PDB ID : 6I53
EMDB ID : EMD-4411
Title : Cryo-EM structure of the human synaptic alpha1-beta3-gamma2 GABAA receptor in complex with Megabody38 in a lipid nanodisc
Deposited on : 2018-11-12
Resolution : 3.20 Å (reported)

This is a Full wwPDB EM Model Validation Report for a publicly released PDB/EMDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
with specific help available everywhere you see the symbol.

The following versions of software and data (see references) were used in the production of this report:

- MolProbity : 4.0.2b-467
- Mogul : 1.8.5 (274361), CSD as541be (2020)
- buster-report : 1.1.7 (2018)
- Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)
- Ideal geometry (proteins) : Engh & Huber (2001)
- Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
- Validation Pipeline (wwPDB-VP) : 2.13.dev2
1 Overall quality at a glance

The following experimental techniques were used to determine the structure:

ELECTRON MICROSCOPY

The reported resolution of this entry is 3.20 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>EM structures (#Entries)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clashscore</td>
<td>158937</td>
<td>4297</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>154571</td>
<td>4023</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>154315</td>
<td>3826</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments on the bar indicate the fraction of residues that contain outliers for ≥ 3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq 5\%$.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>473</td>
<td>64% 7% 29%</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>473</td>
<td>63% 8% 29%</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>464</td>
<td>66% 9% 25%</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>464</td>
<td>64% 10% 25%</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>495</td>
<td>58% 8% 34%</td>
</tr>
<tr>
<td>4</td>
<td>G</td>
<td>123</td>
<td>86% 14%</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>5</td>
<td>100%</td>
</tr>
<tr>
<td>5</td>
<td>M</td>
<td>5</td>
<td>100%</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>2</td>
<td>50% 50%</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>K</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>L</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>I</td>
<td>7</td>
<td>71% 29%</td>
</tr>
<tr>
<td>8</td>
<td>J</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>
2 Entry composition

There are 10 unique types of molecules in this entry. The entry contains 15362 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called Gamma-aminobutyric acid receptor subunit beta-3.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E</td>
<td>336</td>
<td>Total C N O S 2754 1803 449 487 15</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>338</td>
<td>Total C N O S 2770 1812 452 490 16</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 2 is a protein called Gamma-aminobutyric acid receptor subunit alpha-1.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>349</td>
<td>Total C N O S 2823 1825 475 507 16</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>347</td>
<td>Total C N O S 2805 1814 470 505 16</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

There are 24 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>-33</td>
<td>LYS</td>
<td>ARG</td>
<td>conflict</td>
<td>UNP P14867</td>
</tr>
<tr>
<td>A</td>
<td>-25</td>
<td>TYR</td>
<td>CYS</td>
<td>conflict</td>
<td>UNP P14867</td>
</tr>
<tr>
<td>A</td>
<td>-20</td>
<td>THR</td>
<td>ILE</td>
<td>conflict</td>
<td>UNP P14867</td>
</tr>
<tr>
<td>A</td>
<td>-18</td>
<td>PHE</td>
<td>LEU</td>
<td>conflict</td>
<td>UNP P14867</td>
</tr>
<tr>
<td>A</td>
<td>-7</td>
<td>ASP</td>
<td>-</td>
<td>insertion</td>
<td>UNP P14867</td>
</tr>
<tr>
<td>A</td>
<td>-6</td>
<td>TYR</td>
<td>-</td>
<td>insertion</td>
<td>UNP P14867</td>
</tr>
<tr>
<td>A</td>
<td>-5</td>
<td>LYS</td>
<td>-</td>
<td>insertion</td>
<td>UNP P14867</td>
</tr>
<tr>
<td>A</td>
<td>-4</td>
<td>ASP</td>
<td>-</td>
<td>insertion</td>
<td>UNP P14867</td>
</tr>
<tr>
<td>A</td>
<td>-3</td>
<td>ASP</td>
<td>-</td>
<td>insertion</td>
<td>UNP P14867</td>
</tr>
<tr>
<td>A</td>
<td>-2</td>
<td>ASP</td>
<td>-</td>
<td>insertion</td>
<td>UNP P14867</td>
</tr>
<tr>
<td>A</td>
<td>-1</td>
<td>ASP</td>
<td>-</td>
<td>insertion</td>
<td>UNP P14867</td>
</tr>
<tr>
<td>A</td>
<td>0</td>
<td>LYS</td>
<td>-</td>
<td>insertion</td>
<td>UNP P14867</td>
</tr>
<tr>
<td>D</td>
<td>-33</td>
<td>LYS</td>
<td>ARG</td>
<td>conflict</td>
<td>UNP P14867</td>
</tr>
<tr>
<td>D</td>
<td>-25</td>
<td>TYR</td>
<td>CYS</td>
<td>conflict</td>
<td>UNP P14867</td>
</tr>
<tr>
<td>D</td>
<td>-20</td>
<td>THR</td>
<td>ILE</td>
<td>conflict</td>
<td>UNP P14867</td>
</tr>
<tr>
<td>D</td>
<td>-18</td>
<td>PHE</td>
<td>LEU</td>
<td>conflict</td>
<td>UNP P14867</td>
</tr>
<tr>
<td>D</td>
<td>-7</td>
<td>ASP</td>
<td>-</td>
<td>insertion</td>
<td>UNP P14867</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>-6</td>
<td>TYR</td>
<td>-</td>
<td>insertion</td>
<td>UNP P14867</td>
</tr>
<tr>
<td>D</td>
<td>-5</td>
<td>LYS</td>
<td>-</td>
<td>insertion</td>
<td>UNP P14867</td>
</tr>
<tr>
<td>D</td>
<td>-4</td>
<td>ASP</td>
<td>-</td>
<td>insertion</td>
<td>UNP P14867</td>
</tr>
<tr>
<td>D</td>
<td>-3</td>
<td>ASP</td>
<td>-</td>
<td>insertion</td>
<td>UNP P14867</td>
</tr>
<tr>
<td>D</td>
<td>-2</td>
<td>ASP</td>
<td>-</td>
<td>insertion</td>
<td>UNP P14867</td>
</tr>
<tr>
<td>D</td>
<td>-1</td>
<td>ASP</td>
<td>-</td>
<td>insertion</td>
<td>UNP P14867</td>
</tr>
<tr>
<td>D</td>
<td>0</td>
<td>LYS</td>
<td>-</td>
<td>insertion</td>
<td>UNP P14867</td>
</tr>
</tbody>
</table>

- Molecule 3 is a protein called Gamma-aminobutyric acid receptor subunit gamma-2.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>C</td>
<td>328</td>
<td>2701</td>
<td>1766</td>
<td>443</td>
</tr>
</tbody>
</table>

There are 20 discrepancies between the modelled and reference sequences:

<table>
<thead>
<tr>
<th>Chain</th>
<th>Residue</th>
<th>Modelled</th>
<th>Actual</th>
<th>Comment</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>437</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P18507</td>
</tr>
<tr>
<td>C</td>
<td>438</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P18507</td>
</tr>
<tr>
<td>C</td>
<td>439</td>
<td>SER</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P18507</td>
</tr>
<tr>
<td>C</td>
<td>440</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P18507</td>
</tr>
<tr>
<td>C</td>
<td>441</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P18507</td>
</tr>
<tr>
<td>C</td>
<td>442</td>
<td>SER</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P18507</td>
</tr>
<tr>
<td>C</td>
<td>443</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P18507</td>
</tr>
<tr>
<td>C</td>
<td>444</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P18507</td>
</tr>
<tr>
<td>C</td>
<td>445</td>
<td>SER</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P18507</td>
</tr>
<tr>
<td>C</td>
<td>446</td>
<td>GLY</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P18507</td>
</tr>
<tr>
<td>C</td>
<td>447</td>
<td>LYS</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P18507</td>
</tr>
<tr>
<td>C</td>
<td>448</td>
<td>THR</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P18507</td>
</tr>
<tr>
<td>C</td>
<td>449</td>
<td>GLU</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P18507</td>
</tr>
<tr>
<td>C</td>
<td>450</td>
<td>THR</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P18507</td>
</tr>
<tr>
<td>C</td>
<td>451</td>
<td>SER</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P18507</td>
</tr>
<tr>
<td>C</td>
<td>452</td>
<td>GLN</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P18507</td>
</tr>
<tr>
<td>C</td>
<td>453</td>
<td>VAL</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P18507</td>
</tr>
<tr>
<td>C</td>
<td>454</td>
<td>ALA</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P18507</td>
</tr>
<tr>
<td>C</td>
<td>455</td>
<td>PRO</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P18507</td>
</tr>
<tr>
<td>C</td>
<td>456</td>
<td>ALA</td>
<td>-</td>
<td>expression tag</td>
<td>UNP P18507</td>
</tr>
</tbody>
</table>

- Molecule 4 is a protein called Megabody38.
Molecule 5 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Molecule 6 is an oligosaccharide called 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Molecule 7 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.
Molecule 8 is an oligosaccharide called alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose.

Molecule 9 is (2S)-3-(hexadecanoyloxy)-2-[(9Z)-octadec-9-enoyloxy]propyl 2-(trimethylammonio)ethyl phosphate (three-letter code: POV) (formula: C_{42}H_{82}NO_{8}P).

Molecule 10 is [(2R)-2-octanoyloxy-3-oxidanyl-[(1R,2R,3S,4R,5R,6S)-2,3,6-tris(oxidanyl

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>I</td>
<td>7</td>
<td>Total</td>
<td>C</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>83</td>
<td>46</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>J</td>
<td>6</td>
<td>Total</td>
<td>C</td>
<td>N</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>72</td>
<td>40</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>E</td>
<td>1</td>
<td>Total</td>
<td>C</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>26</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>1</td>
<td>Total</td>
<td>C</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>26</td>
<td>8</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>1</td>
<td>Total</td>
<td>C</td>
<td>O</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>35</td>
<td>26</td>
<td>8</td>
</tr>
</tbody>
</table>
\(-4,5\)-diphosphonoxy-cyclohexyl|oxy-phosphoryloxy-propyl| octanoate (three-letter code: PIO) (formula: C_{25}H_{49}O_{19}P_{3}).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>A</td>
<td>1</td>
<td>Total</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C O P</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>47 25 19 3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>D</td>
<td>1</td>
<td>Total</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>C O P</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>47 25 19 3</td>
<td></td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Gamma-aminobutyric acid receptor subunit beta-3

Chain E:

• Molecule 1: Gamma-aminobutyric acid receptor subunit beta-3

Chain B:

• Molecule 2: Gamma-aminobutyric acid receptor subunit alpha-1

Chain A:
• Molecule 2: Gamma-aminobutyric acid receptor subunit alpha-1

Chain D:

• Molecule 3: Gamma-aminobutyric acid receptor subunit gamma-2

Chain C:

• Molecule 4: Megabody38

Chain G:

Chain F:

Chain M:

• Molecule 6: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain H:

• Molecule 6: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain K:

• Molecule 6: 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain L:

• Molecule 7: alpha-D-mannopyranose-(1-3)-[alpha-D-mannopyranose-(1-6)]alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain I:
• Molecule 8: alpha-D-mannopyranose-(1-3)-alpha-D-mannopyranose-(1-6)-[alpha-D-mannopyranose-(1-3)]beta-D-mannopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose

Chain J:
4 Experimental information

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM reconstruction method</td>
<td>SINGLE PARTICLE</td>
<td>Depositor</td>
</tr>
<tr>
<td>Imposed symmetry</td>
<td>POINT, C1</td>
<td>Depositor</td>
</tr>
<tr>
<td>Number of particles used</td>
<td>55449</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution determination method</td>
<td>FSC 0.143 CUT-OFF</td>
<td>Depositor</td>
</tr>
<tr>
<td>CTF correction method</td>
<td>PHASE FLIPPING AND AMPLITUDE CORRECTION; CTF parameters were estimated using GCTF and CTF correction performed in RELION (full phase and amplitude correction).</td>
<td>Depositor</td>
</tr>
<tr>
<td>Microscope</td>
<td>FEI TITAN KRIOS</td>
<td>Depositor</td>
</tr>
<tr>
<td>Voltage (kV)</td>
<td>300</td>
<td>Depositor</td>
</tr>
<tr>
<td>Electron dose (e⁻/Å²)</td>
<td>30.84</td>
<td>Depositor</td>
</tr>
<tr>
<td>Minimum defocus (nm)</td>
<td>500</td>
<td>Depositor</td>
</tr>
<tr>
<td>Maximum defocus (nm)</td>
<td>700</td>
<td>Depositor</td>
</tr>
<tr>
<td>Magnification</td>
<td>75000</td>
<td>Depositor</td>
</tr>
<tr>
<td>Image detector</td>
<td>FEI FALCON III (4k x 4k)</td>
<td>Depositor</td>
</tr>
</tbody>
</table>
5 Model quality

5.1 Standard geometry

Bond lengths and bond angles in the following residue types are not validated in this section: POV, PIO, BMA, NAG, MAN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>0.29</td>
<td>0/2844</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>0.29</td>
<td>0/2828</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>0.29</td>
<td>0/2894</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>0.29</td>
<td>0/2876</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>0.29</td>
<td>0/2775</td>
</tr>
<tr>
<td>4</td>
<td>G</td>
<td>0.29</td>
<td>0/970</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0.29</td>
<td>0/15187</td>
</tr>
</tbody>
</table>

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>2770</td>
<td>0</td>
<td>2759</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>2754</td>
<td>0</td>
<td>2744</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>2823</td>
<td>0</td>
<td>2812</td>
<td>27</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>2805</td>
<td>0</td>
<td>2790</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>2701</td>
<td>0</td>
<td>2693</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>G</td>
<td>949</td>
<td>0</td>
<td>901</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>F</td>
<td>61</td>
<td>0</td>
<td>52</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Mol Chain Non-H H(model) H(added) Clashes Symm-Clashes

<p>| | | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>M</td>
<td>61</td>
<td>0</td>
<td>52</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>28</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>K</td>
<td>28</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>L</td>
<td>28</td>
<td>0</td>
<td>25</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>T</td>
<td>83</td>
<td>0</td>
<td>70</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>J</td>
<td>72</td>
<td>0</td>
<td>61</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>35</td>
<td>0</td>
<td>41</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>35</td>
<td>0</td>
<td>41</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>35</td>
<td>0</td>
<td>41</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>47</td>
<td>0</td>
<td>44</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>D</td>
<td>47</td>
<td>0</td>
<td>44</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>15362</td>
<td>0</td>
<td>15220</td>
<td>122</td>
<td>0</td>
</tr>
</tbody>
</table>

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

All (122) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:D:391:LYS:HG2</td>
<td>2:D:394:ARG:HH21</td>
<td>1.61</td>
<td>0.66</td>
</tr>
<tr>
<td>3:C:48:VAL:HG12</td>
<td>3:C:49:LYS:HG3</td>
<td>1.80</td>
<td>0.64</td>
</tr>
<tr>
<td>1:E:98:PHE:HB2</td>
<td>1:E:101:ASP:HB2</td>
<td>1.83</td>
<td>0.61</td>
</tr>
<tr>
<td>3:C:251:SER:HB3</td>
<td>3:C:272:THR:HG21</td>
<td>1.82</td>
<td>0.60</td>
</tr>
<tr>
<td>3:C:254:SER:HB3</td>
<td>3:C:268:LEU:HD22</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>2:A:44:ASP:HB3</td>
<td>2:A:67:ARG:HB2</td>
<td>1.87</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:235:LEU:HD22</td>
<td>3:C:311:LEU:HD23</td>
<td>1.86</td>
<td>0.56</td>
</tr>
<tr>
<td>1:B:85:ASN:ND2</td>
<td>1:B:112:LYS:O</td>
<td>2.39</td>
<td>0.56</td>
</tr>
<tr>
<td>2:D:44:ASP:HB3</td>
<td>2:D:67:ARG:HB2</td>
<td>1.87</td>
<td>0.55</td>
</tr>
<tr>
<td>1:E:43:ASP:HB3</td>
<td>1:E:62:TYR:HB2</td>
<td>1.87</td>
<td>0.55</td>
</tr>
<tr>
<td>2:A:274:ARG:NH1</td>
<td>2:A:287:ASP:OD2</td>
<td>2.40</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:272:LEU:HD13</td>
<td>1:B:279:LYS:HE3</td>
<td>1.88</td>
<td>0.54</td>
</tr>
<tr>
<td>4:G:96:THR:HG23</td>
<td>4:G:120:THR:HA</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>2:D:259:GLY:HA3</td>
<td>2:D:301:LEU:HD13</td>
<td>1.90</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:43:ASP:HB3</td>
<td>1:B:62:TYR:HB2</td>
<td>1.88</td>
<td>0.54</td>
</tr>
<tr>
<td>2:A:144:GLU:OE2</td>
<td>4:G:27:ARG:NH1</td>
<td>2.40</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:41:ASN:ND2</td>
<td>1:B:174:ALA:O</td>
<td>2.41</td>
<td>0.54</td>
</tr>
<tr>
<td>2:D:156:LYS:HG2</td>
<td>2:D:214:THR:HG22</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>1:E:66:TYR:HE1</td>
<td>1:E:125:LEU:HD13</td>
<td>1.73</td>
<td>0.54</td>
</tr>
<tr>
<td>1:E:142:ARG:NH2</td>
<td>1:E:446:TYR:O</td>
<td>2.42</td>
<td>0.53</td>
</tr>
<tr>
<td>2:D:227:VAL:HA</td>
<td>2:D:231:TYR:HB2</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>3:C:158:PHE:HB3</td>
<td>3:C:294:THR:HB</td>
<td>1.91</td>
<td>0.53</td>
</tr>
<tr>
<td>3:C:63:GLY:HA2</td>
<td>3:C:197:ARG:HB2</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>2:A:117:LYS:HG2</td>
<td>2:A:131:MET:HG2</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>1:E:42:ILE:HB</td>
<td>1:E:175:VAL:HG22</td>
<td>1.92</td>
<td>0.52</td>
</tr>
<tr>
<td>4:G:29:PHE:O</td>
<td>4:G:71:ARG:NH2</td>
<td>2.38</td>
<td>0.52</td>
</tr>
<tr>
<td>2:D:179:VAL:O</td>
<td>2:D:196:GLN:NE2</td>
<td>2.44</td>
<td>0.51</td>
</tr>
<tr>
<td>2:D:274:ARG:NH1</td>
<td>2:D:287:ASP:OD2</td>
<td>2.43</td>
<td>0.51</td>
</tr>
<tr>
<td>3:C:406:ARG:HD3</td>
<td>3:C:409:LYS:HE2</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>2:D:149:ASP:OD1</td>
<td>2:D:221:ARG:NH1</td>
<td>2.43</td>
<td>0.51</td>
</tr>
<tr>
<td>3:C:263:PRO:HB2</td>
<td>2:D:253:PRO:HB3</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>2:D:394:ARG:HG2</td>
<td>2:D:397:ARG:HH21</td>
<td>1.76</td>
<td>0.51</td>
</tr>
<tr>
<td>1:E:179:GLU:HG2</td>
<td>4:G:74:ALA:HB2</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:42:ILE:HB</td>
<td>1:B:175:VAL:HG22</td>
<td>1.92</td>
<td>0.50</td>
</tr>
<tr>
<td>3:C:106:ILE:HD12</td>
<td>3:C:131:LEU:HD21</td>
<td>1.92</td>
<td>0.50</td>
</tr>
<tr>
<td>4:G:66:ARG:NH2</td>
<td>4:G:89:ASP:OD2</td>
<td>2.42</td>
<td>0.50</td>
</tr>
<tr>
<td>2:D:21:ARG:HH22</td>
<td>2:D:77:PHE:HA</td>
<td>1.76</td>
<td>0.50</td>
</tr>
<tr>
<td>1:E:303:ASN:HD22</td>
<td>2:D:247:LEU:HD22</td>
<td>1.76</td>
<td>0.50</td>
</tr>
<tr>
<td>4:G:82:LEU:HD21</td>
<td>4:G:93:TYR:HE2</td>
<td>1.76</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:223:LEU:HD11</td>
<td>3:C:293:VAL:HG22</td>
<td>1.94</td>
<td>0.50</td>
</tr>
<tr>
<td>1:B:254:GLY:HA3</td>
<td>1:B:296:LEU:HD13</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>2:D:88:ASN:ND2</td>
<td>2:D:115:PRO:O</td>
<td>2.40</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:236:SER:HB3</td>
<td>1:B:257:THR:HG21</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:275:ILE:HD11</td>
<td>1:E:279:LYS:HD3</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>2:A:146:PHE:HB3</td>
<td>2:A:284:THR:HB</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>3:C:317:LEU:HD12</td>
<td>3:C:410:MET:HB3</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>4:G:67:PHE:HE1</td>
<td>4:G:82:LEU:HG</td>
<td>1.78</td>
<td>0.48</td>
</tr>
<tr>
<td>2:A:99:THR:HG1</td>
<td>2:A:169:TYR:HH</td>
<td>1.60</td>
<td>0.48</td>
</tr>
<tr>
<td>2:D:249:ARG:NH1</td>
<td>10:D:501:PIO:O6</td>
<td>2.46</td>
<td>0.48</td>
</tr>
<tr>
<td>2:A:179:VAL:O</td>
<td>2:A:196:GLN:NE2</td>
<td>2.46</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:66:TYR:HE1</td>
<td>1:B:125:LEU:HD13</td>
<td>1.78</td>
<td>0.48</td>
</tr>
<tr>
<td>1:E:269:ARG:HH11</td>
<td>2:D:229:GLN:HB3</td>
<td>1.78</td>
<td>0.48</td>
</tr>
<tr>
<td>Atom-1</td>
<td>Atom-2</td>
<td>Interatomic distance (Å)</td>
<td>Clash overlap (Å)</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td>--------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>2:D:146:PH:HB3</td>
<td>2:D:284:THR:HB</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:E:272:LEU:HD11</td>
<td>1:E:279:LYS:HE3</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>4:G:38:ARG:NH1</td>
<td>4:G:89:ASP:OD1</td>
<td>2.48</td>
<td>0.47</td>
</tr>
<tr>
<td>3:C:150:GLU:OE2</td>
<td>3:C:152:GLN:NE2</td>
<td>2.46</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:146:ASP:OD2</td>
<td>1:B:148:GLN:NE2</td>
<td>2.46</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:107:HIS:NE2</td>
<td>1:B:131:THR:OG1</td>
<td>2.38</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:100:ASN:HB3</td>
<td>1:E:135:ALA:H</td>
<td>1.80</td>
<td>0.46</td>
</tr>
<tr>
<td>2:D:83:VAL:HG22</td>
<td>2:D:122:THR:HG22</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>2:A:247:LEU:HD22</td>
<td>1:B:303:ASN:HD22</td>
<td>1.81</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:269:ARG:NH2</td>
<td>2:D:272:SER:OG</td>
<td>2.49</td>
<td>0.46</td>
</tr>
<tr>
<td>3:C:266:THR:HG22</td>
<td>3:C:270:ILE:HD11</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>2:D:112:MET:HA</td>
<td>2:D:113:THR:HA</td>
<td>1.79</td>
<td>0.45</td>
</tr>
<tr>
<td>3:C:301:SER:HA</td>
<td>3:C:304:PH:HD2</td>
<td>1.82</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:142:ARG:HB2</td>
<td>1:E:146:ASP:HB3</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:E:85:ASN:HB2</td>
<td>1:E:114:ARG:HB2</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>1:B:144:PRO:HD3</td>
<td>1:B:281:ILE:HB</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:148:GLN:HB2</td>
<td>1:E:214:LEU:HB2</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>2:A:257:VAL:HG12</td>
<td>1:B:255:ILE:HG21</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>2:D:26:TYR:HE2</td>
<td>2:D:94:ILE:HA</td>
<td>1.83</td>
<td>0.43</td>
</tr>
<tr>
<td>4:G:40:ALA:HB3</td>
<td>4:G:43:LYS:HB3</td>
<td>1.98</td>
<td>0.43</td>
</tr>
<tr>
<td>2:A:103:ASN:HB2</td>
<td>2:A:138:GLU:HB2</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>2:A:203:VAL:HG13</td>
<td>2:A:212:VAL:HG21</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>2:A:259:GLY:HA3</td>
<td>2:A:301:LEU:HD13</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>2:D:46:PH:HB3</td>
<td>2:D:65:PH:HB2</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:139:ASP:OD1</td>
<td>1:B:141:ARG:NH1</td>
<td>2.52</td>
<td>0.43</td>
</tr>
<tr>
<td>2:A:179:VAL:HG11</td>
<td>2:A:215:THR:HG21</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>3:C:27:VAL:HG11</td>
<td>3:C:93:ILE:HD11</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>2:D:110:HIS:NE2</td>
<td>2:D:134:THR:OG1</td>
<td>2.33</td>
<td>0.42</td>
</tr>
<tr>
<td>3:C:56:ASP:HB3</td>
<td>3:C:79:ALA:HB3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:108:GLY:HA2</td>
<td>1:E:112:LYS:HA</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:98:PH:HB2</td>
<td>1:B:101:ASP:HB2</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:144:PRO:HD3</td>
<td>1:E:281:ILE:HB</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:77:ILE:HG22</td>
<td>1:E:79:LEU:H</td>
<td>1.85</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:72:LEU:HD22</td>
<td>1:E:91:LEU:HD22</td>
<td>2.01</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Continued on next page...
There are no symmetry-related clashes.

5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>B</td>
<td>334/473 (71%)</td>
<td>323 (97%)</td>
<td>11 (3%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>332/473 (70%)</td>
<td>323 (97%)</td>
<td>9 (3%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>345/464 (74%)</td>
<td>336 (97%)</td>
<td>9 (3%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>343/464 (74%)</td>
<td>326 (95%)</td>
<td>17 (5%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>324/495 (66%)</td>
<td>309 (95%)</td>
<td>15 (5%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
<tr>
<td>4</td>
<td>G</td>
<td>121/123 (98%)</td>
<td>115 (95%)</td>
<td>6 (5%)</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100</td>
</tr>
</tbody>
</table>
5.3.2 Protein sidechains

There are no Ramachandran outliers to report.

5.3.3 RNA

There are no RNA molecules in this entry.
5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates

29 monosaccharides are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NAG</td>
<td>F</td>
<td>5</td>
<td>1,5</td>
<td>14,14,15</td>
<td>0.28</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>F</td>
<td>2</td>
<td>5</td>
<td>14,14,15</td>
<td>0.24</td>
</tr>
<tr>
<td>5</td>
<td>BMA</td>
<td>F</td>
<td>3</td>
<td>5</td>
<td>11,11,12</td>
<td>0.22</td>
</tr>
<tr>
<td>5</td>
<td>MAN</td>
<td>F</td>
<td>4</td>
<td>5</td>
<td>11,11,12</td>
<td>0.26</td>
</tr>
<tr>
<td>5</td>
<td>MAN</td>
<td>F</td>
<td>5</td>
<td>5</td>
<td>11,11,12</td>
<td>0.23</td>
</tr>
<tr>
<td>6</td>
<td>NAG</td>
<td>H</td>
<td>1</td>
<td>1,6</td>
<td>14,14,15</td>
<td>0.31</td>
</tr>
<tr>
<td>6</td>
<td>NAG</td>
<td>H</td>
<td>2</td>
<td>6</td>
<td>14,14,15</td>
<td>0.24</td>
</tr>
<tr>
<td>7</td>
<td>NAG</td>
<td>I</td>
<td>1</td>
<td>2,7</td>
<td>14,14,15</td>
<td>0.24</td>
</tr>
<tr>
<td>7</td>
<td>NAG</td>
<td>I</td>
<td>2</td>
<td>7</td>
<td>14,14,15</td>
<td>0.25</td>
</tr>
<tr>
<td>7</td>
<td>BMA</td>
<td>I</td>
<td>3</td>
<td>7</td>
<td>11,11,12</td>
<td>0.25</td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>I</td>
<td>4</td>
<td>7</td>
<td>11,11,12</td>
<td>0.29</td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>I</td>
<td>5</td>
<td>7</td>
<td>11,11,12</td>
<td>0.32</td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>I</td>
<td>6</td>
<td>7</td>
<td>11,11,12</td>
<td>0.24</td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>I</td>
<td>7</td>
<td>7</td>
<td>11,11,12</td>
<td>0.28</td>
</tr>
<tr>
<td>8</td>
<td>NAG</td>
<td>J</td>
<td>1</td>
<td>1,8</td>
<td>14,14,15</td>
<td>0.27</td>
</tr>
<tr>
<td>8</td>
<td>NAG</td>
<td>J</td>
<td>2</td>
<td>8</td>
<td>14,14,15</td>
<td>0.24</td>
</tr>
<tr>
<td>8</td>
<td>BMA</td>
<td>J</td>
<td>3</td>
<td>8</td>
<td>11,11,12</td>
<td>0.22</td>
</tr>
<tr>
<td>8</td>
<td>MAN</td>
<td>J</td>
<td>4</td>
<td>8</td>
<td>11,11,12</td>
<td>0.27</td>
</tr>
<tr>
<td>8</td>
<td>MAN</td>
<td>J</td>
<td>5</td>
<td>8</td>
<td>11,11,12</td>
<td>0.27</td>
</tr>
<tr>
<td>8</td>
<td>MAN</td>
<td>J</td>
<td>6</td>
<td>8</td>
<td>11,11,12</td>
<td>0.23</td>
</tr>
<tr>
<td>6</td>
<td>NAG</td>
<td>K</td>
<td>1</td>
<td>1,6</td>
<td>14,14,15</td>
<td>0.25</td>
</tr>
<tr>
<td>6</td>
<td>NAG</td>
<td>K</td>
<td>2</td>
<td>6</td>
<td>14,14,15</td>
<td>0.25</td>
</tr>
<tr>
<td>6</td>
<td>NAG</td>
<td>L</td>
<td>1</td>
<td>3,6</td>
<td>14,14,15</td>
<td>0.27</td>
</tr>
<tr>
<td>6</td>
<td>NAG</td>
<td>L</td>
<td>2</td>
<td>6</td>
<td>14,14,15</td>
<td>0.25</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>M</td>
<td>1</td>
<td>2,5</td>
<td>14,14,15</td>
<td>0.27</td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>M</td>
<td>2</td>
<td>5</td>
<td>14,14,15</td>
<td>0.24</td>
</tr>
<tr>
<td>5</td>
<td>BMA</td>
<td>M</td>
<td>3</td>
<td>5</td>
<td>11,11,12</td>
<td>0.23</td>
</tr>
</tbody>
</table>

RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).
In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. ‘-’ means no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>MAN</td>
<td>M</td>
<td>4</td>
<td>5</td>
<td>11,11,12</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>5</td>
<td>MAN</td>
<td>M</td>
<td>5</td>
<td>5</td>
<td>11,11,12</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
</tr>
</tbody>
</table>

There are no bond length outliers.

All (3) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>NAG</td>
<td>F</td>
<td>2</td>
<td>5</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>F</td>
<td>3</td>
<td>5</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>MAN</td>
<td>F</td>
<td>4</td>
<td>5</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>MAN</td>
<td>F</td>
<td>5</td>
<td>5</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NAG</td>
<td>H</td>
<td>1</td>
<td>1,6</td>
<td>1/6/23/26</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NAG</td>
<td>H</td>
<td>2</td>
<td>6</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>NAG</td>
<td>I</td>
<td>1</td>
<td>2,7</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>NAG</td>
<td>I</td>
<td>2</td>
<td>7</td>
<td>1/6/23/26</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>BMA</td>
<td>I</td>
<td>3</td>
<td>7</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>I</td>
<td>4</td>
<td>7</td>
<td>2/2/19/22</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>I</td>
<td>5</td>
<td>7</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>I</td>
<td>6</td>
<td>7</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>MAN</td>
<td>I</td>
<td>7</td>
<td>7</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>NAG</td>
<td>J</td>
<td>1</td>
<td>1,8</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>NAG</td>
<td>J</td>
<td>2</td>
<td>8</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>BMA</td>
<td>J</td>
<td>3</td>
<td>8</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>MAN</td>
<td>J</td>
<td>4</td>
<td>8</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>MAN</td>
<td>J</td>
<td>5</td>
<td>8</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>MAN</td>
<td>J</td>
<td>6</td>
<td>8</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NAG</td>
<td>K</td>
<td>1</td>
<td>1,6</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NAG</td>
<td>K</td>
<td>2</td>
<td>6</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NAG</td>
<td>L</td>
<td>1</td>
<td>3,6</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NAG</td>
<td>L</td>
<td>2</td>
<td>6</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>M</td>
<td>1</td>
<td>2,5</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>NAG</td>
<td>M</td>
<td>2</td>
<td>5</td>
<td>0/6/23/26</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BMA</td>
<td>M</td>
<td>3</td>
<td>5</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>MAN</td>
<td>M</td>
<td>4</td>
<td>5</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>MAN</td>
<td>M</td>
<td>5</td>
<td>5</td>
<td>0/2/19/22</td>
<td>0/1/1/1</td>
<td></td>
</tr>
</tbody>
</table>
There are no chirality outliers.

All (4) torsion outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>I</td>
<td>4</td>
<td>MAN</td>
<td>C4-C5-C6-O6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>I</td>
<td>2</td>
<td>NAG</td>
<td>O5-C5-C6-O6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>I</td>
<td>4</td>
<td>MAN</td>
<td>O5-C5-C6-O6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>H</td>
<td>1</td>
<td>NAG</td>
<td>C3-C2-N2-C7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

There are no ring outliers.

No monomer is involved in short contacts.

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for oligosaccharide.
Oligosaccharide Chain K

Bond lengths

Bond angles

Torsions

Rings
5.6 Ligand geometry

5 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 2$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>10</td>
<td>PIO</td>
<td>D</td>
<td>501</td>
<td>-</td>
<td>47,47,47</td>
<td>0.34</td>
</tr>
<tr>
<td>9</td>
<td>POV</td>
<td>A</td>
<td>609</td>
<td>-</td>
<td>34,34,51</td>
<td>1.66</td>
</tr>
<tr>
<td>10</td>
<td>PIO</td>
<td>A</td>
<td>601</td>
<td>-</td>
<td>47,47,47</td>
<td>0.31</td>
</tr>
<tr>
<td>9</td>
<td>POV</td>
<td>E</td>
<td>508</td>
<td>-</td>
<td>34,34,51</td>
<td>1.65</td>
</tr>
<tr>
<td>9</td>
<td>POV</td>
<td>D</td>
<td>507</td>
<td>-</td>
<td>34,34,51</td>
<td>1.64</td>
</tr>
</tbody>
</table>
In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>PIO</td>
<td>D</td>
<td>501</td>
<td>-</td>
<td>-</td>
<td>3/44/68/68</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>9</td>
<td>POV</td>
<td>A</td>
<td>609</td>
<td>-</td>
<td>-</td>
<td>16/36/36/55</td>
<td>-</td>
</tr>
<tr>
<td>10</td>
<td>PIO</td>
<td>A</td>
<td>601</td>
<td>-</td>
<td>-</td>
<td>5/44/68/68</td>
<td>0/1/1/1</td>
</tr>
<tr>
<td>9</td>
<td>POV</td>
<td>E</td>
<td>508</td>
<td>-</td>
<td>-</td>
<td>18/36/36/55</td>
<td>-</td>
</tr>
<tr>
<td>9</td>
<td>POV</td>
<td>D</td>
<td>507</td>
<td>-</td>
<td>-</td>
<td>14/36/36/55</td>
<td>-</td>
</tr>
</tbody>
</table>

All (15) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>A</td>
<td>609</td>
<td>POV</td>
<td>O21-C21</td>
<td>4.79</td>
<td>1.47</td>
<td>1.34</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>508</td>
<td>POV</td>
<td>O21-C21</td>
<td>4.77</td>
<td>1.47</td>
<td>1.34</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>507</td>
<td>POV</td>
<td>O21-C21</td>
<td>4.74</td>
<td>1.47</td>
<td>1.34</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>609</td>
<td>POV</td>
<td>P-O12</td>
<td>4.43</td>
<td>1.71</td>
<td>1.54</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>508</td>
<td>POV</td>
<td>P-O12</td>
<td>4.42</td>
<td>1.71</td>
<td>1.54</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>507</td>
<td>POV</td>
<td>P-O12</td>
<td>4.42</td>
<td>1.71</td>
<td>1.54</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>609</td>
<td>POV</td>
<td>O31-C31</td>
<td>2.95</td>
<td>1.42</td>
<td>1.33</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>507</td>
<td>POV</td>
<td>O31-C31</td>
<td>2.93</td>
<td>1.41</td>
<td>1.33</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>508</td>
<td>POV</td>
<td>O31-C31</td>
<td>2.91</td>
<td>1.41</td>
<td>1.33</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>609</td>
<td>POV</td>
<td>P-O11</td>
<td>2.76</td>
<td>1.69</td>
<td>1.60</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>507</td>
<td>POV</td>
<td>P-O11</td>
<td>2.74</td>
<td>1.69</td>
<td>1.60</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>508</td>
<td>POV</td>
<td>P-O11</td>
<td>2.73</td>
<td>1.69</td>
<td>1.60</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>609</td>
<td>POV</td>
<td>C22-C21</td>
<td>2.54</td>
<td>1.58</td>
<td>1.50</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>508</td>
<td>POV</td>
<td>C22-C21</td>
<td>2.51</td>
<td>1.58</td>
<td>1.50</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>507</td>
<td>POV</td>
<td>C22-C21</td>
<td>2.50</td>
<td>1.58</td>
<td>1.50</td>
</tr>
</tbody>
</table>

All (6) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>D</td>
<td>507</td>
<td>POV</td>
<td>O21-C21-C22</td>
<td>4.07</td>
<td>120.28</td>
<td>111.50</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>609</td>
<td>POV</td>
<td>O21-C21-C22</td>
<td>4.02</td>
<td>120.16</td>
<td>111.50</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>508</td>
<td>POV</td>
<td>O21-C21-C22</td>
<td>3.87</td>
<td>119.84</td>
<td>111.50</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>609</td>
<td>POV</td>
<td>O31-C31-C32</td>
<td>2.54</td>
<td>119.87</td>
<td>111.91</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>508</td>
<td>POV</td>
<td>O31-C31-C32</td>
<td>2.51</td>
<td>119.79</td>
<td>111.91</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>507</td>
<td>POV</td>
<td>O31-C31-C32</td>
<td>2.44</td>
<td>119.56</td>
<td>111.91</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

All (56) torsion outliers are listed below:
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>D</td>
<td>501</td>
<td>PIO</td>
<td>C5-O5-P5-O53</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>609</td>
<td>POV</td>
<td>C1-O11-P-O13</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>609</td>
<td>POV</td>
<td>O11-C1-C2-O21</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>609</td>
<td>POV</td>
<td>C210-C211-C212-C213</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>508</td>
<td>POV</td>
<td>C210-C211-C212-C213</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>508</td>
<td>POV</td>
<td>C22-C21-O21-C2</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>507</td>
<td>POV</td>
<td>C1-O11-P-O12</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>507</td>
<td>POV</td>
<td>C1-O11-P-O13</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>507</td>
<td>POV</td>
<td>O11-C1-C2-O21</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>507</td>
<td>POV</td>
<td>C22-C21-O21-C2</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>508</td>
<td>POV</td>
<td>O22-C21-O21-C2</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>507</td>
<td>POV</td>
<td>C31-C32-C33-C34</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>507</td>
<td>POV</td>
<td>C21-C22-C23-C24</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>601</td>
<td>PIO</td>
<td>C1C-O13-P1-O1</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>609</td>
<td>POV</td>
<td>C31-C32-C33-C34</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>609</td>
<td>POV</td>
<td>O22-C21-O21-C2</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>609</td>
<td>POV</td>
<td>C22-C21-O21-C2</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>507</td>
<td>POV</td>
<td>C24-C25-C26-C27</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>508</td>
<td>POV</td>
<td>C31-C32-C33-C34</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>507</td>
<td>POV</td>
<td>C26-C27-C28-C29</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>609</td>
<td>POV</td>
<td>C32-C31-O31-C3</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>508</td>
<td>POV</td>
<td>C36-C37-C38-C39</td>
</tr>
<tr>
<td>10</td>
<td>D</td>
<td>501</td>
<td>PIO</td>
<td>C1C-O13-P1-O1</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>507</td>
<td>POV</td>
<td>O11-C1-C2-C3</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>609</td>
<td>POV</td>
<td>O32-C31-O31-C3</td>
</tr>
<tr>
<td>10</td>
<td>A</td>
<td>601</td>
<td>PIO</td>
<td>C1-O1-P1-O13</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>609</td>
<td>POV</td>
<td>C1-O11-P-O14</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>507</td>
<td>POV</td>
<td>C1-O11-P-O14</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>508</td>
<td>POV</td>
<td>C34-C35-C36-C37</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>508</td>
<td>POV</td>
<td>C35-C36-C37-C38</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>508</td>
<td>POV</td>
<td>C1-C2-C3-O31</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>609</td>
<td>POV</td>
<td>C33-C34-C35-C36</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>508</td>
<td>POV</td>
<td>C21-C22-C23-C24</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>508</td>
<td>POV</td>
<td>C33-C34-C35-C36</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>508</td>
<td>POV</td>
<td>C24-C25-C26-C27</td>
</tr>
<tr>
<td>10</td>
<td>D</td>
<td>501</td>
<td>PIO</td>
<td>C1-O1-P1-O13</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>609</td>
<td>POV</td>
<td>C1-O11-P-O12</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>508</td>
<td>POV</td>
<td>C23-C24-C25-C26</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>508</td>
<td>POV</td>
<td>O21-C2-C3-O31</td>
</tr>
<tr>
<td>9</td>
<td>D</td>
<td>507</td>
<td>POV</td>
<td>C35-C36-C37-C38</td>
</tr>
<tr>
<td>9</td>
<td>E</td>
<td>508</td>
<td>POV</td>
<td>C2-C1-O11-P</td>
</tr>
<tr>
<td>9</td>
<td>A</td>
<td>609</td>
<td>POV</td>
<td>O11-C1-C2-C3</td>
</tr>
</tbody>
</table>

Continued on next page...
There are no ring outliers.

4 monomers are involved in 6 short contacts:

The following is a two-dimensional graphical depiction of Mogul quality analysis of bond lengths, bond angles, torsion angles, and ring geometry for all instances of the Ligand of Interest. In addition, ligands with molecular weight > 250 and outliers as shown on the validation Tables will also be included. For torsion angles, if less then 5% of the Mogul distribution of torsion angles is within 10 degrees of the torsion angle in question, then that torsion angle is considered an outlier. Any bond that is central to one or more torsion angles identified as an outlier by Mogul will be highlighted in the graph. For rings, the root-mean-square deviation (RMSD) between the ring in question and similar rings identified by Mogul is calculated over all ring torsion angles. If the average RMSD is greater than 60 degrees and the minimal RMSD between the ring in question and any Mogul-identified rings is also greater than 60 degrees, then that ring is considered an outlier. The outliers are highlighted in purple. The color gray indicates Mogul did not find sufficient equivalents in the CSD to analyse the geometry.
Ligand PIO D 501

Bond lengths

Bond angles

Torsions

Rings

Ligand POV A 609

Bond lengths

Bond angles

Torsions

Rings
Ligand PIO A 601

Bond lengths

Bond angles

Torsions

Rings

Ligand POV E 508

Bond lengths

Bond angles

Torsions

Rings

Ligand POV D 507

Bond lengths

Bond angles

Torsions

Rings
5.7 Other polymers

There are no such residues in this entry.

5.8 Polymer linkage issues

There are no chain breaks in this entry.