1 Overall quality at a glance

The following experimental techniques were used to determine the structure:
X-RAY DIFFRACTION

The reported resolution of this entry is 2.29 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive</th>
<th>Similar resolution</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(#Entries)</td>
<td>(#Entries, resolution range(Å))</td>
</tr>
<tr>
<td>R_{free}</td>
<td>111664</td>
<td>4477 (2.30-2.30)</td>
</tr>
<tr>
<td>Clashscore</td>
<td>122126</td>
<td>5072 (2.30-2.30)</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>120053</td>
<td>5022 (2.30-2.30)</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>120020</td>
<td>5021 (2.30-2.30)</td>
</tr>
<tr>
<td>RSRZ outliers</td>
<td>108989</td>
<td>4374 (2.30-2.30)</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for ≥ 3, 2, 1 and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq 5\%$.

The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>447</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>447</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>447</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>447</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>447</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>447</td>
<td></td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G</td>
<td>447</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>447</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>447</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>447</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>447</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>447</td>
<td></td>
</tr>
</tbody>
</table>
2 Entry composition

There are 4 unique types of molecules in this entry. The entry contains 42426 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called NADP-specific glutamate dehydrogenase.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>447</td>
<td>Total 3447</td>
<td>C 2166</td>
<td>N 605</td>
<td>O 659</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>447</td>
<td>Total 3447</td>
<td>C 2166</td>
<td>N 605</td>
<td>O 659</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>447</td>
<td>Total 3447</td>
<td>C 2166</td>
<td>N 605</td>
<td>O 659</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>447</td>
<td>Total 3447</td>
<td>C 2166</td>
<td>N 605</td>
<td>O 659</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>447</td>
<td>Total 3447</td>
<td>C 2166</td>
<td>N 605</td>
<td>O 659</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>447</td>
<td>Total 3447</td>
<td>C 2166</td>
<td>N 605</td>
<td>O 659</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>447</td>
<td>Total 3447</td>
<td>C 2166</td>
<td>N 605</td>
<td>O 659</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>447</td>
<td>Total 3447</td>
<td>C 2166</td>
<td>N 605</td>
<td>O 659</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>447</td>
<td>Total 3447</td>
<td>C 2166</td>
<td>N 605</td>
<td>O 659</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>447</td>
<td>Total 3447</td>
<td>C 2166</td>
<td>N 605</td>
<td>O 659</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>304</td>
<td>Total 2358</td>
<td>C 1495</td>
<td>N 413</td>
<td>O 437</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>447</td>
<td>Total 3447</td>
<td>C 2166</td>
<td>N 605</td>
<td>O 659</td>
</tr>
</tbody>
</table>

- Molecule 2 is NADP NICOTINAMIDE-ADENINE-DINUCLEOTIDE PHOSPHATE (three-letter code: NAP) (formula: C_{21}H_{28}N_{7}O_{17}P_{3}).
Molecule 3 is 2-OXOGLUTARIC ACID (three-letter code: AKG) (formula: C₅H₆O₅).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>1</td>
<td>Total C N O P</td>
<td>48 21 7 17 3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>1</td>
<td>Total C N O P</td>
<td>48 21 7 17 3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>1</td>
<td>Total C N O P</td>
<td>48 21 7 17 3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>1</td>
<td>Total C N O P</td>
<td>48 21 7 17 3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1</td>
<td>Total C N O P</td>
<td>48 21 7 17 3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>1</td>
<td>Total C N O P</td>
<td>48 21 7 17 3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>1</td>
<td>Total C N O P</td>
<td>48 21 7 17 3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>1</td>
<td>Total C N O P</td>
<td>48 21 7 17 3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>J</td>
<td>1</td>
<td>Total C N O P</td>
<td>48 21 7 17 3</td>
<td>0</td>
</tr>
<tr>
<td>Mol</td>
<td>Chain</td>
<td>Residues</td>
<td>Atoms</td>
<td>ZeroOcc</td>
<td>AltConf</td>
</tr>
<tr>
<td>-----</td>
<td>-------</td>
<td>----------</td>
<td>-------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>1</td>
<td>Total C O</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>1</td>
<td>Total C O</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>1</td>
<td>Total C O</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>1</td>
<td>Total C O</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>1</td>
<td>Total C O</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>1</td>
<td>Total C O</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>1</td>
<td>Total C O</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>1</td>
<td>Total C O</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>J</td>
<td>1</td>
<td>Total C O</td>
<td>10</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 4 is water.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>A</td>
<td>169</td>
<td>Total O</td>
<td>169</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>B</td>
<td>172</td>
<td>Total O</td>
<td>172</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>161</td>
<td>Total O</td>
<td>161</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>D</td>
<td>172</td>
<td>O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>E</td>
<td>160</td>
<td>O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>F</td>
<td>162</td>
<td>O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>G</td>
<td>149</td>
<td>O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>H</td>
<td>111</td>
<td>O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>I</td>
<td>107</td>
<td>O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>J</td>
<td>68</td>
<td>O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>K</td>
<td>66</td>
<td>O</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>L</td>
<td>132</td>
<td>O</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: NADP-specific glutamate dehydrogenase
 - Chain A:
 ![Chain A residue-property plot]
 - Chain B:
 ![Chain B residue-property plot]
 - Chain C:
 ![Chain C residue-property plot]
 - Chain D:
 ![Chain D residue-property plot]
• Molecule 1: NADP-specific glutamate dehydrogenase

Chain E:

• Molecule 1: NADP-specific glutamate dehydrogenase

Chain F:

• Molecule 1: NADP-specific glutamate dehydrogenase

Chain G:

• Molecule 1: NADP-specific glutamate dehydrogenase

Chain H:

• Molecule 1: NADP-specific glutamate dehydrogenase

Chain I:
• Molecule 1: NADP-specific glutamate dehydrogenase

Chain J:

• Molecule 1: NADP-specific glutamate dehydrogenase

Chain K:

• Molecule 1: NADP-specific glutamate dehydrogenase

Chain L:
4 Data and refinement statistics

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P 1 2 1</td>
<td>Depositor</td>
</tr>
<tr>
<td>Cell constants</td>
<td>171.22Å 93.03Å 187.88Å</td>
<td>Depositor</td>
</tr>
<tr>
<td>a, b, c, α, β, γ</td>
<td>90.00° 108.16° 90.00°</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>34.37 – 2.29</td>
<td>Depositor</td>
</tr>
<tr>
<td>% Data completeness (in range)</td>
<td>97.7 (34.37-2.29)</td>
<td>Depositor</td>
</tr>
<tr>
<td>Rmerge</td>
<td>(Not available)</td>
<td>Depositor</td>
</tr>
<tr>
<td>Rsym</td>
<td>(Not available)</td>
<td>Depositor</td>
</tr>
<tr>
<td>< I/σ(I) >¹</td>
<td>5.20 (at 2.29Å)</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Refinement program</td>
<td>REFMAC 5.8.0135</td>
<td>Depositor</td>
</tr>
<tr>
<td>R, Rfree</td>
<td>0.165, 0.222</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>0.173, 0.225</td>
<td>DCC</td>
</tr>
<tr>
<td>R_free test set</td>
<td>12145 reflections (4.94%)</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Wilson B-factor (Å²)</td>
<td>18.7</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Anisotropy</td>
<td>0.277</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Bulk solvent ksol(e/Å³), Bsol(Å²)</td>
<td>0.38 , 39.6</td>
<td>EDS</td>
</tr>
<tr>
<td>L-test for twinning²</td>
<td><</td>
<td>L</td>
</tr>
<tr>
<td>Estimated twinning fraction</td>
<td>No twinning to report</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Fα,Fc correlation</td>
<td>0.94</td>
<td>EDS</td>
</tr>
<tr>
<td>Total number of atoms</td>
<td>42426</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Average B, all atoms (Å²)</td>
<td>26.0</td>
<td>wwPDB-VP</td>
</tr>
</tbody>
</table>

Xtriage’s analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 2.63% of the height of the origin peak. No significant pseudotranslation is detected.

¹Intensities estimated from amplitudes.
²Theoretical values of < |L| >, < L² > for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.
5 Model quality

5.1 Standard geometry

Bond lengths and bond angles in the following residue types are not validated in this section: NAP, AKG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>#</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>0.82</td>
<td>2/3517 (0.1%)</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>0.81</td>
<td>1/3517 (0.0%)</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>0.83</td>
<td>1/3517 (0.0%)</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>0.82</td>
<td>1/3517 (0.0%)</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>0.81</td>
<td>0/3517</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>0.78</td>
<td>0/3517</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>0.77</td>
<td>0/3517</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>0.77</td>
<td>0/3517</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>0.78</td>
<td>1/3517 (0.0%)</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>0.74</td>
<td>0/3517</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>0.72</td>
<td>0/2407</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>0.74</td>
<td>1/3517 (0.0%)</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0.79</td>
<td>7/41094 (0.0%)</td>
</tr>
</tbody>
</table>

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>#Chirality outliers</th>
<th>#Planarity outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0</td>
<td>8</td>
</tr>
</tbody>
</table>

All (7) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>353</td>
<td>GLU</td>
<td>CD-OE1</td>
<td>9.24</td>
<td>1.35</td>
<td>1.25</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>206</td>
<td>LEU</td>
<td>C-O</td>
<td>6.53</td>
<td>1.35</td>
<td>1.23</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>353</td>
<td>GLU</td>
<td>CD-OE2</td>
<td>5.53</td>
<td>1.31</td>
<td>1.25</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>268</td>
<td>TRP</td>
<td>CE3-CZ3</td>
<td>5.50</td>
<td>1.47</td>
<td>1.38</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>112</td>
<td>GLU</td>
<td>CG-CD</td>
<td>5.46</td>
<td>1.60</td>
<td>1.51</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>242</td>
<td>GLY</td>
<td>N-CA</td>
<td>-5.18</td>
<td>1.38</td>
<td>1.46</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>42</td>
<td>ASP</td>
<td>CB-CG</td>
<td>5.04</td>
<td>1.62</td>
<td>1.51</td>
</tr>
</tbody>
</table>

All (84) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>164</td>
<td>VAL</td>
<td>CB-CA-C</td>
<td>11.65</td>
<td>133.53</td>
<td>111.40</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>276</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>8.98</td>
<td>126.38</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>361</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-8.43</td>
<td>116.08</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>164</td>
<td>VAL</td>
<td>C-N-CD</td>
<td>-8.15</td>
<td>102.67</td>
<td>120.60</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>361</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>8.02</td>
<td>124.31</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>281</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-7.77</td>
<td>116.41</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>164</td>
<td>VAL</td>
<td>C-N-CD</td>
<td>-7.73</td>
<td>103.60</td>
<td>120.60</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>281</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>7.61</td>
<td>124.11</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>281</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>7.49</td>
<td>124.05</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>59</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>7.45</td>
<td>124.03</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>281</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-7.43</td>
<td>116.58</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>281</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-7.42</td>
<td>116.59</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>156</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>7.32</td>
<td>123.96</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>281</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>7.28</td>
<td>123.94</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>59</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>7.23</td>
<td>123.92</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>132</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>7.21</td>
<td>124.79</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>156</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>7.09</td>
<td>123.85</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>164</td>
<td>VAL</td>
<td>CA-C-N</td>
<td>6.88</td>
<td>136.35</td>
<td>117.10</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>281</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-6.87</td>
<td>116.87</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>69</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>6.68</td>
<td>124.31</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>162</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-6.68</td>
<td>116.96</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>400</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.68</td>
<td>123.64</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>389</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.66</td>
<td>123.63</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>281</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-6.64</td>
<td>116.98</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>59</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.48</td>
<td>123.54</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>400</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-6.44</td>
<td>117.08</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>281</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.32</td>
<td>123.46</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>361</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.29</td>
<td>123.45</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>140</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>6.28</td>
<td>123.96</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>208</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.27</td>
<td>123.44</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>53</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.22</td>
<td>123.41</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>281</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-6.22</td>
<td>117.19</td>
<td>120.30</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
<td>81</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.11</td>
<td>123.36</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>400</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.10</td>
<td>123.35</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>287</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-6.08</td>
<td>117.26</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>287</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.05</td>
<td>123.33</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>69</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>6.02</td>
<td>123.72</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>156</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.00</td>
<td>123.30</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>17</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.00</td>
<td>123.30</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>145</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.96</td>
<td>117.32</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>439</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.94</td>
<td>123.65</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>400</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.93</td>
<td>123.27</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>156</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.81</td>
<td>123.21</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>232</td>
<td>SER</td>
<td>N-CA-C</td>
<td>5.70</td>
<td>126.39</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>156</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.69</td>
<td>117.46</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>156</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.61</td>
<td>117.50</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>361</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.61</td>
<td>123.10</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>156</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.59</td>
<td>117.51</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>364</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.56</td>
<td>123.08</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>156</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.55</td>
<td>123.08</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>400</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.51</td>
<td>123.06</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>439</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.51</td>
<td>123.26</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>276</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>-5.45</td>
<td>113.40</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>361</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.42</td>
<td>117.59</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>264</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.39</td>
<td>123.15</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>264</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.39</td>
<td>123.15</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>132</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.37</td>
<td>123.13</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>64</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.33</td>
<td>122.96</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>281</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.33</td>
<td>117.64</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>53</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.32</td>
<td>117.64</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>264</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>-5.28</td>
<td>113.55</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>145</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.26</td>
<td>122.93</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>156</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.24</td>
<td>122.92</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>281</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.23</td>
<td>122.92</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>164</td>
<td>VAL</td>
<td>O-C-N</td>
<td>-5.22</td>
<td>111.18</td>
<td>121.10</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>364</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.22</td>
<td>122.91</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>287</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.21</td>
<td>117.70</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>156</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.20</td>
<td>122.90</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>156</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.19</td>
<td>117.70</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>156</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.19</td>
<td>117.70</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>400</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.18</td>
<td>117.71</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>400</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.14</td>
<td>122.87</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>69</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>-5.14</td>
<td>113.67</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>281</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.12</td>
<td>122.86</td>
<td>120.30</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>340</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.12</td>
<td>122.86</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>361</td>
<td>ARG</td>
<td>CG-CD-NE</td>
<td>5.12</td>
<td>122.55</td>
<td>111.80</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>59</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.09</td>
<td>122.84</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>59</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.09</td>
<td>122.85</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>165</td>
<td>PRO</td>
<td>N-CA-C</td>
<td>5.09</td>
<td>125.33</td>
<td>112.10</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>70</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.09</td>
<td>122.88</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>156</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.07</td>
<td>117.77</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>47</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.05</td>
<td>122.85</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>156</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.02</td>
<td>122.81</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>184</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.01</td>
<td>122.80</td>
<td>120.30</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

All (8) planarity outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>164</td>
<td>VAL</td>
<td>Mainchain,Peptide</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>306</td>
<td>ASP</td>
<td>Peptide</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>238</td>
<td>VAL</td>
<td>Peptide</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>301</td>
<td>ALA</td>
<td>Peptide</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>314</td>
<td>CYS</td>
<td>Peptide</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>273</td>
<td>ASN</td>
<td>Peptide</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>421</td>
<td>HIS</td>
<td>Peptide</td>
</tr>
</tbody>
</table>

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>3447</td>
<td>0</td>
<td>3356</td>
<td>24</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>3447</td>
<td>0</td>
<td>3356</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>3447</td>
<td>0</td>
<td>3356</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>3447</td>
<td>0</td>
<td>3356</td>
<td>38</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>3447</td>
<td>0</td>
<td>3356</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>3447</td>
<td>0</td>
<td>3356</td>
<td>29</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>3447</td>
<td>0</td>
<td>3356</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>3447</td>
<td>0</td>
<td>3356</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>3447</td>
<td>0</td>
<td>3356</td>
<td>37</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>3447</td>
<td>0</td>
<td>3356</td>
<td>26</td>
<td>0</td>
</tr>
</tbody>
</table>
The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 4.

All (282) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:C:164:VAL:O</td>
<td>1:C:194:VAL:O</td>
<td>1.65</td>
<td>1.11</td>
</tr>
</tbody>
</table>

Continued on next page...
Interatomic Distances and Overlaps

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic Distance (Å)</th>
<th>Clash Overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:D:165:PRO:HA</td>
<td>4:D:601:HOH:O</td>
<td>1.52</td>
<td>1.09</td>
</tr>
<tr>
<td>1:D:164:VAL:CA</td>
<td>4:D:601:HOH:O</td>
<td>2.18</td>
<td>0.90</td>
</tr>
<tr>
<td>1:C:165:PRO:N</td>
<td>4:C:601:HOH:O</td>
<td>2.08</td>
<td>0.86</td>
</tr>
<tr>
<td>1:D:165:PRO:CA</td>
<td>4:D:601:HOH:O</td>
<td>2.17</td>
<td>0.83</td>
</tr>
<tr>
<td>1:C:164:VAL:C</td>
<td>4:C:601:HOH:O</td>
<td>2.18</td>
<td>0.82</td>
</tr>
<tr>
<td>1:H:269:VAL:HG23</td>
<td>1:H:291:VAL:CG1</td>
<td>2.10</td>
<td>0.81</td>
</tr>
<tr>
<td>1:J:297:GLU:HB3</td>
<td>1:J:298:VAL:HA</td>
<td>1.60</td>
<td>0.81</td>
</tr>
<tr>
<td>1:D:253:GLN:HE22</td>
<td>1:D:275:VAL:H</td>
<td>1.31</td>
<td>0.77</td>
</tr>
<tr>
<td>1:B:26:GLN:HE22</td>
<td>1:B:324:ASN:HD21</td>
<td>1.32</td>
<td>0.77</td>
</tr>
<tr>
<td>1:I:239:SER:OG</td>
<td>1:I:320:CYS:C</td>
<td>2.24</td>
<td>0.76</td>
</tr>
<tr>
<td>1:G:253:GLN:HE22</td>
<td>1:G:275:VAL:H</td>
<td>1.30</td>
<td>0.76</td>
</tr>
<tr>
<td>1:G:327:ASN:H</td>
<td>1:G:330:ASN:HD22</td>
<td>1.32</td>
<td>0.75</td>
</tr>
<tr>
<td>1:C:164:VAL:CA</td>
<td>4:C:601:HOH:O</td>
<td>2.35</td>
<td>0.74</td>
</tr>
<tr>
<td>1:F:67:TRP:HE1</td>
<td>1:F:77:ASN:HD22</td>
<td>1.36</td>
<td>0.74</td>
</tr>
<tr>
<td>1:G:395:GLU:HG2</td>
<td>4:G:709:HOH:O</td>
<td>1.87</td>
<td>0.74</td>
</tr>
<tr>
<td>1:G:67:TRP:HE1</td>
<td>1:G:77:ASN:HD22</td>
<td>1.35</td>
<td>0.73</td>
</tr>
<tr>
<td>1:F:253:GLN:HE22</td>
<td>1:F:275:VAL:H</td>
<td>1.34</td>
<td>0.73</td>
</tr>
<tr>
<td>1:I:353:GLU:O</td>
<td>1:I:357:VAL:HG23</td>
<td>1.89</td>
<td>0.72</td>
</tr>
<tr>
<td>1:J:96:ARG:HH12</td>
<td>1:J:323:GLN:HE22</td>
<td>1.34</td>
<td>0.72</td>
</tr>
<tr>
<td>1:F:26:GLN:HE22</td>
<td>1:F:324:ASN:HD21</td>
<td>1.36</td>
<td>0.70</td>
</tr>
<tr>
<td>1:E:253:GLN:HE22</td>
<td>1:E:275:VAL:H</td>
<td>1.39</td>
<td>0.70</td>
</tr>
<tr>
<td>1:D:26:GLN:HE22</td>
<td>1:D:324:ASN:HD21</td>
<td>1.39</td>
<td>0.69</td>
</tr>
<tr>
<td>1:E:26:GLN:HE22</td>
<td>1:E:324:ASN:HD21</td>
<td>1.39</td>
<td>0.69</td>
</tr>
<tr>
<td>1:F:151:MET:CE</td>
<td>1:F:155:HIS:N</td>
<td>2.55</td>
<td>0.69</td>
</tr>
<tr>
<td>1:F:151:MET:HE2</td>
<td>1:F:155:HIS:N</td>
<td>2.07</td>
<td>0.69</td>
</tr>
<tr>
<td>1:G:26:GLN:HE22</td>
<td>1:G:324:ASN:HD21</td>
<td>1.40</td>
<td>0.68</td>
</tr>
<tr>
<td>1:C:253:GLN:HE22</td>
<td>1:C:275:VAL:H</td>
<td>1.41</td>
<td>0.68</td>
</tr>
<tr>
<td>1:C:165:PRO:CA</td>
<td>4:C:601:HOH:O</td>
<td>2.40</td>
<td>0.68</td>
</tr>
<tr>
<td>1:I:67:TRP:HE1</td>
<td>1:I:77:ASN:HD22</td>
<td>1.42</td>
<td>0.68</td>
</tr>
<tr>
<td>1:C:165:PRO:HA</td>
<td>4:C:601:HOH:O</td>
<td>1.94</td>
<td>0.68</td>
</tr>
<tr>
<td>1:B:253:GLN:HE22</td>
<td>1:B:275:VAL:H</td>
<td>1.41</td>
<td>0.68</td>
</tr>
<tr>
<td>1:D:164:VAL:C</td>
<td>4:D:601:HOH:O</td>
<td>2.32</td>
<td>0.68</td>
</tr>
<tr>
<td>1:K:410:LYS:O</td>
<td>1:K:414:GLU:HG2</td>
<td>1.94</td>
<td>0.67</td>
</tr>
<tr>
<td>1:E:253:GLN:HE22</td>
<td>1:E:259:VAL:H</td>
<td>1.43</td>
<td>0.66</td>
</tr>
<tr>
<td>1:H:69:ASP:OD2</td>
<td>1:H:75:HIS:HE1</td>
<td>1.79</td>
<td>0.66</td>
</tr>
<tr>
<td>1:H:67:TRP:HE1</td>
<td>1:H:77:ASN:HD22</td>
<td>1.41</td>
<td>0.66</td>
</tr>
<tr>
<td>1:L:271:THR:HG2</td>
<td>1:L:275:VAL:HG22</td>
<td>1.77</td>
<td>0.66</td>
</tr>
<tr>
<td>1:L:271:THR:OG1</td>
<td>1:L:274:GLY:HA3</td>
<td>1.96</td>
<td>0.66</td>
</tr>
<tr>
<td>1:I:238:VAL:HG2</td>
<td>1:I:325:GLU:OE1</td>
<td>1.96</td>
<td>0.66</td>
</tr>
<tr>
<td>1:A:67:TRP:HE1</td>
<td>1:A:77:ASN:HD22</td>
<td>1.42</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:253:GLN:HE22</td>
<td>1:A:259:VAL:H</td>
<td>1.43</td>
<td>0.65</td>
</tr>
</tbody>
</table>

Continued on next page
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:L:67:TRP:HE1</td>
<td>1:L:77:ASN:HD22</td>
<td>1.44</td>
<td>0.65</td>
</tr>
<tr>
<td>1:F:151:MET:HE2</td>
<td>1:F:155:HIS:CA</td>
<td>2.27</td>
<td>0.65</td>
</tr>
<tr>
<td>1:A:253:GLN:HE22</td>
<td>1:A:275:VAL:H</td>
<td>1.44</td>
<td>0.64</td>
</tr>
<tr>
<td>1:E:67:TRP:HE1</td>
<td>1:E:77:ASN:HD22</td>
<td>1.47</td>
<td>0.62</td>
</tr>
<tr>
<td>1:1:238:VAL:HG22</td>
<td>1:1:319:PRO:HA</td>
<td>1.81</td>
<td>0.62</td>
</tr>
<tr>
<td>1:C:26:GLN:HE22</td>
<td>1:C:324:ASN:HD21</td>
<td>1.47</td>
<td>0.62</td>
</tr>
<tr>
<td>1:D:151:MET:HE1</td>
<td>1:D:155:HIS:HA</td>
<td>1.81</td>
<td>0.62</td>
</tr>
<tr>
<td>1:B:253:GLN:HE21</td>
<td>1:B:259:VAL:H</td>
<td>1.48</td>
<td>0.62</td>
</tr>
<tr>
<td>1:F:151:MET:HE3</td>
<td>1:F:154:LEU:HB3</td>
<td>1.82</td>
<td>0.61</td>
</tr>
<tr>
<td>1:G:253:GLN:HE21</td>
<td>1:G:259:VAL:H</td>
<td>1.48</td>
<td>0.61</td>
</tr>
<tr>
<td>1:A:26:GLN:HE22</td>
<td>1:A:324:ASN:HD21</td>
<td>1.48</td>
<td>0.61</td>
</tr>
<tr>
<td>1:H:269:VAL:HG23</td>
<td>1:H:291:VAL:HG12</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>1:H:26:GLN:HE22</td>
<td>1:H:324:ASN:HD21</td>
<td>1.50</td>
<td>0.60</td>
</tr>
<tr>
<td>1:1:298:VAL:O</td>
<td>1:1:298:VAL:HG13</td>
<td>2.02</td>
<td>0.60</td>
</tr>
<tr>
<td>1:B:327:ASN:H</td>
<td>1:B:330:ASN:HD22</td>
<td>1.49</td>
<td>0.60</td>
</tr>
<tr>
<td>1:D:190:HIS:HE1</td>
<td>4:D:640:HOH:O</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>1:L:253:GLN:HE22</td>
<td>1:L:275:VAL:H</td>
<td>1.50</td>
<td>0.59</td>
</tr>
<tr>
<td>1:L:190:HIS:HE1</td>
<td>4:L:506:HOH:O</td>
<td>1.86</td>
<td>0.59</td>
</tr>
<tr>
<td>1:B:128:LYS:NZ</td>
<td>3:B:502:AKG:O5</td>
<td>2.33</td>
<td>0.59</td>
</tr>
<tr>
<td>1:D:165:PRO:N</td>
<td>4:D:601:HOH:O</td>
<td>2.29</td>
<td>0.59</td>
</tr>
<tr>
<td>1:J:320:CYS:SG</td>
<td>1:J:345:GLY:HA3</td>
<td>2.43</td>
<td>0.58</td>
</tr>
<tr>
<td>1:J:67:TRP:HE1</td>
<td>1:J:77:ASN:HD22</td>
<td>1.52</td>
<td>0.58</td>
</tr>
<tr>
<td>1:K:23:GLU:O</td>
<td>1:K:108:PHE:CD1</td>
<td>2.56</td>
<td>0.58</td>
</tr>
<tr>
<td>1:D:151:MET:CE</td>
<td>1:D:155:HIS:CA</td>
<td>2.81</td>
<td>0.58</td>
</tr>
<tr>
<td>1:E:98:HIS:HD2</td>
<td>1:E:100:SER:H</td>
<td>1.51</td>
<td>0.58</td>
</tr>
<tr>
<td>1:C:67:TRP:HE1</td>
<td>1:C:77:ASN:HD22</td>
<td>1.52</td>
<td>0.58</td>
</tr>
<tr>
<td>1:K:28:VAL:O</td>
<td>1:K:32:LEU:HB2</td>
<td>2.03</td>
<td>0.57</td>
</tr>
<tr>
<td>1:B:67:TRP:HE1</td>
<td>1:B:77:ASN:HD22</td>
<td>1.53</td>
<td>0.57</td>
</tr>
<tr>
<td>1:C:253:GLN:HE21</td>
<td>1:C:259:VAL:H</td>
<td>1.53</td>
<td>0.57</td>
</tr>
<tr>
<td>1:1:10:TYR:O</td>
<td>1:1:13:MET:HB3</td>
<td>2.04</td>
<td>0.57</td>
</tr>
<tr>
<td>1:1:241:SER:OG</td>
<td>1:1:242:GLY:N</td>
<td>2.34</td>
<td>0.56</td>
</tr>
<tr>
<td>1:D:30:GLU:OE2</td>
<td>1:D:112:GLU:OE2</td>
<td>2.24</td>
<td>0.55</td>
</tr>
<tr>
<td>1:L:253:GLN:HE22</td>
<td>1:L:275:VAL:N</td>
<td>2.04</td>
<td>0.55</td>
</tr>
<tr>
<td>1:K:67:TRP:HE1</td>
<td>1:K:77:ASN:HD22</td>
<td>1.54</td>
<td>0.54</td>
</tr>
<tr>
<td>1:J:298:VAL:HG12</td>
<td>1:J:301:ALA:HB2</td>
<td>1.89</td>
<td>0.54</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:H:269:VAL:HG23</td>
<td>1:H:291:VAL:HG13</td>
<td>1.88</td>
<td>0.54</td>
</tr>
<tr>
<td>1:B:60:GLN:HE21</td>
<td>1:B:103:LEU:HD11</td>
<td>1.73</td>
<td>0.54</td>
</tr>
<tr>
<td>1:F:151:MET:HA</td>
<td>1:F:151:MET:HE3</td>
<td>1.88</td>
<td>0.54</td>
</tr>
<tr>
<td>1:K:224:ILE:HA</td>
<td>1:K:227:LYS:HE2</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:K:190:His:HE1</td>
<td>4:I:501:HOH:O</td>
<td>1.91</td>
<td>0.54</td>
</tr>
<tr>
<td>1:K:7:VAL:HG13</td>
<td>1:K:32:LEU:HD23</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:I:238:VAL:HG13</td>
<td>1:I:310:TRP:CH2</td>
<td>2.43</td>
<td>0.53</td>
</tr>
<tr>
<td>1:E:116:LYS:HZ2</td>
<td>3:E:502:AKG:C1</td>
<td>2.22</td>
<td>0.53</td>
</tr>
<tr>
<td>1:I:239:SER:HB3</td>
<td>1:I:321:ALA:HA</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>1:L:42:ASP:O</td>
<td>1:L:44:HIS:N</td>
<td>2.42</td>
<td>0.53</td>
</tr>
<tr>
<td>1:L:35:LEU:HD22</td>
<td>1:I:51:ILE:HG21</td>
<td>1.91</td>
<td>0.53</td>
</tr>
<tr>
<td>1:L:411:THR:O</td>
<td>1:L:415:THR:HG23</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>1:L:359:ARG:O</td>
<td>1:L:361:ARG:O</td>
<td>2.28</td>
<td>0.52</td>
</tr>
<tr>
<td>1:C:336:ASP:OD1</td>
<td>1:C:361:ARG:NH2</td>
<td>2.34</td>
<td>0.52</td>
</tr>
<tr>
<td>1:I:231:ILE:O</td>
<td>1:I:233:GLY:N</td>
<td>2.43</td>
<td>0.52</td>
</tr>
<tr>
<td>1:L:61:LEU:HD21</td>
<td>1:L:157:HIS:NE2</td>
<td>2.25</td>
<td>0.52</td>
</tr>
<tr>
<td>1:D:67:TRP:HE1</td>
<td>1:D:77:ASN:HD22</td>
<td>1.57</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:92:LYS:HD2</td>
<td>1:D:164:VAL:HB</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>1:L:271:THR:HG21</td>
<td>1:L:275:VAL:CG2</td>
<td>2.40</td>
<td>0.51</td>
</tr>
<tr>
<td>1:D:151:MET:HE2</td>
<td>1:D:155:HIS:HB3</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>1:E:109:LEU:HB3</td>
<td>1:E:128:LYS:HG3</td>
<td>1.93</td>
<td>0.51</td>
</tr>
<tr>
<td>1:L:35:LEU:HD13</td>
<td>1:L:51:ILE:HD11</td>
<td>1.92</td>
<td>0.51</td>
</tr>
<tr>
<td>1:I:239:SER:O</td>
<td>1:I:240:GLY:C</td>
<td>2.48</td>
<td>0.50</td>
</tr>
<tr>
<td>1:I:287:ARG:NH2</td>
<td>1:I:297:GLU:OE2</td>
<td>2.32</td>
<td>0.50</td>
</tr>
<tr>
<td>1:I:297:GLU:OE2</td>
<td>1:I:297:GLU:N</td>
<td>2.44</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:116:LYS:NZ</td>
<td>1:D:347:ASN:HD21</td>
<td>2.09</td>
<td>0.50</td>
</tr>
<tr>
<td>1:L:271:THR:O</td>
<td>1:L:271:THR:HG23</td>
<td>2.10</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:151:MET:HE3</td>
<td>1:D:155:HIS:N</td>
<td>2.27</td>
<td>0.50</td>
</tr>
<tr>
<td>1:I:239:SER:HB3</td>
<td>1:I:321:ALA:CA</td>
<td>2.41</td>
<td>0.50</td>
</tr>
<tr>
<td>1:L:128:LYS:NZ</td>
<td>1:L:168:ASP:OD2</td>
<td>2.45</td>
<td>0.50</td>
</tr>
<tr>
<td>1:I:207:VAL:HG12</td>
<td>1:I:207:VAL:O</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:A:62:ILE:HB</td>
<td>1:L:60:GLN:HB2</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:67:TRP:HE1</td>
<td>1:A:77:ASN:ND2</td>
<td>2.08</td>
<td>0.49</td>
</tr>
<tr>
<td>1:I:238:VAL:O</td>
<td>1:I:263:SER:N</td>
<td>2.45</td>
<td>0.49</td>
</tr>
<tr>
<td>1:J:246:THR:HG23</td>
<td>1:J:280:LEU:HD12</td>
<td>1.93</td>
<td>0.49</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:F:184:ARG:HH21</td>
<td>1:I:444:GLN:NE2</td>
<td>2.10</td>
<td>0.49</td>
</tr>
<tr>
<td>1:L:60:GLN:NE2</td>
<td>1:L:107:LYS:HD2</td>
<td>2.28</td>
<td>0.49</td>
</tr>
<tr>
<td>1:J:35:LEU:HD21</td>
<td>1:J:434:PHE:CE1</td>
<td>2.47</td>
<td>0.49</td>
</tr>
<tr>
<td>1:L:238:VAL:O</td>
<td>1:L:262:PHE:HA</td>
<td>2.11</td>
<td>0.49</td>
</tr>
<tr>
<td>1:B:92:LYS:NZ</td>
<td>3:B:502:AKG:O3</td>
<td>2.36</td>
<td>0.49</td>
</tr>
<tr>
<td>1:J:277:VAL:O</td>
<td>1:J:278:ALA:C</td>
<td>2.49</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:151:MET:CE</td>
<td>1:D:155:HIS:HA</td>
<td>2.41</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:151:MET:CE</td>
<td>1:D:155:HIS:N</td>
<td>2.76</td>
<td>0.49</td>
</tr>
<tr>
<td>1:A:444:GLN:NE2</td>
<td>1:G:184:ARG:HH21</td>
<td>2.11</td>
<td>0.49</td>
</tr>
<tr>
<td>1:D:238:VAL:O</td>
<td>1:D:262:PHE:HA</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>1:I:235:LYS:NZ</td>
<td>1:I:257:ALA:HB1</td>
<td>2.27</td>
<td>0.49</td>
</tr>
<tr>
<td>1:I:239:SER:HG</td>
<td>1:I:320:CYS:HB2</td>
<td>1.78</td>
<td>0.49</td>
</tr>
<tr>
<td>1:I:323:GLN:HA</td>
<td>1:I:349:PRO:HA</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:151:MET:CE</td>
<td>1:D:155:HIS:HB3</td>
<td>2.44</td>
<td>0.48</td>
</tr>
<tr>
<td>1:D:253:GLN:HE21</td>
<td>1:D:259:VAL:H</td>
<td>1.62</td>
<td>0.48</td>
</tr>
<tr>
<td>1:K:224:ILE:HA</td>
<td>1:K:227:LYS:CE</td>
<td>2.43</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:69:ASP:OD2</td>
<td>1:B:75:HIS:CE</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:B:38:VAL:HG23</td>
<td>1:B:431:ILE:HG12</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:C:281:ARG:HD2</td>
<td>1:C:285:GLU:OE2</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>1:F:190:HIS:HE1</td>
<td>4:F:616:HOH:O</td>
<td>1.97</td>
<td>0.48</td>
</tr>
<tr>
<td>1:K:32:LEU:HD12</td>
<td>1:K:35:LEU:HD22</td>
<td>1.95</td>
<td>0.48</td>
</tr>
<tr>
<td>1:J:190:HIS:CD2</td>
<td>1:L:86:SER:O</td>
<td>2.67</td>
<td>0.47</td>
</tr>
<tr>
<td>1:C:38:VAL:HG23</td>
<td>1:C:431:ILE:HG12</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:A:190:HIS:CD2</td>
<td>1:H:86:SER:O</td>
<td>2.68</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:313:LYS:HG3</td>
<td>1:B:337:ASN:HB3</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:151:MET:HE1</td>
<td>1:D:155:HIS:CA</td>
<td>2.44</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:444:GLN:HE22</td>
<td>1:D:184:ARG:HE</td>
<td>1.62</td>
<td>0.47</td>
</tr>
<tr>
<td>1:B:98:HIS:HE1</td>
<td>4:B:609:HOH:O</td>
<td>1.98</td>
<td>0.47</td>
</tr>
<tr>
<td>1:J:84:PHE:CD1</td>
<td>1:J:114:ILE:HD11</td>
<td>2.50</td>
<td>0.46</td>
</tr>
<tr>
<td>1:J:297:GLU:CB</td>
<td>1:J:298:VAL:HA</td>
<td>2.37</td>
<td>0.46</td>
</tr>
<tr>
<td>1:T:238:VAL:HA</td>
<td>1:T:318:LEU:O</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:H:238:VAL:O</td>
<td>1:H:262:PHE:HA</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:L:42:ASP:N</td>
<td>1:L:43:PRO:CD</td>
<td>2.79</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:184:ARG:HE</td>
<td>1:F:444:GLN:NE2</td>
<td>2.14</td>
<td>0.46</td>
</tr>
<tr>
<td>1:E:184:ARG:HH21</td>
<td>1:F:444:GLN:NE2</td>
<td>2.14</td>
<td>0.46</td>
</tr>
<tr>
<td>1:G:283:ILE:HG23</td>
<td>1:G:289:ALA:HB3</td>
<td>1.96</td>
<td>0.46</td>
</tr>
<tr>
<td>1:L:61:LEU:HD21</td>
<td>1:L:157:HIS:CD2</td>
<td>2.51</td>
<td>0.46</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:I:194:VAL:HG13</td>
<td>1:I:195:LEU:HG</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:B:143:ILE:HD13</td>
<td>1:B:174:ARG:NH2</td>
<td>2.31</td>
<td>0.46</td>
</tr>
<tr>
<td>1:L:253:GLN:HE21</td>
<td>1:L:259:VAL:H</td>
<td>1.64</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:151:MET:HE3</td>
<td>1:D:151:MET:O</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:H:236:ILE:HD12</td>
<td>1:H:252:ALA:HB1</td>
<td>1.98</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:177:GLY:HA2</td>
<td>1:A:202:TRP:CH2</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:J:314:CYS:HB3</td>
<td>1:J:315:ASP:HA</td>
<td>1.97</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:119:LEU:HD11</td>
<td>1:C:429:ALA:HB1</td>
<td>1.97</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:10:TYR:HZ</td>
<td>1:D:14:LEU:HD13</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:164:VAL:O</td>
<td>1:D:194:VAL:O</td>
<td>2.34</td>
<td>0.45</td>
</tr>
<tr>
<td>1:I:133:PHE:HB2</td>
<td>1:I:146:PHE:HZ</td>
<td>2.51</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:60:GLN:HB2</td>
<td>1:E:62:ILE:HB</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:D:14:LEU:HD23</td>
<td>1:D:28:VAL:HG11</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:L:339:CYS:O</td>
<td>1:L:363:ILE:HD12</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:J:298:VAL:HG12</td>
<td>1:J:301:ALA:CB</td>
<td>2.47</td>
<td>0.45</td>
</tr>
<tr>
<td>1:K:28:VAL:O</td>
<td>1:K:32:LEU:HD13</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:C:92:LYS:HD2</td>
<td>1:C:164:VAL:HB</td>
<td>1.99</td>
<td>0.45</td>
</tr>
<tr>
<td>1:B:444:GLN:NE2</td>
<td>1:D:184:ARG:HZ</td>
<td>2.15</td>
<td>0.45</td>
</tr>
<tr>
<td>1:H:177:GLY:HA2</td>
<td>1:H:202:TRP:CH2</td>
<td>2.52</td>
<td>0.45</td>
</tr>
<tr>
<td>1:L:229:GLU:OE2</td>
<td>1:L:340:ARG:NH1</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:L:117:ASN:OD1</td>
<td>1:L:376:VAL:HG21</td>
<td>2.17</td>
<td>0.45</td>
</tr>
<tr>
<td>1:A:38:VAL:HG23</td>
<td>1:A:431:ILE:HG12</td>
<td>1.98</td>
<td>0.44</td>
</tr>
<tr>
<td>1:F:177:GLY:HA2</td>
<td>1:F:202:TRP:CH2</td>
<td>2.52</td>
<td>0.44</td>
</tr>
<tr>
<td>1:I:238:VAL:CG1</td>
<td>1:I:310:TRP:HZ</td>
<td>3.00</td>
<td>0.44</td>
</tr>
<tr>
<td>1:A:92:LYS:HE3</td>
<td>1:A:379:SER:HB3</td>
<td>1.99</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:164:VAL:CB</td>
<td>4:D:601:HOH:O</td>
<td>2.58</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:327:ASN:H</td>
<td>1:D:330:ASN:OD2</td>
<td>1.64</td>
<td>0.44</td>
</tr>
<tr>
<td>1:L:298:VAL:O</td>
<td>1:L:300:GLY:N</td>
<td>2.50</td>
<td>0.44</td>
</tr>
<tr>
<td>1:E:400:ARG:HZ</td>
<td>4:E:607:HOH:O</td>
<td>2.49</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:184:ARG:HE</td>
<td>1:D:444:GLN:HE22</td>
<td>1.65</td>
<td>0.44</td>
</tr>
<tr>
<td>1:J:323:GLN:HE21</td>
<td>1:J:323:GLN:H</td>
<td>1.63</td>
<td>0.44</td>
</tr>
<tr>
<td>1:J:330:ASN:O</td>
<td>1:J:334:LEU:N</td>
<td>2.51</td>
<td>0.44</td>
</tr>
<tr>
<td>1:C:98:HIS:HE1</td>
<td>4:C:668:HOH:O</td>
<td>2.00</td>
<td>0.44</td>
</tr>
<tr>
<td>1:D:151:MET:HE2</td>
<td>1:D:155:HIS:CB</td>
<td>2.48</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:61:LEU:HD22</td>
<td>1:E:157:HIS:CD2</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:151:MET:HE2</td>
<td>1:F:155:HIS:HB3</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>1:G:242:GLY:HA3</td>
<td>2:G:501:NAP:O5B</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:190:HIS:HD2</td>
<td>1:H:86:SER:O</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>1:J:253:GLN:HE22</td>
<td>1:J:275:VAL:H</td>
<td>1.66</td>
<td>0.43</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:F:151:MET:CE</td>
<td>1:F:155:HIS:CA</td>
<td>2.94</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:98:HIS:HE1</td>
<td>4:F:641:HOH:O</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:G:38:VAL:HG23</td>
<td>1:G:431:ILE:HG12</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:J:210:GLU:HG3</td>
<td>1:J:247:TYR:CD1</td>
<td>2.53</td>
<td>0.43</td>
</tr>
<tr>
<td>1:K:444:GLN:NE2</td>
<td>1:L:184:ARG:HE</td>
<td>2.16</td>
<td>0.43</td>
</tr>
<tr>
<td>1:B:84:PHE:CD1</td>
<td>1:B:114:ILE:HD11</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>1:E:30:GLU:OE2</td>
<td>1:E:112:GLU:OE2</td>
<td>2.37</td>
<td>0.43</td>
</tr>
<tr>
<td>1:A:207:VAL:HG23</td>
<td>1:A:397:THR:HB</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:D:151:MET:CE</td>
<td>1:D:155:HIS:CB</td>
<td>2.96</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:38:VAL:HG23</td>
<td>1:F:431:ILE:HG12</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:C:184:ARG:HE</td>
<td>1:D:444:GLN:NE2</td>
<td>2.17</td>
<td>0.43</td>
</tr>
<tr>
<td>1:G:177:GLY:HA2</td>
<td>1:G:202:TRP:CH2</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>1:H:269:VAL:CG2</td>
<td>1:H:291:VAL:CG1</td>
<td>2.87</td>
<td>0.43</td>
</tr>
<tr>
<td>1:J:268:TRP:CZ3</td>
<td>1:J:312:LEU:HD11</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>1:L:84:PHE:CD1</td>
<td>1:L:114:ILE:HD11</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>1:L:60:GLN:HE21</td>
<td>1:L:103:LEU:HD11</td>
<td>1.84</td>
<td>0.42</td>
</tr>
<tr>
<td>1:D:177:GLY:HA2</td>
<td>1:D:202:TRP:CH2</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:98:HIS:HD2</td>
<td>1:F:100:SER:H</td>
<td>1.67</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:207:VAL:HG12</td>
<td>1:C:207:VAL:O</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:238:VAL:O</td>
<td>1:E:262:PHE:HA</td>
<td>2.19</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:184:ARG:HE</td>
<td>1:H:444:GLN:NE2</td>
<td>2.16</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:143:ILE:HD13</td>
<td>1:F:174:ARG:NH2</td>
<td>2.34</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:156:ARG:NH2</td>
<td>1:F:186:MET:O</td>
<td>2.52</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:283:ILE:CD1</td>
<td>1:F:294:TYR:HA</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>1:L:249:ILE:HG12</td>
<td>1:L:259:VAL:HG11</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:281:ARG:HD2</td>
<td>1:B:285:GLU:OE2</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>2:G:501:NAP:O1N</td>
<td>2:G:501:NAP:O2A</td>
<td>2.27</td>
<td>0.42</td>
</tr>
<tr>
<td>1:I:177:GLY:HA2</td>
<td>1:I:202:TRP:CH2</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:L:214:TYR:CD1</td>
<td>1:L:251:LYS:HB2</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:86:SER:HB3</td>
<td>1:E:91:TYR:CE1</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:J:224:ILE:HG23</td>
<td>1:J:341:PHE:CE2</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:177:GLY:HA2</td>
<td>1:B:202:TRP:CH2</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:236:ILE:HD12</td>
<td>1:C:252:ALA:HB1</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:C:94:GLY:O</td>
<td>1:C:128:LYS:HD3</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:J:314:CYS:CB</td>
<td>1:J:315:ASP:HA</td>
<td>2.50</td>
<td>0.42</td>
</tr>
<tr>
<td>1:J:426:VAL:O</td>
<td>1:J:430:ASN:HB2</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:K:5:GLU:O</td>
<td>1:K:6:GLN:C</td>
<td>2.58</td>
<td>0.42</td>
</tr>
<tr>
<td>1:A:190:HIS:HE1</td>
<td>4:A:611:HOH:O</td>
<td>2.01</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:B:67:TRP:HE1</td>
<td>1:B:77:ASN:ND2</td>
<td>2.16</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:109:LEU:HB3</td>
<td>1:F:128:LYS:HG3</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:L:262:PHE:CE2</td>
<td>1:L:280:LEU:HD13</td>
<td>2.55</td>
<td>0.42</td>
</tr>
<tr>
<td>1:B:239:SER:OG</td>
<td>1:B:319:PRO:HA</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:I:116:LYS:HG3</td>
<td>1:I:369:LYS:O</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>1:H:86:SER:HB3</td>
<td>1:H:91:TYR:CE1</td>
<td>2.56</td>
<td>0.41</td>
</tr>
<tr>
<td>1:K:14:LEU:HD13</td>
<td>1:K:28:VAL:HG11</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:L:236:ILE:HG12</td>
<td>1:L:316:ILE:HB</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:I:314:CYS:HB3</td>
<td>1:I:315:ASP:CA</td>
<td>2.51</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:93:GLY:HA3</td>
<td>1:C:127:GLY:O</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:109:LEU:HB3</td>
<td>1:C:128:LYS:HG3</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:165:PRO:HB2</td>
<td>1:D:166:ALA:H</td>
<td>1.64</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:2:THR:HG22</td>
<td>1:F:4:ASP:N</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:116:LYS:HZ1</td>
<td>1:D:347:ASN:HD21</td>
<td>1.67</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:108:PHE:CD1</td>
<td>1:B:108:PHE:C</td>
<td>2.93</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:238:VAL:O</td>
<td>1:B:262:PHE:HA</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:348:MET:N</td>
<td>1:D:349:PRO:CD</td>
<td>2.84</td>
<td>0.41</td>
</tr>
<tr>
<td>1:I:239:SER:HB3</td>
<td>1:I:321:ALA:HB2</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:348:MET:N</td>
<td>1:A:349:PRO:CD</td>
<td>2.84</td>
<td>0.41</td>
</tr>
<tr>
<td>1:C:249:ILE:HG12</td>
<td>1:C:259:VAL:HG11</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:122:LEU:HD13</td>
<td>1:A:380:ALA:HB3</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:116:LYS:NZ</td>
<td>1:B:347:ASN:HD21</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>1:B:184:ARG:HH21</td>
<td>1:C:444:GLN:NE2</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>1:I:237:ILE:HG22</td>
<td>1:I:260:ILE:HD12</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>1:A:38:VAL:CG2</td>
<td>1:A:431:ILE:HG12</td>
<td>2.51</td>
<td>0.40</td>
</tr>
<tr>
<td>1:G:86:SER:O</td>
<td>1:H:190:HIS:CD2</td>
<td>2.75</td>
<td>0.40</td>
</tr>
<tr>
<td>1:I:62:ILE:HD11</td>
<td>1:I:103:LEU:HD22</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>1:L:238:VAL:HG11</td>
<td>1:L:310:TRP:CZ2</td>
<td>2.56</td>
<td>0.40</td>
</tr>
<tr>
<td>1:L:283:ILE:HD13</td>
<td>1:L:294:TYR:HA</td>
<td>2.04</td>
<td>0.40</td>
</tr>
<tr>
<td>1:L:210:GLU:HG3</td>
<td>1:L:247:TYR:CD1</td>
<td>2.57</td>
<td>0.40</td>
</tr>
</tbody>
</table>

There are no symmetry-related clashes.
5.3 Torsion angles

5.3.1 Protein backbone

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>445/447 (100%)</td>
<td>435 (98%)</td>
<td>8 (2%)</td>
<td>2 (0%)</td>
<td>36 45</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>445/447 (100%)</td>
<td>434 (98%)</td>
<td>10 (2%)</td>
<td>1 (0%)</td>
<td>49 61</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>445/447 (100%)</td>
<td>433 (97%)</td>
<td>9 (2%)</td>
<td>3 (1%)</td>
<td>24 29</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>445/447 (100%)</td>
<td>435 (98%)</td>
<td>7 (2%)</td>
<td>3 (1%)</td>
<td>24 29</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>445/447 (100%)</td>
<td>436 (98%)</td>
<td>8 (2%)</td>
<td>1 (0%)</td>
<td>49 61</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>445/447 (100%)</td>
<td>434 (98%)</td>
<td>11 (2%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>445/447 (100%)</td>
<td>435 (98%)</td>
<td>8 (2%)</td>
<td>2 (0%)</td>
<td>36 45</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>445/447 (100%)</td>
<td>437 (98%)</td>
<td>7 (2%)</td>
<td>1 (0%)</td>
<td>49 61</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>445/447 (100%)</td>
<td>420 (94%)</td>
<td>19 (4%)</td>
<td>6 (1%)</td>
<td>13 13</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>445/447 (100%)</td>
<td>390 (88%)</td>
<td>45 (10%)</td>
<td>10 (2%)</td>
<td>7 5</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>298/447 (67%)</td>
<td>283 (95%)</td>
<td>13 (4%)</td>
<td>2 (1%)</td>
<td>24 29</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>445/447 (100%)</td>
<td>429 (96%)</td>
<td>14 (3%)</td>
<td>2 (0%)</td>
<td>36 45</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>5193/5364 (97%)</td>
<td>5001 (96%)</td>
<td>159 (3%)</td>
<td>33 (1%)</td>
<td>27 33</td>
</tr>
</tbody>
</table>

All (33) Ramachandran outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>165</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>207</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>164</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>165</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>207</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>232</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>272</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>319</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>337</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>207</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>43</td>
<td>PRO</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>207</td>
<td>VAL</td>
</tr>
</tbody>
</table>

Continued on next page...
5.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>358/358 (100%)</td>
<td>350 (98%)</td>
<td>8 (2%)</td>
<td>55 72</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>358/358 (100%)</td>
<td>352 (98%)</td>
<td>6 (2%)</td>
<td>63 79</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>358/358 (100%)</td>
<td>352 (98%)</td>
<td>6 (2%)</td>
<td>63 79</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>358/358 (100%)</td>
<td>348 (97%)</td>
<td>10 (3%)</td>
<td>47 63</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>358/358 (100%)</td>
<td>347 (97%)</td>
<td>11 (3%)</td>
<td>43 59</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>358/358 (100%)</td>
<td>351 (98%)</td>
<td>7 (2%)</td>
<td>58 75</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>358/358 (100%)</td>
<td>354 (99%)</td>
<td>4 (1%)</td>
<td>76 87</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>358/358 (100%)</td>
<td>350 (98%)</td>
<td>8 (2%)</td>
<td>55 72</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>358/358 (100%)</td>
<td>336 (94%)</td>
<td>22 (6%)</td>
<td>20 28</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>358/358 (100%)</td>
<td>334 (93%)</td>
<td>24 (7%)</td>
<td>18 23</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>243/358 (68%)</td>
<td>238 (98%)</td>
<td>5 (2%)</td>
<td>56 73</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>358/358 (100%)</td>
<td>345 (96%)</td>
<td>13 (4%)</td>
<td>38 52</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>4181/4296 (97%)</td>
<td>4057 (97%)</td>
<td>124 (3%)</td>
<td>44 60</td>
</tr>
</tbody>
</table>

All (124) residues with a non-rotameric sidechain are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>13</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>50</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>84</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>108</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>230</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>279</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>379</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>391</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>1</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>13</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>42</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>84</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>108</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>251</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>44</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>50</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>61</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>84</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>108</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>220</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>2</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>6</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>13</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>35</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>61</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>84</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>108</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>202</td>
<td>TRP</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>306</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>329</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>2</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>13</td>
<td>MET</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>E</td>
<td>14</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>16</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>40</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>84</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>108</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>234</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>235</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>359</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>399</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>13</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>14</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>84</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>108</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>234</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>306</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>391</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>50</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>84</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>108</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>391</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>14</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>38</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>84</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>108</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>230</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>333</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>391</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>411</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>2</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>4</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>51</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>84</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>119</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>220</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>238</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>239</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>260</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>264</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>269</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>285</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>302</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>306</td>
<td>ASP</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>308</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>326</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>333</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>334</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>336</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>361</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>364</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>400</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>61</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>84</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>108</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>222</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>239</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>254</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>260</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>273</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>279</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>283</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>284</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>285</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>287</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>290</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>294</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>302</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>313</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>315</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>322</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>323</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>326</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>339</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>359</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>427</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>2</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>13</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>84</td>
<td>PHE</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>216</td>
<td>CYS</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>372</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>1</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>14</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>50</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>61</td>
<td>LEU</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>84</td>
<td>PHE</td>
</tr>
</tbody>
</table>

Continued on next page...
Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (124) such sidechains are listed below:

\[
\begin{array}{|c|c|c|c|}
\hline
\text{Mol} & \text{Chain} & \text{Res} & \text{Type} \\
\hline
1 & A & 60 & GLN \\
1 & A & 75 & HIS \\
1 & A & 77 & ASN \\
1 & A & 155 & HIS \\
1 & A & 190 & HIS \\
1 & A & 234 & GLN \\
1 & A & 253 & GLN \\
1 & A & 324 & ASN \\
1 & A & 330 & ASN \\
1 & A & 347 & ASN \\
1 & A & 384 & GLN \\
1 & A & 423 & ASN \\
1 & A & 444 & GLN \\
1 & B & 60 & GLN \\
1 & B & 75 & HIS \\
1 & B & 77 & ASN \\
1 & B & 98 & HIS \\
1 & B & 190 & HIS \\
1 & B & 253 & GLN \\
1 & B & 324 & ASN \\
1 & B & 330 & ASN \\
1 & B & 347 & ASN \\
1 & B & 384 & GLN \\
1 & B & 444 & GLN \\
1 & C & 60 & GLN \\
1 & C & 75 & HIS \\
1 & C & 77 & ASN \\
1 & C & 98 & HIS \\
1 & C & 190 & HIS \\
1 & C & 253 & GLN \\
\hline
\end{array}
\]
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>C</td>
<td>270</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>324</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>330</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>347</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>444</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>60</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>71</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>75</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>77</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>98</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>190</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>253</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>324</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>330</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>347</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>384</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>444</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>75</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>77</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>98</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>190</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>234</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>253</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>324</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>330</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>347</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>384</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>423</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>444</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>60</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>75</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>77</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>98</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>155</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>190</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>234</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>253</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>324</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>330</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>347</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>384</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>444</td>
<td>GLN</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>G</td>
<td>75</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>77</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>98</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>253</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>324</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>330</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>347</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>423</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>444</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>75</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>77</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>98</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>190</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>234</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>253</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>324</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>330</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>347</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>423</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>444</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>60</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>75</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>77</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>98</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>190</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>253</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>384</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>444</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>26</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>60</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>77</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>98</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>155</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>190</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>323</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>324</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>423</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>444</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>60</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>75</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>77</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>98</td>
<td>HIS</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>K</td>
<td>190</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>384</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>444</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>60</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>75</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>77</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>98</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>190</td>
<td>HIS</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>253</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>444</td>
<td>GLN</td>
</tr>
</tbody>
</table>

5.3.3 RNA

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates

There are no carbohydrates in this entry.

5.6 Ligand geometry

18 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with \(|Z| > 2\) is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>A</td>
<td>501</td>
<td>-</td>
<td>44,52,52</td>
<td>1.47</td>
</tr>
<tr>
<td>3</td>
<td>AKG</td>
<td>A</td>
<td>502</td>
<td>-</td>
<td>3,9,9</td>
<td>1.25</td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>B</td>
<td>501</td>
<td>-</td>
<td>44,52,52</td>
<td>1.57</td>
</tr>
</tbody>
</table>
Bond lengths

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Counts</th>
<th>Bond lengths</th>
<th>#</th>
<th>Count</th>
<th>Bond lengths</th>
<th>RMSZ</th>
<th>#</th>
<th>Count</th>
<th>Bond lengths</th>
<th>RMSZ</th>
<th>#</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>AKG</td>
<td>B</td>
<td>502</td>
<td>-</td>
<td>3,9,9</td>
<td>1.01</td>
<td>0</td>
<td>4,11,11</td>
<td>2.42</td>
<td>2 (50%)</td>
<td>10 (18%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>C</td>
<td>501</td>
<td>-</td>
<td>44,52,52</td>
<td>1.62</td>
<td>5 (11%)</td>
<td>53,80,80</td>
<td>2.23</td>
<td>10 (18%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AKG</td>
<td>C</td>
<td>502</td>
<td>-</td>
<td>3,9,9</td>
<td>1.00</td>
<td>0</td>
<td>4,11,11</td>
<td>3.88</td>
<td>2 (50%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>D</td>
<td>501</td>
<td>-</td>
<td>44,52,52</td>
<td>1.65</td>
<td>6 (13%)</td>
<td>53,80,80</td>
<td>2.37</td>
<td>8 (15%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AKG</td>
<td>D</td>
<td>502</td>
<td>-</td>
<td>3,9,9</td>
<td>0.47</td>
<td>0</td>
<td>4,11,11</td>
<td>0.86</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>E</td>
<td>501</td>
<td>-</td>
<td>44,52,52</td>
<td>1.79</td>
<td>5 (11%)</td>
<td>53,80,80</td>
<td>1.92</td>
<td>10 (18%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AKG</td>
<td>E</td>
<td>502</td>
<td>-</td>
<td>3,9,9</td>
<td>1.22</td>
<td>0</td>
<td>4,11,11</td>
<td>3.75</td>
<td>3 (75%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>F</td>
<td>501</td>
<td>-</td>
<td>44,52,52</td>
<td>1.68</td>
<td>5 (11%)</td>
<td>53,80,80</td>
<td>2.14</td>
<td>10 (18%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AKG</td>
<td>F</td>
<td>502</td>
<td>-</td>
<td>3,9,9</td>
<td>0.79</td>
<td>0</td>
<td>4,11,11</td>
<td>2.64</td>
<td>3 (75%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>G</td>
<td>501</td>
<td>-</td>
<td>44,52,52</td>
<td>1.73</td>
<td>5 (11%)</td>
<td>53,80,80</td>
<td>2.36</td>
<td>13 (24%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AKG</td>
<td>G</td>
<td>502</td>
<td>-</td>
<td>3,9,9</td>
<td>0.97</td>
<td>0</td>
<td>4,11,11</td>
<td>2.81</td>
<td>3 (75%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>H</td>
<td>501</td>
<td>-</td>
<td>44,52,52</td>
<td>1.65</td>
<td>6 (13%)</td>
<td>53,80,80</td>
<td>2.20</td>
<td>11 (20%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AKG</td>
<td>H</td>
<td>502</td>
<td>-</td>
<td>3,9,9</td>
<td>0.74</td>
<td>0</td>
<td>4,11,11</td>
<td>4.52</td>
<td>2 (50%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>J</td>
<td>501</td>
<td>-</td>
<td>44,52,52</td>
<td>1.73</td>
<td>6 (13%)</td>
<td>53,80,80</td>
<td>1.85</td>
<td>5 (9%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>AKG</td>
<td>J</td>
<td>502</td>
<td>-</td>
<td>3,9,9</td>
<td>0.93</td>
<td>0</td>
<td>4,11,11</td>
<td>2.16</td>
<td>3 (75%)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. ‘-’ means no outliers of that kind were identified.
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>AKG</td>
<td>J</td>
<td>502</td>
<td>-</td>
<td>-</td>
<td>0/3/9/9</td>
<td>0/0/0/0</td>
</tr>
</tbody>
</table>

All (47) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>E</td>
<td>501</td>
<td>NAP</td>
<td>C2A-N3A</td>
<td>2.02</td>
<td>1.35</td>
<td>1.32</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>NAP</td>
<td>C2A-N1A</td>
<td>2.03</td>
<td>1.37</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>NAP</td>
<td>O4B-C1B</td>
<td>2.08</td>
<td>1.44</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>501</td>
<td>NAP</td>
<td>C8A-N7A</td>
<td>2.09</td>
<td>1.38</td>
<td>1.34</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>501</td>
<td>NAP</td>
<td>C5A-C4A</td>
<td>2.22</td>
<td>1.45</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>NAP</td>
<td>C2A-N3A</td>
<td>2.22</td>
<td>1.35</td>
<td>1.32</td>
</tr>
<tr>
<td>2</td>
<td>J</td>
<td>501</td>
<td>NAP</td>
<td>P2B-O2B</td>
<td>2.24</td>
<td>1.63</td>
<td>1.59</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>501</td>
<td>NAP</td>
<td>C2A-N3A</td>
<td>2.26</td>
<td>1.35</td>
<td>1.32</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>NAP</td>
<td>O4D-C1D</td>
<td>2.54</td>
<td>1.44</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>501</td>
<td>NAP</td>
<td>C4A-N3A</td>
<td>2.56</td>
<td>1.39</td>
<td>1.35</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>501</td>
<td>NAP</td>
<td>C2A-N3A</td>
<td>2.62</td>
<td>1.36</td>
<td>1.32</td>
</tr>
<tr>
<td>2</td>
<td>J</td>
<td>501</td>
<td>NAP</td>
<td>C2A-N3A</td>
<td>2.69</td>
<td>1.36</td>
<td>1.32</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>501</td>
<td>NAP</td>
<td>P2B-O2B</td>
<td>2.71</td>
<td>1.64</td>
<td>1.59</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>NAP</td>
<td>C2A-N3A</td>
<td>2.71</td>
<td>1.36</td>
<td>1.32</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>NAP</td>
<td>C5A-C4A</td>
<td>2.82</td>
<td>1.46</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>NAP</td>
<td>C5A-C4A</td>
<td>2.83</td>
<td>1.46</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>NAP</td>
<td>C5A-C4A</td>
<td>2.85</td>
<td>1.46</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>NAP</td>
<td>C2A-N1A</td>
<td>2.86</td>
<td>1.39</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>NAP</td>
<td>C4A-N3A</td>
<td>2.92</td>
<td>1.39</td>
<td>1.35</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>501</td>
<td>NAP</td>
<td>C5A-C4A</td>
<td>2.92</td>
<td>1.47</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>NAP</td>
<td>C5A-C4A</td>
<td>2.96</td>
<td>1.47</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>NAP</td>
<td>C2A-N3A</td>
<td>2.97</td>
<td>1.37</td>
<td>1.32</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>NAP</td>
<td>C2A-N3A</td>
<td>2.97</td>
<td>1.37</td>
<td>1.32</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>NAP</td>
<td>C5N-C4N</td>
<td>3.04</td>
<td>1.44</td>
<td>1.38</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>NAP</td>
<td>C5N-C4N</td>
<td>3.09</td>
<td>1.45</td>
<td>1.38</td>
</tr>
<tr>
<td>2</td>
<td>J</td>
<td>501</td>
<td>NAP</td>
<td>O4B-C1B</td>
<td>3.15</td>
<td>1.45</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>501</td>
<td>NAP</td>
<td>P2B-O2B</td>
<td>3.31</td>
<td>1.65</td>
<td>1.59</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>NAP</td>
<td>C5A-C4A</td>
<td>3.32</td>
<td>1.48</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>501</td>
<td>NAP</td>
<td>C5N-C4N</td>
<td>3.38</td>
<td>1.45</td>
<td>1.38</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>501</td>
<td>NAP</td>
<td>C5N-C4N</td>
<td>3.50</td>
<td>1.45</td>
<td>1.38</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>NAP</td>
<td>C2A-N3A</td>
<td>3.52</td>
<td>1.37</td>
<td>1.32</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>501</td>
<td>NAP</td>
<td>C5N-C4N</td>
<td>3.56</td>
<td>1.45</td>
<td>1.38</td>
</tr>
<tr>
<td>2</td>
<td>J</td>
<td>501</td>
<td>NAP</td>
<td>C5A-C4A</td>
<td>3.73</td>
<td>1.48</td>
<td>1.40</td>
</tr>
<tr>
<td>2</td>
<td>J</td>
<td>501</td>
<td>NAP</td>
<td>C5N-C4N</td>
<td>3.74</td>
<td>1.46</td>
<td>1.38</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>NAP</td>
<td>C5N-C4N</td>
<td>3.81</td>
<td>1.46</td>
<td>1.38</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>NAP</td>
<td>O4D-C1D</td>
<td>3.83</td>
<td>1.46</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>NAP</td>
<td>C5N-C4N</td>
<td>3.84</td>
<td>1.46</td>
<td>1.38</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>NAP</td>
<td>C5N-C4N</td>
<td>3.90</td>
<td>1.46</td>
<td>1.38</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>501</td>
<td>NAP</td>
<td>C4N-C3N</td>
<td>6.67</td>
<td>1.50</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>NAP</td>
<td>C4N-C3N</td>
<td>6.87</td>
<td>1.51</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>NAP</td>
<td>C4N-C3N</td>
<td>7.13</td>
<td>1.51</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>501</td>
<td>NAP</td>
<td>C4N-C3N</td>
<td>7.41</td>
<td>1.52</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>NAP</td>
<td>C4N-C3N</td>
<td>7.46</td>
<td>1.52</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>J</td>
<td>501</td>
<td>NAP</td>
<td>C4N-C3N</td>
<td>7.60</td>
<td>1.52</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>NAP</td>
<td>C4N-C3N</td>
<td>7.60</td>
<td>1.52</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>NAP</td>
<td>C4N-C3N</td>
<td>7.82</td>
<td>1.52</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>501</td>
<td>NAP</td>
<td>C4N-C3N</td>
<td>8.53</td>
<td>1.54</td>
<td>1.39</td>
</tr>
</tbody>
</table>

All (104) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>D</td>
<td>501</td>
<td>NAP</td>
<td>N3A-C2A-N1A</td>
<td>-11.63</td>
<td>118.91</td>
<td>128.86</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>NAP</td>
<td>N3A-C2A-N1A</td>
<td>-9.55</td>
<td>120.69</td>
<td>128.86</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>NAP</td>
<td>N3A-C2A-N1A</td>
<td>-9.27</td>
<td>120.93</td>
<td>128.86</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>NAP</td>
<td>N3A-C2A-N1A</td>
<td>-9.08</td>
<td>121.09</td>
<td>128.86</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>NAP</td>
<td>N3A-C2A-N1A</td>
<td>-8.41</td>
<td>121.67</td>
<td>128.86</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>501</td>
<td>NAP</td>
<td>N3A-C2A-N1A</td>
<td>-8.28</td>
<td>121.77</td>
<td>128.86</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>NAP</td>
<td>N3A-C2A-N1A</td>
<td>-8.11</td>
<td>121.92</td>
<td>128.86</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>502</td>
<td>AKG</td>
<td>C3-C4-C5</td>
<td>-7.96</td>
<td>99.05</td>
<td>112.66</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>501</td>
<td>NAP</td>
<td>N3A-C2A-N1A</td>
<td>-7.78</td>
<td>122.20</td>
<td>128.86</td>
</tr>
<tr>
<td>2</td>
<td>J</td>
<td>501</td>
<td>NAP</td>
<td>N3A-C2A-N1A</td>
<td>-7.77</td>
<td>122.22</td>
<td>128.86</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>NAP</td>
<td>C5N-C4N-C3N</td>
<td>-7.43</td>
<td>111.63</td>
<td>120.35</td>
</tr>
<tr>
<td>2</td>
<td>J</td>
<td>501</td>
<td>NAP</td>
<td>C5N-C4N-C3N</td>
<td>-7.24</td>
<td>111.85</td>
<td>120.35</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>NAP</td>
<td>C5N-C4N-C3N</td>
<td>-7.13</td>
<td>111.97</td>
<td>120.35</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>NAP</td>
<td>C5N-C4N-C3N</td>
<td>-6.98</td>
<td>112.15</td>
<td>120.35</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>501</td>
<td>NAP</td>
<td>C1B-N9A-C4A</td>
<td>-6.57</td>
<td>115.28</td>
<td>120.64</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>NAP</td>
<td>C5N-C4N-C3N</td>
<td>-6.49</td>
<td>112.73</td>
<td>120.35</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>502</td>
<td>AKG</td>
<td>C3-C4-C5</td>
<td>-6.27</td>
<td>101.94</td>
<td>112.66</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>501</td>
<td>NAP</td>
<td>C5N-C4N-C3N</td>
<td>-6.08</td>
<td>113.21</td>
<td>120.35</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>501</td>
<td>NAP</td>
<td>C5N-C4N-C3N</td>
<td>-5.99</td>
<td>113.31</td>
<td>120.35</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>502</td>
<td>AKG</td>
<td>C3-C4-C5</td>
<td>-5.98</td>
<td>102.44</td>
<td>112.66</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>501</td>
<td>NAP</td>
<td>C5N-C4N-C3N</td>
<td>-5.89</td>
<td>113.43</td>
<td>120.35</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>NAP</td>
<td>C1B-N9A-C4A</td>
<td>-5.72</td>
<td>116.75</td>
<td>126.64</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>NAP</td>
<td>C5N-C4N-C3N</td>
<td>-5.68</td>
<td>113.68</td>
<td>120.35</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>502</td>
<td>AKG</td>
<td>C3-C4-C5</td>
<td>-5.03</td>
<td>104.07</td>
<td>112.66</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>502</td>
<td>AKG</td>
<td>C3-C2-C1</td>
<td>-4.84</td>
<td>110.82</td>
<td>121.61</td>
</tr>
<tr>
<td>3</td>
<td>C</td>
<td>502</td>
<td>AKG</td>
<td>C3-C2-C1</td>
<td>-4.62</td>
<td>111.30</td>
<td>121.61</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>NAP</td>
<td>C5A-C6A-N6A</td>
<td>-4.38</td>
<td>111.54</td>
<td>120.47</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>502</td>
<td>AKG</td>
<td>C3-C2-C1</td>
<td>-4.24</td>
<td>112.16</td>
<td>121.61</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A</td>
<td>501</td>
<td>NAP</td>
<td>C4D-O4D-C1D</td>
<td>-4.22</td>
<td>105.42</td>
<td>109.83</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>501</td>
<td>NAP</td>
<td>O7N-C7N-N7N</td>
<td>-4.00</td>
<td>116.78</td>
<td>122.60</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>502</td>
<td>AKG</td>
<td>C4-C3-C2</td>
<td>-3.92</td>
<td>104.14</td>
<td>113.07</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>NAP</td>
<td>PN-O3-PA</td>
<td>-3.91</td>
<td>119.50</td>
<td>132.63</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>NAP</td>
<td>O5D-PN-O1N</td>
<td>-3.86</td>
<td>93.97</td>
<td>109.07</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>502</td>
<td>AKG</td>
<td>C3-C2-C1</td>
<td>-3.84</td>
<td>113.03</td>
<td>121.61</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>NAP</td>
<td>C5A-C6A-N6A</td>
<td>-3.81</td>
<td>112.71</td>
<td>120.47</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>502</td>
<td>AKG</td>
<td>C3-C2-C1</td>
<td>-3.70</td>
<td>113.35</td>
<td>121.61</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>NAP</td>
<td>PN-O3-PA</td>
<td>-3.48</td>
<td>120.94</td>
<td>132.63</td>
</tr>
<tr>
<td>2</td>
<td>J</td>
<td>501</td>
<td>NAP</td>
<td>C4A-C5A-N7A</td>
<td>-3.46</td>
<td>106.07</td>
<td>109.41</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>502</td>
<td>AKG</td>
<td>C3-C4-C5</td>
<td>-3.09</td>
<td>107.39</td>
<td>112.66</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>NAP</td>
<td>PN-O3-PA</td>
<td>-3.08</td>
<td>101.24</td>
<td>106.60</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>501</td>
<td>NAP</td>
<td>PN-O3-PA</td>
<td>-3.08</td>
<td>122.28</td>
<td>132.63</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>NAP</td>
<td>O7N-C7N-C3N</td>
<td>-3.12</td>
<td>115.71</td>
<td>119.62</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>501</td>
<td>NAP</td>
<td>O7N-C7N-N7N</td>
<td>-3.09</td>
<td>118.11</td>
<td>122.60</td>
</tr>
<tr>
<td>3</td>
<td>B</td>
<td>502</td>
<td>AKG</td>
<td>C4-C3-C2</td>
<td>-3.09</td>
<td>112.71</td>
<td>120.47</td>
</tr>
<tr>
<td>2</td>
<td>J</td>
<td>501</td>
<td>NAP</td>
<td>O4B-C1B-C2B</td>
<td>-3.04</td>
<td>101.24</td>
<td>106.60</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>501</td>
<td>NAP</td>
<td>O4B-C1B-C2B</td>
<td>-3.04</td>
<td>122.28</td>
<td>132.63</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>NAP</td>
<td>O7N-C7N-C3N</td>
<td>-2.89</td>
<td>116.00</td>
<td>119.62</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>502</td>
<td>AKG</td>
<td>O5-C2-C3</td>
<td>-2.81</td>
<td>115.42</td>
<td>120.34</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>501</td>
<td>NAP</td>
<td>C5A-C6A-N6A</td>
<td>-2.81</td>
<td>114.75</td>
<td>120.47</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>NAP</td>
<td>O7N-C7N-C3N</td>
<td>-2.81</td>
<td>116.11</td>
<td>119.62</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>501</td>
<td>NAP</td>
<td>C4A-C5A-N7A</td>
<td>-2.73</td>
<td>106.75</td>
<td>109.41</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>NAP</td>
<td>C5A-C6A-N6A</td>
<td>-2.73</td>
<td>114.87</td>
<td>120.47</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>501</td>
<td>NAP</td>
<td>O4B-C1B-C2B</td>
<td>-2.73</td>
<td>101.85</td>
<td>106.60</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>NAP</td>
<td>PN-O3-PA</td>
<td>-2.63</td>
<td>123.62</td>
<td>132.63</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>501</td>
<td>NAP</td>
<td>O4B-C1B-C2B</td>
<td>-2.63</td>
<td>123.62</td>
<td>132.63</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>501</td>
<td>NAP</td>
<td>PN-O3-PA</td>
<td>-2.50</td>
<td>124.24</td>
<td>132.63</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>NAP</td>
<td>C1B-N9A-C4A</td>
<td>-2.41</td>
<td>122.47</td>
<td>126.64</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>501</td>
<td>NAP</td>
<td>C5A-C6A-N6A</td>
<td>-2.41</td>
<td>115.56</td>
<td>120.47</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>NAP</td>
<td>C4B-O4B-C1B</td>
<td>-2.36</td>
<td>107.36</td>
<td>109.83</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>NAP</td>
<td>C4D-O4D-C1D</td>
<td>-2.33</td>
<td>107.39</td>
<td>109.83</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>NAP</td>
<td>O2B-P2B-O1X</td>
<td>-2.32</td>
<td>100.44</td>
<td>109.39</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>501</td>
<td>NAP</td>
<td>C4B-O4B-C1B</td>
<td>-2.30</td>
<td>107.43</td>
<td>109.83</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>NAP</td>
<td>O7N-C7N-N7N</td>
<td>-2.28</td>
<td>119.28</td>
<td>122.60</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>502</td>
<td>AKG</td>
<td>C3-C4-C5</td>
<td>-2.27</td>
<td>108.79</td>
<td>112.66</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>501</td>
<td>NAP</td>
<td>O2X-P2B-O2B</td>
<td>-2.19</td>
<td>96.16</td>
<td>105.99</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>NAP</td>
<td>C4A-C5A-N7A</td>
<td>-2.19</td>
<td>107.29</td>
<td>109.41</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>501</td>
<td>NAP</td>
<td>PN-O3-PA</td>
<td>-2.19</td>
<td>125.27</td>
<td>132.63</td>
</tr>
<tr>
<td>3</td>
<td>J</td>
<td>502</td>
<td>AKG</td>
<td>O5-C2-C3</td>
<td>-2.17</td>
<td>116.53</td>
<td>120.34</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>NAP</td>
<td>O2N-PN-O1N</td>
<td>-2.16</td>
<td>101.15</td>
<td>112.14</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>NAP</td>
<td>O3D-C3D-C4D</td>
<td>-2.09</td>
<td>105.00</td>
<td>111.06</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>NAP</td>
<td>O2B-P2B-O1X</td>
<td>-2.09</td>
<td>101.34</td>
<td>109.39</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>F</td>
<td>502</td>
<td>AKG</td>
<td>C3-C4-C5</td>
<td>-2.02</td>
<td>109.20</td>
<td>112.66</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>NAP</td>
<td>C4N-C3N-C7N</td>
<td>-2.02</td>
<td>115.66</td>
<td>121.08</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>NAP</td>
<td>O5D-PN-O1N</td>
<td>2.01</td>
<td>116.92</td>
<td>109.07</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>NAP</td>
<td>C5N-C6N-N1N</td>
<td>2.03</td>
<td>123.50</td>
<td>120.39</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>NAP</td>
<td>C2A-N1A-C6A</td>
<td>2.05</td>
<td>122.23</td>
<td>118.75</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>501</td>
<td>NAP</td>
<td>O3X-P2B-O2X</td>
<td>2.16</td>
<td>116.13</td>
<td>107.59</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>NAP</td>
<td>C4A-C5A-N7A</td>
<td>2.35</td>
<td>111.68</td>
<td>109.41</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>NAP</td>
<td>C2N-C3N-C4N</td>
<td>2.35</td>
<td>120.97</td>
<td>118.26</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>NAP</td>
<td>C2A-N1A-C6A</td>
<td>2.38</td>
<td>122.80</td>
<td>118.75</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>501</td>
<td>NAP</td>
<td>O2N-PN-O1N</td>
<td>2.40</td>
<td>124.34</td>
<td>112.14</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>NAP</td>
<td>C4X-P2B-O2X</td>
<td>2.44</td>
<td>117.22</td>
<td>107.59</td>
</tr>
<tr>
<td>3</td>
<td>J</td>
<td>502</td>
<td>AKG</td>
<td>C4-C3-C2</td>
<td>2.44</td>
<td>118.64</td>
<td>113.07</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>NAP</td>
<td>C2N-C7N-C3N</td>
<td>2.44</td>
<td>122.69</td>
<td>119.62</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>NAP</td>
<td>O3X-P2B-O2X</td>
<td>2.52</td>
<td>117.57</td>
<td>107.59</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>502</td>
<td>AKG</td>
<td>O5-C2-C3</td>
<td>2.55</td>
<td>124.80</td>
<td>120.34</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>NAP</td>
<td>O3X-P2B-O2X</td>
<td>2.57</td>
<td>117.76</td>
<td>107.59</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>NAP</td>
<td>C2A-N1A-C6A</td>
<td>2.64</td>
<td>123.23</td>
<td>118.75</td>
</tr>
<tr>
<td>2</td>
<td>J</td>
<td>501</td>
<td>NAP</td>
<td>C2N-C3N-C4N</td>
<td>2.72</td>
<td>121.40</td>
<td>118.26</td>
</tr>
<tr>
<td>3</td>
<td>J</td>
<td>502</td>
<td>AKG</td>
<td>C3-C4-C5</td>
<td>2.76</td>
<td>117.38</td>
<td>112.66</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>502</td>
<td>AKG</td>
<td>O5-C2-C3</td>
<td>2.91</td>
<td>125.42</td>
<td>120.34</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>501</td>
<td>NAP</td>
<td>O7N-C7N-C3N</td>
<td>3.06</td>
<td>123.45</td>
<td>119.62</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>NAP</td>
<td>C4A-C5A-N7A</td>
<td>3.13</td>
<td>112.44</td>
<td>109.41</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>NAP</td>
<td>C2A-N1A-C6A</td>
<td>3.13</td>
<td>124.08</td>
<td>118.75</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>NAP</td>
<td>N6A-C6A-N1A</td>
<td>3.26</td>
<td>125.33</td>
<td>118.57</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>NAP</td>
<td>C2N-C3N-C4N</td>
<td>3.47</td>
<td>122.26</td>
<td>118.26</td>
</tr>
<tr>
<td>2</td>
<td>B</td>
<td>501</td>
<td>NAP</td>
<td>N6A-C6A-N1A</td>
<td>3.94</td>
<td>126.74</td>
<td>118.57</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>501</td>
<td>NAP</td>
<td>C3N-C7N-N7N</td>
<td>4.14</td>
<td>122.57</td>
<td>117.76</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>NAP</td>
<td>C3N-C7N-N7N</td>
<td>4.14</td>
<td>122.58</td>
<td>117.76</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>501</td>
<td>NAP</td>
<td>C3N-C7N-N7N</td>
<td>4.27</td>
<td>122.72</td>
<td>117.76</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>501</td>
<td>NAP</td>
<td>N6A-C6A-N1A</td>
<td>4.49</td>
<td>127.88</td>
<td>118.57</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>501</td>
<td>NAP</td>
<td>C3N-C7N-N7N</td>
<td>4.76</td>
<td>123.30</td>
<td>117.76</td>
</tr>
<tr>
<td>2</td>
<td>A</td>
<td>501</td>
<td>NAP</td>
<td>C3N-C7N-N7N</td>
<td>4.81</td>
<td>123.35</td>
<td>117.76</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>501</td>
<td>NAP</td>
<td>N6A-C6A-N1A</td>
<td>4.90</td>
<td>128.74</td>
<td>118.57</td>
</tr>
<tr>
<td>2</td>
<td>C</td>
<td>501</td>
<td>NAP</td>
<td>N6A-C6A-N1A</td>
<td>6.17</td>
<td>131.37</td>
<td>118.57</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

4 monomers are involved in 6 short contacts:
Other polymers

> There are no such residues in this entry.

Polymer linkage issues

> There are no chain breaks in this entry.
6 Fit of model and data

6.1 Protein, DNA and RNA chains

In the following table, the column labelled ‘#RSRZ > 2’ contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled ‘Q< 0.9’ lists the number of (and percentage) of residues with an average occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th><RSRZ></th>
<th>#RSRZ > 2</th>
<th>OWAB(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>447/447 (100%)</td>
<td>-0.27</td>
<td>4 (0%) 84</td>
<td>87</td>
<td>10, 16, 33, 63</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>447/447 (100%)</td>
<td>-0.37</td>
<td>1 (0%) 94</td>
<td>96</td>
<td>8, 15, 31, 61</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>447/447 (100%)</td>
<td>-0.35</td>
<td>1 (0%) 94</td>
<td>96</td>
<td>8, 15, 33, 67</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>447/447 (100%)</td>
<td>-0.23</td>
<td>6 (1%) 77</td>
<td>81</td>
<td>9, 16, 36, 70</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>447/447 (100%)</td>
<td>-0.25</td>
<td>4 (0%) 84</td>
<td>87</td>
<td>8, 17, 34, 76</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>447/447 (100%)</td>
<td>-0.19</td>
<td>3 (0%) 87</td>
<td>91</td>
<td>9, 18, 37, 53</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>447/447 (100%)</td>
<td>-0.29</td>
<td>5 (1%) 80</td>
<td>84</td>
<td>11, 19, 38, 77</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>447/447 (100%)</td>
<td>-0.10</td>
<td>12 (2%) 54</td>
<td>62</td>
<td>12, 22, 45, 67</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>447/447 (100%)</td>
<td>0.20</td>
<td>45 (10%) 7</td>
<td>10</td>
<td>8, 23, 69, 91</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>447/447 (100%)</td>
<td>1.73</td>
<td>148 (33%) 0</td>
<td>0</td>
<td>13, 45, 117, 146</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>304/447 (68%)</td>
<td>0.57</td>
<td>50 (16%) 1</td>
<td>2</td>
<td>17, 30, 75, 99</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>447/447 (100%)</td>
<td>-0.01</td>
<td>21 (4%) 31</td>
<td>39</td>
<td>12, 26, 54, 96</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>5221/5364 (97%)</td>
<td>0.02</td>
<td>300 (5%)</td>
<td>24</td>
<td>30</td>
</tr>
</tbody>
</table>

All (300) RSRZ outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J</td>
<td>314</td>
<td>CYS</td>
<td>15.3</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>328</td>
<td>GLY</td>
<td>13.8</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>320</td>
<td>CYS</td>
<td>12.2</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>277</td>
<td>VAL</td>
<td>10.8</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>274</td>
<td>GLY</td>
<td>10.5</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>343</td>
<td>ALA</td>
<td>10.3</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>319</td>
<td>PRO</td>
<td>10.1</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>300</td>
<td>GLY</td>
<td>9.7</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>340</td>
<td>ARG</td>
<td>9.7</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>1</td>
<td>MET</td>
<td>8.9</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>266</td>
<td>SER</td>
<td>8.5</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J</td>
<td>342</td>
<td>VAL</td>
<td>8.3</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>266</td>
<td>SER</td>
<td>8.2</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>306</td>
<td>ASP</td>
<td>8.1</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>296</td>
<td>ASP</td>
<td>7.9</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>272</td>
<td>PRO</td>
<td>7.8</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>307</td>
<td>GLY</td>
<td>7.8</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>230</td>
<td>SER</td>
<td>7.7</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>303</td>
<td>TYR</td>
<td>7.7</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>345</td>
<td>GLY</td>
<td>7.6</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>276</td>
<td>ASP</td>
<td>7.5</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>275</td>
<td>VAL</td>
<td>7.4</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>321</td>
<td>ALA</td>
<td>7.3</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>1</td>
<td>MET</td>
<td>7.3</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>286</td>
<td>VAL</td>
<td>7.2</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>353</td>
<td>GLU</td>
<td>7.2</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>307</td>
<td>GLY</td>
<td>7.2</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>341</td>
<td>PHE</td>
<td>7.1</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>346</td>
<td>ALA</td>
<td>7.1</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>315</td>
<td>ASP</td>
<td>7.1</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>309</td>
<td>ILE</td>
<td>6.9</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>361</td>
<td>ARG</td>
<td>6.9</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>259</td>
<td>VAL</td>
<td>6.9</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>244</td>
<td>VAL</td>
<td>6.9</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>237</td>
<td>ILE</td>
<td>6.8</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>3</td>
<td>VAL</td>
<td>6.8</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>311</td>
<td>ASP</td>
<td>6.8</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>329</td>
<td>GLU</td>
<td>6.8</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>308</td>
<td>SER</td>
<td>6.8</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>293</td>
<td>VAL</td>
<td>6.8</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>302</td>
<td>THR</td>
<td>6.7</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>1</td>
<td>MET</td>
<td>6.7</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>260</td>
<td>ILE</td>
<td>6.6</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>226</td>
<td>ALA</td>
<td>6.6</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>228</td>
<td>GLY</td>
<td>6.5</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>223</td>
<td>MET</td>
<td>6.3</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>366</td>
<td>GLY</td>
<td>6.3</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>351</td>
<td>THR</td>
<td>6.3</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>318</td>
<td>LEU</td>
<td>6.3</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>327</td>
<td>ASN</td>
<td>6.2</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>344</td>
<td>GLU</td>
<td>6.1</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>337</td>
<td>ASN</td>
<td>6.0</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>349</td>
<td>PRO</td>
<td>5.9</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J</td>
<td>339</td>
<td>CYS</td>
<td>5.8</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>247</td>
<td>TYR</td>
<td>5.7</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>290</td>
<td>ARG</td>
<td>5.7</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>359</td>
<td>ARG</td>
<td>5.6</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>1</td>
<td>MET</td>
<td>5.6</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>289</td>
<td>ALA</td>
<td>5.4</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>352</td>
<td>PRO</td>
<td>5.4</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>316</td>
<td>ILE</td>
<td>5.4</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>263</td>
<td>SER</td>
<td>5.3</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>4</td>
<td>HIS</td>
<td>5.2</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>326</td>
<td>LEU</td>
<td>5.1</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>231</td>
<td>ILE</td>
<td>5.1</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>1</td>
<td>MET</td>
<td>5.1</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>287</td>
<td>ARG</td>
<td>5.0</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>417</td>
<td>ALA</td>
<td>5.0</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>336</td>
<td>ASP</td>
<td>5.0</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>304</td>
<td>HIS</td>
<td>5.0</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>264</td>
<td>ASP</td>
<td>4.9</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>357</td>
<td>VAL</td>
<td>4.9</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>306</td>
<td>ASP</td>
<td>4.9</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>238</td>
<td>VAL</td>
<td>4.9</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>324</td>
<td>ASN</td>
<td>4.9</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>216</td>
<td>CYS</td>
<td>4.9</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>218</td>
<td>TYR</td>
<td>4.8</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>365</td>
<td>PHE</td>
<td>4.8</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>283</td>
<td>ILE</td>
<td>4.8</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>317</td>
<td>ALA</td>
<td>4.8</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>1</td>
<td>MET</td>
<td>4.8</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>218</td>
<td>TYR</td>
<td>4.8</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>268</td>
<td>TRP</td>
<td>4.8</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>294</td>
<td>TYR</td>
<td>4.7</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>223</td>
<td>MET</td>
<td>4.7</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>292</td>
<td>SER</td>
<td>4.7</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>350</td>
<td>SER</td>
<td>4.7</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>240</td>
<td>GLY</td>
<td>4.7</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>3</td>
<td>VAL</td>
<td>4.7</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>3</td>
<td>MET</td>
<td>4.6</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>305</td>
<td>THR</td>
<td>4.6</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>288</td>
<td>ARG</td>
<td>4.6</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>269</td>
<td>VAL</td>
<td>4.6</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>301</td>
<td>ALA</td>
<td>4.5</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>216</td>
<td>CYS</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>H</td>
<td>1</td>
<td>MET</td>
<td>4.5</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>279</td>
<td>LYS</td>
<td>4.5</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>2</td>
<td>THR</td>
<td>4.4</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>224</td>
<td>ILE</td>
<td>4.4</td>
</tr>
<tr>
<td>1</td>
<td>B</td>
<td>1</td>
<td>MET</td>
<td>4.4</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>360</td>
<td>GLU</td>
<td>4.4</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>3</td>
<td>VAL</td>
<td>4.4</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>228</td>
<td>GLY</td>
<td>4.4</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>291</td>
<td>VAL</td>
<td>4.4</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>295</td>
<td>ALA</td>
<td>4.4</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>262</td>
<td>PHE</td>
<td>4.3</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>333</td>
<td>THR</td>
<td>4.3</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>299</td>
<td>GLU</td>
<td>4.3</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>286</td>
<td>VAL</td>
<td>4.3</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>226</td>
<td>ALA</td>
<td>4.2</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>13</td>
<td>MET</td>
<td>4.2</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>297</td>
<td>GLU</td>
<td>4.2</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>282</td>
<td>GLU</td>
<td>4.2</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>217</td>
<td>VAL</td>
<td>4.2</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>9</td>
<td>ASN</td>
<td>4.1</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>31</td>
<td>VAL</td>
<td>4.1</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>368</td>
<td>GLY</td>
<td>4.1</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>1</td>
<td>MET</td>
<td>4.1</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>39</td>
<td>LEU</td>
<td>4.1</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>347</td>
<td>ASN</td>
<td>4.0</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>256</td>
<td>GLY</td>
<td>4.0</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>329</td>
<td>GLU</td>
<td>3.9</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>9</td>
<td>ASN</td>
<td>3.9</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>256</td>
<td>GLY</td>
<td>3.9</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>282</td>
<td>GLU</td>
<td>3.9</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>331</td>
<td>ALA</td>
<td>3.9</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>227</td>
<td>LYS</td>
<td>3.8</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>227</td>
<td>LYS</td>
<td>3.8</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>22</td>
<td>PRO</td>
<td>3.8</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>253</td>
<td>GLN</td>
<td>3.7</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>296</td>
<td>ASP</td>
<td>3.7</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>219</td>
<td>PHE</td>
<td>3.7</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>336</td>
<td>ASP</td>
<td>3.7</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>293</td>
<td>VAL</td>
<td>3.7</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>41</td>
<td>LYS</td>
<td>3.7</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>7</td>
<td>VAL</td>
<td>3.7</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>6</td>
<td>GLN</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>1</td>
<td>MET</td>
<td>3.6</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>327</td>
<td>ASN</td>
<td>3.6</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>265</td>
<td>SER</td>
<td>3.6</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>3</td>
<td>VAL</td>
<td>3.6</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>356</td>
<td>GLU</td>
<td>3.6</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>29</td>
<td>ALA</td>
<td>3.6</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>5</td>
<td>GLU</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>6</td>
<td>GLN</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>40</td>
<td>GLU</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>235</td>
<td>LYS</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>246</td>
<td>THR</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>214</td>
<td>TYR</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>273</td>
<td>ASN</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>285</td>
<td>GLU</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>360</td>
<td>GLU</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>238</td>
<td>VAL</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>305</td>
<td>THR</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>239</td>
<td>SER</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>4</td>
<td>ASP</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>43</td>
<td>PRO</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>12</td>
<td>ASP</td>
<td>3.3</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>355</td>
<td>VAL</td>
<td>3.3</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>5</td>
<td>GLU</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>213</td>
<td>GLY</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>281</td>
<td>ARG</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>9</td>
<td>ASN</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>258</td>
<td>THR</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>44</td>
<td>HIS</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>3</td>
<td>VAL</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>9</td>
<td>ASN</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>232</td>
<td>SER</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>299</td>
<td>GLU</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>417</td>
<td>ALA</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>42</td>
<td>ASP</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>335</td>
<td>ALA</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>240</td>
<td>GLY</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>366</td>
<td>GLY</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>363</td>
<td>ILE</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>229</td>
<td>GLU</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>311</td>
<td>ASP</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>33</td>
<td>GLU</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>40</td>
<td>GLU</td>
<td>2.9</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J</td>
<td>271</td>
<td>THR</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>419</td>
<td>TYR</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>261</td>
<td>GLY</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>329</td>
<td>GLU</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>298</td>
<td>VAL</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>13</td>
<td>MET</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>334</td>
<td>LEU</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>242</td>
<td>GLY</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>245</td>
<td>ALA</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>221</td>
<td>SER</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>422</td>
<td>GLU</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>299</td>
<td>GLU</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>236</td>
<td>ILE</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>26</td>
<td>GLN</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>330</td>
<td>ASN</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>367</td>
<td>PRO</td>
<td>2.8</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>338</td>
<td>GLY</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>228</td>
<td>GLY</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>255</td>
<td>LEU</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>5</td>
<td>GLU</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>243</td>
<td>ASN</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>39</td>
<td>LEU</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>332</td>
<td>LYS</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>426</td>
<td>VAL</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>40</td>
<td>GLU</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>44</td>
<td>HIS</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>34</td>
<td>SER</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>310</td>
<td>TRP</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>249</td>
<td>ILE</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>299</td>
<td>GLU</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>280</td>
<td>LEU</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>372</td>
<td>ASN</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>423</td>
<td>ASN</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>5</td>
<td>GLU</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>353</td>
<td>GLU</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>267</td>
<td>GLY</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>1</td>
<td>MET</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>25</td>
<td>HIS</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>40</td>
<td>GLU</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>274</td>
<td>GLY</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>241</td>
<td>SER</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>12</td>
<td>ASP</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>J</td>
<td>362</td>
<td>ASP</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>2</td>
<td>THR</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>267</td>
<td>GLY</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>5</td>
<td>GLU</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>15</td>
<td>LEU</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>28</td>
<td>VAL</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>322</td>
<td>THR</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>337</td>
<td>ASN</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>224</td>
<td>ILE</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>306</td>
<td>ASP</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>301</td>
<td>ALA</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>273</td>
<td>ASN</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>306</td>
<td>ASP</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>C</td>
<td>1</td>
<td>MET</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>5</td>
<td>GLU</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>395</td>
<td>GLU</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>44</td>
<td>HIS</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>11</td>
<td>TYR</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>332</td>
<td>LYS</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>361</td>
<td>ARG</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>10</td>
<td>TYR</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>289</td>
<td>ALA</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>339</td>
<td>CYS</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>37</td>
<td>ILE</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>294</td>
<td>TYR</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>364</td>
<td>ARG</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>286</td>
<td>VAL</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>420</td>
<td>GLY</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>416</td>
<td>ALA</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>276</td>
<td>ASP</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>274</td>
<td>GLY</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>4</td>
<td>ASP</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>255</td>
<td>LEU</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>352</td>
<td>PRO</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>289</td>
<td>ALA</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>40</td>
<td>GLU</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>295</td>
<td>ALA</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>252</td>
<td>ALA</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>8</td>
<td>SER</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>30</td>
<td>GLU</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>299</td>
<td>GLU</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>42</td>
<td>ASP</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I</td>
<td>6</td>
<td>GLN</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>44</td>
<td>HIS</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>300</td>
<td>GLY</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>32</td>
<td>LEU</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>286</td>
<td>VAL</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>4</td>
<td>ASP</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>396</td>
<td>TYR</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>16</td>
<td>LYS</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>10</td>
<td>TYR</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>357</td>
<td>VAL</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>2</td>
<td>THR</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>415</td>
<td>THR</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>222</td>
<td>GLU</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>329</td>
<td>GLU</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>2</td>
<td>THR</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>9</td>
<td>ASN</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>290</td>
<td>ARG</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>8</td>
<td>SER</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>270</td>
<td>HIS</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>416</td>
<td>ALA</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>313</td>
<td>LYS</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>370</td>
<td>ALA</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>A</td>
<td>16</td>
<td>LYS</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>303</td>
<td>TYR</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>5</td>
<td>GLU</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>42</td>
<td>ASP</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>331</td>
<td>ALA</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>291</td>
<td>VAL</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>8</td>
<td>SER</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>357</td>
<td>VAL</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>209</td>
<td>THR</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>J</td>
<td>354</td>
<td>ALA</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td>292</td>
<td>SER</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>35</td>
<td>LEU</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>K</td>
<td>409</td>
<td>PHE</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>356</td>
<td>GLU</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>362</td>
<td>ASP</td>
<td>2.0</td>
</tr>
</tbody>
</table>

6.2 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.
6.3 Carbohydrates

There are no carbohydrates in this entry.

6.4 Ligands

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95th percentile and maximum values of B factors of atoms in the group. The column labelled ‘Q<0.9’ lists the number of atoms with occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RSCC</th>
<th>RSR</th>
<th>B-factors(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>NAP</td>
<td>J</td>
<td>501</td>
<td>48/48</td>
<td>0.76</td>
<td>0.31</td>
<td>69,96,113,116</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>AKG</td>
<td>J</td>
<td>502</td>
<td>10/10</td>
<td>0.83</td>
<td>0.27</td>
<td>40,58,69,71</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>AKG</td>
<td>E</td>
<td>502</td>
<td>10/10</td>
<td>0.91</td>
<td>0.20</td>
<td>24,35,41,43</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>AKG</td>
<td>B</td>
<td>502</td>
<td>10/10</td>
<td>0.91</td>
<td>0.21</td>
<td>30,33,41,43</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>AKG</td>
<td>A</td>
<td>502</td>
<td>10/10</td>
<td>0.92</td>
<td>0.19</td>
<td>23,31,36,39</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>AKG</td>
<td>D</td>
<td>502</td>
<td>10/10</td>
<td>0.92</td>
<td>0.22</td>
<td>22,28,42,56</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>AKG</td>
<td>H</td>
<td>502</td>
<td>10/10</td>
<td>0.93</td>
<td>0.16</td>
<td>25,33,38,39</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>AKG</td>
<td>G</td>
<td>502</td>
<td>10/10</td>
<td>0.94</td>
<td>0.19</td>
<td>21,32,44,48</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>AKG</td>
<td>C</td>
<td>502</td>
<td>10/10</td>
<td>0.94</td>
<td>0.14</td>
<td>21,30,35,35</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>AKG</td>
<td>F</td>
<td>502</td>
<td>10/10</td>
<td>0.94</td>
<td>0.19</td>
<td>21,32,40,43</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>F</td>
<td>501</td>
<td>48/48</td>
<td>0.96</td>
<td>0.13</td>
<td>11,16,25,27</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>D</td>
<td>501</td>
<td>48/48</td>
<td>0.97</td>
<td>0.14</td>
<td>12,17,29,32</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>H</td>
<td>501</td>
<td>48/48</td>
<td>0.97</td>
<td>0.11</td>
<td>17,24,43,50</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>A</td>
<td>501</td>
<td>48/48</td>
<td>0.97</td>
<td>0.11</td>
<td>12,16,28,32</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>G</td>
<td>501</td>
<td>48/48</td>
<td>0.97</td>
<td>0.12</td>
<td>14,18,31,36</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>E</td>
<td>501</td>
<td>48/48</td>
<td>0.97</td>
<td>0.13</td>
<td>13,18,37,42</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>C</td>
<td>501</td>
<td>48/48</td>
<td>0.97</td>
<td>0.10</td>
<td>12,16,27,32</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>NAP</td>
<td>B</td>
<td>501</td>
<td>48/48</td>
<td>0.98</td>
<td>0.10</td>
<td>9,11,21,22</td>
<td>0</td>
</tr>
</tbody>
</table>

6.5 Other polymers

There are no such residues in this entry.