

Full wwPDB NMR Structure Validation Report (i)

Oct 26, 2024 – 07:33 AM EDT

PDB ID : 1HYM

Title : HYDROLYZED TRYPSIN INHIBITOR (CMTI-V, MINIMIZED AVERAGE

NMR STRUCTURE)

Authors: Cai, M.; Gong, Y.; Prakash, O.; Krishnamoorthi, R.

Deposited on : 1995-06-12

This is a Full wwPDB NMR Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/NMRValidationReportHelp
with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

Mol Probity : 4.02b-467

Mogul : 2022.3.0, CSD as543be (2022)

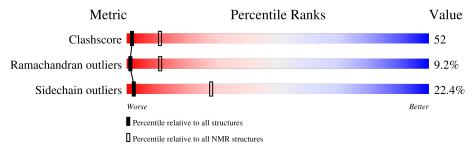
Percentile statistics : 20231227.v01 (using entries in the PDB archive December 27th 2023)

wwPDB-RCI : v 1n 11 5 13 A (Berjanski et al., 2005)

PANAV : Wang et al. (2010)

wwPDB-ShiftChecker : v1.2

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $SOLUTION\ NMR$

The overall completeness of chemical shifts assignment was not calculated.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$\begin{array}{c} \text{Whole archive} \\ (\#\text{Entries}) \end{array}$	$egin{array}{c} { m NMR \ archive} \ (\#{ m Entries}) \end{array}$
Clashscore	210492	14027
Ramachandran outliers	207382	12486
Sidechain outliers	206894	12463

The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain			
1	A	45	42% 36% 22%			
2	В	24	21%	54%	25%	

2 Ensemble composition and analysis (i)

This entry contains 1 models. Identification of well-defined residues and clustering analysis are not possible.

3 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 1068 atoms, of which 546 are hydrogens and 0 are deuteriums.

 \bullet Molecule 1 is a protein called HYDROLYZED CUCURBITA MAXIMA TRYPSIN INHIBITOR V.

Mol	Chain	Residues	Atoms				Trace		
1	Λ	45	Total	С	Н	N	О	S	0
1	A	45	655	202	333	57	62	1	U

 \bullet Molecule 2 is a protein called HYDROLYZED CUCURBITA MAXIMA TRYPSIN INHIBITOR V.

Mol	Chain	Residues	Atoms				Trace		
9	D	24	Total	С	Н	N	О	S	0
2	Б	24	413	126	213	43	30	1	U

4 Residue-property plots (i)

These plots are provided for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey.

• Molecule 1: HYDROLYZED CUCURBITA MAXIMA TRYPSIN INHIBITOR V

Refinement protocol and experimental data overview (i) 5

Of the? calculated structures, 1 were deposited, based on the following criterion:?.

The authors did not provide any information on software used for structure solution, optimization or refinement.

No chemical shift data was provided.

6 Model quality (i)

6.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ACE

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the (average) root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Chain	Bor	nd lengths	Bond angles		
MIOI	Chain	RMSZ	#Z>5	RMSZ	#Z>5	
1	A	1.10	2/326 ($0.6%$)	1.44	4/442 (0.9%)	
2	В	1.09	1/204 (0.5%)	1.67	5/273 (1.8%)	
All	All	1.10	3/530 (0.6%)	1.53	9/715 (1.3%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	Chirality	Planarity
1	A	0	1
2	В	0	3
All	All	0	4

All bond outliers are listed below. They are sorted according to the Z-score.

Mol	Chain	Res	Type	Atoms	Z	Observed(A)	Ideal(A)
2	В	54	TRP	CG-CD2	-6.13	1.33	1.43
1	A	9	TRP	CG-CD2	-5.90	1.33	1.43
1	A	11	HIS	CG-ND1	-5.25	1.27	1.38

All angle outliers are listed below. They are sorted according to the Z-score.

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$Observed(^o)$	$\operatorname{Ideal}({}^o)$
2	В	54	TRP	NE1-CE2-CZ2	8.07	139.28	130.40
1	A	9	TRP	NE1-CE2-CZ2	7.93	139.13	130.40
1	A	9	TRP	CD1-NE1-CE2	6.78	115.10	109.00
2	В	54	TRP	CD1-NE1-CE2	6.73	115.06	109.00
2	В	54	TRP	CG-CD1-NE1	-6.53	103.57	110.10
1	A	9	TRP	CG-CD1-NE1	-6.50	103.60	110.10

Continued from previous page...

Mol	Chain	Res	Type	Atoms	\mathbf{Z}	$\operatorname{Observed}(^{o})$	$\operatorname{Ideal}({}^{o})$
2	В	54	TRP	NE1-CE2-CD2	-6.49	100.81	107.30
1	A	9	TRP	NE1-CE2-CD2	-6.38	100.92	107.30
2	В	54	TRP	CG-CD2-CE3	-5.15	129.26	133.90

There are no chirality outliers.

All planar outliers are listed below.

Mol	Chain	Res	Type	Group
1	A	26	ARG	Sidechain
2	В	47	ARG	Sidechain
2	В	52	ARG	Sidechain
2	В	58	ARG	Sidechain

6.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble.

Mol	Chain	Non-H	H(model)	H(added)	Clashes
1	A	322	333	333	36
2	В	200	213	210	29
All	All	522	546	543	55

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 52.

All clashes are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	$\operatorname{Clash}(ext{\AA})$	$\operatorname{Distance}(\text{\AA})$
1:A:6:LYS:HB2	1:A:27:GLN:HG2	0.83	1.48
1:A:13:VAL:HG13	2:B:62:VAL:HA	0.81	1.52
1:A:37:GLU:HA	2:B:55:VAL:HG22	0.78	1.53
1:A:36:LEU:HD12	2:B:54:TRP:HA	0.72	1.61
1:A:28:ASN:O	1:A:31:VAL:HG22	0.67	1.88
1:A:12:LEU:HG	1:A:15:VAL:HG21	0.66	1.67
2:B:54:TRP:HB2	2:B:62:VAL:HG23	0.65	1.67
1:A:28:ASN:OD1	1:A:31:VAL:HG13	0.64	1.91
1:A:36:LEU:HD12	1:A:36:LEU:O	0.63	1.93
2:B:56:ASN:OD1	2:B:60:LEU:HB2	0.61	1.94

 $Continued\ from\ previous\ page...$

Atom-1	Atom-2	Clash(Å)	$\operatorname{Distance}(\text{\AA})$
1:A:9:TRP:HB3	1:A:10:PRO:HD2	0.60	1.72
1:A:37:GLU:HA	2:B:55:VAL:CG2	0.59	2.25
1:A:22:ALA:O	1:A:26:ARG:HB2	0.58	1.99
2:B:54:TRP:CB	2:B:62:VAL:HG23	0.57	2.28
2:B:55:VAL:HG23	2:B:55:VAL:O	0.56	1.99
2:B:56:ASN:HD22	2:B:62:VAL:HG13	0.56	1.61
1:A:37:GLU:HG2	2:B:55:VAL:CG2	0.55	2.31
2:B:54:TRP:C	2:B:62:VAL:HG23	0.55	2.22
1:A:43:THR:HG23	1:A:43:THR:O	0.55	2.01
1:A:28:ASN:HB3	1:A:31:VAL:CG2	0.55	2.32
1:A:6:LYS:HD3	1:A:9:TRP:CD1	0.53	2.38
2:B:56:ASN:ND2	2:B:62:VAL:HG13	0.53	2.19
1:A:15:VAL:O	1:A:19:VAL:HB	0.52	2.05
1:A:12:LEU:O	1:A:15:VAL:HG23	0.51	2.05
2:B:53:ILE:HG23	2:B:63:SER:OG	0.51	2.05
1:A:28:ASN:HB3	1:A:31:VAL:HG22	0.51	1.83
1:A:36:LEU:CD1	2:B:54:TRP:HA	0.50	2.33
1:A:6:LYS:HB3	1:A:9:TRP:CE2	0.50	2.42
1:A:12:LEU:CD2	1:A:15:VAL:HG11	0.50	2.36
2:B:49:ASN:OD1	2:B:50:ARG:HG3	0.49	2.07
2:B:54:TRP:O	2:B:62:VAL:N	0.48	2.47
1:A:9:TRP:CB	1:A:10:PRO:HD2	0.47	2.38
1:A:12:LEU:O	1:A:15:VAL:CG2	0.47	2.62
2:B:53:ILE:HG12	2:B:63:SER:OG	0.47	2.09
2:B:52:ARG:HH11	2:B:52:ARG:HG2	0.47	1.69
2:B:57:LYS:C	2:B:59:GLY:N	0.46	2.67
1:A:12:LEU:C	1:A:15:VAL:HG23	0.46	2.31
2:B:52:ARG:O	2:B:64:PRO:HD2	0.46	2.11
2:B:55:VAL:CG2	2:B:55:VAL:O	0.46	2.63
1:A:15:VAL:O	1:A:15:VAL:HG12	0.43	2.13
2:B:57:LYS:O	2:B:59:GLY:N	0.43	2.51
1:A:36:LEU:HD13	2:B:54:TRP:CE3	0.43	2.49
1:A:12:LEU:HD22	1:A:23:ILE:HD12	0.43	1.90
1:A:36:LEU:CD1	2:B:54:TRP:CD2	0.42	3.02
2:B:56:ASN:O	2:B:58:ARG:N	0.42	2.52
2:B:56:ASN:C	2:B:58:ARG:N	0.42	2.71
1:A:24:ILE:HD13	2:B:51:VAL:HG11	0.42	1.90
2:B:57:LYS:C	2:B:59:GLY:H	0.41	2.18
1:A:28:ASN:CG	1:A:31:VAL:CG1	0.41	2.89
1:A:9:TRP:CB	1:A:10:PRO:CD	0.41	2.99
1:A:36:LEU:CD1	2:B:53:ILE:O	0.41	2.69
1:A:12:LEU:HA	1:A:15:VAL:HG21	0.41	1.93

Continued from previous page...

Atom-1	Atom-2	$\operatorname{Clash}(\text{\AA})$	$\operatorname{Distance}(\text{\AA})$
1:A:15:VAL:O	1:A:16:GLY:O	0.41	2.39
1:A:28:ASN:C	1:A:30:ASN:H	0.40	2.18
1:A:43:THR:O	1:A:44:LYS:O	0.40	2.39

6.3 Torsion angles (i)

6.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the backbone conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	A	43/45 (96%)	31 (72%)	7 (16%)	5 (12%)	1 7
2	В	22/24 (92%)	18 (82%)	3 (14%)	1 (5%)	3 27
All	All	$65/69 \ (94\%)$	49 (75%)	10 (15%)	6 (9%)	1 11

All 6 Ramachandran outliers are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type
1	A	4	PRO
1	A	6	LYS
1	A	10	PRO
1	A	15	VAL
1	A	16	GLY
2	В	67	ILE

6.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the sidechain conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Pe	rce	entiles
1	A	36/36 (100%)	28 (78%)	8 (22%)		2	28
2	В	22/22 (100%)	17 (77%)	5 (23%)		2	27

Continued from previous page...

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
All	All	58/58 (100%)	45 (78%)	13 (22%)	2	28

All 13 residues with a non-rotameric sidechain are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type
1	A	2	SER
1	A	11	HIS
1	A	12	LEU
1	A	18	SER
1	A	36	LEU
1	A	40	THR
1	A	42	VAL
1	A	44	LYS
2	В	46	PHE
2	В	57	LYS
2	В	63	SER
2	В	66	ARG
2	В	67	ILE

6.3.3 RNA (i)

There are no RNA molecules in this entry.

6.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

6.6 Ligand geometry (i)

There are no ligands in this entry.

6.7 Other polymers (i)

There are no such molecules in this entry.

6.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

7 Chemical shift validation (i)

No chemical shift data were provided

