/2757	0.50	2/3745~(0.1%)
10	М	0.24	0/979	0.50	0/1328
11	0	0.25	0/737	0.46	0/998
12	R	0.24	0/614	0.48	0/829
14	L	0.25	0/374	0.55	0/504
All	All	0.24	0/53578	0.48	7/72510~(0.0%)

There are no bond length outliers.

All ('	7)	bond	angle	outliers	are	listed	below:
--------	----	-----------------------	-------	----------	-----	--------	--------

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
6	G	273	PRO	N-CD-CG	-6.77	93.05	103.20
2	А	504	PRO	CA-N-CD	-6.12	102.94	111.50
9	K	420	PRO	N-CA-CB	5.92	110.41	103.30
6	G	273	PRO	CA-N-CD	-5.83	103.34	111.50
9	K	413	PRO	N-CA-CB	5.78	110.23	103.30
1	С	1032	LYS	C-N-CA	5.59	135.67	121.70
1	С	1825	LEU	CA-CB-CG	5.19	127.23	115.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	С	26251	0	26857	271	0
2	А	9158	0	9102	124	0
3	В	383	0	364	5	0
4	D	2595	0	2617	34	0
5	Е	1770	0	1750	14	0
6	G	1505	0	1482	24	0
7	Н	4084	0	4012	68	0
8	Ι	1419	0	1375	16	0
9	K	2703	0	2670	34	0
10	М	957	0	969	19	0
11	0	722	0	720	17	0
12	R	605	0	598	17	0
13	Х	95	0	21	1	0
14	L	362	0	336	5	0
All	All	52609	0	52873	590	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

All (590) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
11:O:139:LEU:HB3	11:O:144:PHE:HB2	1.61	0.82
1:C:411:LEU:HD12	1:C:412:PRO:HD2	1.61	0.81
2:A:701:LEU:HD11	2:A:712:VAL:HB	1.62	0.81
1:C:3455:LEU:HD12	1:C:3456:PRO:HD2	1.63	0.80
2:A:548:ALA:HB3	2:A:555:VAL:HB	1.68	0.74
1:C:1771:LYS:O	1:C:1775:HIS:ND1	2.22	0.72
1:C:373:PRO:HG3	1:C:411:LEU:HD21	1.71	0.72
2:A:18:ILE:HG21	2:A:66:MET:HA	1.72	0.72
7:H:333:THR:HG22	7:H:334:GLU:H	1.56	0.71
7:H:340:GLY:O	7:H:367:ARG:NH1	2.24	0.71
11:O:204:LEU:HB3	11:O:209:ILE:HB	1.73	0.70
2:A:128:ARG:NH2	2:A:178:GLU:O	2.24	0.69
4:D:419:CYS:HB2	4:D:420:PRO:HD3	1.75	0.68

	A b b c	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:1752:LEU:HD22	1:C:1755:ARG:HE	1.57	0.68
7:H:535:ARG:HB3	7:H:537:TRP:HE1	1.60	0.67
7:H:532:ASN:HB3	7:H:561:GLY:HA3	1.74	0.67
1:C:2343:ARG:HG3	1:C:2347:ILE:HD12	1.77	0.66
1:C:1671:TRP:HE1	1:C:1718:LEU:HB3	1.61	0.66
2:A:719:SER:HB2	2:A:734:LEU:HB2	1.78	0.65
8:I:22:PHE:HB3	9:K:282:VAL:HG11	1.77	0.65
1:C:1889:HIS:HA	1:C:1926:ILE:HG21	1.79	0.65
2:A:415:LEU:HD11	2:A:790:ILE:HD13	1.79	0.65
2:A:428:GLY:HA3	2:A:433:SER:HA	1.77	0.65
1:C:1319:GLN:HG2	1:C:1320:PRO:HD3	1.78	0.64
2:A:3:LEU:HD23	2:A:1129:LEU:HD13	1.79	0.64
2:A:898:ASN:HD21	2:A:972:LEU:HD23	1.61	0.64
2:A:1050:PHE:HE1	3:B:49:LEU:HD13	1.63	0.64
1:C:2837:LEU:HD23	1:C:2851:LEU:HD11	1.80	0.64
5:E:305:ASN:O	5:E:308:ARG:NH1	2.30	0.64
9:K:168:VAL:O	9:K:215:ARG:NH2	2.30	0.64
7:H:357:LEU:HB3	7:H:369:TRP:HB2	1.80	0.63
9:K:60:ARG:HG2	9:K:62:LYS:H	1.63	0.63
1:C:1675:ASN:HA	1:C:1719:ARG:HH11	1.62	0.63
7:H:349:ARG:HG3	7:H:391:ASP:HA	1.81	0.63
2:A:354:GLY:HA3	2:A:432:ARG:HH12	1.62	0.63
7:H:319:ASP:OD1	11:O:150:ARG:NH2	2.26	0.63
4:D:60:ASN:ND2	7:H:160:ASP:O	2.32	0.62
2:A:791:HIS:HB3	2:A:796:ASN:H	1.64	0.62
1:C:1135:LEU:HD23	1:C:1137:LEU:H	1.64	0.62
4:D:64:LEU:HB2	4:D:69:MET:HE2	1.81	0.62
1:C:391:PRO:HA	1:C:433:LYS:HE2	1.81	0.62
1:C:3167:PHE:O	1:C:3171:ARG:NH2	2.33	0.62
1:C:1149:CYS:O	1:C:1157:LYS:NZ	2.33	0.61
2:A:554:VAL:HB	2:A:566:PHE:HB2	1.82	0.61
2:A:663:LEU:HB2	2:A:679:LEU:HD22	1.82	0.61
2:A:996:ILE:HG23	2:A:998:HIS:H	1.65	0.61
2:A:1086:SER:O	9:K:221:ARG:NH2	2.33	0.61
8:I:238:ARG:NH1	11:O:168:ASN:OD1	2.34	0.60
1:C:737:HIS:NE2	1:C:778:GLU:OE2	2.32	0.60
1:C:916:VAL:HG23	1:C:917:THR:HG23	1.83	0.60
1:C:2002:GLN:HG3	1:C:2005:LEU:HD22	1.83	0.60
2:A:960:LEU:HD12	2:A:969:VAL:HG12	1.84	0.60
7:H:259:ILE:HA	7:H:577:LEU:HB3	1.82	0.60
12:R:113:VAL:HG12	12:R:115:ASP:H	1.67	0.60

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:A:969:VAL:HG23	2:A:980:LYS:HB2	1.83	0.60
8:I:176:GLU:OE1	9:K:105:ARG:NH1	2.35	0.60
2:A:454:GLY:O	2:A:760:ASN:ND2	2.35	0.60
2:A:1105:GLN:HE22	2:A:1107:THR:HB	1.65	0.59
4:D:167:ARG:NH2	7:H:52:SER:OG	2.35	0.59
1:C:47:GLU:O	1:C:99:ARG:NH2	2.35	0.59
2:A:1106:LYS:HB2	2:A:1117:LEU:HD23	1.83	0.59
4:D:230:ASN:HD22	4:D:234:MET:HB2	1.67	0.59
2:A:124:ASP:HB2	2:A:180:PRO:HB3	1.85	0.59
7:H:563:MET:SD	7:H:563:MET:N	2.76	0.59
6:G:159:ALA:HB1	6:G:164:LEU:HB2	1.83	0.59
2:A:520:TYR:CD2	2:A:521:PRO:HD2	2.38	0.59
1:C:3135:SER:HG	1:C:3162:TYR:HH	1.48	0.59
1:C:1007:TYR:HE1	1:C:3456:PRO:HB3	1.68	0.58
4:D:209:LEU:HB2	7:H:37:GLN:HG3	1.84	0.58
9:K:58:THR:OG1	9:K:59:LYS:N	2.35	0.58
1:C:869:ARG:NH1	1:C:901:SER:O	2.35	0.58
4:D:63:LEU:HD12	4:D:66:LYS:HD2	1.86	0.58
7:H:107:LEU:HD13	7:H:116:VAL:HA	1.86	0.58
5:E:29:GLU:OE2	5:E:196:LYS:NZ	2.34	0.58
1:C:977:LEU:HB3	1:C:2603:ARG:HH21	1.69	0.58
1:C:2651:GLU:OE1	6:G:220:ASN:ND2	2.37	0.58
1:C:3544:ARG:NH1	1:C:3777:GLU:OE1	2.36	0.58
1:C:1145:LEU:HD13	1:C:1163:SER:HB3	1.84	0.57
1:C:1355:CYS:SG	1:C:3313:THR:OG1	2.62	0.57
1:C:2449:CYS:SG	1:C:2450:ALA:N	2.76	0.57
1:C:2698:LYS:HD3	1:C:2878:LYS:HD3	1.85	0.57
2:A:412:ILE:HG12	2:A:423:LEU:HG	1.86	0.57
2:A:903:TRP:HB2	2:A:930:LEU:HD23	1.86	0.57
1:C:1527:ALA:HB3	1:C:1564:ARG:HH12	1.69	0.57
2:A:932:ASN:ND2	2:A:935:GLU:OE1	2.38	0.57
4:D:177:VAL:HG11	4:D:196:GLU:OE2	2.03	0.57
5:E:62:LEU:HD12	5:E:314:PHE:HB2	1.87	0.57
1:C:1379:LEU:HD22	1:C:1381:GLN:HE22	1.69	0.57
1:C:1100:MET:SD	1:C:1163:SER:OG	2.62	0.57
1:C:838:SER:HB3	1:C:841:LEU:HB2	1.86	0.57
1:C:1171:LEU:HD23	1:C:1175:TRP:CE3	2.39	0.57
1:C:1657:LEU:HG	1:C:1661:HIS:HE1	1.68	0.57
1:C:721:VAL:HG23	1:C:728:ASN:HB3	1.85	0.57
2:A:125:PRO:HG2	2:A:174:ASP:HB2	1.87	0.57
2:A:463:ARG:NH1	2:A:468:ASP:O	2.37	0.57

	t i o	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:3294:THR:HG22	1:C:3296:PRO:HD2	1.87	0.57
1:C:386:VAL:HG12	1:C:388:GLN:H	1.69	0.56
1:C:1318:LEU:HB3	1:C:1320:PRO:HD2	1.87	0.56
7:H:292:ILE:HD11	7:H:345:VAL:HG21	1.86	0.56
10:M:92:LEU:HD13	10:M:95:ILE:HD12	1.86	0.56
2:A:805:ASN:ND2	2:A:858:GLY:O	2.38	0.56
1:C:2631:GLN:O	1:C:2635:ARG:NH1	2.34	0.56
7:H:101:VAL:HG13	7:H:140:LEU:HD11	1.87	0.56
1:C:1253:ASN:HB3	1:C:1256:VAL:HG12	1.88	0.56
1:C:1903:GLN:HA	1:C:1906:HIS:CE1	2.41	0.56
2:A:1109:LEU:HD21	2:A:1118:VAL:HG21	1.88	0.56
7:H:287:PHE:HB2	7:H:291:CYS:HB3	1.87	0.56
7:H:278:PRO:HG2	7:H:352:ALA:HA	1.87	0.56
1:C:106:LEU:HD21	1:C:146:PRO:HG2	1.88	0.56
1:C:3672:PHE:HD2	1:C:3739:LEU:HD21	1.71	0.56
1:C:3683:GLU:HA	1:C:3688:LEU:HB2	1.88	0.56
2:A:956:GLN:HE22	2:A:997:GLY:HA2	1.70	0.56
14:L:535:VAL:HG23	14:L:540:TRP:HD1	1.71	0.56
1:C:3691:LEU:HD23	1:C:3730:ARG:HD3	1.88	0.55
2:A:801:GLU:HB2	2:A:865:VAL:HB	1.87	0.55
2:A:415:LEU:HD22	2:A:424:TYR:HE2	1.71	0.55
1:C:3505:ILE:HG12	1:C:3514:ARG:HG3	1.88	0.55
1:C:3739:LEU:O	1:C:3740:THR:OG1	2.21	0.55
8:I:220:PHE:HB3	8:I:225:ILE:HB	1.88	0.55
4:D:36:VAL:HA	4:D:40:LEU:HD13	1.89	0.55
8:I:160:GLN:NE2	9:K:113:ALA:O	2.39	0.55
1:C:136:ILE:HD12	1:C:139:LEU:HD21	1.88	0.55
2:A:717:SER:HA	2:A:738:THR:HG22	1.89	0.55
7:H:313:ARG:HB2	7:H:315:HIS:CD2	2.42	0.55
1:C:2493:LYS:HD3	1:C:2619:HIS:HA	1.87	0.55
2:A:603:ARG:NH2	2:A:623:ASP:OD2	2.40	0.55
2:A:862:TRP:O	2:A:884:GLN:NE2	2.39	0.55
1:C:2989:SER:O	1:C:2993:MET:HG2	2.07	0.54
1:C:3163:LEU:HD13	1:C:3166:ILE:HD12	1.89	0.54
8:I:139:TYR:O	11:O:150:ARG:NH1	2.40	0.54
9:K:55:MET:HE3	9:K:63:LEU:HD12	1.89	0.54
10:M:67:ASP:OD1	10:M:68:ALA:N	2.38	0.54
1:C:1891:ILE:HG23	1:C:1895:ALA:HB3	1.88	0.54
1:C:835:LEU:HA	1:C:842:VAL:HG22	1.89	0.54
2:A:783:TYR:HB2	2:A:801:GLU:HB3	1.88	0.54
12:R:77:ASP:OD1	12:R:78:GLU:N	2.40	0.54

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:1063:LEU:HB2	1:C:1066:TYR:HD2	1.72	0.54
2:A:86:ARG:NH1	2:A:1157:GLY:O	2.38	0.54
1:C:228:LEU:HG	1:C:231:ILE:HD13	1.89	0.54
4:D:60:ASN:OD1	4:D:62:ASN:ND2	2.41	0.54
4:D:177:VAL:HG23	4:D:195:LEU:HD23	1.90	0.54
1:C:295:ILE:HG21	1:C:338:ILE:HG22	1.90	0.54
1:C:2272:LEU:HG	1:C:2328:LEU:HD11	1.88	0.54
1:C:2355:ILE:HD11	1:C:2363:ILE:HD11	1.88	0.54
1:C:2400:MET:HG3	1:C:2442:ALA:HB2	1.88	0.54
2:A:43:PRO:HA	2:A:50:VAL:HG22	1.90	0.54
2:A:700:LYS:O	2:A:715:MET:HG2	2.08	0.54
1:C:2982:SER:HA	1:C:3560:LYS:HG3	1.90	0.54
4:D:104:LEU:HD12	4:D:105:PRO:HD2	1.88	0.54
1:C:1811:PHE:CE1	1:C:1839:LEU:HD13	2.43	0.54
1:C:381:ASP:O	1:C:385:HIS:ND1	2.41	0.53
10:M:47:VAL:HA	10:M:50:ILE:HG22	1.90	0.53
1:C:339:LEU:O	1:C:385:HIS:NE2	2.41	0.53
8:I:78:ASN:OD1	8:I:79:LEU:N	2.41	0.53
4:D:82:PRO:HG2	4:D:149:ARG:HB2	1.88	0.53
1:C:767:ILE:HG13	1:C:775:LEU:HB3	1.90	0.53
1:C:1035:ARG:HE	1:C:1039:LEU:HD11	1.74	0.53
2:A:168:TYR:HB2	2:A:185:LEU:HB2	1.89	0.53
7:H:446:THR:HG22	7:H:470:PRO:HB3	1.91	0.53
1:C:1397:THR:O	1:C:1443:ASN:ND2	2.41	0.53
1:C:2340:MET:HG2	1:C:2342:MET:H	1.72	0.53
12:R:77:ASP:HB3	12:R:80:VAL:HG23	1.91	0.53
2:A:337:ALA:HB2	2:A:352:GLU:HB3	1.91	0.53
1:C:835:LEU:HD23	1:C:842:VAL:HA	1.91	0.53
7:H:75:GLY:O	7:H:79:ASN:ND2	2.42	0.53
1:C:25:VAL:HA	1:C:68:ARG:HH22	1.75	0.52
2:A:206:GLN:NE2	2:A:230:GLU:O	2.31	0.52
2:A:355:ASN:HA	2:A:403:SER:HB3	1.90	0.52
2:A:355:ASN:H	2:A:432:ARG:HH22	1.57	0.52
2:A:1199:ARG:HH12	2:A:1207:LYS:HG3	1.75	0.52
1:C:604:GLN:NE2	1:C:665:ASN:OD1	2.42	0.52
1:C:1126:LEU:O	1:C:1131:ARG:NH1	2.42	0.52
1:C:2870:VAL:HG11	5:E:176:ILE:HA	1.91	0.52
2:A:181:MET:CE	2:A:210:PHE:HB3	2.39	0.52
1:C:3338:ARG:HD3	1:C:3511:THR:HB	1.91	0.52
1:C:1829:ARG:NH1	1:C:1868:CYS:SG	2.82	0.52
2:A:423:LEU:HB2	2:A:438:LEU:HB2	1.90	0.52

	h i o	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:A:592:LEU:HD13	2:A:605:LEU:HD13	1.90	0.52
4:D:236:ARG:HE	12:R:78:GLU:HG2	1.75	0.52
7:H:249:VAL:HA	7:H:540:ARG:HH12	1.75	0.52
1:C:580:GLN:NE2	1:C:581:LEU:O	2.42	0.52
2:A:1117:LEU:HB2	2:A:1129:LEU:HB2	1.92	0.52
2:A:1005:VAL:HG13	2:A:1006:GLN:HG2	1.92	0.52
7:H:403:SER:OG	7:H:405:ASP:OD1	2.28	0.52
9:K:193:LEU:O	9:K:197:VAL:HG23	2.09	0.52
1:C:859:ASP:OD1	1:C:860:PHE:N	2.43	0.52
2:A:1012:VAL:HG22	2:A:1023:ILE:HG12	1.91	0.52
7:H:415:ARG:HH12	10:M:105:PRO:HG3	1.75	0.52
1:C:1660:GLN:O	1:C:1660:GLN:HG2	2.10	0.52
2:A:37:ILE:HG12	2:A:57:GLU:HG2	1.90	0.52
7:H:247:LYS:HB3	9:K:186:ASN:HD22	1.75	0.52
1:C:2883:LYS:HE2	1:C:2887:TYR:CZ	2.45	0.51
2:A:313:ILE:HG23	2:A:325:ILE:HG23	1.91	0.51
11:O:126:TYR:O	11:O:153:ARG:NH2	2.42	0.51
11:O:161:LYS:NZ	11:O:165:ASP:OD2	2.43	0.51
2:A:548:ALA:HB2	2:A:590:MET:HG3	1.92	0.51
9:K:271:LEU:HD11	9:K:289:ILE:HD11	1.92	0.51
1:C:159:LYS:O	1:C:163:LYS:HG3	2.10	0.51
1:C:1824:MET:HG2	1:C:1828:LEU:HD22	1.93	0.51
2:A:637:PRO:HA	2:A:669:LEU:HA	1.92	0.51
6:G:140:SER:OG	12:R:89:ASP:OD1	2.29	0.51
7:H:311:VAL:HG12	8:I:198:ARG:HH12	1.75	0.51
1:C:1006:ARG:NH2	1:C:3458:PHE:O	2.44	0.51
10:M:104:LEU:HD12	10:M:105:PRO:HD2	1.93	0.51
1:C:1833:LEU:HD22	1:C:1886:LEU:HD13	1.93	0.50
1:C:1894:PHE:HA	1:C:1934:ARG:HH12	1.76	0.50
2:A:178:GLU:HG3	2:A:179:ASN:H	1.76	0.50
1:C:828:MET:HB3	1:C:868:VAL:HG21	1.94	0.50
1:C:3191:ASN:ND2	4:D:398:SER:OG	2.44	0.50
4:D:177:VAL:O	4:D:181:THR:N	2.37	0.50
7:H:481:LYS:HG3	7:H:482:TYR:CD1	2.46	0.50
1:C:1194:LEU:HB3	1:C:1198:VAL:HG13	1.94	0.50
1:C:2098:VAL:HA	1:C:2144:LEU:HD12	1.93	0.50
1:C:2476:TYR:CE2	1:C:2481:GLN:HB2	2.46	0.50
1:C:3669:ARG:HD2	1:C:3739:LEU:HA	1.94	0.50
2:A:914:ILE:HG22	2:A:917:PRO:HD2	1.92	0.50
4:D:220:ASN:HD22	10:M:107:ILE:HD12	1.75	0.50
6:G:194:ARG:NH2	6:G:273:PRO:O	2.44	0.50

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
7:H:508:GLY:HA3	7:H:537:TRP:HZ2	1.76	0.50
7:H:392:ILE:HD12	7:H:399:PHE:HB3	1.94	0.50
12:R:68:ARG:HB3	12:R:68:ARG:NH1	2.27	0.50
1:C:2813:ILE:HG13	1:C:2813:ILE:O	2.11	0.49
3:B:31:TRP:HH2	9:K:364:VAL:HG12	1.77	0.49
7:H:44:ALA:O	7:H:47:THR:OG1	2.29	0.49
7:H:517:THR:HG21	7:H:570:GLN:HA	1.93	0.49
1:C:95:GLU:OE2	1:C:99:ARG:NH2	2.36	0.49
1:C:1296:LEU:HB2	1:C:1299:HIS:HD2	1.77	0.49
1:C:3548:LEU:HD13	1:C:3773:VAL:HG21	1.94	0.49
4:D:103:ARG:HH11	4:D:103:ARG:HA	1.77	0.49
2:A:526:HIS:HB3	2:A:534:ASN:HB2	1.94	0.49
2:A:603:ARG:NH1	2:A:620:ASP:OD2	2.45	0.49
7:H:567:LEU:HD12	7:H:580:THR:HG22	1.95	0.49
1:C:359:ILE:HG22	1:C:363:SER:HB2	1.94	0.49
4:D:79:ASN:HB2	4:D:88:SER:HB3	1.92	0.49
6:G:279:ASP:OD2	8:I:203:ARG:NH2	2.43	0.49
1:C:696:ARG:NH2	1:C:710:TYR:OH	2.35	0.49
1:C:758:LEU:HD23	1:C:761:ARG:HH12	1.76	0.49
2:A:390:ARG:HG2	2:A:391:PRO:HD2	1.95	0.49
1:C:1678:GLU:HG3	1:C:1725:PHE:HE1	1.77	0.49
2:A:272:PRO:HB2	2:A:387:PHE:HD1	1.78	0.49
1:C:406:ILE:HA	1:C:416:GLN:HG2	1.94	0.49
1:C:1825:LEU:HD23	1:C:1825:LEU:O	2.12	0.49
2:A:142:TYR:HB3	2:A:154:ILE:HD11	1.94	0.49
9:K:58:THR:O	9:K:59:LYS:HG2	2.13	0.49
1:C:371:LEU:HD23	1:C:371:LEU:H	1.77	0.49
1:C:799:LYS:HB2	1:C:802:MET:HB2	1.94	0.49
1:C:1005:HIS:HB3	1:C:1140:TYR:HE1	1.78	0.49
7:H:574:CYS:HA	9:K:228:HIS:HA	1.95	0.49
1:C:1771:LYS:O	1:C:1774:GLN:HG3	2.12	0.49
1:C:3617:ASP:OD1	1:C:3618:ARG:N	2.46	0.49
1:C:1422:GLN:O	1:C:1426:HIS:ND1	2.33	0.48
1:C:2276:LYS:HD2	1:C:2327:SER:HB3	1.95	0.48
2:A:207:THR:HA	2:A:227:PRO:HA	1.95	0.48
2:A:515:ALA:HB2	2:A:528:ARG:HH11	1.78	0.48
1:C:3457:LYS:HA	1:C:3505:ILE:HD12	1.94	0.48
1:C:2490:PHE:HD2	1:C:2493:LYS:HG3	1.78	0.48
6:G:151:LEU:HD23	6:G:172:VAL:HG13	1.95	0.48
7:H:409:ARG:HD3	7:H:418:PRO:HG3	1.94	0.48
1:C:406:ILE:HD12	1:C:416:GLN:HG2	1.95	0.48

	h h	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:3508:LYS:HG2	1:C:3509:HIS:H	1.78	0.48
1:C:662:ILE:HG22	1:C:709:LEU:HD11	1.94	0.48
1:C:1527:ALA:HB3	1:C:1564:ARG:NH1	2.28	0.48
1:C:2372:GLU:HG3	1:C:2420:LEU:HD12	1.94	0.48
2:A:1086:SER:N	13:X:19:UNK:O	2.46	0.48
6:G:306:THR:HA	10:M:99:ARG:HH21	1.77	0.48
7:H:93:MET:HE3	7:H:93:MET:HA	1.94	0.48
9:K:299:ASP:N	9:K:299:ASP:OD1	2.45	0.48
1:C:1759:PHE:O	1:C:1762:PRO:HD3	2.12	0.48
1:C:2197:ILE:O	1:C:2197:ILE:HG22	2.14	0.48
1:C:2251:TYR:HB2	1:C:2271:THR:HG23	1.95	0.48
2:A:691:THR:HG22	2:A:716:SER:HB2	1.95	0.48
4:D:60:ASN:HB3	7:H:162:LYS:HG2	1.95	0.48
5:E:307:TYR:HE1	11:O:209:ILE:HD13	1.79	0.48
1:C:19:LYS:HE2	1:C:53:THR:HG22	1.94	0.48
1:C:2489:HIS:O	1:C:2664:GLN:NE2	2.47	0.48
1:C:2697:GLY:HA2	1:C:2702:LEU:HB2	1.95	0.48
1:C:3540:ARG:HH22	1:C:3579:PRO:HA	1.78	0.48
1:C:3340:LEU:HB3	1:C:3445:ILE:HD11	1.96	0.47
8:I:193:PHE:HE2	11:O:155:ILE:HG12	1.79	0.47
1:C:1750:ARG:HA	1:C:1753:PHE:HB2	1.94	0.47
2:A:612:ASN:HB3	2:A:633:LEU:HB2	1.96	0.47
4:D:234:MET:HA	4:D:237:CYS:SG	2.54	0.47
5:E:213:PRO:HB3	5:E:217:ALA:HB3	1.95	0.47
7:H:366:ILE:HB	7:H:380:TYR:HB2	1.97	0.47
1:C:2689:ARG:H	6:G:267:THR:HG22	1.78	0.47
1:C:1058:CYS:SG	1:C:1059:GLY:N	2.87	0.47
12:R:59:THR:OG1	12:R:60:LYS:N	2.47	0.47
1:C:277:TYR:HB2	1:C:281:ILE:HG22	1.96	0.47
1:C:2361:ALA:O	1:C:2365:ARG:NH1	2.47	0.47
2:A:131:MET:SD	2:A:141:VAL:HG22	2.55	0.47
2:A:168:TYR:OH	2:A:187:MET:HG3	2.15	0.47
2:A:515:ALA:HB2	2:A:528:ARG:HD2	1.95	0.47
7:H:406:ARG:HH12	10:M:88:PRO:HB3	1.78	0.47
7:H:569:VAL:HG12	7:H:579:VAL:HG12	1.96	0.47
12:R:60:LYS:HG3	12:R:61:LYS:HG2	1.97	0.47
1:C:1598:ARG:HB3	1:C:1599:PRO:HD3	1.96	0.47
1:C:1657:LEU:HG	1:C:1661:HIS:CE1	2.48	0.47
1:C:1758:ASP:HA	1:C:1773:LEU:HD21	1.97	0.47
6:G:198:ARG:NE	6:G:206:TYR:OH	2.47	0.47
7:H:149:ILE:HG23	7:H:155:LEU:HB3	1.96	0.47

	, as page	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:3168:VAL:HG12	1:C:3169:LYS:HD3	1.97	0.47
6:G:184:LYS:NZ	12:R:69:GLU:HG2	2.30	0.47
6:G:281:PHE:HZ	7:H:384:ALA:HB2	1.80	0.47
1:C:1430:LEU:HD21	1:C:1448:LEU:HD13	1.97	0.47
1:C:2656:LEU:HD13	1:C:2672:LEU:HD11	1.96	0.47
2:A:114:ARG:NH1	3:B:37:ARG:HB3	2.30	0.47
2:A:548:ALA:HB2	2:A:590:MET:CG	2.45	0.47
3:B:39:SER:OG	9:K:416:GLY:O	2.30	0.47
5:E:232:LEU:HD21	5:E:286:ILE:HD11	1.97	0.47
7:H:421:ILE:HG13	10:M:95:ILE:HG22	1.97	0.47
10:M:126:ASN:HB3	10:M:129:LEU:HG	1.97	0.47
1:C:583:PRO:O	1:C:586:THR:OG1	2.21	0.46
1:C:648:LYS:HB3	1:C:684:LEU:HD21	1.97	0.46
2:A:595:VAL:HG13	2:A:601:ARG:HA	1.96	0.46
2:A:952:ILE:HG12	2:A:961:ILE:HG12	1.98	0.46
7:H:270:LEU:HD13	7:H:288:ASP:H	1.79	0.46
2:A:1199:ARG:HG2	2:A:1200:THR:H	1.79	0.46
9:K:302:ARG:HB3	9:K:306:CYS:SG	2.56	0.46
9:K:311:VAL:HG13	9:K:312:VAL:HG13	1.98	0.46
1:C:48:ASN:OD1	1:C:1947:ARG:NH1	2.48	0.46
1:C:2805:GLU:HG3	1:C:2806:ARG:HD2	1.96	0.46
2:A:478:PHE:HE2	2:A:483:LEU:HD22	1.81	0.46
2:A:1040:ASP:OD1	2:A:1043:THR:OG1	2.18	0.46
1:C:582:GLN:HB3	1:C:585:GLU:OE1	2.16	0.46
1:C:1888:ALA:HB1	1:C:1927:LEU:HD22	1.97	0.46
1:C:3701:ASP:OD1	1:C:3702:THR:N	2.49	0.46
1:C:1441:THR:HG23	1:C:1443:ASN:H	1.80	0.46
2:A:1048:ASP:HB3	2:A:1052:ASN:H	1.81	0.46
1:C:979:ASP:HB2	1:C:983:ALA:HB3	1.96	0.46
7:H:191:LEU:HD12	7:H:197:LEU:HD11	1.98	0.46
7:H:503:TYR:CD2	7:H:504:LYS:HG2	2.51	0.46
1:C:361:ILE:HD12	1:C:375:ALA:HB1	1.97	0.46
1:C:3723:ALA:HB1	1:C:3725:ARG:HH21	1.81	0.46
2:A:503:THR:HB	2:A:520:TYR:CE2	2.51	0.46
2:A:590:MET:HE3	2:A:605:LEU:HD11	1.98	0.46
9:K:213:LEU:HD22	9:K:263:LEU:HD22	1.97	0.46
3:B:32:LEU:O	3:B:36:HIS:ND1	2.33	0.46
4:D:236:ARG:NH2	12:R:82:GLU:OE2	2.48	0.46
1:C:2254:LEU:HD11	1:C:2268:LEU:HG	1.98	0.46
2:A:487:ILE:HA	2:A:491:VAL:HG22	1.97	0.46
6:G:184:LYS:HZ3	12:R:69:GLU:HG2	1.81	0.46

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
7:H:267:THR:HG21	9:K:125:THR:HG22	1.97	0.46	
7:H:368:TYR:HB3	7:H:378:VAL:HB	1.98	0.46	
7:H:385:TYR:CD2	7:H:405:ASP:HB3	2.51	0.46	
1:C:2522:THR:HG23	1:C:2525:ILE:HD12	1.97	0.45	
2:A:870:ASN:ND2	2:A:873:GLN:OE1	2.49	0.45	
4:D:5:LEU:HD13	10:M:109:PRO:HB3	1.98	0.45	
1:C:829:ASP:HB2	1:C:830:PRO:HD3	1.98	0.45	
2:A:4:TYR:HB3	2:A:1130:VAL:HB	1.97	0.45	
8:I:73:ASN:HD21	8:I:250:SER:HA	1.82	0.45	
1:C:309:MET:SD	1:C:309:MET:N	2.89	0.45	
1:C:1558:LEU:O	1:C:1562:LEU:N	2.48	0.45	
4:D:183:ASP:HB3	4:D:187:TRP:HE1	1.81	0.45	
1:C:253:LEU:HD23	1:C:288:LEU:HD23	1.99	0.45	
1:C:1947:ARG:HA	1:C:1950:ILE:HG22	1.98	0.45	
1:C:1986:VAL:HA	1:C:1989:MET:HG2	1.98	0.45	
1:C:2202:THR:HG22	1:C:2246:VAL:HG13	1.98	0.45	
2:A:887:ALA:HB3	2:A:910:ALA:HB3	1.97	0.45	
6:G:119:LEU:HD11	14:L:534:TYR:CD2	2.52	0.45	
11:O:196:THR:HG23	11:O:198:GLU:H	1.80	0.45	
1:C:961:ARG:HG2	1:C:1034:LEU:HD11	1.98	0.45	
1:C:2699:THR:HA	1:C:2921:ARG:HH21	1.81	0.45	
1:C:2850:TYR:CZ	1:C:2872:VAL:HG13	2.51	0.45	
5:E:201:ARG:HG2	5:E:218:MET:HE2	1.99	0.45	
1:C:338:ILE:HG13	1:C:339:LEU:HD22	1.98	0.45	
1:C:1902:LEU:H	1:C:1902:LEU:HD23	1.82	0.45	
2:A:239:PRO:HD2	2:A:301:PHE:HZ	1.81	0.45	
1:C:727:GLU:O	1:C:727:GLU:HG3	2.17	0.45	
6:G:294:HIS:CE1	10:M:84:THR:HG23	2.52	0.45	
9:K:314:LEU:HD23	9:K:322:VAL:HG13	1.99	0.45	
1:C:547:ARG:HB3	1:C:603:TYR:HE1	1.81	0.45	
1:C:2858:ARG:NH1	1:C:2989:SER:OG	2.49	0.45	
1:C:3086:TYR:CE1	1:C:3104:VAL:HG11	2.51	0.45	
2:A:233:ASN:OD1	2:A:234:PHE:N	2.45	0.45	
2:A:960:LEU:HD21	2:A:967:LEU:HD11	1.99	0.45	
9:K:206:VAL:HG12	9:K:206:VAL:O	2.16	0.45	
1:C:247:VAL:HA	1:C:250:PHE:CE2	2.52	0.45	
1:C:857:GLN:O	1:C:859:ASP:N	2.50	0.45	
1:C:2142:SER:OG	1:C:2143:GLU:OE1	2.34	0.45	
1:C:2305:LEU:O	1:C:2357:LYS:NZ	2.48	0.45	
1:C:2714:ALA:HB2	1:C:2744:ILE:HD12	1.98	0.45	
1:C:2859:VAL:HG23	1:C:2861:ASN:H	1.81	0.45	

	, as page	Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:C:3757:ARG:HH11	1:C:3828:PHE:HE2	1.64	0.45	
9:K:146:VAL:HG13	9:K:150:VAL:HB	1.97	0.45	
14:L:527:ARG:HE	14:L:535:VAL:HG13	1.82	0.45	
1:C:1019:GLU:OE2	1:C:1098:ILE:HG13	2.17	0.44	
1:C:2865:MET:HB2	1:C:2891:LEU:HD21	1.99	0.44	
1:C:3330:GLU:HG3	1:C:3334:GLU:HB2	2.00	0.44	
4:D:236:ARG:HH21	12:R:78:GLU:HG2	1.81	0.44	
8:I:186:ALA:HB2	11:O:163:ILE:HD11	1.99	0.44	
10:M:48:THR:HG21	11:O:212:LYS:HD2	1.99	0.44	
1:C:446:MET:SD	1:C:585:GLU:HG2	2.57	0.44	
1:C:2633:PHE:HB3	1:C:2634:PRO:HD3	1.99	0.44	
2:A:235:LEU:HG	2:A:250:ILE:HG13	1.98	0.44	
2:A:236:ILE:HB	2:A:249:LEU:HB2	1.99	0.44	
5:E:297:ILE:HG22	5:E:297:ILE:O	2.17	0.44	
1:C:3304:MET:O	1:C:3308:ARG:HG2	2.17	0.44	
7:H:313:ARG:HB2	7:H:315:HIS:NE2	2.32	0.44	
12:R:107:LYS:C	12:R:109:SER:H	2.20	0.44	
1:C:44:GLU:HG2	1:C:92:LEU:HD21	1.98	0.44	
1:C:1283:LYS:O	1:C:1287:GLN:HG3	2.17	0.44	
1:C:3586:ASP:OD1	1:C:3587:ASN:N	2.50	0.44	
1:C:3730:ARG:NH2	1:C:3859:LEU:O	2.50	0.44	
1:C:3743:GLY:HA2	1:C:3747:PRO:HD2	2.00	0.44	
5:E:99:LYS:HB3	5:E:104:ARG:HH12	1.82	0.44	
7:H:509:HIS:NE2	7:H:527:SER:OG	2.38	0.44	
6:G:112:ARG:NH1	7:H:488:GLU:OE2	2.50	0.44	
9:K:55:MET:CE	9:K:63:LEU:HA	2.48	0.44	
1:C:1920:VAL:HA	1:C:1923:ALA:HB3	2.00	0.44	
1:C:2240:GLU:HA	1:C:2243:TYR:CE2	2.52	0.44	
1:C:2476:TYR:HD2	1:C:2480:SER:HB2	1.82	0.44	
5:E:189:ARG:HG2	5:E:190:GLN:HG2	2.00	0.44	
1:C:907:LYS:HD2	1:C:907:LYS:HA	1.84	0.44	
1:C:3516:LEU:H	1:C:3516:LEU:HD23	1.83	0.44	
2:A:431:PRO:HG3	2:A:849:GLU:HG2	1.99	0.44	
7:H:506:LEU:HB3	7:H:537:TRP:CZ3	2.53	0.44	
1:C:139:LEU:HA	1:C:142:GLN:HG2	1.99	0.44	
1:C:1514:CYS:HB3	1:C:1554:PHE:HE1	1.83	0.44	
1:C:3302:ARG:O	1:C:3306:MET:HG3	2.18	0.44	
2:A:645:MET:HB2	2:A:662:PHE:HB2	2.00	0.44	
11:0:148:ASP:OD2	11:O:151:ILE:HG22	2.18	0.44	
1:C:783:LEU:HD11	1:C:815:VAL:HG21	2.00	0.43	
1:C:3357:ALA:O	1:C:3623:GLN:NE2	2.51	0.43	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
2:A:7:THR:HA	2:A:1127:GLY:HA2	1.99	0.43	
7:H:562:GLN:H	7:H:563:MET:HE3	1.82	0.43	
1:C:1803:ASN:N	1:C:1804:PRO:HD2	2.33	0.43	
1:C:3064:ILE:HG21	1:C:3078:LYS:HG3	1.99	0.43	
4:D:131:SER:OG	14:L:552:GLU:OE2	2.35	0.43	
7:H:78:ARG:O	7:H:82:THR:OG1	2.23	0.43	
2:A:577:TYR:CE2	2:A:579:GLU:HB3	2.53	0.43	
1:C:2509:ILE:HG12	1:C:2607:THR:HB	2.00	0.43	
2:A:14:ILE:HG12	2:A:34:ARG:HH12	1.83	0.43	
2:A:275:ARG:HG3	2:A:388:GLN:HG2	2.00	0.43	
2:A:328:LYS:HB3	2:A:330:PHE:CZ	2.53	0.43	
7:H:260:CYS:HB2	7:H:578:LEU:HD23	1.99	0.43	
1:C:903:ARG:HH22	1:C:2979:PRO:HB3	1.83	0.43	
1:C:2815:PRO:HA	1:C:2818:GLN:HG2	2.01	0.43	
2:A:111:GLY:O	2:A:116:VAL:HG11	2.19	0.43	
2:A:816:LYS:HD3	2:A:843:LEU:HG	2.01	0.43	
2:A:939:PHE:HZ	2:A:942:LYS:HG3	1.84	0.43	
9:K:296:ILE:HD12	9:K:302:ARG:HH12	1.84	0.43	
1:C:822:PRO:HB3	4:D:394:PHE:CD1	2.54	0.43	
1:C:2741:GLN:HG2	1:C:2744:ILE:HD11	2.00	0.43	
1:C:3238:LEU:HD22	1:C:3250:LEU:HD11	2.01	0.43	
4:D:205:GLU:HG3	4:D:206:PRO:HD2	2.00	0.43	
7:H:81:LEU:HD11	7:H:92:VAL:HG21	2.00	0.43	
1:C:647:PHE:CZ	1:C:681:THR:HG23	2.54	0.43	
1:C:2653:SER:HB2	1:C:2654:PRO:HD3	1.99	0.43	
2:A:895:ARG:HD3	2:A:903:TRP:CZ3	2.54	0.43	
9:K:285:LEU:HG	9:K:288:HIS:HB2	2.00	0.43	
1:C:1829:ARG:HD2	1:C:1879:CYS:HB2	2.00	0.43	
1:C:2278:ALA:HA	1:C:2281:ASN:HD22	1.83	0.43	
1:C:2637:TRP:HZ3	1:C:2648:LEU:HD23	1.83	0.43	
12:R:117:GLN:O	12:R:121:GLU:HG2	2.19	0.43	
1:C:114:LEU:HD23	1:C:114:LEU:H	1.84	0.43	
1:C:987:LEU:HD21	1:C:2525:ILE:HD11	2.00	0.43	
1:C:2849:PRO:HB3	1:C:2871:GLN:HE21	1.84	0.43	
1:C:3771:LYS:HG2	1:C:3815:VAL:HG21	2.01	0.43	
7:H:535:ARG:HB3	7:H:537:TRP:NE1	2.29	0.43	
1:C:543:VAL:O	1:C:547:ARG:HG3	2.18	0.43	
4:D:85:GLU:HB2	4:D:103:ARG:NH2	2.33	0.43	
8:I:28:GLU:O	9:K:128:ARG:NH1	2.48	0.43	
1:C:2173:VAL:HA	1:C:2176:PHE:CE1	2.53	0.42	
1:C:3051:GLN:HE22	1:C:3560:LYS:HD2	1.84	0.42	

		Interatomic	Clash	
Atom-1	Atom-2	distance $(Å)$	overlap (Å)	
1:C:3442:LYS:HE2	1:C:3442:LYS:HB3	1.87	0.42	
4:D:16:ILE:HD11	4:D:222:LEU:HD21	2.01	0.42	
1:C:1473:LYS:HE2	1:C:1473:LYS:HB3	1.84	0.42	
11:O:192:LYS:HD2	11:O:192:LYS:HA	1.82	0.42	
1:C:2887:TYR:HA	1:C:2890:TYR:HD2	1.84	0.42	
1:C:3149:HIS:CD2	1:C:3151:VAL:HG22	2.55	0.42	
2:A:271:ILE:HD13	2:A:285:MET:HG3	2.00	0.42	
2:A:1118:VAL:HG22	2:A:1128:ILE:HG22	2.01	0.42	
4:D:192:LYS:O	4:D:196:GLU:HG2	2.19	0.42	
9:K:282:VAL:HG12	9:K:282:VAL:O	2.20	0.42	
11:O:123:LEU:HD21	11:O:153:ARG:HD3	2.01	0.42	
4:D:362:LEU:HD23	4:D:362:LEU:HA	1.95	0.42	
1:C:284:GLN:O	1:C:287:THR:OG1	2.31	0.42	
1:C:1927:LEU:H	1:C:1927:LEU:HD23	1.85	0.42	
6:G:143:MET:SD	6:G:143:MET:N	2.92	0.42	
7:H:336:LYS:HB3	7:H:336:LYS:HE2	1.88	0.42	
5:E:124:LEU:HA	11:0:175:LYS:NZ	2.35	0.42	
7:H:145:THR:HG23	7:H:148:ASP:H	1.84	0.42	
7:H:428:ASP:OD1	7:H:428:ASP:N	2.52	0.42	
1:C:231:ILE:H	1:C:231:ILE:HD12	1.84	0.42	
1:C:3086:TYR:HE1	1:C:3104:VAL:HG11	1.85	0.42	
2:A:355:ASN:OD1	2:A:356:HIS:N	2.53	0.42	
2:A:790:ILE:HA	2:A:797:LEU:HD23	2.00	0.42	
9:K:118:ILE:HD12	9:K:119:PRO:HD2	2.01	0.42	
1:C:1409:MET:HG3	1:C:1454:LEU:HD11	2.02	0.42	
2:A:1154:PRO:HG2	2:A:1158:ARG:O	2.19	0.42	
1:C:647:PHE:HZ	1:C:681:THR:HG23	1.85	0.42	
1:C:2007:VAL:HG21	1:C:2122:LEU:HB2	2.01	0.42	
1:C:3740:THR:HG22	1:C:3741:THR:N	2.34	0.42	
1:C:1803:ASN:N	1:C:1804:PRO:CD	2.83	0.42	
1:C:1909:LEU:HD23	1:C:1909:LEU:H	1.85	0.42	
1:C:2396:LEU:HB3	1:C:2439:LEU:HD11	2.02	0.42	
1:C:2883:LYS:HA	1:C:2883:LYS:HD2	1.77	0.42	
2:A:249:LEU:HD13	2:A:313:ILE:HD13	2.01	0.42	
2:A:895:ARG:HD3	2:A:903:TRP:HZ3	1.85	0.42	
10:M:57:TYR:CE1	12:R:119:HIS:HE1	2.38	0.42	
1:C:2275:LEU:HD22	1:C:2328:LEU:HD22	2.00	0.41	
2:A:460:TRP:CG	2:A:508:CYS:HB2	2.55	0.41	
4:D:123:ILE:HG21	14:L:543:LEU:HD21	2.02	0.41	
7:H:271:LEU:O	9:K:59:LYS:HB2	2.19	0.41	
1:C:584:LYS:HE3	1:C:1586:ARG:HG2	2.02	0.41	

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:1753:PHE:HA	1:C:1756:PHE:CE1	2.55	0.41
1:C:2807:SER:OG	1:C:2808:ASN:N	2.53	0.41
1:C:3154:LYS:O	1:C:3158:MET:HG2	2.20	0.41
9:K:314:LEU:HD11	9:K:325:VAL:HG11	2.01	0.41
10:M:118:ASP:CG	10:M:119:ARG:H	2.23	0.41
1:C:2858:ARG:NH2	1:C:2990:SER:OG	2.54	0.41
11:O:121:MET:HA	11:O:124:GLU:HG2	2.01	0.41
1:C:1812:ILE:HG12	1:C:1860:ARG:HH12	1.84	0.41
1:C:3295:ALA:HB3	1:C:3296:PRO:HD3	2.02	0.41
1:C:3440:LYS:O	1:C:3443:LYS:HG2	2.20	0.41
1:C:3642:GLN:HE21	1:C:3648:ARG:HG3	1.84	0.41
2:A:499:PHE:CE2	2:A:516:LEU:HD22	2.55	0.41
2:A:789:VAL:HB	2:A:798:ILE:HD11	2.01	0.41
4:D:139:GLY:HA2	7:H:20:ARG:NE	2.35	0.41
6:G:293:THR:HA	10:M:81:GLN:HG2	2.02	0.41
1:C:1188:LEU:HD11	1:C:1256:VAL:HG23	2.03	0.41
1:C:1811:PHE:HE1	1:C:1839:LEU:HD22	1.84	0.41
1:C:2101:LEU:HA	1:C:2104:VAL:HG12	2.02	0.41
1:C:3163:LEU:HA	1:C:3166:ILE:HD12	2.01	0.41
2:A:442:LEU:HD23	2:A:767:LEU:HD11	2.02	0.41
2:A:463:ARG:NH1	2:A:466:ILE:O	2.54	0.41
7:H:298:ARG:HA	7:H:298:ARG:HD3	1.77	0.41
7:H:524:LEU:HD23	7:H:538:ASP:HA	2.02	0.41
1:C:1330:VAL:O	1:C:1332:HIS:N	2.53	0.41
2:A:1001:ILE:HG21	2:A:1044:VAL:HG11	2.02	0.41
6:G:164:LEU:HD11	12:R:103:ALA:HB1	2.03	0.41
1:C:144:ARG:HB3	1:C:145:PRO:HD3	2.03	0.41
1:C:3163:LEU:HD12	1:C:3175:LEU:HD21	2.03	0.41
2:A:136:GLU:OE2	2:A:189:TYR:OH	2.23	0.41
7:H:508:GLY:HA3	7:H:537:TRP:CZ2	2.55	0.41
8:I:195:LYS:HG2	8:I:199:PHE:HE2	1.85	0.41
1:C:1459:PHE:HD2	1:C:1524:ILE:HD12	1.86	0.41
1:C:3111:LYS:HB2	1:C:3112:TYR:HD2	1.86	0.41
1:C:3446:LYS:HD2	1:C:3446:LYS:HA	1.75	0.41
2:A:565:TYR:OH	2:A:617:ILE:HG21	2.21	0.41
2:A:1053:ILE:HG23	2:A:1104:LEU:HD21	2.03	0.41
6:G:277:MET:HG3	6:G:308:LEU:HD23	2.02	0.41
6:G:284:LEU:HB3	6:G:297:TYR:HE1	1.85	0.41
6:G:293:THR:HG22	10:M:81:GLN:HE21	1.86	0.41
6:G:302:GLU:HB2	10:M:91:PHE:HE2	1.84	0.41
8:I:220:PHE:HE2	8:I:228:VAL:HG12	1.86	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
1:C:107:ARG:HB2	1:C:108:PRO:HD3	2.03	0.41
1:C:1054:VAL:O	1:C:1058:CYS:HB2	2.21	0.41
1:C:1339:LEU:HD12	1:C:1340:LEU:HD22	2.01	0.41
1:C:3164:GLU:HA	1:C:3167:PHE:HD2	1.85	0.41
2:A:995:THR:HG22	2:A:1000:VAL:HG13	2.02	0.41
7:H:247:LYS:HB3	9:K:186:ASN:ND2	2.36	0.41
7:H:271:LEU:HD23	7:H:582:ILE:HD11	2.03	0.41
10:M:115:LEU:HD23	10:M:115:LEU:HA	1.90	0.41
1:C:1242:THR:O	1:C:1246:VAL:HG23	2.21	0.41
1:C:1740:ILE:HB	1:C:1741:PRO:HD3	2.03	0.41
1:C:2668:GLN:NE2	1:C:2920:ARG:HD3	2.36	0.41
2:A:47:THR:HG23	2:A:49:LYS:H	1.85	0.41
8:I:73:ASN:O	8:I:77:ARG:N	2.46	0.41
1:C:1889:HIS:CD2	1:C:1926:ILE:HG13	2.56	0.40
1:C:3479:GLU:HG3	1:C:3495:LYS:HD3	2.02	0.40
1:C:3506:VAL:HG11	1:C:3515:ARG:HH12	1.86	0.40
2:A:39:GLU:HG2	2:A:55:THR:HG23	2.01	0.40
7:H:422:TYR:HE1	7:H:458:GLY:HA2	1.86	0.40
2:A:66:MET:HE3	2:A:123:VAL:HB	2.02	0.40
6:G:298:ALA:O	6:G:301:ILE:HG22	2.21	0.40
7:H:281:LYS:NZ	7:H:298:ARG:HG3	2.36	0.40
9:K:118:ILE:HG13	9:K:120:LYS:H	1.85	0.40
1:C:1363:VAL:O	1:C:1367:ILE:HG12	2.22	0.40
1:C:1887:LEU:HD23	1:C:1904:VAL:HB	2.03	0.40
1:C:2871:GLN:HA	1:C:2874:VAL:HG12	2.03	0.40
1:C:364:GLY:O	1:C:368:ARG:NE	2.54	0.40
1:C:793:LEU:HD11	1:C:1197:GLU:HG3	2.04	0.40
1:C:1514:CYS:HA	1:C:1517:ILE:HG22	2.04	0.40
1:C:2668:GLN:HE21	1:C:2920:ARG:HB3	1.86	0.40
1:C:3054:VAL:HG21	1:C:3089:LEU:HB2	2.03	0.40
2:A:82:SER:OG	2:A:83:ASP:N	2.54	0.40
2:A:808:THR:HG23	2:A:811:THR:H	1.87	0.40
5:E:188:SER:HA	5:E:191:LEU:HD12	2.04	0.40
9:K:337:LEU:HD21	9:K:357:LYS:HZ2	1.87	0.40
12:R:113:VAL:HB	12:R:116:VAL:HG22	2.02	0.40
1:C:332:LEU:HD12	1:C:371:LEU:HD12	2.03	0.40
1:C:1116:ALA:HB2	1:C:1166:PHE:HZ	1.85	0.40
1:C:1448:LEU:HG	1:C:1520:LEU:HD11	2.02	0.40
1:C:1876:ASP:HB3	1:C:1879:CYS:SG	2.61	0.40
1:C:2007:VAL:O	1:C:2010:SER:OG	2.25	0.40
1:C:2492:ILE:HD11	1:C:2671:ALA:O	2.22	0.40

Atom-1	Atom-2	Atom-2 Interatomic distance (Å)	
1:C:3002:LYS:HB2	1:C:3003:PRO:HD3	2.02	0.40
2:A:916:ASN:HB2	2:A:917:PRO:HD3	2.03	0.40
5:E:296:ARG:HG3	6:G:203:HIS:ND1	2.37	0.40

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
1	С	3191/3859~(83%)	3008 (94%)	182 (6%)	1 (0%)	100	100
2	А	1156/1217~(95%)	1117 (97%)	39 (3%)	0	100	100
3	В	43/86~(50%)	43 (100%)	0	0	100	100
4	D	304/779~(39%)	282 (93%)	22 (7%)	0	100	100
5	Е	215/317~(68%)	197 (92%)	18 (8%)	0	100	100
6	G	182/374~(49%)	176 (97%)	6 (3%)	0	100	100
7	Н	500/589~(85%)	476 (95%)	24 (5%)	0	100	100
8	Ι	169/455~(37%)	166 (98%)	3 (2%)	0	100	100
9	K	342/622~(55%)	318 (93%)	24 (7%)	0	100	100
10	М	117/264 (44%)	111 (95%)	5 (4%)	1 (1%)	17	54
11	Ο	87/218~(40%)	83 (95%)	4 (5%)	0	100	100
12	R	72/161~(45%)	63 (88%)	9 (12%)	0	100	100
14	L	42/892~(5%)	35 (83%)	7 (17%)	0	100	100
All	All	6420/9833~(65%)	6075 (95%)	343 (5%)	2(0%)	100	100

All (2) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
10	М	118	ASP
1	С	773	ASP

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	С	2918/3423~(85%)	2911 (100%)	7~(0%)	93	97
2	А	1013/1051~(96%)	1013 (100%)	0	100	100
3	В	41/77~(53%)	41 (100%)	0	100	100
4	D	297/687~(43%)	297 (100%)	0	100	100
5	Е	179/273~(66%)	178 (99%)	1 (1%)	86	93
6	G	164/320~(51%)	164 (100%)	0	100	100
7	Н	457/521~(88%)	457 (100%)	0	100	100
8	Ι	152/405~(38%)	152 (100%)	0	100	100
9	Κ	286/505~(57%)	286 (100%)	0	100	100
10	М	106/235~(45%)	106 (100%)	0	100	100
11	Ο	78/154~(51%)	78 (100%)	0	100	100
12	R	68/141~(48%)	68 (100%)	0	100	100
14	L	38/779~(5%)	38 (100%)	0	100	100
All	All	5797/8571 (68%)	5789 (100%)	8 (0%)	93	98

All (8) residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
1	С	1438	ARG
1	С	1898	LYS
1	С	2003	ARG
1	С	2210	ARG
1	С	2248	LYS
1	С	2357	LYS
1	С	3125	LYS
5	Е	296	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (2) such sidechains are listed below:

Mol	Chain	Res	Type
1	С	604	GLN
6	G	220	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-34520. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 200

Y Index: 200

Z Index: 200

6.2.2 Raw map

X Index: 200

Y Index: 200

Z Index: 200

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 194

Y Index: 183

Z Index: 164

6.3.2 Raw map

X Index: 194

Y Index: 183

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal surface views (i)

6.4.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.015. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.4.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

6.5 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 363 nm^3 ; this corresponds to an approximate mass of 328 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.270 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.270 ${\rm \AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
Resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.70	-	-
Author-provided FSC curve	3.68	4.32	3.74
Unmasked-calculated*	4.08	6.67	4.18

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 4.08 differs from the reported value 3.7 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-34520 and PDB model 8H7G. Per-residue inclusion information can be found in section 3 on page 9.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.015 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.015).

9.4 Atom inclusion (i)

At the recommended contour level, 60% of all backbone atoms, 53% of all non-hydrogen atoms, are inside the map.

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.015) and Q-score for the entire model and for each chain.

Chain	Atom inclusion	Q-score	
All	0.5260	0.2730	
A	0.0922	0.0670	1 0
В	0.1769	0.0950	1.0
С	0.6581	0.3250	
D	0.5242	0.2810	
Е	0.4648	0.2550	
G	0.6703	0.3940	
Н	0.6185	0.3430	
Ι	0.6446	0.3450	
K	0.3868	0.2050	
L	0.5460	0.2970	0.0
М	0.6842	0.3640	<0.0
0	0.7197	0.3750	
R	0.6857	0.3600	
Х	0.2000	0.1870	

