

wwPDB EM Validation Summary Report (i)

Jan 16, 2025 - 12:53 am GMT

Api137

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

:	0.0.1.dev113
:	4.02b-467
:	20231227.v01 (using entries in the PDB archive December 27th 2023)
:	1.9.13
:	Engh & Huber (2001)
:	Parkinson et al. (1996)
:	2.40
	: : : : :

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.08 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f EM} {f structures} \ (\#{f Entries})$
Clashscore	210492	15764
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain	
1	0	56	82%	16% ·
2	1	50	92%	8%
3	2	46	89%	9% •
4	3	64	78%	20% •
5	4	38	84%	16%
6	В	120	69% 25%	6%
7	С	271	86%	14%

Mol	Chain	Length	Quality of chain	
8	D	209	87%	13%
9	Е	201	76%	24%
10	F	177	79%	19% ·
11	G	176	91%	9% •
12	Η	149	89%	11%
13	J	142	91%	9%
14	К	122	5% 89%	11%
15	L	143	78%	22%
16	М	136	88%	12%
17	Ν	120	• 84%	15% •
18	О	116	84%	16%
19	Р	114	79%	21%
20	Q	117	77%	23%
21	R	103	90%	10%
22	S	110	82%	17% •
23	Т	93	82%	18%
24	U	102	86%	14%
25	V	94	81%	19%
26	W	75	84%	16%
27	Х	77	88%	12%
28	Y	63	86%	14%
29	Ζ	58	81%	17% •
30	А	2904	64% 30%	5%
31	У	17	94%	6%
31	Z	17	41%	

Continued from previous page...

2 Entry composition (i)

There are 31 unique types of molecules in this entry. The entry contains 90242 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called Large ribosomal subunit protein bL32.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	0	56	Total 444	C 269	N 94	O 80	S 1	0	0

• Molecule 2 is a protein called Large ribosomal subunit protein bL33.

Mol	Chain	Residues		Aton	ns	AltConf	Trace	
2	1	50	Total 409	C 263	N 75	0 71	0	0

• Molecule 3 is a protein called Large ribosomal subunit protein bL34.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	2	46	Total 377	C 228	N 90	O 57	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 4 is a protein called Large ribosomal subunit protein bL35.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	3	64	Total 504	C 323	N 105	0 74	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 5 is a protein called Large ribosomal subunit protein bL36A.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	4	38	Total	С	Ν	Ο	\mathbf{S}	0	0
5	4	30	302	185	65	48	4	0	0

• Molecule 6 is a RNA chain called 5S ribosomal RNA.

Mol	Chain	Residues	Atoms					AltConf	Trace
6	В	120	Total 2572	C 1145	N 471	O 836	Р 120	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
В	120	А	U	conflict	GB 1402434313

• Molecule 7 is a protein called Large ribosomal subunit protein uL2.

Mol	Chain	Residues		At	oms			AltConf	Trace
7	С	271	Total 2082	C 1288	N 423	0 364	S 7	0	0

• Molecule 8 is a protein called 50S ribosomal protein L3.

Mol	Chain	Residues		At	oms			AltConf	Trace
8	D	209	Total 1565	C 979	N 288	0 294	${f S}$ 4	0	0

• Molecule 9 is a protein called Large ribosomal subunit protein uL4.

Mol	Chain	Residues		At	oms	AltConf	Trace		
9	Е	201	Total 1552	C 974	N 283	0 290	${ m S}{ m 5}$	0	0

• Molecule 10 is a protein called Large ribosomal subunit protein uL5.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	F	177	Total 1410	C 899	N 249	O 256	S 6	0	0

• Molecule 11 is a protein called Large ribosomal subunit protein uL6.

Mol	Chain	Residues		At	oms	AltConf	Trace		
11	G	176	Total 1323	C 832	N 243	0 246	${S \over 2}$	0	0

• Molecule 12 is a protein called Large ribosomal subunit protein bL9.

Mol	Chain	Residues		At	oms			AltConf	Trace
12	н	1/10	Total	С	Ν	Ο	\mathbf{S}	0	0
12	11	145	1111	699	197	214	1	0	0

• Molecule 13 is a protein called Large ribosomal subunit protein uL13.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	J	142	Total 1129	C 714	N 212	O 199	$\frac{S}{4}$	0	0

• Molecule 14 is a protein called Large ribosomal subunit protein uL14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
14	K	122	Total 938	C 587	N 180	0 165	S 6	0	0

• Molecule 15 is a protein called Large ribosomal subunit protein uL15.

Mol	Chain	Residues		At	oms	AltConf	Trace		
15	L	143	Total 1045	C 649	N 206	0 189	S 1	0	0

• Molecule 16 is a protein called 50S ribosomal protein L16.

Mol	Chain	Residues		At	oms	AltConf	Trace		
16	М	136	Total 1074	C 686	N 205	0 177	S 6	0	0

• Molecule 17 is a protein called Large ribosomal subunit protein bL17.

Mol	Chain	Residues		At	oms			AltConf	Trace
17	Ν	120	Total 960	C 593	N 196	0 166	${ m S}{ m 5}$	0	0

• Molecule 18 is a protein called Large ribosomal subunit protein uL18.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
18	Ο	116	Total 892	C 552	N 178	O 162	0	0

• Molecule 19 is a protein called Large ribosomal subunit protein bL19.

Mol	Chain	Residues		At	oms	AltConf	Trace		
19	Р	114	Total 917	C 574	N 179	O 163	S 1	0	0

• Molecule 20 is a protein called Large ribosomal subunit protein bL20.

Mol	Chain	Residues		Ato	ms		AltConf	Trace
20	Q	117	Total 947	C 604	N 192	0 151	0	0

• Molecule 21 is a protein called Large ribosomal subunit protein bL21.

Mol	Chain	Residues		At	oms	AltConf	Trace		
21	R	103	Total 816	C 516	N 153	0 145	${S \over 2}$	0	0

• Molecule 22 is a protein called Large ribosomal subunit protein uL22.

Mol	Chain	Residues		At	oms	AltConf	Trace		
22	S	110	Total 868	C 538	N 170	0 157	${ m S} { m 3}$	1	0

• Molecule 23 is a protein called Large ribosomal subunit protein uL23.

Mol	Chain	Residues		At	oms			AltConf	Trace
23	Т	93	Total 738	C 466	N 139	0 131	${ m S} { m 2}$	0	0

• Molecule 24 is a protein called Large ribosomal subunit protein uL24.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
24	U	102	Total 779	C 492	N 146	0 141	0	0

• Molecule 25 is a protein called Large ribosomal subunit protein bL25.

Mol	Chain	Residues		At	oms			AltConf	Trace
25	V	94	Total 753	C 479	N 137	0 134	${ m S} { m 3}$	0	0

• Molecule 26 is a protein called Large ribosomal subunit protein bL27.

Mol	Chain	Residues		At	oms			AltConf	Trace
26	W	75	Total 575	C 356	N 116	0 102	S 1	0	0

• Molecule 27 is a protein called Large ribosomal subunit protein bL28.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	X	77	Total 625	C 388	N 129	O 106	${ m S} { m 2}$	0	0

• Molecule 28 is a protein called Large ribosomal subunit protein uL29.

Mol	Chain	Residues		Atc	\mathbf{ms}	AltConf	Trace		
28	Y	63	Total 509	C 313	N 99	O 95	$\frac{S}{2}$	0	0

• Molecule 29 is a protein called Large ribosomal subunit protein uL30.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace		
29	Z	58	Total 449	C 281	N 87	O 79	$\begin{array}{c} \mathrm{S} \\ \mathrm{2} \end{array}$	0	0

• Molecule 30 is a RNA chain called 23S ribosomal rRNA.

Mol	Chain	Residues			Atoms			AltConf	Trace
30	А	2900	Total 62281	C 27783	N 11461	O 20136	Р 2901	1	0

• Molecule 31 is a protein called Apidaecins type 22.

Mol	Chain	Residues		Ator	ns	AltConf	Trace		
21	7	17	Total	С	Ν	0	0	0	
	2	11	148	94	33	21	0	0	
31 y	17	Total	С	Ν	0	0	0		
	У	11	148	94	33	21	0	U	

There are 2 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
Z	10	ARG	GLN	conflict	UNP P35581
у	10	ARG	GLN	conflict	UNP P35581

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Large ribosomal subunit protein bL32

• Molecule 17: L	Large ribosomal subunit protein bL17	
Chain N:	84%	15% •
M1 R4 M20 M20 H30 H31 E32 E32	L38 K42 F67 F67 F67 F67 R71 D72 D72 D72 B72 B119 S119 S119 S119	
• Molecule 18: L	Large ribosomal subunit protein uL18	
Chain O:	84%	16%
D2 18 112 131 132 133 133 133	H34 135 E46 V64 V64 V64 M76 M72 K85 H100 H100 H100 F117	
• Molecule 19: L	Large ribosomal subunit protein bL19	
Chain P:	79%	21%
S1 13 13 13 13 13 13 13 13 13 13 13 12 12 12 12 12 12	E26 833 147 147 147 633 163 163 163 163 163 163 163 163 163	L96 L99 L99 L199 R103 R103 R103 R103 R110 R110 R111 R111
• Molecule 20: L	Large ribosomal subunit protein bL20	
Chain Q:	77%	23%
A1 18 A9 R10 R29 Q36 D48 D48	R49 R50 R51 R52 R54 R54 R57 R57 R57 R60 R69 R69 R69 R69 R69 R69 R69 R69 R69 R69	D101 V109 E110 A117 A117
• Molecule 21: L	Large ribosomal subunit protein bL21	
Chain R:	90%	10%
M1 Y2 611 122 149 149	V54 R80 K81 H82 B102 A103	
• Molecule 22: L	Large ribosomal subunit protein uL22	
Chain S:	82%	17% •
M1 E2 513 813 813 813 815 825 825 126	V47 K48 K49 K48 K48 F74 F74 F75 F75 F75 F78 G79 F80 F100 H100 H100 H100 H100 H100	
• Molecule 23: L	Large ribosomal subunit protein uL23	
Chain T:	82%	18%

Cha	in A	.:						64%										30%				5%				
G1 A6	A10	U18 G24	025 626 627	A28 U29 G30	U34	G35 G36	G45 G46	647 648	G51	A52	C57 G58 1160	059 G60 C61	U62 A63	A64	A71 U72 A73	A74 G75	C76	A8 <u>3</u> A84	<mark>685</mark>	698 • 103	A118	A119 U120	A126	0135 G136		
U139 C140	G141 A142 C143	A144 A160	A161 U162 C163	U166	G177	A181	C184	A196	A199	U200 C201	U202 A203	C210 C211	G212 A213 A213	<mark>G214</mark> G215	A216 A217	A210 A219 G220	A221 A222	C225	A226 A227	C228	6232 6232 6233	U234	C239 C240 A241	6242 U243		
A244 G245 C246	G247 G248 C249	G250 A251	A255 G259	<mark>6263</mark>	<mark>G266</mark> C267	6271	A2/2	0276 0277 G277	A278	G285	A294	A299	G308 G308	A309 A310	A320	A322 C323	A324	G329 A330	C331 A332	6333 C334 C335	1339	A 340	A345 A346 A347	G356		
C357 U358	A362 G370	A371 G372 U373	C378 G379	A384 C385	G386 U3 <u>87</u>	<mark>6396</mark>	A404 11405	G406	G411		6424	A428 A429	A432	C435	6442 A443 C444	C445 C445 G446	A447 U448	<mark>A 449</mark> G 450	U451 G452	A453 A454 A455	C456 A457	G458 U459	C462 C462	0464 0465 0465		
A466	G474 C475 G476	A477 A478 A479	A480 G481 A482	G488	G4 <mark>91</mark>	A497 G498	0499 G500 A501	A505	C5 09	G5 12	A513 A514	C516 C516 C517	A526	C527 A528	4529 6530 6531	4532 4533	U534	C542 G543	C544 U545	0546 A547 C548	G549 C550	G551	U554 G555 A556	C560		
A563	U5 <mark>69</mark> G570 U571	A572 U573 A574	A575 U576 G577	G578 G579 U580	C581 A582	6583 C584 C584	G585 A586 C587	U588	A592	A603	U606	6612 A613 A614	G619	<mark>G620</mark> A621	6622	6628 6628 6629	<mark>6630</mark>	A633	G636 A637	0638 0639 0640	U641	A644 C645	0646 0647 0648	6649	I	
U652 U653	A054 A655	6009 A670 C671	A675	U683	U686	4693	U694 G695	C698	G711	A715	A716 C717	A721	A722 C723	0725 G726 G726	<mark>4727</mark> G728	G729 A730	A734	C740	A743	U747 G748	A752	A753 U754 11755	G763		<u>6775</u>	
G776 G780	<mark>A781</mark> A782 A783	G784 G785	A789 A793	G7 99 A800	G805	<mark>C806</mark> U807	<mark>C812</mark> 11813	A819	U827	U828	6831 6831		0846 U847 U847	U850	C851	6856 6857 6857	G864	<mark>C865</mark> A8 <u>66</u>	<mark>6869</mark>	A877 A877			C885	טפ	υ	
00 00 00	96 92	20	11	18	41	46 47 18	40 51	53	54	200	00 01 02 02	3 8	99	69 70	72	74 75	16	8 21	833	85	68	<u>6</u>	94 95 96	007	800	
88	U8 A8	80 08	A9 A9	A9	A9.	AO CO		65	69		GO BO	60	69	69 69	49. 49.	G9.	.65	A9 A9			(9)	65		¢	◆	•
A1009 A1010 G1011	U1012 C1013	U1018 U1019 A1020	A1021 G1022 U1023	G1024 G1025 G1026	U1033	G1034 U1035	A1040	C1045 A1046	G1047 A1048	C1053	A1054	A1057 U1058	G1059 U1060 U1064	G1062 G1063	C1064 111065	U1066	G1068	A1069 A1070	G10/1 C1072	A1073 G1074	C1075	A1077	01078 C1079	U1082 U1083	A1084 A1085 A1086 G1087	
A1088 A1089	G1093 U1094	A1095 A1096 U1097	U1101	G11104 G1110	A1111 G1112	G1116	U1119 G1120	G1125	A1126	A1129 U1130	61131 U1132 A1133	A1135 A1134 C1135	G1139	C1140 U1141	A1142 A1143 A1144	C1145 C1146 C1146	A1155	A1156 G1157	C1161	C1164	A1169 C1170	G1171	01174 A1175		U1180	
U1181 G1182 U1183	U1184 G1185 G1186	G1187 C1196	G1197 G1202	U1203 A1204 A1205	G1206	U1209	G1212 G1215	G1216 U1217	G1218	G1223 U1224	G1225 A1226	61232 01233	01234 01234 61235	G1236 A1237	G1248	61250 C1251	G1252 A1253	A1254 U1255	G1256 C1257	01258 01259	A1262 U1263	A1264 A1265	A1268 A1268	C1270 G1271 G1271		
A1272 U1273 A1274	A1275 A1276	U1282	A1287 G1288 C1289	C1290 C1291	C1295	G1300 A1301	C1306	G1309	U1313 C1314	U1326	01329	61332	G1 <mark>339</mark> U1340	G1341 A1342	61343 U1344 C1345	41353	G1358	A1359 G1360	G1361 C1362	C1363 G1364 A1365	G1377	A1378 U1379	61380	C1386		
A1387	11394 11395	11396 11397	31416	1420 1421	31 <mark>4</mark> 25 1426	41427 31428	1431 1432	11433	01437	01447 11448	1454	<mark>)1458</mark>	01461	J1466	31475 11476 1177	1482	1490	1491	11497 11498	<mark>11508</mark>	31514 1515	1524	11528	1535	0001	
* *	P C			4.0					~	00		2	0				A	-		A			A.	4	1	

WORLDWIDE PROTEIN DATA BANK

G1537 G1543 A1544 A1544 A1545 A1545 G1546 A1553 A1556 G1560 G1560 G1560 G1560 U1553 G1566 G1566 G1566 G1566 G1566 G1566 G1566 G1568 A1568 A1568 A1569 G1564 G1565 G1566 G1568 A1568 A1568 A1568 G1568 G1568<
C1670 C1674 C1674 C1685 C1686 C1686 C1686 C1686 C1686 C1686 C1686 C1686 C1686 C1686 C1686 C1686 C1686 C1686 C1686 C1686 C1731 C1731 C1733 C1773 C1772 C1772 C1772 C1772 C1772 C1772 C1772 C1772 C1772 C
G1776 U1779 U1779 A1781 A1783 A1784 A1784 A1785 A1787 A1787 A1786 A1786 A1786 A1786 A1786 A1786 A1789 C1790 C1790 C1790 C1790 C1790 C1790 C1790 C1816 C1816 C1818 A1808 A1808 A1808 A1888 A1888 A1888 A1888 A1888 C1838 C188 C18
C1870 A1872 A1871 A1871 A1871 A1871 A1901 G1906 G1906 G1906 U1917 A1913 A1917 G1906 A1913 G1906 A1914 U1917 U1946 U1943 U1946 U1943 G1926 G1926 G1926 G1926 G1926 G1926 G1927 G1936 G1946 U1945 U1955 G1926 G1977 G1926 G1972 G1972 G1926 G1972 G1967 G1972 G1972 G1972 G1972 G1972 G1972 G1972 G1972 G1972 G1972 G1972 G1972 G1972 G1995 C1996 C1996 C1996 C1999 C1999 C1999 C1999 C1999 C1999
42010 42013 42013 42013 42013 42013 42013 42013 42013 42013 42013 42013 42013 42013 42013 42014 42015 42015 42016 42016 42016 42016 42016 42016 42016 42016 42016 42016 42016 42016 42016 42016 42016 42017 42017 42017 42017 42017 42017 42017 42017 42017 42017 42017 42017 42017 42017 42017
A2101 A2101 C2103 C2104 C2105 C2104 C2105 C2105 C2106 C2106 C2115 C2116 C2115 C2115 C2116 C2115 C2116 C2115 C2136 C2136 C2136 C2146 C2136 C2146 C2136 C2146 C2136 C2146 C2145 C2146 C2145 C2146 C2145 C2146 C2145 C2146 C2157 C2146 C2155 C2146 C2155 C2146 C2155 C2146 C2155 C2146 C2155 C2146 C2155 C2146 C2155 C2155 C2146 C2155 C2146 C2155 C2146 C2155 C2146 C2155 C2145 C2155 C2145 C2155
C2161 C2162 C2164 C2164 C2164 C2164 C2164 C2166 C2166 A2170 A2170 A2177 C2168 A2170 A2177 C2174 C2174 C2174 C2174 C2176 C2216 C2206 C2216 C2206 C2206 C2216 C2206 C22176 C22176 C22176 C22176 C22176 C22176 C22176 C22176 C22176 C22176 C22176 C22176 C22176 C22176 C22176 C22176 C22176 C22176 C2216 C226 C22
72271 42274 42274 62279 72286 72286 72286 72286 72286 72286 72286 72286 72369 72569 72569 72569 72569 72569 72569 72569 72569 72569 72569 72569 72569 72569 72569 72569
A2376 A2377 A2377 A2377 C2386 C2445 C2286 C2445 C2286 C2445 C2286 C2445
02464 02465 02475 02475 02475 02475 02475 02475 02475 02475 02481 02481 02481 02481 02481 02481 02481 02481 02482 02483 02484 02486 02486 02486 02486 02486 02486 02486 02486 02486 02501 02502 02503 02504 02522 02523 02523 02523 02523 02523 02523 02523 02523 02535 02535 02535 025436 02553 02553<
22553 22559 22559 22559 22556 22556 22556 22556 22556 22557 22557 22557 22558 22558 22558 22558 22558 22558 22558 22559 22559 22569 25569
U2655 42555 42555 42565 42565 42565 42567 42587 025695 025695 025695 025695 025695 02705 02705 02719 02719 02719 02719 02719 02719 02719 02719 02719 02719 02719 02715 02715 02715 02715 02715 02775 02715 02775 02755 02755 02755 02755 02755 02755 0275
A2757 A2756 A2764 A2765 A2765 A2765 A2765 A2775 A2775 A2775 C2785 C2785 C2785 C2785 C2785 C2785 C2785 C2785 C2785 C2785 C2785 C2785 C2785 C2785 C2785 C2785 C2785 C2785 C2785 C2845 C2855
A2880 U2881 C2901 C2901 U2903 U

• Molecule 31: Apidaecins type 22

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	41476	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	TFS KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	46.2	Depositor
Minimum defocus (nm)	800	Depositor
Maximum defocus (nm)	2000	Depositor
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor
Maximum map value	0.850	Depositor
Minimum map value	-0.385	Depositor
Average map value	-0.002	Depositor
Map value standard deviation	0.040	Depositor
Recommended contour level	0.1	Depositor
Map size (Å)	399.6, 399.6, 399.6	wwPDB
Map dimensions	300, 300, 300	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.332, 1.332, 1.332	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	Bond angles			
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5		
1	0	0.23	0/450	0.54	0/599		
2	1	0.24	0/416	0.48	0/554		
3	2	0.25	0/380	0.64	0/498		
4	3	0.23	0/513	0.52	0/676		
5	4	0.26	0/303	0.56	0/397		
6	В	0.24	1/2876~(0.0%)	0.70	0/4483		
7	С	0.24	0/2121	0.55	0/2852		
8	D	0.25	0/1586	0.50	0/2134		
9	Е	0.24	0/1571	0.48	0/2113		
10	F	0.25	0/1434	0.53	0/1926		
11	G	0.24	0/1343	0.48	0/1816		
12	Н	0.24	0/1122	0.48	0/1515		
13	J	0.24	0/1152	0.49	0/1551		
14	Κ	0.24	0/947	0.55	0/1268		
15	L	0.25	0/1054	0.57	0/1403		
16	М	0.25	0/1093	0.54	0/1460		
17	Ν	0.25	0/973	0.59	0/1301		
18	0	0.24	0/902	0.53	0/1209		
19	Р	0.25	0/929	0.55	0/1242		
20	Q	0.24	0/960	0.52	0/1278		
21	R	0.25	0/829	0.53	0/1107		
22	S	0.24	0/875	0.52	0/1170		
23	Т	0.29	0/744	0.51	0/994		
24	U	0.25	0/787	0.51	0/1051		
25	V	0.25	0/766	0.48	0/1025		
26	W	0.25	0/582	0.53	0/769		
27	Х	0.24	0/635	0.56	0/848		
28	Y	0.24	0/510	0.49	0/677		
29	Ζ	0.24	0/453	0.53	0/605		
30	А	0.16	1/69755~(0.0%)	0.72	8/108820~(0.0%)		
31	У	0.27	0/155	0.62	0/212		
31	Z	0.22	0/155	0.58	0/212		
All	All	0.19	2/98371~(0.0%)	0.68	8/147765~(0.0%)		

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
23	Т	0	1

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
30	А	1	G	OP3-P	-10.58	1.48	1.61
6	В	1	U	OP3-P	-10.57	1.48	1.61

The worst 5 of 8 bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
30	А	1913	A	OP1-P-O3'	-10.68	81.70	105.20
30	А	1913	A	OP2-P-O3'	-10.06	83.07	105.20
30	А	1914	С	OP1-P-OP2	7.08	130.22	119.60
30	А	2474	U	C2-N1-C1'	5.71	124.55	117.70
30	А	2321	U	C2-N1-C1'	5.58	124.40	117.70

There are no chirality outliers.

All (1) planarity outliers are listed below:

Mol	Chain	Res	Type	Group
23	Т	73	ARG	Sidechain

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	0	444	0	461	7	0
2	1	409	0	440	4	0
3	2	377	0	418	4	0
4	3	504	0	574	11	0
5	4	302	0	343	6	0
6	В	2572	0	1302	22	0

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
7	С	2082	0	2157	30	0
8	D	1565	0	1616	20	0
9	Е	1552	0	1619	35	0
10	F	1410	0	1447	29	0
11	G	1323	0	1374	11	0
12	Н	1111	0	1148	12	0
13	J	1129	0	1162	9	0
14	Κ	938	0	1012	10	0
15	L	1045	0	1117	27	0
16	М	1074	0	1157	11	0
17	Ν	960	0	1000	15	0
18	0	892	0	923	14	0
19	Р	917	0	965	16	0
20	Q	947	0	1022	23	0
21	R	816	0	839	8	0
22	S	868	0	934	15	0
23	Т	738	0	807	11	0
24	U	779	0	834	11	0
25	V	753	0	780	15	0
26	W	575	0	592	10	0
27	Х	625	0	655	8	0
28	Y	509	0	543	6	0
29	Ζ	449	0	491	10	0
30	А	62281	0	31323	520	0
31	у	148	0	152	0	0
31	Z	148	0	150	0	0
All	All	90242	0	59357	788	0

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

The worst 5 of 788 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
30:A:727:A:OP2	30:A:1431:A:O2'	1.88	0.91
30:A:177:G:OP2	30:A:177:G:N2	2.05	0.89
15:L:93:ASN:O	15:L:94:THR:OG1	1.91	0.88
30:A:1837:C:O2'	30:A:1927:A:N3	2.05	0.87
30:A:2343:U:HO2'	30:A:2373:G:HO2'	1.12	0.87

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percer	ntiles
1	0	54/56~(96%)	53~(98%)	1 (2%)	0	100	100
2	1	48/50~(96%)	47 (98%)	1 (2%)	0	100	100
3	2	44/46~(96%)	44 (100%)	0	0	100	100
4	3	62/64~(97%)	60~(97%)	1 (2%)	1 (2%)	8	29
5	4	36/38~(95%)	35~(97%)	1 (3%)	0	100	100
7	С	269/271~(99%)	258 (96%)	11 (4%)	0	100	100
8	D	207/209~(99%)	196 (95%)	11 (5%)	0	100	100
9	Е	199/201~(99%)	192 (96%)	6 (3%)	1 (0%)	25	55
10	F	175/177~(99%)	168 (96%)	7 (4%)	0	100	100
11	G	174/176~(99%)	170 (98%)	4 (2%)	0	100	100
12	Н	147/149~(99%)	140 (95%)	7 (5%)	0	100	100
13	J	140/142~(99%)	137 (98%)	3 (2%)	0	100	100
14	K	120/122~(98%)	116 (97%)	4 (3%)	0	100	100
15	L	141/143~(99%)	132 (94%)	9 (6%)	0	100	100
16	М	134/136~(98%)	130 (97%)	4 (3%)	0	100	100
17	Ν	118/120~(98%)	109 (92%)	9 (8%)	0	100	100
18	Ο	114/116~(98%)	113 (99%)	1 (1%)	0	100	100
19	Р	112/114 (98%)	109 (97%)	3 (3%)	0	100	100
20	Q	115/117~(98%)	113 (98%)	2 (2%)	0	100	100
21	R	101/103~(98%)	98~(97%)	2 (2%)	1 (1%)	13	40
22	S	109/110~(99%)	105 (96%)	4 (4%)	0	100	100
23	Т	91/93~(98%)	88 (97%)	3 (3%)	0	100	100
24	U	100/102~(98%)	89 (89%)	11 (11%)	0	100	100
25	V	92/94~(98%)	91 (99%)	1 (1%)	0	100	100
26	W	73/75~(97%)	69 (94%)	4 (6%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
27	Х	75/77~(97%)	74 (99%)	1 (1%)	0	100 100
28	Y	61/63~(97%)	58~(95%)	3~(5%)	0	100 100
29	Z	56/58~(97%)	55~(98%)	1 (2%)	0	100 100
31	У	15/17~(88%)	12 (80%)	3~(20%)	0	100 100
31	Z	15/17~(88%)	15~(100%)	0	0	100 100
All	All	3197/3256~(98%)	3076 (96%)	118 (4%)	3(0%)	50 77

Continued from previous page...

All (3) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
21	R	54	VAL
9	Е	83	VAL
4	3	31	ILE

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
1	0	47/47~(100%)	45~(96%)	2~(4%)	25	53
2	1	45/45~(100%)	44 (98%)	1 (2%)	47	68
3	2	38/38~(100%)	37~(97%)	1 (3%)	41	65
4	3	51/51~(100%)	49 (96%)	2(4%)	27	56
5	4	34/34~(100%)	34~(100%)	0	100	100
7	\mathbf{C}	216/216~(100%)	215~(100%)	1 (0%)	86	91
8	D	164/164~(100%)	164 (100%)	0	100	100
9	Ε	165/165~(100%)	162~(98%)	3~(2%)	54	74
10	F	148/148~(100%)	141~(95%)	7~(5%)	22	50
11	G	137/137~(100%)	135~(98%)	2(2%)	60	78
12	Н	$11\overline{4/114}~(100\%)$	114 (100%)	0	100	100
13	J	116/116~(100%)	115 (99%)	1 (1%)	75	86

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
14	Κ	103/103~(100%)	102~(99%)	1 (1%)	73	85
15	L	102/102~(100%)	101 (99%)	1 (1%)	73	85
16	М	109/109~(100%)	108~(99%)	1 (1%)	75	86
17	Ν	100/100~(100%)	98~(98%)	2 (2%)	50	71
18	Ο	86/86~(100%)	85~(99%)	1 (1%)	67	82
19	Р	99/99~(100%)	97~(98%)	2 (2%)	50	71
20	Q	89/89~(100%)	89 (100%)	0	100	100
21	R	84/84~(100%)	84 (100%)	0	100	100
22	S	94/93~(101%)	93~(99%)	1 (1%)	70	83
23	Т	80/80~(100%)	79~(99%)	1 (1%)	65	80
24	U	83/83~(100%)	83 (100%)	0	100	100
25	V	78/78~(100%)	77~(99%)	1 (1%)	65	80
26	W	57/57~(100%)	57~(100%)	0	100	100
27	Х	67/67~(100%)	67~(100%)	0	100	100
28	Y	55/55~(100%)	54 (98%)	1 (2%)	54	74
29	Ζ	48/48~(100%)	47 (98%)	1 (2%)	48	69
31	У	17/17~(100%)	16 (94%)	1 (6%)	16	42
31	Z	17/17~(100%)	17 (100%)	0	100	100
All	All	2643/2642~(100%)	2609~(99%)	34 (1%)	64	80

Continued from previous page...

5 of 34 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
22	S	77	ASP
23	Т	72	GLN
29	Ζ	29	ARG
10	F	11	VAL
10	F	7	TYR

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 16 such sidechains are listed below:

Mol	Chain	Res	Type
31	Z	2	ASN
26	W	72	ASN
20	Q	55	GLN

Continued from previous page...

Mol	Chain	Res	Type
25	V	49	ASN
17	Ν	18	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
30	А	2897/2904~(99%)	462 (15%)	18 (0%)
6	В	119/120~(99%)	14 (11%)	2(1%)
All	All	3016/3024~(99%)	476 (15%)	20 (0%)

5 of 476 RNA backbone outliers are listed below:

Mol	Chain	Res	Type
6	В	4	С
6	В	9	G
6	В	12	С
6	В	13	G
6	В	24	G

5 of 20 RNA pucker outliers are listed below:

Mol	Chain	Res	Type
30	А	1663	G
30	А	2326	С
30	А	2808	G
30	А	2655	G
30	А	549	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-51978. These allow visual inspection of the internal detail of the map and identification of artifacts.

Images derived from a raw map, generated by summing the deposited half-maps, are presented below the corresponding image components of the primary map to allow further visual inspection and comparison with those of the primary map.

6.1 Orthogonal projections (i)

6.1.1 Primary map

6.1.2 Raw map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 150

Z Index: 150

6.2.2 Raw map

X Index: 150

Y Index: 150

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 145

Z Index: 147

6.3.2 Raw map

X Index: 145

Y Index: 155

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

6.4.2 Raw map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.1. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.5.2 Raw map

These images show the 3D surface of the raw map. The raw map's contour level was selected so that its surface encloses the same volume as the primary map does at its recommended contour level.

Mask visualisation (i) 6.6

This section shows the 3D surface view of the primary map at 50% transparency overlaid with the specified mask at 0% transparency

A mask typically either:

- Encompasses the whole structure
- Separates out a domain, a functional unit, a monomer or an area of interest from a larger structure

$emd_{51978}msk_{1.map}$ (i) 6.6.1

Υ

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 824 nm^3 ; this corresponds to an approximate mass of 744 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.325 ${\rm \AA^{-1}}$

8 Fourier-Shell correlation (i)

Fourier-Shell Correlation (FSC) is the most commonly used method to estimate the resolution of single-particle and subtomogram-averaged maps. The shape of the curve depends on the imposed symmetry, mask and whether or not the two 3D reconstructions used were processed from a common reference. The reported resolution is shown as a black line. A curve is displayed for the half-bit criterion in addition to lines showing the 0.143 gold standard cut-off and 0.5 cut-off.

8.1 FSC (i)

*Reported resolution corresponds to spatial frequency of 0.325 $\mathrm{\AA^{-1}}$

8.2 Resolution estimates (i)

$\begin{bmatrix} Bosolution ostimato (Å) \end{bmatrix}$	Estimation criterion (FSC cut-off)		
resolution estimate (A)	0.143	0.5	Half-bit
Reported by author	3.08	-	-
Author-provided FSC curve	3.08	3.48	3.12
Unmasked-calculated*	4.15	7.34	4.33

*Resolution estimate based on FSC curve calculated by comparison of deposited half-maps. The value from deposited half-maps intersecting FSC 0.143 CUT-OFF 4.15 differs from the reported value 3.08 by more than 10 %

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-51978 and PDB model 9HA6. Per-residue inclusion information can be found in section 3 on page 9.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.1 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.1).

9.4 Atom inclusion (i)

At the recommended contour level, 92% of all backbone atoms, 86% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.1) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	Q-score
All	0.8630	0.4120
0	0.8670	0.4750
1	0.6680	0.4040
2	0.8900	0.4910
3	0.8530	0.4570
4	0.7840	0.4130
А	0.8950	0.4150
В	0.9310	0.4110
С	0.8560	0.4680
D	0.8220	0.4430
Е	0.7800	0.3860
F	0.6700	0.2910
G	0.7310	0.3400
Н	0.2230	0.1780
J	0.8640	0.4700
Κ	0.7340	0.3650
L	0.8030	0.4030
М	0.8370	0.4500
Ν	0.8620	0.4520
О	0.7970	0.3850
Р	0.7340	0.3880
Q	0.8810	0.4770
R	0.8180	0.4260
S	0.8460	0.4630
Т	0.8100	0.4360
U	0.7900	0.3910
V	0.8280	0.4170
W	0.8610	0.4820
X	0.8550	0.4540
Y	0.7470	0.3460
Z	0.8120	0.4540
У	0.4100	0.2240
Z	0.4460	0.3410

