

Nov 13, 2024 – 02:17 PM EST

PDB ID	:	3JCS
EMDB ID	:	EMD-6583
Title	:	2.8 Angstrom cryo-EM structure of the large ribosomal subunit from the eu-
		karyotic parasite Leishmania
Authors	:	Shalev-Benami, M.; Zhang, Y.; Matzov, D.; Halfon, Y.; Zackay, A.; Rozenberg,
		H.; Zimmerman, E.; Bashan, A.; Jaffe, C.L.; Yonath, A.; Skiniotis, G.
Deposited on	:	2016-01-21
Resolution	:	2.80 Å(reported)
This is	a I	Full wwPDB EM Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	0.0.1.dev113
Mogul	:	2022.3.0, CSD as543be (2022)
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	1.9.13
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 2.80 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive	EM structures
	$(\# { m Entries})$	$(\# { m Entries})$
Ramachandran outliers	207382	16835
Sidechain outliers	206894	16415
RNA backbone	6643	2191

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for $\geq=3, 2, 1$ and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq=5\%$ The upper red bar (where present) indicates the fraction of residues that have poor fit to the EM map (all-atom inclusion < 40%). The numeric value is given above the bar.

Mol	Chain	Length		Quality of	chain		
1	1	1782	8%		33%	•	13%
2	2	1527	43%		29% •	27%	
3	3	213	45%		41%		14%
4	4	183	9% 		26%	•	19%
5	5	133	36%	23%	•	40%	
6	6	76	17%	59%		5% 20	0%
7	7	171	• 60%		2	9%	• 10%
8	8	121	• 53%			45%	•

Chain Length Quality of chain Mol 9 260А 91% • 6% 10 В 419• 5% 92% ÷ 11 \mathbf{C} 373 80% 19% 40% D 1218886% 14% 96% Е 1319098% F 1419570% 30% \mathbf{G} 1534862% 35% . ÷ Η 2221689% 9% • Ι 220 1758% 40% . J 1813990% •• 8% 12% Κ 1923361% 5% • 33% 5% 20L 14598% •• 21М 204. 98% 99% 22Ν 21399% 7% Ο 305 2376% 23% • ÷ ••• Р 2419896% 6% Q 2524563% 36% • i \mathbf{R} 1792671% 27% . . 13% 27 \mathbf{S} 159• 6% 92% Т • 7% 2816692% 40% U 2912978% 22% V 30 14580% 19% 31W 14382% 18% 32Х 12450% 48% 7% 33 Υ 13498%

Continued from previous page...

Mol	Chain	Length	Quality of chain	l
34	Ζ	147	54%	46%
35	a	127	• 92%	6% •
36	b	70	▲ 87%	6% 7%
37	с	252	• 87%	• 12%
38	d	104	69%	• 28%
39	е	183	5% 61%	39%
40	f	133	5% 92%	• 5%
41	g	144	• 85%	• 13%
42	h	168	64%	35%
43	i	105	57% ·	40%
44	j	83	90%	• 6%
45	k	83	69%	• 30%
46	1	51	92%	6% ·
47	m	92	7% 91%	7% •
48	n	106	8%	• 19%

Continued from previous page...

2 Entry composition (i)

There are 50 unique types of molecules in this entry. The entry contains 117257 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a RNA chain called 26S alpha ribosomal RNA.

Mol	Chain	Residues		1	AltConf	Trace			
1	1	1554	Total 33313	C 14886	N 6081	O 10792	Р 1554	0	0

• Molecule 2 is a RNA chain called 26S delta ribosomal RNA.

Mol	Chain	Residues		A	AltConf	Trace			
2	2	1119	Total 23926	C 10702	N 4308	O 7797	Р 1119	0	0

• Molecule 3 is a RNA chain called 26S gamma ribosomal RNA.

Mol	Chain	Residues		Α	AltConf	Trace			
3	3	184	Total 3893	C 1740	N 662	O 1307	Р 184	0	0

• Molecule 4 is a RNA chain called 26S delta ribosomal RNA.

Mol	Chain	Residues		А	AltConf	Trace			
4	4	149	Total	C	N 570	0	P 140	0	0
			5177	1418	970	1040	149		

• Molecule 5 is a RNA chain called 26S epsilon ribosomal RNA.

Mol	Chain	Residues		\mathbf{A}	toms	AltConf	Trace		
5	5	80	Total 1708	C 763	N 310	O 555	Р 80	0	0

• Molecule 6 is a RNA chain called 26S zeta ribosomal RNA.

Mol	Chain	Residues		A	AltConf	Trace			
6	6	61	Total 1288	C 577	N 225	0 425	Р 61	0	0

• Molecule 7 is a RNA chain called 5.8S ribosomal RNA.

Mol	Chain	Residues		Α	AltConf	Trace			
7	7	154	Total 3280	C 1469	N 584	O 1074	Р 153	0	0

• Molecule 8 is a RNA chain called 5S ribosomal RNA.

Mol	Chain	Residues		At	toms			AltConf	Trace
8	8	119	Total 2531	C 1132	N 450	O 830	Р 119	0	0

• Molecule 9 is a protein called ribosomal protein L2.

Mol	Chain	Residues		At	oms			AltConf	Trace
9	А	245	Total 1859	C 1158	N 384	O 307	S 10	2	0

• Molecule 10 is a protein called ribosomal protein L3.

Mol	Chain	Residues		At	oms			AltConf	Trace
10	В	396	Total 3020	C 1908	N 592	O 508	S 12	2	0

• Molecule 11 is a protein called ribosomal protein L4.

Mol	Chain	Residues		At	oms			AltConf	Trace
11	С	301	Total 2237	C 1413	N 428	0 384	S 12	1	0

• Molecule 12 is a protein called ribosomal protein L5.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
12	D	161	Total 799	C 476	N 161	O 162	0	0

• Molecule 13 is a protein called ribosomal protein L6.

Mol	Chain	Residues		At	oms			AltConf	Trace
13	Е	190	Total 1509	C 953	N 276	0 272	S 8	0	0

• Molecule 14 is a protein called ribosomal protein L6e.

Mol	Chain	Residues		At	oms			AltConf	Trace
14	F	137	Total 1002	C 641	N 192	O 167	${ m S} { m 2}$	1	0

• Molecule 15 is a protein called ribosomal protein L8e.

Mol	Chain	Residues		Ate	AltConf	Trace			
15	G	226	Total 1772	C 1113	N 353	O 299	${f S}{7}$	1	0

• Molecule 16 is a protein called ribosomal protein L13.

Mol	Chain	Residues		Ate	AltConf	Trace			
16	Н	202	Total 1596	C 1019	N 307	O 263	${f S}{7}$	0	0

• Molecule 17 is a protein called ribosomal protein L13e.

Mol	Chain	Residues		At	oms			AltConf	Trace
17	Ι	132	Total 1061	C 666	N 221	O 169	${ m S}{ m 5}$	0	0

• Molecule 18 is a protein called ribosomal protein L14.

Mol	Chain	Residues		At	oms	AltConf	Trace		
18	J	128	Total 924	C 588	N 171	O 160	${ m S}{ m 5}$	0	0

• Molecule 19 is a protein called ribosomal protein L14e.

Mol	Chain	Residues		At	oms			AltConf	Trace
19	K	156	Total 1061	C 661	N 212	0 184	${S \atop 4}$	0	0

• Molecule 20 is a protein called ribosomal protein L15.

Mol	Chain	Residues		At	oms			AltConf	Trace
20	L	144	Total 1096	C 691	N 223	0 177	${f S}{5}$	0	0

• Molecule 21 is a protein called ribosomal protein L15e.

Mol	Chain	Residues		At	oms			AltConf	Trace
21	М	203	Total 1714	C 1080	N 362	O 264	S 8	0	0

• Molecule 22 is a protein called ribosomal protein L16.

Mol	Chain	Residues		At	oms			AltConf	Trace
22	Ν	213	Total 1714	C 1077	N 340	0 281	S 16	0	0

• Molecule 23 is a protein called ribosomal protein L18.

Mol	Chain	Residues		At	oms			AltConf	Trace
23	0	235	Total 1557	C 986	N 300	0 268	${ m S} { m 3}$	0	0

• Molecule 24 is a protein called ribosomal protein L18e.

Mol	Chain	Residues		At	oms			AltConf	Trace
24	Р	195	Total 1494	C 942	N 299	0 247	S 6	1	0

• Molecule 25 is a protein called ribosomal protein L19e.

Mol	Chain	Residues		At	Atoms					
25	Q	156	Total 1162	C 730	N 243	O 186	${ m S} { m 3}$	0	0	

• Molecule 26 is a protein called ribosomal protein L20e.

Mol	Chain	Residues		At	oms			AltConf	Trace
26	R	131	Total 1019	C 651	N 197	0 167	$\frac{S}{4}$	1	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
R	158	ILE	LEU	variant	UNP E9BRT7

• Molecule 27 is a protein called ribosomal protein L21e.

Mol	Chain	Residues		At	oms			AltConf	Trace
27	S	149	Total 1112	C 704	N 218	O 187	${ m S} { m 3}$	2	0

• Molecule 28 is a protein called ribosomal protein L22.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	AltConf	Trace			
28	Т	154	Total 1221	C 763	N 241	O 206	S 11	2	0

• Molecule 29 is a protein called ribosomal protein L22e.

Mol	Chain	Residues		Ato	\mathbf{ms}	AltConf	Trace	
29	U	100	Total 541	C 331	N 101	O 109	0	0

• Molecule 30 is a protein called ribosomal protein L23.

Mol	Chain	Residues		At	oms			AltConf	Trace
30	V	118	Total 892	C 566	N 171	0 153	${ m S} { m 2}$	0	0

• Molecule 31 is a protein called ribosomal protein L24.

Mol	Chain	Residues	Atoms					AltConf	Trace
31	W	117	Total 896	C 562	N 187	0 144	${ m S} { m 3}$	1	0

• Molecule 32 is a protein called ribosomal protein L24e.

Mol	Chain	Residues	Atoms					AltConf	Trace
20	v	64	Total	С	Ν	0	S	0	0
32	Λ	04	508	333	96	76	3	0	0

• Molecule 33 is a protein called ribosomal protein L27e.

Mol	Chain	Residues		Ato	ms	AltConf	Trace	
33	Y	132	Total 914	C 589	N 174	O 151	0	0

• Molecule 34 is a protein called ribosomal protein L28e.

Mol	Chain	Residues		At	oms	AltConf	Trace		
34	Z	79	Total 538	C 329	N 111	O 95	${ m S} { m 3}$	0	0

• Molecule 35 is a protein called ribosomal protein L29.

Mol	Chain	Residues		At	oms	AltConf	Trace		
35	a	124	Total 982	C 613	N 203	0 163	${ m S} { m 3}$	0	0

• Molecule 36 is a protein called ribosomal protein L29e.

Mol	Chain	Residues	Atoms					AltConf	Trace
36	b	65	Total 503	C 309	N 113	O 80	S 1	0	0

• Molecule 37 is a protein called ribosomal protein L30.

Mol	Chain	Residues		At	AltConf	Trace			
37	с	222	Total 1732	C 1105	N 327	O 289	S 11	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
с	49	ALA	GLY	variant	UNP E9BI29

• Molecule 38 is a protein called ribosomal protein L30e.

Mol	Chain	Residues	Atoms					AltConf	Trace
38	d	75	Total 518	C 325	N 93	O 97	${ m S} { m 3}$	0	0

• Molecule 39 is a protein called ribosomal protein L31e.

Mol	Chain	Residues		At	oms	AltConf	Trace		
39	е	112	Total 824	C 531	N 155	0 136	${S \over 2}$	1	0

• Molecule 40 is a protein called ribosomal protein L32e.

Mol	Chain	Residues		At	AltConf	Trace			
40	f	126	Total 982	C 616	N 195	O 167	$\frac{S}{4}$	0	0

There is a discrepancy between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
f	105	LYS	THR	variant	UNP E9BFJ5

• Molecule 41 is a protein called ribosomal protein L33e.

Mol	Chain	Residues		At	oms			AltConf	Trace
41	g	125	Total 983	C 612	N 205	0 161	${f S}{5}$	0	0

• Molecule 42 is a protein called ribosomal protein L34e.

Mol	Chain	Residues		At	\mathbf{oms}			AltConf	Trace
42	h	109	Total 856	C 529	N 182	0 140	${f S}{5}$	0	0

• Molecule 43 is a protein called ribosomal protein L36e.

Mol	Chain	Residues		Ate	oms			AltConf	Trace
43	i	63	Total 494	C 316	N 100	O 76	${ m S} { m 2}$	1	0

• Molecule 44 is a protein called ribosomal protein L37e.

Mol	Chain	Residues		At	oms			AltConf	Trace
44	j	78	Total 639	C 385	N 149	O 99	S 6	0	0

• Molecule 45 is a protein called ribosomal protein L38e.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
45	ŀ	58	Total	С	Ν	Ο	\mathbf{S}	0	0
40	K		373	234	71	66	2	0	0

• Molecule 46 is a protein called ribosomal protein L39e.

Mol	Chain	Residues		Atc	\mathbf{ms}			AltConf	Trace
46	1	50	Total 457	C 294	N 98	O 64	S 1	1	0

• Molecule 47 is a protein called ribosomal protein L43e.

Mol	Chain	Residues		At	oms			AltConf	Trace
47	m	90	Total 668	C 414	N 135	0 113	S 6	0	0

• Molecule 48 is a protein called ribosomal protein L44e.

Mol	Chain	Residues		At	oms			AltConf	Trace
48	n	86	Total 659	C 418	N 129	0 110	${S \over 2}$	0	0

• Molecule 49 is MAGNESIUM ION (three-letter code: MG) (formula: Mg).

Mol	Chain	Residues	Atoms	AltConf
49	1	51	TotalMg5151	0
49	2	25	TotalMg2525	0
49	3	3	Total Mg 3 3	0
49	4	2	Total Mg 2 2	0
49	5	4	Total Mg 4 4	0
49	7	9	Total Mg 9 9	0
49	С	1	Total Mg 1 1	0
49	К	1	Total Mg 1 1	0
49	М	3	Total Mg 3 3	0
49	V	1	$\begin{array}{cc} \text{Total} & \text{Mg} \\ 1 & 1 \end{array}$	0
49	a	1	Total Mg 1 1	0
49	f	2	Total Mg 2 2	0

Continued from previous page...

Mol	Chain	Residues	Atoms	AltConf
49	g	1	Total Mg 1 1	0
49	h	1	Total Mg 1 1	0
49	j	4	Total Mg 4 4	0

• Molecule 50 is water.

Mol	Chain	Residues	Atoms	AltConf
50	1	72	Total O 72 72	0
50	2	40	Total O 40 40	0
50	4	4	Total O 4 4	0
50	5	4	Total O 4 4	0
50	7	16	Total O 16 16	0
50	8	1	Total O 1 1	0
50	А	2	Total O 2 2	0
50	G	1	Total O 1 1	0
50	М	2	Total O 2 2	0
50	i	1	$\begin{array}{cc} \text{Total} & \text{O} \\ 1 & 1 \end{array}$	0
50	j	1	Total O 1 1	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and atom inclusion in map density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red diamond above a residue indicates a poor fit to the EM map for this residue (all-atom inclusion < 40%). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: 26S alpha ribosomal RNA

• Molecule 6: 26S zeta ribosomal RNA

• Molecule 12: ribosomal protein L5

• Molecule 15: ribosomal protein L8e

ALA GLY LYS LYS THR PRO

Chain G:	<u>.</u>	62%	·	35%	
MET THR VAL ARG SER SER PRO	ALA ASN ASN TYR LEU TYR TYR LEU LEU LEU CYS	TAU THR CYSS CYSS SER PRO PRO PRO PRO PRO THR THR THR THR TLEU	ARG THR HIS LEU LEU HIS ARG ALA ALA ALA ALA PHC	ALA PHE LEU LEU LEU PHE CYS ALA ALA	VAL CYS ALA CYS VAL
				•	
LEU ALA ARG LEU LEU PRO	PHE HITS SER PHE SER ALA SER SER SER SER SER SER	ALA CLU LYS SER MET PRO PRO CLY CLY CLY CLY VAL LYS ALA	THR GLN PRO ALA LYS ALA ALA SER PRO LYS LYS	PRO ALA VAL ALA ALA SER HTS PHE A114 A114 A115	P116 S132 R133
N161 A198 E199 E200	P205 K207 T206 V209 S210 N240 N253	R256 D273 A290 K334 H335 H338 N338	GLY VAL VAL AISP ALA ALA ALA ALA TLE TLE CLN		
• Molecul	e 16: ribosomal pr	otein L13			
Chain H:	<u>.</u>	89%		• 9%	
MET ALA PHE PRO SER ARG LYS	ALA ALA ALA ALA ALA ALA CLN SER SER LYS LYS LYS LYS LYS SER LYS SER	P94 P94 R103 R103 V145 V145	8150 € E151 E188 A222		
• Molecul	e 17: ribosomal pr	otein L13e			
Chain I:	58	%	• 40	1%	
MET P2 N18 R39	R78 M133 ASN H15 ASN ASN ASN ASN ASN ASN ASN ASN ASN ASN	ALA SER SER GLU GLU CLU CLU CLU CLU CLU ALA ALA ALA ALA ALA ALA ASP	ARG SER ARG ARC GLY ALA ALA ALA ALA ALA ALA VAL VAL	VAL TYR PRO SER ALA GLU THR PRO ARG ALA	SER SER ALA GLU GLU
LYS SER MET CYS VAL TYR ALA	LYS LYS LYS LYS ASN HIS SER ALA VAL ARG PHE PHE CLY	ALA ALA SER ALA ALA ALA ALA ALA ALA ALA ALA LYS	GLU GLU LYS ALA GLY LYS LYS		
• Molecul	e 18: ribosomal pr	otein L14			
Chain J:		90%		•• 8%	
MET GLY LYS ASP GLN ALA ALA	L 175 L 175 GLY CYS R04 R04 R04 K112 K112				
• Molecul	e 19: ribosomal pr	otein L14e			
Chain K:	12%	61%	5% •	33%	
MET LEU ARG CYS ARG LEU LEU	VAL VAL ASP SER SER PRO ALA ALA PRO PRO ARG SER SER SER SER	LEU SER SER SER SER SER SER VAL LEU LEU LEU PRO THR HTS	HISN HISS HIS HIS 137 144 144 144 144 144 146 146 146 146 146	I54 A55 L56 C57 C57 M59 M59 V60	K61 K62 K63 K72 I73
L74 R78 Q79 L95	E100 D101 A102 H107 H107 C127 A131	A135 A135 A135 A135 A137 A137 A141 A141	Kt 47 At 52 At 52 At 80 At 91 At 91 At 92 Kt 92	THR PRO VAL SER TRP TRP HIS LYS ALA ALA	LI'S LI'S MET GLN GLN CI'S LI'S ALA ALA ALA ALA MET
ASP SER THR GLU GLY ALA LYS	ARG MET CLYS GLN GLN ALA ALA ALA ALA ALA ALA CLYS	2			

 \bullet Molecule 20: ribosomal protein L15

Chain L:	98%	
MET 122 132 131 131 131 1331 1331 1331 133		
• Molecule 21: ribosomal protein L15e		
Chain M:	98%	
MET 650 C50 C50 C50 C50 C50 C50 C50 C50 C50 C		
• Molecule 22: ribosomal protein L16		
Chain N:	99% 99%	
M1 A2 R3 P5 P5 P5 R4 R4 C8 R10 F11 F11 C12 C12 C12 F11 F15 F16 F16 F16 F16 F16 F16 F16 F17 F16 F16 F16 F16 F16 F16 F16 F16 F16 F16	C23 R24 Q26 P27 P27 P29 P29 F34 R30 F34 R32 C37 R32 R35 R40 R40 R40 R40 R41 R40 R41 R40 R40	D441 E45 F46 P47 V48 C49 C49 H51 V52 V52 V52 V52 V52 V55 F56 C49 H51 V52 V52 V52 V52 V52 V52 V52 V52 V52 V52
A61 S62 E63 A64 A64 L65 A67 A67 A68 A68 A68 A72 A72 A72 A72 A72 A72 A72 A72 A72 A72	PB55 F85 H86 M87 F88 M87 F86 F91 F94 F94 F94 F94 F94 F94 F94 F94 F94 F94	S104 C105 A106 C105 C107 C107 C107 C107 C111 C111 C111 C111
K121 P122 N123 C126 V126 A127 K128 K128 V129 R130 C126 A127 C126 A127 C126 C126 C126 C126 C126 C128 C132 C132 C132 C136 C136 C136 C136 C136 C136 C136 C136	A143 Y144 Y145 P146 P146 A146 A148 A151 A151 A151 A151 A152 A153 A155 A153 A155 A152 A152 A152 A152 A153 A155 A155 A155 A155 A155 A155 A155	1164 1165 1165 1166 1166 1166 1170 1170 1170 1174 1177 1177 1177 1177
Y181 E182 A183 A183 L184 L184 A187 A187 A187 A187 C188 C198 C198 C194 C197 T195 C194 T195 C197 T195 C197 T195 C197 T195 C197 T195 C197 T195 C197 T195 C197 T195 C194 T195 C197 C197 C197 C197 C197 C197 C197 C197	K203 K205 K205 T206 M206 N206 N210 M210 A213	
• Molecule 23: ribosomal protein L18		
Chain O: 7%	• 23%	
MET PRO PRO VAL VAL VAL VAL VAL VAL VAL VAL VAL VAL	Y129 \$130 A131 V132 A131 V132 A131 V132 A131 V132 A131 V132 A131 V132 A131 A132 A146 A211	S222 S223 ASN ASP CUU LYS CYS VAL
GLN SER SER ARG TYR MET A237 A237 A237 C426 C43 C263 C43 C56 C126 C12 C12 C12 C12 C12 C12 C12 C12 C12 C12	LYS LYS TYR TYR LYS LYS LYS LYS SER LYS SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	ARG LEU GIF LYS
• Molecule 24: ribosomal protein L18e		
Chain P:	96% •••	
MET GLY VAL B4 B5 B5 B5 B4 M142 M142 M142 M142 M142 M182 M182		

• Molecule 25: ribosomal protein L19e
Chain Q: 63% · 36%
MET V2 V5 V5 V5 V5 V5 V5 V5 V5 V5 V5 V5 V5 V5
ASP ALA ALA ALA ALA ALA ALA ALA CLYS CLYS CLYS ALA ALA ALA ALA ALA ALA ALA ALA ALA AL
• Molecule 26: ribosomal protein L20e
Chain R: 71% · 27%
MET VAL VAL K3 K67 K67 K67 K12 K67 K12 K67 K12 K19 C12 C12 C12 C12 C12 C12 C12 C12 C12 C12
АТА
• Molecule 27: ribosomal protein L21e
Chain S: 92% • 6%
MET V2 V20 V20 C101 A107 C101 A116 A116 A116 A121 A121 A123 A123 A123 A124 A124 A124 A124 A124 A124 A124 A124
• Molecule 28: ribosomal protein L22
Chain T: 92% • 7%
MET T2 Y4 Y4 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1 F1
• Molecule 29: ribosomal protein L22e
40% Chain U: 78% 22%
MET VALL VALL ARG ARG ARG CLY VALL ALA SER CLY SER ARG GLY CLY CA CA CA CA CA CA CA CA CA CA CA CA CA
bef KG7 VG8 N73 N74 N75 N75 N75 N75 N75 N75 N75 N75 N75 N75
• Molecule 30: ribosomal protein L23
Chain V: 80% • 19%
WORLDWIDE PROTEIN DATA BANK

Chain b: 87%	6% 7%
MET ALA LAS SER SER ILYS MG MG MG MG MG MG MG	
• Molecule 37: ribosomal protein L30	
Chain c: 87%	• 12%
MET THR HIS SER VAL TTR ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	1252
• Molecule 38: ribosomal protein L30e	
Chain d: 69% · 28%	, 2
MET LALA LALA LALA LALA LALA LALA VAL ASP ASP ASP ASP ASP ASN ASN ASN ASP ASN ASN ASP ASP ASP ASP ASP ASP ASP ASP ASP ASP	SER ASP ILE ALA ALA
• Molecule 39: ribosomal protein L31e	
Chain e: 61% 39%	
MET LYPS VAL VAL VAL VAL VAL VAL VAL VAS VAS ALA ALA ALA ALA ALA ALA ALA ALA ALA A	GLY VAL GLY GLY ASN THR ASN SER ASN SER ASN VAL
ARG ALY ALA ALA ALA ARG ARG ARG K70 B77 C73 K74 M78 F76 F76 F76 F76 F76 F76 F76 F76 F76 F76	
\bullet Molecule 40: ribosomal protein L32e	
Chain f: 92%	• 5%
MET VAL K8 A9 A123 A125 A125 A125 A125 A126 A126 A126 A126 A126 A126 A126 A126	
• Molecule 41: ribosomal protein L33e	
Chain g: 85% .	13%
MET THR THR SER VAL VAL HIS SER CLN ALA ALA ALA ALA ALA ALA ALA T21 CLN CLN CLN CLN CLN CLN CLN CLN CLN CLN	
• Molecule 42: ribosomal protein L34e	
Chain h: 64% · 35%	

MET S2 S2 A37 A37 A37 A30 A32 A32 A32 A32 A32 A32 A32 A32	THR ALA ASN LYS ASN LYS LYS CLY CLN CLN CLN ALA ALA ALA	LYS LYS LTZ TLF TTR THR THR THR VAL SER LYS ALA ALA ALA	LYS ALA THR THR THR THR ARG CLN VAL CLY
SER LEVS VAL LYS LYS LYS			
• Molecule 43: ribosoma	l protein L36e		
Chain i:	57%	• 40%	
MET SER ALA THR PRO PRO THR THR THR THR THR CLY SRU ASN ASN HIS CLY SC	VAL THR THR ARG ARG PRO PRO CLN PRO PRO PRO PRO PRO PRO ASP ASP ASP ACA	VAL PIC HIS K38 K38 K38 R71 M93 T100 T100 LVS LVS LVS	HIS
• Molecule 44: ribosoma	l protein L37e		
Chain j:	90%		• 6%
MET 12 12 12 12 12 12 12 14 14 14 14 14 14 14 14 14 14 14 14 14			
• Molecule 45: ribosoma	l protein L38e		
Chain k:	69%	• 30%	
MET P2 K6 K6 K9 L12 A13 L12 A13 C15 K13 K13 K13 K13 K13 K13 K13 K13 K13 K13	R21 830 830 830 830 830 830 830 840 840 840 840 850 850	K52 A53 E57 E57 E57 B58 S58 S58 PR0 PR0 PR0 PR0 SER LVS LVS LVS LVS LVS	VAL VAL THR ALA ARG ARG ARG HIS HIS HIS ALA CLY SER CLN CLN
• Molecule 46: ribosoma	l protein L39e		
Chain l:	92%		6% ·
MET 62 846 846 751			
• Molecule 47: ribosoma	l protein L43e		
Chain m:	91%		7% •
MET ALA K28 K28 K44 K44 C65 C55 C55 C55 C55 C55 C55 C55 C55 C55	L83 A90 K91		
• Molecule 48: ribosoma	l protein L44e		
Chain n:	80%	• 1	9%
MET V2 V2 C12 C12 ASP ALA ALA ALA ALA ALA ALA ALA ALA ALA ASN SER F23	R45 G49 G52 H59 K60 K61 K96 K96 K97 H1R	GLY ASN LYS ASP PRO THR TRP	

W O R L D W I D E PROTEIN DATA BANK

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, C1	Depositor
Number of particles used	107134	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	Not provided	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	30	Depositor
Minimum defocus (nm)	600	Depositor
Maximum defocus (nm)	2500	Depositor
Magnification	25000	Depositor
Image detector	GATAN K2 SUMMIT (4k x 4k)	Depositor
Maximum map value	0.231	Depositor
Minimum map value	-0.118	Depositor
Average map value	0.000	Depositor
Map value standard deviation	0.006	Depositor
Recommended contour level	0.02	Depositor
Map size (Å)	384.0, 384.0, 384.0	wwPDB
Map dimensions	384, 384, 384	wwPDB
Map angles (°)	90.0, 90.0, 90.0	wwPDB
Pixel spacing (Å)	1.0, 1.0, 1.0	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: OMG, A2M, OMU, H2U, OMC, MG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	B	ond lengths	Bond angles		
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	1	0.75	8/36881~(0.0%)	0.90	48/57466~(0.1%)	
2	2	0.60	0/26109	0.86	28/40668~(0.1%)	
3	3	0.48	0/4337	0.84	1/6734~(0.0%)	
4	4	0.69	0/3549	0.88	3/5525~(0.1%)	
5	5	0.69	0/1908	0.91	3/2967~(0.1%)	
6	6	0.39	2/1437~(0.1%)	0.79	4/2234~(0.2%)	
7	7	0.76	0/3615	0.87	2/5622~(0.0%)	
8	8	0.47	0/2828	0.82	0/4401	
9	А	0.47	0/1903	0.56	0/2559	
10	В	0.44	0/3086	0.55	0/4176	
11	С	0.45	0/2284	0.60	0/3092	
12	D	0.25	0/800	0.49	0/1111	
13	Е	0.29	0/1529	0.56	0/2056	
14	F	0.40	0/1023	0.56	0/1390	
15	G	0.38	0/1798	0.59	1/2423~(0.0%)	
16	Н	0.42	0/1628	0.60	0/2194	
17	Ι	0.40	0/1084	0.57	0/1454	
18	J	0.39	0/941	0.61	2/1277~(0.2%)	
19	K	0.27	0/1077	0.59	1/1475~(0.1%)	
20	L	0.43	0/1123	0.56	0/1505	
21	М	0.49	0/1754	0.57	0/2342	
22	Ν	0.27	0/1747	0.54	0/2338	
23	0	0.32	0/1583	0.50	0/2157	
24	Р	0.42	0/1519	0.57	0/2040	
25	Q	0.35	0/1179	0.53	0/1588	
26	R	0.42	0/1044	0.59	1/1415~(0.1%)	
27	S	0.43	0/1142	0.60	0/1547	
28	Т	0.45	0/1249	0.65	1/1679~(0.1%)	
29	U	0.26	0/545	0.49	0/754	
30	V	0.42	0/907	0.51	$0/1\overline{227}$	
31	W	0.37	0/910	0.56	0/1224	
32	X	0.40	0/527	0.53	0/716	

Mal	Chain	Bond lengths		E	Bond angles		
	Unain	RMSZ	# Z > 5	RMSZ	# Z > 5		
33	Y	0.37	0/934	0.51	0/1274		
34	Z	0.28	0/545	0.52	0/739		
35	a	0.32	0/992	0.53	0/1326		
36	b	0.34	0/514	0.50	0/690		
37	с	0.42	0/1763	0.52	0/2374		
38	d	0.31	0/525	0.50	0/719		
39	е	0.37	0/838	0.57	0/1131		
40	f	0.46	0/1002	0.55	0/1346		
41	g	0.49	0/1003	0.53	0/1352		
42	h	0.38	0/868	0.55	0/1160		
43	i	0.38	0/499	0.56	0/662		
44	j	0.50	0/651	0.61	0/869		
45	k	0.30	0/378	0.57	0/518		
46	1	0.43	0/470	0.51	0/627		
47	m	0.43	0/680	0.53	0/913		
48	n	0.34	0/667	0.56	0/889		
All	All	0.59	10/125375~(0.0%)	0.79	95/185945~(0.1%)		

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
9	А	0	1
10	В	0	2
13	Е	0	1
15	G	0	1
16	Н	0	1
19	Κ	0	3
26	R	0	1
27	S	0	1
28	Т	0	1
40	f	0	1
All	All	0	13

All (10) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms		Observed(Å)	Ideal(Å)
1	1	634	G	C1'-N9	-6.69	1.37	1.46
1	1	159	U	C1'-N1	6.17	1.58	1.48
1	1	568	U	C1'-N1	6.06	1.57	1.48

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
11101	onam	1000	±390	11001115	-	e sser rea(II)	racai(II)
1	1	564	U	C1'-N1	5.95	1.57	1.48
1	1	565	U	C1'-N1	5.91	1.57	1.48
1	1	562	U	C1'-N1	5.88	1.57	1.48
6	6	31	U	C1'-N1	5.28	1.56	1.48
1	1	692	А	N9-C4	-5.23	1.34	1.37
6	6	39	U	C1'-N1	5.16	1.56	1.48
1	1	170	U	C1'-N1	5.09	1.56	1.48

Continued from previous page...

All (95) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Ζ	$Observed(^{o})$	$Ideal(^{o})$
19	K	45	SER	C-N-CD	-11.87	94.48	120.60
1	1	1575	А	OP1-P-O3'	-11.81	79.22	105.20
1	1	1757	U	C2-N1-C1'	8.96	128.45	117.70
2	2	776	С	N1-C2-O2	8.91	124.25	118.90
2	2	776	С	C2-N1-C1'	8.72	128.39	118.80
2	2	24	С	C2-N1-C1'	8.09	127.70	118.80
1	1	1575	А	OP2-P-O3'	-8.07	87.44	105.20
1	1	1216	U	C2-N1-C1'	8.01	127.32	117.70
2	2	1275	С	N1-C2-O2	7.88	123.63	118.90
1	1	1270	U	N1-C2-O2	7.83	128.28	122.80
26	R	22	PRO	N-CA-CB	7.49	112.29	103.30
1	1	1270	U	C2-N1-C1'	7.48	126.68	117.70
1	1	1216	U	N1-C2-O2	7.48	128.03	122.80
2	2	24	С	N1-C2-O2	7.32	123.29	118.90
1	1	1216	U	N3-C2-O2	-7.12	117.22	122.20
6	6	38	С	P-O3'-C3'	7.06	128.18	119.70
2	2	776	С	N3-C2-O2	-7.05	116.97	121.90
2	2	540	С	C2-N1-C1'	6.94	126.43	118.80
1	1	1270	U	N3-C2-O2	-6.94	117.34	122.20
1	1	1576	С	OP1-P-OP2	6.93	129.99	119.60
2	2	1275	С	C2-N1-C1'	6.89	126.38	118.80
1	1	973	U	C2-N1-C1'	6.86	125.93	117.70
2	2	1275	С	N3-C2-O2	-6.76	117.17	121.90
1	1	1757	U	N1-C2-O2	6.72	127.50	122.80
18	J	112	LYS	CB-CA-C	-6.67	97.06	110.40
2	2	552	С	N1-C2-O2	6.67	122.90	118.90
2	2	552	С	$C2-N1-C\overline{1'}$	6.65	126.11	118.80
1	1	1109	U	$C2-N\overline{1-C1}$	6.62	125.64	117.70
1	1	1602	U	C4-C5-C6	6.58	123.65	119.70
1	1	1602	U	C5-C6-N1	-6.54	119.43	122.70
4	4	86	U	N1-C2-O2	6.47	127.33	122.80

α \cdot \cdot \cdot	C	•	
Continued	trom	previous	paae
• • • • • • • • • • • •	J	P	r - g - · · ·

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
18	J	112	LYS	N-CA-C	6.45	128.41	111.00
1	1	1757	U	N3-C2-O2	-6.36	117.75	122.20
2	2	360	U	OP2-P-O3'	6.33	119.13	105.20
28	Т	4	TYR	N-CA-C	6.17	127.67	111.00
2	2	776	С	C6-N1-C1'	-6.17	113.40	120.80
4	4	86	U	C2-N1-C1'	6.16	125.09	117.70
15	G	115	ARG	C-N-CD	-6.10	107.18	120.60
7	7	62	А	C2-N3-C4	-6.09	107.56	110.60
1	1	1757	U	C6-N1-C1'	-6.07	112.70	121.20
6	6	31	U	C2'-C3'-O3'	6.04	123.37	113.70
1	1	1618	U	C2-N1-C1'	5.99	124.89	117.70
1	1	912	С	C2-N1-C1'	5.96	125.36	118.80
2	2	1404	H2U	P-O3'-C3'	-5.94	112.58	119.70
2	2	24	С	N3-C2-O2	-5.93	117.75	121.90
2	2	61	С	C2-N1-C1'	5.78	125.16	118.80
4	4	86	U	N3-C2-O2	-5.78	118.16	122.20
2	2	24	С	C6-N1-C1'	-5.77	113.87	120.80
1	1	170	U	OP1-P-O3'	5.76	117.87	105.20
5	5	112	А	N7-C8-N9	5.72	116.66	113.80
2	2	1441	G	O4'-C1'-N9	5.65	112.72	108.20
1	1	665	С	O4'-C1'-N1	5.61	112.69	108.20
2	2	782	G	OP1-P-O3'	5.61	117.54	105.20
2	2	1289	G	C4-N9-C1'	5.59	133.77	126.50
1	1	205	А	OP1-P-O3'	5.58	117.49	105.20
1	1	912	С	N3-C2-O2	-5.51	118.04	121.90
1	1	1012	С	N1-C2-O2	5.49	122.20	118.90
2	2	540	С	C6-N1-C1'	-5.47	114.24	120.80
1	1	912	С	N1-C2-O2	5.42	122.15	118.90
2	2	776	С	C6-N1-C2	-5.42	118.13	120.30
1	1	1657	U	O4'-C1'-N1	5.40	112.52	108.20
1	1	1012	С	C2-N1-C1'	5.39	124.73	118.80
1	1	1618	U	N3-C2-O2	-5.38	118.43	122.20
6	6	41	G	C2'-C3'-O3'	5.38	122.30	113.70
6	6	39	U	O5'-P-OP1	-5.37	100.87	105.70
1	1	995	С	C2-N1-C1'	5.35	124.69	118.80
1	1	301	А	04'-C1'-N9	5.34	112.48	108.20
3	3	108	А	P-O3'-C3'	5.34	126.11	119.70
1	1	458	A	O4'-C1'-N9	5.26	112.41	108.20
2	2	540	С	N1-C2-O2	5.20	122.02	118.90
5	5	112	A	C8-N9-C4	-5.20	103.72	105.80
1	1	824	U	C2-N1-C1'	5.19	123.93	117.70
1	1	1434	U	C2-N1-C1'	5.17	123.91	117.70

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
2	2	1155	С	N3-C2-O2	-5.17	118.28	121.90
1	1	229	С	P-O3'-C3'	5.16	125.89	119.70
2	2	360	U	P-O3'-C3'	5.16	125.89	119.70
1	1	1263	А	P-O3'-C3'	5.13	125.86	119.70
1	1	1596	А	O5'-P-OP1	-5.12	101.09	105.70
2	2	1393	U	P-O3'-C3'	5.12	125.85	119.70
1	1	141	U	P-O3'-C3'	5.12	125.85	119.70
1	1	1388	U	P-O3'-C3'	5.12	125.85	119.70
1	1	1600	A	O4'-C1'-N9	5.12	112.30	108.20
1	1	1618	U	N1-C2-O2	5.12	126.38	122.80
1	1	136	G	OP1-P-O3'	5.12	116.46	105.20
1	1	1239	U	P-O3'-C3'	5.11	125.83	119.70
5	5	113	А	P-O3'-C3'	5.09	125.80	119.70
1	1	542	С	P-O3'-C3'	5.08	125.80	119.70
1	1	1493	G	O4'-C1'-N9	5.08	112.27	108.20
1	1	1216	U	C6-N1-C1'	-5.06	114.12	121.20
1	1	1602	U	N1-C2-N3	5.05	117.93	114.90
2	2	755	U	P-O3'-C3'	5.04	125.75	119.70
7	7	140	U	C2-N1-C1'	5.03	123.74	117.70
1	1	205	A	P-O3'-C3'	5.02	125.73	119.70
2	2	552	С	C6-N1-C1'	-5.01	114.78	120.80
1	1	1216	U	C5-C6-N1	5.01	125.20	122.70

Continued from previous page...

There are no chirality outliers.

All ((13)	planarity	outliers	are	listed	below:
1 TTT /	10)	pranarioy	outilitit	arc	moucu	DC10 <i>W</i> .

Mol	Chain	Res	Type	Group
9	А	60[B]	ARG	Mainchain
10	В	337	GLY	Peptide
10	В	373	GLY	Peptide
13	Е	136	PRO	Peptide
15	G	114	ALA	Peptide
16	Н	151	GLU	Peptide
19	Κ	107	HIS	Peptide
19	Κ	126	ASN	Peptide
19	Κ	40	TYR	Peptide
26	R	17	PRO	Peptide
27	S	100[B]	ARG	Mainchain
28	Т	3	HIS	Peptide
40	f	9	ALA	Peptide

5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
9	А	245/260~(94%)	220 (90%)	25~(10%)	0	100	100
10	В	396/419~(94%)	352 (89%)	43 (11%)	1 (0%)	37	67
11	С	300/373~(80%)	269 (90%)	31 (10%)	0	100	100
12	D	159/188~(85%)	136 (86%)	23 (14%)	0	100	100
13	Е	188/190~(99%)	160 (85%)	28 (15%)	0	100	100
14	F	134/195~(69%)	112 (84%)	22 (16%)	0	100	100
15	G	225/348~(65%)	205 (91%)	18 (8%)	2 (1%)	14	42
16	Н	200/222~(90%)	175 (88%)	24 (12%)	1 (0%)	25	56
17	Ι	130/220~(59%)	120 (92%)	10 (8%)	0	100	100
18	J	126/139~(91%)	115 (91%)	11 (9%)	0	100	100
19	К	154/233~(66%)	136 (88%)	17 (11%)	1 (1%)	22	51
20	L	142/145~(98%)	127 (89%)	15 (11%)	0	100	100
21	М	201/204~(98%)	187 (93%)	14 (7%)	0	100	100
22	N	211/213~(99%)	186 (88%)	25 (12%)	0	100	100
23	0	229/305~(75%)	205 (90%)	24 (10%)	0	100	100
24	Р	194/198~(98%)	179 (92%)	15 (8%)	0	100	100
25	Q	154/245~(63%)	141 (92%)	13 (8%)	0	100	100
26	R	130/179~(73%)	104 (80%)	25 (19%)	1 (1%)	16	44
27	S	149/159~(94%)	125 (84%)	22 (15%)	2 (1%)	10	32
28	Т	154/166~(93%)	127 (82%)	27 (18%)	0	100	100
29	U	98/129~(76%)	81 (83%)	17 (17%)	0	100	100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	entiles
30	V	116/145~(80%)	99~(85%)	17 (15%)	0	100	100
31	W	116/143 (81%)	106 (91%)	10 (9%)	0	100	100
32	Х	62/124~(50%)	59 (95%)	3 (5%)	0	100	100
33	Y	130/134~(97%)	111 (85%)	19 (15%)	0	100	100
34	Z	75/147~(51%)	65 (87%)	10 (13%)	0	100	100
35	a	122/127~(96%)	105 (86%)	17 (14%)	0	100	100
36	b	63/70~(90%)	53 (84%)	10 (16%)	0	100	100
37	с	220/252~(87%)	190 (86%)	30 (14%)	0	100	100
38	d	71/104 (68%)	63~(89%)	8 (11%)	0	100	100
39	е	111/183 (61%)	92 (83%)	19 (17%)	0	100	100
40	f	124/133~(93%)	110 (89%)	14 (11%)	0	100	100
41	g	123/144 (85%)	112 (91%)	11 (9%)	0	100	100
42	h	106/168~(63%)	91 (86%)	15 (14%)	0	100	100
43	i	62/105~(59%)	57 (92%)	5 (8%)	0	100	100
44	j	76/83~(92%)	68 (90%)	8 (10%)	0	100	100
45	k	56/83~(68%)	52 (93%)	4 (7%)	0	100	100
46	1	49/51~(96%)	46 (94%)	2(4%)	1 (2%)	6	21
47	m	88/92~(96%)	71 (81%)	16 (18%)	1 (1%)	12	37
48	n	82/106~(77%)	66 (80%)	16 (20%)	0	100	100
All	All	5771/7124 (81%)	5078 (88%)	683 (12%)	10 (0%)	45	73

Continued from previous page...

All (10) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
15	G	132	SER
26	R	22	PRO
27	S	101	CYS
47	m	40	SER
10	В	380	LYS
46	l	46	ARG
19	Κ	46	PRO
15	G	116	PRO
27	S	80	VAL
16	Н	94	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the side chain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric Outliers		Percentiles		
9	А	188/204~(92%)	181~(96%)	7~(4%)	29	63	
10	В	296/352~(84%)	288~(97%)	8(3%)	40	74	
11	С	222/302~(74%)	221 (100%)	1 (0%)	86	95	
12	D	4/163~(2%)	4 (100%)	0	100	100	
13	Е	172/172~(100%)	169 (98%)	3 (2%)	56	84	
14	F	92/154~(60%)	91 (99%)	1 (1%)	70	90	
15	G	179/292~(61%)	173 (97%)	6 (3%)	32	66	
16	Н	166/188~(88%)	164 (99%)	2 (1%)	67	89	
17	Ι	114/181~(63%)	110 (96%)	4 (4%)	31	65	
18	J	91/111 (82%)	88 (97%)	3 (3%)	33	67	
19	K	79/195~(40%)	68 (86%)	11 (14%)	3	9	
20	L	105/115~(91%)	103 (98%)	2 (2%)	52	82	
21	М	179/180~(99%)	176 (98%)	3 (2%)	56	84	
22	Ν	178/179~(99%)	175 (98%)	3 (2%)	56	84	
23	О	103/242~(43%)	100 (97%)	3 (3%)	37	71	
24	Р	149/164~(91%)	145 (97%)	4 (3%)	40	74	
25	Q	100/196~(51%)	98~(98%)	2 (2%)	50	81	
26	R	98/158~(62%)	96~(98%)	2 (2%)	50	81	
27	S	100/133~(75%)	100 (100%)	0	100	100	
28	Т	125/144~(87%)	125 (100%)	0	100	100	
29	U	13/114 (11%)	13 (100%)	0	100	100	
30	V	86/124 (69%)	84 (98%)	2 (2%)	45	78	
31	W	87/122 (71%)	87 (100%)	0	100	100	
32	Х	48/104 (46%)	46 (96%)	2 (4%)	25	58	
33	Y	70/115~(61%)	69 (99%)	1 (1%)	62	87	
34	Ζ	44/119~(37%)	44 (100%)	0	100	100	

Mol	Chain	Analysed	Rotameric	Outliers	Perce	ntiles
35	a	99/117~(85%)	92~(93%)	7~(7%)	12	35
36	b	48/58~(83%)	44 (92%)	4 (8%)	9	28
37	с	168/209~(80%)	164 (98%)	4 (2%)	44	77
38	d	47/90~(52%)	44 (94%)	3~(6%)	14	41
39	е	79/156~(51%)	79~(100%)	0	100	100
40	f	97/114~(85%)	95~(98%)	2(2%)	48	80
41	g	98/121~(81%)	96~(98%)	2(2%)	50	81
42	h	85/145~(59%)	84 (99%)	1 (1%)	67	89
43	i	47/89~(53%)	44 (94%)	3~(6%)	14	41
44	j	63/70~(90%)	60~(95%)	3~(5%)	21	53
45	k	26/74~(35%)	25~(96%)	1 (4%)	28	62
46	1	46/47~(98%)	44 (96%)	2 (4%)	25	57
47	m	63/74~(85%)	58 (92%)	5 (8%)	10	30
48	n	64/92~(70%)	63~(98%)	1 (2%)	58	85
All	All	4118/5979 (69%)	4010 (97%)	108 (3%)	42	75

Continued from previous page...

All (108) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
9	А	16	TYR
9	А	30	ARG
9	А	42	ARG
9	А	73	LYS
9	А	115	ASN
9	А	190	ARG
9	А	193	ARG
10	В	10	ARG
10	В	173	ASN
10	В	174[A]	HIS
10	В	174[B]	HIS
10	В	227[A]	LYS
10	В	227[B]	LYS
10	В	249	ARG
10	В	339	ARG
11	С	139	ARG
13	Е	23	ARG
13	Е	58	ARG

Mol	Chain	Res	Type
13	Е	172	ARG
14	F	192	ARG
15	G	133	ARG
15	G	161	ASN
15	G	240	ASN
15	G	253	ASN
15	G	256	ARG
15	G	334	LYS
16	Н	103	ARG
16	Н	108	ARG
17	Ι	18	ASN
17	Ι	39	ARG
17	Ι	72	MET
17	Ι	78	ARG
18	J	84	ARG
18	J	88	ARG
18	J	112	LYS
19	K	44	LEU
19	K	45	SER
19	К	50	CYS
19	K	72	ARG
19	К	74	LEU
19	К	78	ARG
19	К	95	LEU
19	К	106	ARG
19	К	107	HIS
19	К	180	HIS
19	K	185	VAL
20	L	4	ARG
20	L	112	ASN
21	М	60	CYS
21	М	71	ARG
21	М	122	ASN
22	N	33	ASN
22	N	73	ASN
$\overline{22}$	N	116	ARG
23	0	21	ARG
23	Ο	23	ARG
23	0	94	ASN
24	Р	56	ARG
24	P	142	ASN
24	Р	147	ARG

Continued from previous page...

Mol	Chain	Res	Type
24	Р	182	ARG
25	Q	47	ASP
25	Q	51	ILE
26	R	91	ARG
26	R	119	ARG
30	V	57	SER
30	V	92	ARG
32	Х	37	ARG
32	Х	60	ARG
33	Y	113	ARG
35	a	49	ARG
35	a	72	MET
35	a	88	ARG
35	a	107	LYS
35	a	110	ARG
35	a	111	GLN
35	a	112	MET
36	b	11	ASN
36	b	18	ARG
36	b	34	ARG
36	b	62	ARG
37	с	138	ARG
37	с	167	ASN
37	с	196	ASN
37	с	229	ARG
38	d	40	ARG
38	d	42	LYS
38	d	54	ARG
40	f	23	TYR
40	f	46	ARG
41	g	65	GLU
41	g	96	ARG
42	h	30	LYS
43	i	59	ARG
43	i	71	ARG
43	i	93	MET
44	j	22	CYS
44	j	33	ARG
44	j	73	ARG
45	k	40	ARG
46	1	5	LYS
46	1	34	ARG

Continued from previous page...

Mol	Chain	Res	Type
47	m	28	LYS
47	m	44	LYS
47	m	56	ARG
47	m	58	ASP
47	m	60	CYS
48	n	45	ARG

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (117) such sidechains are listed below:

Mol	Chain	Res	Type
9	А	19	HIS
9	А	21	HIS
9	А	65	HIS
9	А	92	GLN
9	А	115	ASN
9	А	140	ASN
9	А	194	ASN
9	А	205	ASN
10	В	55	HIS
10	В	109	HIS
10	В	165	HIS
10	В	173	ASN
10	В	279	HIS
10	В	282	GLN
10	В	326	ASN
10	В	378	GLN
11	С	49	GLN
11	С	197	ASN
11	С	237	HIS
13	Е	42	GLN
13	Е	51	ASN
13	Е	70	ASN
13	Е	78	ASN
13	Е	97	HIS
13	Е	123	GLN
13	Е	161	HIS
14	F	72	ASN
14	F	154	GLN
15	G	161	ASN
15	G	222	GLN
16	Н	74	GLN
16	Н	90	HIS

Mol	Chain	Res	Type
16	Н	190	GLN
17	Ι	12	HIS
17	Ι	13	GLN
17	Ι	33	GLN
17	Ι	70	HIS
17	Ι	108	ASN
18	J	77	ASN
18	J	134	HIS
19	K	52	GLN
19	K	92	ASN
19	К	107	HIS
19	K	180	HIS
20	L	28	HIS
20	L	60	HIS
20	L	112	ASN
21	М	57	GLN
21	М	76	HIS
21	М	122	ASN
22	N	33	ASN
22	N	59	GLN
22	N	71	GLN
22	N	100	ASN
22	N	163	GLN
22	N	196	HIS
23	0	17	GLN
23	0	31	HIS
23	0	39	GLN
23	0	94	ASN
24	Р	58	ASN
24	Р	142	ASN
24	Р	197	HIS
25	Q	58	HIS
25	Q	118	HIS
25	Q	130	ASN
25	Q	137	ASN
26	R	8	HIS
26	R	107	GLN
26	R	122	ASN
27	S	54	HIS
27	S	58	HIS
27	S	77	ASN
27	S	95	HIS

Mol	Chain	Res	Type
28	Т	3	HIS
28	Т	78	GLN
28	Т	97	ASN
28	Т	110	ASN
30	V	34	GLN
30	V	114	ASN
30	V	133	HIS
31	W	18	GLN
31	W	110	HIS
33	Y	79	HIS
33	Y	86	ASN
33	Y	121	ASN
34	Ζ	3	HIS
34	Z	14	GLN
35	a	116	HIS
36	b	7	HIS
36	b	11	ASN
36	b	16	ASN
36	b	30	HIS
36	b	43	ASN
37	с	120	GLN
37	с	123	ASN
37	с	135	ASN
37	с	167	ASN
37	с	176	ASN
37	с	196	ASN
37	с	245	ASN
38	d	71	HIS
39	е	120	ASN
40	f	122	ASN
41	g	52	GLN
41	g	80	HIS
42	h	13	HIS
42	h	51	HIS
42	h	62	HIS
44	j	12	HIS
44	j	16	HIS
45	k	27	HIS
46	1	33	ASN
46	1	43	HIS
47	m	33	GLN
48	n	3	ASN

Continued from previous page...

Mol	Chain	Res	Type
48	n	82	GLN

5.3.3 RNA (i)

Mol	Chain	Analysed	Backbone Outliers	Pucker Outliers
1	1	1535/1782~(86%)	588~(38%)	57~(3%)
2	2	1106/1527~(72%)	445 (40%)	28~(2%)
3	3	177/213~(83%)	83 (46%)	10 (5%)
4	4	146/183~(79%)	48 (32%)	5(3%)
5	5	78/133~(58%)	30~(38%)	4(5%)
6	6	60/76~(78%)	48 (80%)	15~(25%)
7	7	150/171~(87%)	50~(33%)	2(1%)
8	8	118/121~(97%)	54 (45%)	5 (4%)
All	All	3370/4206~(80%)	1346~(39%)	126 (3%)

All (1346) RNA backbone outliers are listed below:

Mol	Chain	Res	Type
1	1	4	G
1	1	10	А
1	1	13	G
1	1	23	U
1	1	24	А
1	1	32	А
1	1	36	OMU
1	1	38	А
1	1	41	А
1	1	47	С
1	1	48	OMU
1	1	49	С
1	1	51	G
1	1	54	G
1	1	57	G
1	1	58	А
1	1	64	А
1	1	66	А
1	1	83	А
1	1	85	U
1	1	86	G
1	1	87	А
1	1	91	G

Mol	Chain	Res	Type
1	1	92	С
1	1	104	G
1	1	109	А
1	1	110	А
1	1	119	С
1	1	121	А
1	1	126	G
1	1	127	G
1	1	130	U
1	1	131	U
1	1	132	А
1	1	133	С
1	1	134	А
1	1	135	A
1	1	136	G
1	1	137	G
1	1	139	С
1	1	141	U
1	1	142	G
1	1	145	U
1	1	153	C
1	1	154	А
1	1	155	A
1	1	156	А
1	1	158	А
1	1	159	U
1	1	160	С
1	1	165	С
1	1	168	G
1	1	169	G
1	1	170	U
1	1	171	U
1	1	172	G
1	1	174	U
1	1	175	G
1	1	177	A
1	1	178	G
1	1	180	А
1	1	184	G
1	1	187	A
1	1	188	A
1	1	189	А

Mol	Chain	Res	Type
1	1	191	U
1	1	192	С
1	1	193	А
1	1	195	G
1	1	196	С
1	1	197	G
1	1	198	С
1	1	199	А
1	1	202	G
1	1	204	A
1	1	206	А
1	1	207	С
1	1	209	С
1	1	210	G
1	1	211	U
1	1	214	С
1	1	216	G
1	1	217	А
1	1	218	А
1	1	221	С
1	1	222	А
1	1	227	U
1	1	228	U
1	1	230	А
1	1	231	U
1	1	232	G
1	1	233	U
1	1	236	G
1	1	237	U
1	1	239	U
1	1	240	U
1	1	242	А
1	1	243	G
1	1	248	A
1	1	249	G
1	1	250	A
1	1	251	А
1	1	252	G
1	1	255	G
1	1	256	U
1	1	260	С
1	1	261	С

Mol	Chain	Res	Type
1	1	264	U
1	1	267	А
1	1	268	G
1	1	270	С
1	1	271	А
1	1	273	А
1	1	275	А
1	1	278	U
1	1	279	G
1	1	280	А
1	1	282	С
1	1	283	G
1	1	284	С
1	1	286	U
1	1	288	A
1	1	291	A
1	1	293	С
1	1	294	U
1	1	299	U
1	1	301	А
1	1	303	С
1	1	305	А
1	1	306	G
1	1	313	U
1	1	314	G
1	1	320	G
1	1	323	U
1	1	332	А
1	1	333	А
1	1	334	G
1	1	335	U
1	1	336	U
1	1	337	G
1	1	341	G
1	1	343	U
1	1	344	A
1	1	348	G
1	1	361	A
1	1	367	A
1	1	368	G
1	1	370	G
1	1	371	U

Mol	Chain	Res	Type
1	1	374	G
1	1	377	G
1	1	378	А
1	1	380	С
1	1	383	U
1	1	409	U
1	1	410	U
1	1	411	U
1	1	416	A
1	1	417	G
1	1	428	A
1	1	431	G
1	1	438	A
1	1	440	A
1	1	442	A
1	1	443	A
1	1	444	С
1	1	448	А
1	1	454	U
1	1	455	G
1	1	458	А
1	1	459	А
1	1	460	А
1	1	462	A
1	1	463	C
1	1	464	А
1	1	475	С
1	1	476	U
1	1	477	С
1	1	478	С
1	1	483	С
1	1	484	A
1	1	486	С
1	1	487	G
1	1	490	С
1	1	494	A
1	1	495	С
1	1	498	G
1	1	500	С
1	1	501	С
1	1	502	U
1	1	505	U

Mol	Chain	Res	Type
1	1	508	А
1	1	510	U
1	1	512	U
1	1	513	С
1	1	515	U
1	1	516	G
1	1	519	G
1	1	520	G
1	1	532	С
1	1	533	G
1	1	534	G
1	1	537	G
1	1	539	С
1	1	540	A
1	1	541	A
1	1	543	G
1	1	544	A
1	1	545	A
1	1	547	U
1	1	548	G
1	1	549	C
1	1	551	A
1	1	553	A
1	1	554	A
1	1	558	U
1	1	559	G
1	1	560	G
1	1	561	G
1	1	563	С
1	1	566	G
1	1	567	G
1	1	569	G
1	1	570	A
1	1	634	G
1	1	636	U
1	1	638	С
1	1	648	А
1	1	650	G
1	1	651	G
1	1	652	A
1	1	653	A
1	1	654	A

Mol	Chain	Res	Type
1	1	658	G
1	1	659	G
1	1	665	С
1	1	666	С
1	1	669	С
1	1	670	С
1	1	677	А
1	1	679	А
1	1	680	С
1	1	681	A2M
1	1	693	G
1	1	694	U
1	1	695	OMC
1	1	696	A
1	1	698	А
1	1	709	A
1	1	713	А
1	1	728	С
1	1	729	А
1	1	730	G
1	1	735	U
1	1	737	U
1	1	741	G
1	1	742	U
1	1	750	G
1	1	753	А
1	1	767	U
1	1	768	С
1	1	769	U
1	1	770	G
1	1	771	U
1	1	779	A
1	1	780	С
1	1	782	C
1	1	783	G
1	1	785	C
1	1	787	A
1	1	788	А
1	1	789	U
1	1	790	С
1	1	793	U
1	1	795	U

Mol	Chain	Res	Type
1	1	799	U
1	1	801	G
1	1	802	С
1	1	807	С
1	1	817	С
1	1	818	С
1	1	820	U
1	1	821	С
1	1	823	G
1	1	824	U
1	1	826	G
1	1	829	U
1	1	830	G
1	1	831	С
1	1	832	G
1	1	836	G
1	1	837	А
1	1	838	G
1	1	846	G
1	1	847	OMU
1	1	848	U
1	1	849	U
1	1	850	G
1	1	855	С
1	1	857	А
1	1	860	G
1	1	867	А
1	1	868	А
1	1	878	А
1	1	883	G
1	1	887	A
1	1	892	С
1	1	894	G
1	1	895	G
1	1	900	С
1	1	901	С
1	1	902	С
1	1	903	A
1	1	907	G
1	1	908	G
1	1	912	С
1	1	922	U

Mol	Chain	Res	Type
1	1	925	U
1	1	926	G
1	1	927	A2M
1	1	931	G
1	1	932	С
1	1	945	U
1	1	947	А
1	1	956	U
1	1	957	С
1	1	959	OMG
1	1	960	А
1	1	963	G
1	1	965	А
1	1	967	G
1	1	972	А
1	1	974	С
1	1	975	G
1	1	977	А
1	1	985	G
1	1	988	G
1	1	995	С
1	1	1000	С
1	1	1010	С
1	1	1011	U
1	1	1013	А
1	1	1021	U
1	1	1025	G
1	1	1028	А
1	1	1029	G
1	1	1030	U
1	1	1031	А
1	1	1032	G
1	1	1036	U
1	1	1042	G
1	1	1044	G
1	1	1046	U
1	1	1051	С
1	1	1055	U
1	1	1056	G
1	1	1057	A
1	1	1058	U
1	1	1059	U

Mol	Chain	Res	Type
1	1	1063	G
1	1	1073	U
1	1	1081	А
1	1	1083	А
1	1	1085	С
1	1	1086	G
1	1	1088	С
1	1	1092	U
1	1	1097	А
1	1	1102	U
1	1	1103	U
1	1	1104	А
1	1	1105	А
1	1	1108	G
1	1	1110	G
1	1	1114	A
1	1	1117	А
1	1	1118	А
1	1	1120	С
1	1	1123	G
1	1	1124	С
1	1	1127	U
1	1	1128	А
1	1	1131	С
1	1	1142	С
1	1	1146	А
1	1	1147	А
1	1	1149	G
1	1	1150	А
1	1	1156	А
1	1	1159	А
1	1	1160	G
1	1	1161	А
1	1	1162	G
1	1	1164	С
1	1	1169	A
1	1	1174	G
1	1	1181	U
1	1	1182	C
1	1	1188	G
1	1	1200	A
1	1	1201	U

Mol	Chain	Res	Type
1	1	1206	А
1	1	1210	А
1	1	1211	А
1	1	1212	С
1	1	1213	С
1	1	1216	U
1	1	1218	А
1	1	1231	G
1	1	1234	А
1	1	1235	А
1	1	1239	U
1	1	1240	U
1	1	1242	U
1	1	1243	G
1	1	1249	А
1	1	1254	С
1	1	1255	G
1	1	1257	U
1	1	1258	А
1	1	1259	С
1	1	1260	G
1	1	1261	U
1	1	1263	А
1	1	1264	А
1	1	1265	А
1	1	1266	А
1	1	1268	G
1	1	1270	U
1	1	1271	G
1	1	1273	U
1	1	1276	U
1	1	1281	А
1	1	1349	A
1	1	1357	G
1	1	1364	А
1	1	1365	A
1	1	1366	А
1	1	1367	U
1	1	1369	G
1	1	1370	A
1	1	1371	U
1	1	1372	G

Mol	Chain	Res	Type
1	1	1375	G
1	1	1379	А
1	1	1383	С
1	1	1385	А
1	1	1386	А
1	1	1389	А
1	1	1390	G
1	1	1392	G
1	1	1393	А
1	1	1394	U
1	1	1395	U
1	1	1396	G
1	1	1399	С
1	1	1400	A
1	1	1402	U
1	1	1407	С
1	1	1413	U
1	1	1414	А
1	1	1415	А
1	1	1416	G
1	1	1418	G
1	1	1420	G
1	1	1421	G
1	1	1423	А
1	1	1424	А
1	1	1433	U
1	1	1434	U
1	1	1435	G
1	1	1436	G
1	1	1437	А
1	1	1438	G
1	1	1439	A
1	1	1440	А
1	1	1443	U
1	1	1445	U
1	1	1446	A
1	1	1447	G
1	1	1448	С
1	1	1449	С
1	1	1450	С
1	1	1451	U
1	1	1452	U

Mol	Chain	Res	Type
1	1	1453	С
1	1	1466	G
1	1	1467	G
1	1	1468	С
1	1	1478	А
1	1	1479	G
1	1	1489	U
1	1	1490	А
1	1	1491	U
1	1	1492	G
1	1	1494	С
1	1	1495	G
1	1	1504	А
1	1	1505	G
1	1	1506	А
1	1	1507	U
1	1	1509	G
1	1	1510	А
1	1	1511	С
1	1	1521	G
1	1	1522	U
1	1	1523	G
1	1	1524	С
1	1	1526	OMG
1	1	1527	А
1	1	1529	OMC
1	1	1530	U
1	1	1540	U
1	1	1541	A2M
1	1	1542	OMG
1	1	1544	А
1	1	1547	G
1	1	1548	А
1	1	1549	U
1	1	1550	C
1	1	1553	A
1	1	1554	С
1	1	1576	C
1	1	1577	G
1	1	1584	A
1	1	1588	G
1	1	1589	А

Mol	Chain	Res	Type
1	1	1590	G
1	1	1591	С
1	1	1592	G
1	1	1593	G
1	1	1595	G
1	1	1601	U
1	1	1602	U
1	1	1607	G
1	1	1609	С
1	1	1611	А
1	1	1612	С
1	1	1614	G
1	1	1615	С
1	1	1621	U
1	1	1627	А
1	1	1629	U
1	1	1633	U
1	1	1639	А
1	1	1644	G
1	1	1648	А
1	1	1656	А
1	1	1657	U
1	1	1658	С
1	1	1662	U
1	1	1663	U
1	1	1664	G
1	1	1665	U
1	1	1667	А
1	1	1668	G
1	1	1669	G
1	1	1670	A
1	1	1671	A
1	1	1679	G
1	1	1683	G
1	1	1719	G
1	1	1720	С
1	1	1721	С
1	1	1723	U
1	1	1725	A
1	1	1728	G
1	1	1729	A
1	1	1732	А

Mol	Chain	\mathbf{Res}	Type
1	1	1735	G
1	1	1737	С
1	1	1739	А
1	1	1740	C
1	1	1741	А
1	1	1746	А
1	1	1749	U
1	1	1752	G
1	1	1755	U
1	1	1761	С
1	1	1763	А
1	1	1764	А
1	1	1765	A
1	1	1766	A
1	1	1767	А
1	1	1768	G
1	1	1771	А
1	1	1777	U
1	1	1778	G
2	2	9	G
2	2	13	А
2	2	22	А
2	2	26	С
2	2	29	С
2	2	30	А
2	2	33	А
2	2	34	G
2	2	36	U
2	2	41	А
2	2	44	С
2	2	49	А
2	2	54	U
2	2	61	C
2	2	63	U
2	2	67	G
2	2	68	A
2	2	69	А
2	2	70	А
2	2	75	C
2	2	78	U
2	2	89	G
2	2	90	G

Mol	Chain	Res	Type
2	2	92	А
2	2	98	G
2	2	99	A
2	2	103	G
2	2	109	U
2	2	110	С
2	2	111	G
2	2	116	A
2	2	119	С
2	2	122	U
2	2	123	G
2	2	127	С
2	2	130	A
2	2	131	G
2	2	133	G
2	2	134	С
2	2	135	А
2	2	343	U
2	2	344	G
2	2	345	С
2	2	346	С
2	2	349	С
2	2	350	U
2	2	355	А
2	2	358	G
2	2	359	С
2	2	360	U
2	2	361	U
2	2	362	A
2	2	363	С
2	2	368	G
2	2	372	A
2	2	377	A
2	2	380	G
2	2	385	A
2	2	388	A
2	2	390	A
2	2	394	U
2	2	401	G
2	2	404	A
2	2	405	U
2	2	413	A

Mol	Chain	Res	Type
2	2	414	G
2	2	415	U
2	2	416	G
2	2	424	U
2	2	425	С
2	2	429	A
2	2	434	A
2	2	435	U
2	2	438	С
2	2	444	A
2	2	446	U
2	2	447	G
2	2	448	С
2	2	451	U
2	2	452	G
2	2	453	А
2	2	454	А
2	2	455	U
2	2	456	G
2	2	458	С
2	2	459	А
2	2	464	G
2	2	469	G
2	2	470	А
2	2	471	U
2	2	473	С
2	2	477	G
2	2	478	А
2	2	482	G
2	2	483	С
2	2	484	G
2	2	489	A
2	2	490	A
2	2	495	G
2	2	497	G
2	2	498	А
2	2	509	С
2	2	511	С
2	2	512	U
2	2	513	С
2	2	515	U
2	2	518	G

Mol	Chain	Res	Type
2	2	519	G
2	2	522	G
2	2	525	А
2	2	526	А
2	2	527	A2M
2	2	528	U
2	2	529	G
2	2	530	С
2	2	534	OMG
2	2	535	U
2	2	541	A
2	2	543	U
2	2	544	U
2	2	547	А
2	2	549	А
2	2	553	G
2	2	554	OMC
2	2	555	А
2	2	556	U
2	2	559	А
2	2	560	U
2	2	561	G
2	2	570	А
2	2	571	OMG
2	2	572	A2M
2	2	580	U
2	2	582	U
2	2	583	OMC
2	2	584	С
2	2	591	A2M
2	2	592	С
2	2	609	А
2	2	611	U
2	2	620	С
2	2	621	G
2	2	623	A
2	2	624	С
2	2	629	A
2	2	633	С
2	2	635	A
2	2	640	G
2	2	643	А

Mol	Chain	Res	Type
2	2	647	А
2	2	648	A
2	2	649	G
2	2	650	А
2	2	656	OMU
2	2	657	U
2	2	658	G
2	2	664	G
2	2	666	С
2	2	668	С
2	2	675	G
2	2	681	G
2	2	683	G
2	2	694	U
2	2	696	А
2	2	697	G
2	2	699	U
2	2	700	G
2	2	701	U
2	2	702	А
2	2	704	U
2	2	705	А
2	2	706	U
2	2	707	А
2	2	709	G
2	2	711	G
2	2	713	А
2	2	714	A
2	2	715	G
2	2	718	С
2	2	720	A
2	2	721	G
2	2	725	A
2	2	726	A
2	2	727	A
2	2	728	U
2	2	729	G
2	2	730	A
2	2	731	A
2	2	732	A
2	2	733	U
2	2	734	A

Mol	Chain	Res	Type
2	2	735	С
2	2	736	С
2	2	737	А
2	2	739	С
2	2	741	С
2	2	742	U
2	2	750	U
2	2	756	С
2	2	758	С
2	2	759	U
2	2	760	U
2	2	761	А
2	2	768	G
2	2	769	A
2	2	774	А
2	2	775	С
2	2	776	С
2	2	777	A
2	2	778	А
2	2	779	U
2	2	780	G
2	2	782	G
2	2	783	U
2	2	784	U
2	2	785	U
2	2	786	А
2	2	789	G
2	2	790	U
2	2	791	А
2	2	794	С
2	2	795	U
2	2	800	G
2	2	801	С
2	2	802	U
2	2	803	A
2	2	807	A
2	2	808	С
2	2	809	С
2	2	810	G
2	2	811	U
2	2	812	С
2	2	813	U
	1	·	

Mol	Chain	Res	Type
2	2	814	A
2	2	816	G
2	2	817	U
2	2	818	U
2	2	824	G
2	2	825	U
2	2	827	A
2	2	828	U
2	2	829	U
2	2	830	U
2	2	831	U
2	2	833	U
2	2	834	G
2	2	835	G
2	2	836	С
2	2	837	G
2	2	868	U
2	2	869	G
2	2	870	С
2	2	872	U
2	2	940	G
2	2	941	С
2	2	948	С
2	2	949	G
2	2	950	U
2	2	951	G
2	2	952	G
2	2	954	U
2	2	956	С
2	2	957	С
2	2	958	С
2	2	959	A
2	2	960	A
2	2	961	С
2	2	962	С
2	2	967	U
2	2	968	G
2	2	969	U
2	2	970	A
2	2	971	A
2	2	972	A
2	2	973	С

Mol Chain Res Typ	e
2 2 974 U	
2 2 975 G	
2 2 976 A	
2 2 977 A	
2 2 979 C	
2 2 981 A	
2 2 982 C	
2 2 983 G	
2 2 989 G	
2 2 991 C	
2 2 992 U	
2 2 993 C	
2 2 996 G	
2 2 997 C	
2 2 1010 U	
2 2 1011 U	
2 2 1012 G	
2 2 1013 U	
2 2 1014 U	
2 2 1016 C	
2 2 1020 A	
2 2 1024 C	
2 2 1025 U	
2 2 1028 C	
2 2 1034 G	
2 2 1035 G	
2 2 1037 A	
2 2 1042 G	
2 2 1045 U	
2 2 1050 C	
2 2 1057 U	
2 2 1063 A	
2 2 1066 C	
2 2 1067 G	
2 2 1072 C	
2 2 1073 G	
2 2 1076 G	
2 2 1077 G	
2 2 1079 OM	G
2 2 1080 U	
2 2 2 1084 A	

Mol	Chain	Res	Type
2	2	1093	U
2	2	1096	G
2	2	1097	U
2	2	1101	A
2	2	1102	А
2	2	1104	А
2	2	1109	U
2	2	1111	U
2	2	1112	С
2	2	1114	С
2	2	1116	U
2	2	1117	A
2	2	1118	G
2	2	1119	А
2	2	1122	А
2	2	1124	A
2	2	1131	A
2	2	1132	A
2	2	1133	A
2	2	1134	G
2	2	1142	G
2	2	1144	U
2	2	1147	A
2	2	1148	С
2	2	1149	G
2	2	1152	U
2	2	1154	C
2	2	1156	A
2	2	1157	G
2	2	1158	U
2	2	1161	G
2	2	1166	G
2	2	1169	A
2	2	1171	U
2	2	1182	G
2	2	1184	C
2	2	1185	С
2	2	1186	A2M
2	2	1187	G
2	2	1189	G
2	2	1190	A
2	2	1199	G

Mol	Chain	Res	Type
2	2	1216	А
2	2	1217	А
2	2	1218	С
2	2	1229	А
2	2	1230	OMG
2	2	1231	А
2	2	1238	А
2	2	1239	G
2	2	1240	А
2	2	1242	U
2	2	1243	А
2	2	1248	С
2	2	1249	OMC
2	2	1253	G
2	2	1254	OMG
2	2	1255	G
2	2	1256	А
2	2	1257	U
2	2	1266	U
2	2	1267	G
2	2	1275	С
2	2	1276	А
2	2	1277	А
2	2	1278	G
2	2	1288	С
2	2	1290	А
2	2	1292	G
2	2	1295	G
2	2	1296	С
2	2	1298	U
2	2	1299	U
2	2	1302	G
2	2	1303	А
2	2	1305	С
2	2	1306	C
2	2	1310	G
2	2	1312	U
2	2	1317	G
2	2	1318	OMC
2	2	$1\overline{3}25$	U
2	2	1326	A
2	2	1329	С

Mol	Chain	Res	Type
2	2	1333	С
2	2	1338	С
2	2	1339	А
2	2	1341	А
2	2	1343	G
2	2	1346	G
2	2	1347	С
2	2	1348	U
2	2	1349	А
2	2	1350	А
2	2	1351	G
2	2	1361	G
2	2	1362	U
2	2	1367	С
2	2	1372	G
2	2	1374	С
2	2	1375	A
2	2	1380	А
2	2	1381	С
2	2	1384	G
2	2	1385	А
2	2	1386	G
2	2	1389	G
2	2	1390	G
2	2	1393	U
2	2	1394	U
2	2	1410	А
2	2	1415	G
2	2	1417	U
2	2	1418	U
2	2	1422	С
2	2	1423	С
2	2	1429	U
2	2	1435	G
2	2	1437	А
2	2	1438	А
2	2	1440	U
2	2	1441	G
2	2	1442	С
2	2	1443	G
2	2	1444	А
2	2	1446	А

Mol	Chain	Res	Type
2	2	1448	А
2	2	1449	А
3	3	10	U
3	3	14	А
3	3	21	U
3	3	22	G
3	3	23	С
3	3	29	А
3	3	30	А
3	3	32	А
3	3	33	А
3	3	37	А
3	3	38	А
3	3	47	С
3	3	48	G
3	3	50	U
3	3	54	С
3	3	55	U
3	3	56	U
3	3	58	С
3	3	61	U
3	3	62	U
3	3	63	С
3	3	69	А
3	3	70	А
3	3	78	С
3	3	79	U
3	3	81	С
3	3	82	G
3	3	83	G
3	3	84	С
3	3	86	U
3	3	87	U
3	3	88	G
3	3	90	U
3	3	92	G
3	3	95	С
3	3	96	U
3	3	97	U
3	3	98	G
3	3	99	G
3	3	101	С

Mol	Chain	Res	Type
3	3	105	U
3	3	107	U
3	3	108	А
3	3	109	С
3	3	110	U
3	3	111	U
3	3	112	С
3	3	114	С
3	3	118	U
3	3	119	U
3	3	120	G
3	3	122	U
3	3	133	G
3	3	135	U
3	3	138	A
3	3	142	U
3	3	146	А
3	3	147	А
3	3	148	A
3	3	149	U
3	3	150	G
3	3	152	А
3	3	153	G
3	3	156	С
3	3	157	U
3	3	164	G
3	3	165	U
3	3	166	А
3	3	167	С
3	3	168	U
3	3	169	G
3	3	170	U
3	3	176	U
3	3	181	A
3	3	182	G
3	3	185	C
3	3	186	U
3	3	194	A
3	3	195	A
3	3	196	A
3	3	198	С
3	3	199	A

Mol	Chain	Res	Type
3	3	210	G
4	4	31	G
4	4	40	G
4	4	46	G
4	4	50	G
4	4	51	U
4	4	52	А
4	4	62	С
4	4	63	U
4	4	64	С
4	4	65	С
4	4	67	А
4	4	73	U
4	4	86	U
4	4	93	U
4	4	96	С
4	4	97	G
4	4	100	С
4	4	102	G
4	4	106	G
4	4	107	U
4	4	114	А
4	4	119	А
4	4	120	U
4	4	121	C
4	4	127	G
4	4	128	U
4	4	129	G
4	4	131	U
4	4	132	U
4	4	139	U
4	4	140	G
4	4	141	А
4	4	147	U
4	4	148	С
4	4	150	А
4	4	151	А
4	4	153	С
4	4	154	С
4	4	157	A
4	4	158	А
4	4	162	А

Mol	Chain	Res	Type
4	4	169	А
4	4	171	А
4	4	172	С
4	4	174	A
4	4	175	G
4	4	180	С
4	4	182	А
5	5	4	G
5	5	12	С
5	5	13	С
5	5	14	А
5	5	15	А
5	5	22	G
5	5	25	С
5	5	26	A
5	5	27	U
5	5	28	G
5	5	38	G
5	5	40	А
5	5	42	G
5	5	43	А
5	5	101	С
5	5	102	U
5	5	105	А
5	5	112	А
5	5	113	А
5	5	114	А
5	5	115	U
5	5	119	А
5	5	120	U
5	5	122	С
5	5	123	U
5	5	126	G
5	5	127	G
5	5	131	A
5	5	132	С
5	5	133	A
6	6	2	С
6	6	3	A
6	6	4	U
6	6	5	С
6	6	7	А

Mol	Chain	Res	Type
6	6	8	А
6	6	9	U
6	6	12	С
6	6	13	С
6	6	14	А
6	6	15	С
6	6	16	С
6	6	17	U
6	6	18	А
6	6	19	С
6	6	20	А
6	6	21	А
6	6	22	G
6	6	23	A
6	6	24	С
6	6	25	U
6	6	26	G
6	6	27	G
6	6	28	А
6	6	29	G
6	6	30	С
6	6	31	U
6	6	32	U
6	6	33	G
6	6	35	U
6	6	37	С
6	6	39	U
6	6	40	С
6	6	41	G
6	6	42	А
6	6	44	G
6	6	49	С
6	6	50	А
6	6	51	A
6	6	52	G
6	6	53	U
6	6	54	A
6	6	55	U
6	6	56	A
6	6	57	U
6	6	58	U
6	6	59	С

Mol	Chain	Res	Type
6	6	61	U
7	7	2	А
7	7	5	U
7	7	6	G
7	7	7	OMU
7	7	8	С
7	7	22	U
7	7	34	U
7	7	35	С
7	7	38	U
7	7	40	A
7	7	44	А
7	7	48	A
7	7	49	G
7	7	52	A
7	7	59	А
7	7	60	U
7	7	62	А
7	7	63	G
7	7	68	А
7	7	69	U
7	7	71	А
7	7	77	А
7	7	78	G
7	7	89	U
7	7	92	С
7	7	103	А
7	7	104	A
7	7	105	С
7	7	107	С
7	7	109	A
7	7	110	A
7	7	111	С
7	7	115	G
7	7	119	G
7	7	120	G
7	7	121	G
7	7	122	A
7	7	124	А
7	7	125	A
7	7	126	G
7	7	127	С

Mol	Chain	Res	Type
7	7	137	U
7	7	138	С
7	7	139	А
7	7	140	U
7	7	142	С
7	7	157	U
7	7	158	U
7	7	159	С
7	7	161	С
8	8	2	С
8	8	3	G
8	8	4	А
8	8	5	G
8	8	7	A
8	8	8	С
8	8	9	G
8	8	12	С
8	8	13	А
8	8	15	А
8	8	17	U
8	8	18	U
8	8	24	А
8	8	27	А
8	8	36	С
8	8	39	G
8	8	40	U
8	8	41	С
8	8	43	G
8	8	44	A
8	8	45	U
8	8	47	U
8	8	48	G
8	8	51	A
8	8	52	A
8	8	53	G
8	8	55	U
8	8	56	A
8	8	57	A
8	8	61	С
8	8	63	С
8	8	64	A
8	8	67	G

		-	1 0		
\mathbf{Mol}	Chain	\mathbf{Res}	Type		
8	8	73	G		
8	8	74	U		
8	8	78	U		
8	8	82	G		
8	8	85	G		
8	8	86	U		
8	8	87	С		
8	8	88	А		
8	8	89	G		
8	8	91	G		
8	8	92	А		
8	8	94	G		
8	8	102	А		
8	8	108	G		
8	8	110	G		
8	8	111	U		
8	8	112	G		
8	8	115	G		
8	8	116	U		
8	8	119	U		
8	8	120	С		

All (126) RNA pucker outliers are listed below:

Mol	Chain	Res	Type
1	1	23	U
1	1	132	А
1	1	136	G
1	1	141	U
1	1	153	С
1	1	154	А
1	1	155	А
1	1	167	U
1	1	170	U
1	1	171	U
1	1	191	U
1	1	195	G
1	1	203	С
1	1	205	А
1	1	229	С
1	1	232	G
1	1	333	А

Mol	Chain	Res	Type
1	1	334	G
1	1	367	А
1	1	409	U
1	1	415	А
1	1	477	С
1	1	559	G
1	1	560	G
1	1	669	С
1	1	693	G
1	1	786	А
1	1	822	С
1	1	959	OMG
1	1	1029	G
1	1	1109	U
1	1	1239	U
1	1	1253	U
1	1	1257	U
1	1	1263	А
1	1	1270	U
1	1	1369	G
1	1	1388	U
1	1	1389	А
1	1	1392	G
1	1	1413	U
1	1	1420	G
1	1	1423	А
1	1	1432	С
1	1	1436	G
1	1	1439	А
1	1	1442	G
1	1	1452	U
1	1	1466	G
1	1	1506	А
1	1	1526	OMG
1	1	1529	OMC
1	1	1542	OMG
1	1	1591	C
1	1	1662	U
1	1	1751	G
1	1	1763	A
2	2	29	С
2	2	68	A

Mol	Chain	Res	Type
2	2	349	С
2	2	360	U
2	2	443	OMC
2	2	468	A
2	2	512	U
2	2	552	С
2	2	646	G
2	2	749	G
2	2	755	U
2	2	775	С
2	2	776	С
2	2	782	G
2	2	815	G
2	2	827	A
2	2	832	A
2	2	835	G
2	2	948	С
2	2	957	С
2	2	973	С
2	2	981	А
2	2	996	G
2	2	1184	С
2	2	1318	OMC
2	2	1393	U
2	2	1437	А
2	2	1443	G
3	3	22	G
3	3	31	С
3	3	32	А
3	3	77	U
3	3	78	С
3	3	108	А
3	3	117	G
3	3	132	G
3	3	141	U
3	3	195	A
4	4	50	G
4	4	64	С
4	4	149	U
4	4	157	A
4	4	174	A
5	5	113	А

Mol	Chain	Res	Type
5	5	125	А
5	5	126	G
5	5	130	С
6	6	2	С
6	6	4	U
6	6	8	А
6	6	14	А
6	6	21	А
6	6	24	С
6	6	29	G
6	6	30	C
6	6	31	U
6	6	32	U
6	6	38	С
6	6	40	С
6	6	41	G
6	6	50	А
6	6	58	U
7	7	88	А
7	7	139	A
8	8	43	G
8	8	48	G
8	8	66	А
8	8	85	G
8	8	91	G

5.4 Non-standard residues in protein, DNA, RNA chains (i)

44 non-standard protein/DNA/RNA residues are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mol	Turne	Chain	Dag	Tinle	Bo	ond leng	\mathbf{ths}	Bond angles		
IVIOI	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	RMSZ	# Z > 2
2	OMG	2	1254	2	$19,\!26,\!27$	1.02	1 (5%)	21,38,41	1.14	2 (9%)
2	A2M	2	1186	2	18,25,26	0.81	0	20,36,39	1.34	3 (15%)

Mal	Trune	Chain	Dec	Tinle	Bo	ond leng	Bond lengths		Bond angles		
	туре	Chain	nes		Counts	RMSZ	# Z > 2	Counts	Counts RMSZ $\# Z > 2$		
2	OMC	2	554	2	19,22,23	0.83	0	$25,\!31,\!34$	1.04	1 (4%)	
1	OMG	1	1526	1	19,26,27	0.96	1 (5%)	21,38,41	1.32	3 (14%)	
2	OMG	2	71	2	19,26,27	1.00	1 (5%)	21,38,41	1.26	3 (14%)	
2	A2M	2	628	2	18,25,26	0.82	0	20,36,39	1.32	3 (15%)	
2	OMU	2	1078	2	19,22,23	1.30	2 (10%)	25,31,34	1.93	6 (24%)	
2	OMC	2	1249	2	19,22,23	0.84	0	25,31,34	1.04	1 (4%)	
7	OMU	7	7	7,1	19,22,23	1.27	3 (15%)	25,31,34	2.25	6 (24%)	
2	OMC	2	1160	2	19,22,23	0.84	0	25,31,34	1.01	1 (4%)	
2	OMG	2	534	2	19,26,27	0.99	1 (5%)	21,38,41	1.29	2 (9%)	
2	H2U	2	1404	2	18,21,22	1.11	2 (11%)	19,30,33	1.03	1 (5%)	
1	A2M	1	927	1	18,25,26	0.90	1 (5%)	20,36,39	1.39	3 (15%)	
1	OMU	1	847	1	19,22,23	1.28	3 (15%)	25,31,34	1.92	6 (24%)	
1	A2M	1	1541	2,1	18,25,26	0.84	0	20,36,39	1.18	2 (10%)	
2	OMG	2	641	2	19,26,27	1.02	1 (5%)	21,38,41	1.20	3 (14%)	
1	OMG	1	1542	2,1	19,26,27	0.97	1 (5%)	21,38,41	1.28	2 (9%)	
2	OMC	2	583	2	19,22,23	0.86	0	25,31,34	1.06	1 (4%)	
1	OMC	1	1529	1	19,22,23	0.86	0	25,31,34	1.02	1 (4%)	
2	OMG	2	1079	2	19,26,27	0.96	1 (5%)	21,38,41	1.22	3 (14%)	
2	OMG	2	571	2	19,26,27	0.96	1 (5%)	21,38,41	1.39	3 (14%)	
7	A2M	7	162	7,1	18,25,26	0.86	0	20,36,39	1.76	3 (15%)	
2	A2M	2	382	2	18,25,26	0.80	0	20,36,39	1.18	2 (10%)	
2	A2M	2	572	2	18,25,26	0.83	0	20,36,39	1.23	3 (15%)	
1	A2M	1	681	1	18,25,26	0.82	0	20,36,39	1.27	2 (10%)	
1	A2M	1	678	2,1	18,25,26	0.83	0	20,36,39	1.27	2 (10%)	
1	OMU	1	845	1	19,22,23	1.35	4 (21%)	25,31,34	2.09	6 (24%)	
1	OMC	1	695	1	19,22,23	0.90	1 (5%)	25,31,34	1.23	2 (8%)	
2	OMU	2	656	2	19,22,23	1.25	3 (15%)	25,31,34	2.09	6 (24%)	
2	OMG	2	1230	2	19,26,27	1.01	1 (5%)	21,38,41	1.23	3 (14%)	
2	OMU	2	1153	2	19,22,23	1.32	3 (15%)	25,31,34	2.11	6 (24%)	
2	OMC	2	1398	2	19,22,23	0.85	0	25,31,34	1.08	1 (4%)	
1	OMG	1	959	1	19,26,27	1.03	1 (5%)	21,38,41	1.40	4 (19%)	
2	A2M	2	527	2	18,25,26	0.82	0	20,36,39	1.58	3 (15%)	
1	OMU	1	36	1	19,22,23	1.34	3 (15%)	25,31,34	1.96	6 (24%)	
2	OMC	2	443	2	19,22,23	0.84	0	25,31,34	0.90	0	
2	OMC	2	1318	2	19,22,23	0.84	0	$25,\!31,\!34$	1.03	2 (8%)	

Mal	Mol Type		Dec	Tink	Bo	ond leng	ths	Bond angles		
MIOI	туре	Chain	nes	LIIIK	Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
1	A2M	1	955	1	18,25,26	0.84	0	20,36,39	1.38	2 (10%)
2	OMU	2	667	2	$19,\!22,\!23$	1.28	3 (15%)	25,31,34	1.94	6 (24%)
2	OMG	2	655	2	$19,\!26,\!27$	1.00	1 (5%)	21,38,41	1.18	2 (9%)
2	A2M	2	591	2	$18,\!25,\!26$	0.83	0	20,36,39	1.32	2 (10%)
1	OMG	1	1628	1	19,26,27	0.99	1 (5%)	21,38,41	1.37	3 (14%)
1	OMG	1	856	1	19,26,27	0.99	1 (5%)	21,38,41	1.50	4 (19%)
1	OMU	1	48	1	19,22,23	1.38	3 (15%)	25,31,34	1.95	6 (24%)

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	OMG	2	1254	2	-	4/5/27/28	0/3/3/3
2	A2M	2	1186	2	-	3/5/27/28	0/3/3/3
2	OMC	2	554	2	_	2/9/27/28	0/2/2/2
1	OMG	1	1526	1	-	1/5/27/28	0/3/3/3
2	OMG	2	71	2	-	2/5/27/28	0/3/3/3
2	A2M	2	628	2	-	0/5/27/28	0/3/3/3
2	OMU	2	1078	2	-	0/9/27/28	0/2/2/2
2	OMC	2	1249	2	-	3/9/27/28	0/2/2/2
7	OMU	7	7	7,1	-	4/9/27/28	0/2/2/2
2	OMC	2	1160	2	-	0/9/27/28	0/2/2/2
2	OMG	2	534	2	-	0/5/27/28	0/3/3/3
2	H2U	2	1404	2	-	3/7/38/39	0/2/2/2
1	A2M	1	927	1	-	1/5/27/28	0/3/3/3
1	OMU	1	847	1	-	3/9/27/28	0/2/2/2
1	A2M	1	1541	2,1	-	3/5/27/28	0/3/3/3
2	OMG	2	641	2	-	2/5/27/28	0/3/3/3
1	OMG	1	1542	2,1	-	2/5/27/28	0/3/3/3
2	OMC	2	583	2	-	2/9/27/28	0/2/2/2
1	OMC	1	1529	1	-	2/9/27/28	0/2/2/2
2	OMG	2	1079	2	-	2/5/27/28	0/3/3/3
2	OMG	2	571	2	-	2/5/27/28	0/3/3/3
7	A2M	7	162	7,1	-	1/5/27/28	0/3/3/3
2	A2M	2	382	2	-	1/5/27/28	0/3/3/3

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
2	A2M	2	572	2	-	2/5/27/28	0/3/3/3
1	A2M	1	681	1	-	3/5/27/28	0/3/3/3
1	A2M	1	678	2,1	-	2/5/27/28	0/3/3/3
1	OMU	1	845	1	-	0/9/27/28	0/2/2/2
1	OMC	1	695	1	-	0/9/27/28	0/2/2/2
2	OMU	2	656	2	-	4/9/27/28	0/2/2/2
2	OMG	2	1230	2	-	3/5/27/28	0/3/3/3
2	OMU	2	1153	2	-	2/9/27/28	0/2/2/2
2	OMC	2	1398	2	-	0/9/27/28	0/2/2/2
1	OMG	1	959	1	-	0/5/27/28	0/3/3/3
2	A2M	2	527	2	-	1/5/27/28	0/3/3/3
1	OMU	1	36	1	-	2/9/27/28	0/2/2/2
2	OMC	2	443	2	-	5/9/27/28	0/2/2/2
2	OMC	2	1318	2	-	2/9/27/28	0/2/2/2
1	A2M	1	955	1	-	3/5/27/28	0/3/3/3
2	OMU	2	667	2	-	3/9/27/28	0/2/2/2
2	OMG	2	655	2	-	0/5/27/28	0/3/3/3
2	A2M	2	591	2	-	3/5/27/28	0/3/3/3
1	OMG	1	1628	1	-	0/5/27/28	0/3/3/3
1	OMG	1	856	1	-	0/5/27/28	0/3/3/3
1	OMU	1	48	1	-	3/9/27/28	0/2/2/2

All (44) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	1	36	OMU	C4-N3	-3.13	1.33	1.38
1	1	48	OMU	C4-N3	-3.12	1.33	1.38
1	1	845	OMU	C4-N3	-3.11	1.33	1.38
2	2	1153	OMU	C4-N3	-2.99	1.33	1.38
2	2	1078	OMU	C4-N3	-2.94	1.33	1.38
2	2	667	OMU	C4-N3	-2.89	1.33	1.38
1	1	847	OMU	C4-N3	-2.83	1.33	1.38
7	7	7	OMU	C4-N3	-2.77	1.33	1.38
1	1	856	OMG	C6-N1	-2.76	1.33	1.37
2	2	1404	H2U	C2-N3	-2.74	1.33	1.38
2	2	656	OMU	C4-N3	-2.73	1.33	1.38
1	1	845	OMU	C2-N3	-2.71	1.33	1.38
2	2	71	OMG	C6-N1	-2.70	1.33	1.37
2	2	1254	OMG	C6-N1	-2.69	1.33	1.37

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	1	48	OMU	C2-N3	-2.66	1.33	1.38
1	1	1542	OMG	C6-N1	-2.64	1.33	1.37
2	2	1230	OMG	C6-N1	-2.63	1.33	1.37
2	2	641	OMG	C6-N1	-2.60	1.33	1.37
2	2	571	OMG	C6-N1	-2.59	1.33	1.37
2	2	1404	H2U	C4-N3	-2.58	1.33	1.37
2	2	655	OMG	C6-N1	-2.57	1.33	1.37
1	1	959	OMG	C6-N1	-2.57	1.33	1.37
1	1	36	OMU	C2-N3	-2.52	1.33	1.38
1	1	1526	OMG	C6-N1	-2.52	1.33	1.37
1	1	847	OMU	C2-N3	-2.52	1.33	1.38
2	2	1153	OMU	C2-N3	-2.47	1.33	1.38
1	1	1628	OMG	C6-N1	-2.45	1.34	1.37
1	1	48	OMU	C5-C4	-2.42	1.38	1.43
2	2	534	OMG	C6-N1	-2.41	1.34	1.37
2	2	667	OMU	C2-N3	-2.41	1.33	1.38
2	2	1078	OMU	C2-N3	-2.38	1.33	1.38
2	2	1079	OMG	C6-N1	-2.33	1.34	1.37
2	2	656	OMU	C2-N3	-2.29	1.34	1.38
1	1	847	OMU	C5-C4	-2.29	1.38	1.43
1	1	36	OMU	C5-C4	-2.29	1.38	1.43
7	7	7	OMU	C2-N3	-2.28	1.34	1.38
1	1	845	OMU	C5-C4	-2.28	1.38	1.43
2	2	1153	OMU	C5-C4	-2.27	1.38	1.43
2	2	667	OMU	C5-C4	-2.21	1.38	1.43
2	2	656	OMU	C5-C4	-2.18	1.39	1.43
1	1	927	A2M	O4'-C1'	2.11	1.43	1.40
1	1	845	OMU	C6-N1	-2.07	1.33	1.38
1	1	695	OMC	C5-C4	-2.07	1.38	1.42
7	7	7	OMU	C5-C4	-2.02	1.39	1.43

All (132) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
7	7	7	OMU	C2'-C1'-N1	-5.61	103.60	114.24
7	7	7	OMU	C4-N3-C2	-5.12	120.26	126.61
2	2	656	OMU	C4-N3-C2	-5.08	120.31	126.61
1	1	845	OMU	C4-N3-C2	-5.07	120.31	126.61
2	2	1078	OMU	C4-N3-C2	-5.03	120.37	126.61
1	1	36	OMU	C4-N3-C2	-5.01	120.39	126.61
2	2	1153	OMU	C4-N3-C2	-5.01	120.40	126.61
1	1	847	OMU	C4-N3-C2	-5.00	120.40	126.61

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	1	48	OMU	C4-N3-C2	-4.86	120.58	126.61
2	2	667	OMU	C4-N3-C2	-4.73	120.74	126.61
1	1	845	OMU	N3-C2-N1	4.57	120.84	114.89
7	7	7	OMU	N3-C2-N1	4.55	120.82	114.89
2	2	1078	OMU	N3-C2-N1	4.52	120.77	114.89
2	2	1153	OMU	N3-C2-N1	4.48	120.72	114.89
2	2	667	OMU	N3-C2-N1	4.46	120.69	114.89
1	1	847	OMU	N3-C2-N1	4.46	120.69	114.89
2	2	656	OMU	N3-C2-N1	4.46	120.69	114.89
1	1	48	OMU	N3-C2-N1	4.41	120.64	114.89
1	1	856	OMG	C2'-C1'-N9	-4.39	102.82	112.56
7	7	162	A2M	O4'-C1'-N9	4.32	114.48	108.75
1	1	36	OMU	N3-C2-N1	4.31	120.50	114.89
1	1	845	OMU	C2'-C1'-N1	-4.22	106.23	114.24
2	2	1398	OMC	C2'-C1'-N1	-4.14	106.38	114.24
2	2	1153	OMU	C2'-C1'-N1	-4.12	106.43	114.24
2	2	656	OMU	C2'-C1'-N1	-4.11	106.43	114.24
1	1	36	OMU	C5-C4-N3	4.01	120.42	114.80
1	1	847	OMU	C5-C4-N3	3.95	120.33	114.80
1	1	927	A2M	N3-C2-N1	-3.91	123.37	128.67
1	1	845	OMU	C5-C4-N3	3.89	120.25	114.80
2	2	656	OMU	C5-C4-N3	3.88	120.24	114.80
1	1	48	OMU	C5-C4-N3	3.88	120.23	114.80
2	2	1078	OMU	C5-C4-N3	3.87	120.22	114.80
1	1	678	A2M	N3-C2-N1	-3.86	123.43	128.67
2	2	1153	OMU	C5-C4-N3	3.85	120.19	114.80
1	1	955	A2M	N3-C2-N1	-3.83	123.47	128.67
7	7	7	OMU	C5-C4-N3	3.81	120.14	114.80
2	2	628	A2M	N3-C2-N1	-3.81	123.50	128.67
2	2	667	OMU	C5-C4-N3	3.79	120.10	114.80
2	2	591	A2M	N3-C2-N1	-3.75	123.59	128.67
1	1	681	A2M	N3-C2-N1	-3.74	123.60	128.67
1	1	1541	A2M	N3-C2-N1	-3.70	123.65	128.67
7	7	162	A2M	C4'-O4'-C1'	-3.69	106.55	109.92
2	2	527	A2M	N3-C2-N1	-3.66	123.70	128.67
1	1	695	OMC	C2'-C1'-N1	-3.64	107.34	114.24
1	1	36	OMU	C2'-C1'-N1	-3.57	107.46	114.24
2	2	1186	A2M	N3-C2-N1	-3.57	123.83	128.67
2	2	571	OMG	C2'-C1'-N9	-3.53	104.71	112.56
7	7	162	A2M	N3-C2-N1	-3.52	123.89	128.67
2	2	382	A2M	N3-C2-N1	-3.52	123.89	128.67
2	2	1249	OMC	C2'-C1'-N1	-3.49	107.61	114.24

Continued from previous page...

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
2	2	572	A2M	N3-C2-N1	-3.45	123.99	128.67
2	2	583	OMC	C2'-C1'-N1	-3.40	107.80	114.24
2	2	527	A2M	O4'-C1'-N9	3.31	113.14	108.75
2	2	656	OMU	O4-C4-C5	-3.29	119.49	125.16
1	1	48	OMU	O4-C4-C5	-3.19	119.66	125.16
2	2	71	OMG	C2'-C1'-N9	-3.16	105.55	112.56
1	1	847	OMU	O4-C4-C5	-3.16	119.72	125.16
1	1	36	OMU	O4-C4-C5	-3.10	119.82	125.16
2	2	667	OMU	C2'-C1'-N1	-3.09	108.38	114.24
2	2	1160	OMC	C2'-C1'-N1	-3.07	108.41	114.24
2	2	656	OMU	O2-C2-N1	-3.06	118.82	122.80
2	2	1153	OMU	O4-C4-C5	-3.03	119.94	125.16
7	7	7	OMU	O4-C4-C5	-3.01	119.97	125.16
1	1	48	OMU	C2'-C1'-N1	-3.01	108.53	114.24
1	1	845	OMU	O4-C4-C5	-2.98	120.03	125.16
1	1	1628	OMG	C2'-C1'-N9	-2.98	105.95	112.56
2	2	534	OMG	C8-N7-C5	2.97	107.61	102.55
2	2	667	OMU	O4-C4-C5	-2.96	120.06	125.16
1	1	1526	OMG	C8-N7-C5	2.95	107.58	102.55
7	7	7	OMU	O2-C2-N1	-2.93	118.99	122.80
2	2	655	OMG	C8-N7-C5	2.92	107.52	102.55
2	2	1079	OMG	C8-N7-C5	2.90	107.49	102.55
2	2	1153	OMU	O2-C2-N1	-2.90	119.03	122.80
2	2	1230	OMG	C8-N7-C5	2.88	107.44	102.55
2	2	534	OMG	C2'-C1'-N9	-2.87	106.19	112.56
1	1	845	OMU	O2-C2-N1	-2.87	119.06	122.80
1	1	678	A2M	C4-C5-N7	-2.85	106.32	109.34
1	1	1628	OMG	C8-N7-C5	2.84	107.39	102.55
1	1	856	OMG	C8-N7-C5	2.83	107.37	102.55
1	1	1529	OMC	C2'-C1'-N1	-2.83	108.87	114.24
1	1	955	A2M	C4-C5-N7	-2.81	106.37	109.34
2	2	1230	OMG	C2'-C1'-N9	-2.81	106.33	112.56
2	2	1254	OMG	C8-N7-C5	2.80	107.32	102.55
2	2	641	OMG	C2'-C1'-N9	-2.79	106.37	112.56
1	1	1542	OMG	C8-N7-C5	2.78	107.29	102.55
2	2	571	OMG	C8-N7-C5	2.78	107.28	102.55
2	2	572	A2M	C4-C5-N7	-2.69	106.49	109.34
2	2	1078	OMU	04-C4-C5	-2.68	120.55	125.16
1	1	681	A2M	C4-C5-N7	-2.67	106.51	109.34
2	2	71	OMG	C8-N7-C5	2.66	107.08	102.55
2	2	641	OMG	C8-N7-C5	2.64	107.04	102.55
2	2	1186	A2M	C4-C5-N7	-2.62	106.57	109.34

Continued from previous page...

Continued from previous page...

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	1	959	OMG	C8-N7-C5	2.55	106.88	102.55
1	1	847	OMU	C2'-C1'-N1	-2.55	109.41	114.24
2	2	554	OMC	C2'-C1'-N1	-2.52	109.46	114.24
2	2	1404	H2U	O4'-C1'-N1	2.52	112.72	109.30
1	1	1526	OMG	O4'-C1'-N9	2.51	112.07	108.75
1	1	48	OMU	O2-C2-N1	-2.50	119.54	122.80
1	1	847	OMU	O2-C2-N1	-2.49	119.55	122.80
1	1	1541	A2M	C4-C5-N7	-2.47	106.73	109.34
1	1	927	A2M	C4-C5-N7	-2.45	106.75	109.34
2	2	1079	OMG	O4'-C1'-N9	2.44	111.97	108.75
2	2	1078	OMU	C2'-C1'-N1	-2.43	109.64	114.24
2	2	527	A2M	C4-C5-N7	-2.39	106.81	109.34
2	2	382	A2M	C4-C5-N7	-2.39	106.81	109.34
1	1	36	OMU	O2-C2-N1	-2.37	119.72	122.80
2	2	591	A2M	C4-C5-N7	-2.35	106.86	109.34
1	1	959	OMG	O4'-C1'-N9	2.33	111.83	108.75
1	1	927	A2M	O4'-C1'-N9	2.31	111.81	108.75
2	2	628	A2M	C2'-C1'-N9	-2.30	107.45	112.56
2	2	667	OMU	O2-C2-N1	-2.27	119.85	122.80
1	1	959	OMG	C5-C6-N1	2.25	118.36	114.07
2	2	628	A2M	C4-C5-N7	-2.25	106.96	109.34
1	1	856	OMG	O4'-C1'-N9	2.24	111.72	108.75
1	1	1628	OMG	C5-C6-N1	2.24	118.34	114.07
1	1	695	OMC	C5'-C4'-C3'	-2.20	107.28	115.21
1	1	1542	OMG	C5-C6-N1	2.19	118.26	114.07
2	2	1078	OMU	O2-C2-N1	-2.17	119.98	122.80
2	2	655	OMG	C5-C6-N1	2.16	118.19	114.07
2	2	1254	OMG	C5-C6-N1	2.16	118.19	114.07
2	2	1318	OMC	C2'-C1'-N1	-2.14	110.18	114.24
2	2	1230	OMG	C5-C6-N1	2.13	118.14	114.07
2	2	572	A2M	C2'-C1'-N9	-2.13	107.83	112.56
1	1	856	OMG	C5-C6-N1	2.13	118.13	114.07
2	2	1318	OMC	C5'-C4'-C3'	-2.12	107.58	115.21
2	2	1186	A2M	C4'-O4'-C1'	2.11	111.86	109.92
2	2	1079	OMG	C5-C6-N1	2.08	118.04	114.07
2	2	571	OMG	C5-C6-N1	2.07	118.03	114.07
2	2	71	OMG	C5-C6-N1	2.06	118.00	114.07
1	1	959	OMG	C4'-O4'-C1'	2.06	111.81	109.92
2	2	641	OMG	C5-C6-N1	2.05	117.97	114.07
1	1	1526	OMG	C5-C6-N1	2.01	117.91	114.07

There are no chirality outliers.

Mol	Chain	Res	Type	Atoms
1	1	48	OMU	O4'-C4'-C5'-O5'
1	1	681	A2M	O4'-C4'-C5'-O5'
1	1	681	A2M	C3'-C4'-C5'-O5'
1	1	1541	A2M	C1'-C2'-O2'-CM'
2	2	382	A2M	C1'-C2'-O2'-CM'
2	2	443	OMC	C2'-C1'-N1-C2
2	2	443	OMC	C2'-C1'-N1-C6
2	2	571	OMG	O4'-C4'-C5'-O5'
2	2	583	OMC	O4'-C4'-C5'-O5'
2	2	667	OMU	C1'-C2'-O2'-CM2
2	2	1230	OMG	C1'-C2'-O2'-CM2
2	2	1254	OMG	O4'-C4'-C5'-O5'
2	2	1254	OMG	C1'-C2'-O2'-CM2
2	2	1404	H2U	O4'-C1'-N1-C2
2	2	1404	H2U	O4'-C1'-N1-C6
7	7	7	OMU	C3'-C2'-O2'-CM2
7	7	7	OMU	O4'-C4'-C5'-O5'
1	1	48	OMU	C3'-C4'-C5'-O5'
1	1	1529	OMC	C3'-C4'-C5'-O5'
2	2	554	OMC	C3'-C4'-C5'-O5'
2	2	554	OMC	O4'-C4'-C5'-O5'
2	2	571	OMG	C3'-C4'-C5'-O5'
2	2	583	OMC	C3'-C4'-C5'-O5'
2	2	641	OMG	C3'-C4'-C5'-O5'
2	2	667	OMU	C3'-C4'-C5'-O5'
2	2	1186	A2M	C3'-C4'-C5'-O5'
2	2	1230	OMG	C3'-C4'-C5'-O5'
2	2	1318	OMC	C3'-C4'-C5'-O5'
7	7	7	OMU	C3'-C4'-C5'-O5'
1	1	955	A2M	O4'-C4'-C5'-O5'
1	1	955	A2M	C3'-C4'-C5'-O5'
1	1	1529	OMC	O4'-C4'-C5'-O5'
2	2	572	A2M	O4'-C4'-C5'-O5'
2	2	572	A2M	C3'-C4'-C5'-O5'
2	2	656	OMU	C3'-C4'-C5'-O5'
2	2	656	OMU	04'-C4'-C5'-O5'
2	2	667	OMU	04'-C4'-C5'-O5'
2	2	1079	OMG	04'-C4'-C5'-O5'
2	2	1153	OMU	C3'-C4'-C5'-O5'
2	2	1186	A2M	O4'-C4'-C5'-O5'
2	2	1318	OMC	O4'-C4'-C5'-O5'
2	2	1254	OMG	C3'-C2'-O2'-CM2

All (81) torsion outliers are listed below:

EMD-0369, 9105	EMD-	6583,	3J	CS
----------------	------	-------	----	----

Mol	Chain	Res	Type	Atoms
2	2	1254	OMG	C3'-C4'-C5'-O5'
2	2	1186	A2M	C4'-C5'-O5'-P
1	1	36	OMU	C3'-C4'-C5'-O5'
2	2	443	OMC	O4'-C4'-C5'-O5'
2	2	527	A2M	O4'-C4'-C5'-O5'
2	2	591	A2M	C3'-C4'-C5'-O5'
2	2	1079	OMG	C3'-C4'-C5'-O5'
1	1	36	OMU	O4'-C4'-C5'-O5'
1	1	678	A2M	O4'-C4'-C5'-O5'
1	1	847	OMU	C3'-C4'-C5'-O5'
1	1	847	OMU	O4'-C4'-C5'-O5'
1	1	1541	A2M	O4'-C4'-C5'-O5'
2	2	71	OMG	O4'-C4'-C5'-O5'
2	2	641	OMG	O4'-C4'-C5'-O5'
2	2	1153	OMU	O4'-C4'-C5'-O5'
2	2	1230	OMG	O4'-C4'-C5'-O5'
1	1	1542	OMG	C3'-C4'-C5'-O5'
2	2	71	OMG	C3'-C4'-C5'-O5'
1	1	847	OMU	C1'-C2'-O2'-CM2
1	1	1526	OMG	C1'-C2'-O2'-CM2
2	2	656	OMU	C1'-C2'-O2'-CM2
7	7	162	A2M	C1'-C2'-O2'-CM'
2	2	591	A2M	O4'-C4'-C5'-O5'
2	2	443	OMC	O4'-C1'-N1-C6
1	1	678	A2M	C3'-C2'-O2'-CM'
2	2	591	A2M	C3'-C2'-O2'-CM'
2	2	656	OMU	C4'-C5'-O5'-P
2	2	1249	OMC	C4'-C5'-O5'-P
2	2	443	OMC	O4'-C1'-N1-C2
7	7	7	OMU	C4'-C5'-O5'-P
1	1	955	A2M	C1'-C2'-O2'-CM'
1	1	681	A2M	C4'-C5'-O5'-P
1	1	1541	A2M	C3'-C4'-C5'-O5'
2	2	1249	OMC	C3'-C4'-C5'-O5'
1	1	1542	OMG	O4'-C4'-C5'-O5'
1	1	48	OMU	C2'-C1'-N1-C2
1	1	927	A2M	C4'-C5'-O5'-P
2	2	1404	H2U	C4'-C5'-O5'-P
2	2	1249	OMC	C2'-C1'-N1-C2

There are no ring outliers.

No monomer is involved in short contacts.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

Of 109 ligands modelled in this entry, 109 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Map visualisation (i)

This section contains visualisations of the EMDB entry EMD-6583. These allow visual inspection of the internal detail of the map and identification of artifacts.

No raw map or half-maps were deposited for this entry and therefore no images, graphs, etc. pertaining to the raw map can be shown.

6.1 Orthogonal projections (i)

6.1.1 Primary map

The images above show the map projected in three orthogonal directions.

6.2 Central slices (i)

6.2.1 Primary map

X Index: 192

Y Index: 192

The images above show central slices of the map in three orthogonal directions.

6.3 Largest variance slices (i)

6.3.1 Primary map

X Index: 228

Y Index: 123

Z Index: 213

The images above show the largest variance slices of the map in three orthogonal directions.

6.4 Orthogonal standard-deviation projections (False-color) (i)

6.4.1 Primary map

The images above show the map standard deviation projections with false color in three orthogonal directions. Minimum values are shown in green, max in blue, and dark to light orange shades represent small to large values respectively.

6.5 Orthogonal surface views (i)

6.5.1 Primary map

The images above show the 3D surface view of the map at the recommended contour level 0.02. These images, in conjunction with the slice images, may facilitate assessment of whether an appropriate contour level has been provided.

6.6 Mask visualisation (i)

This section was not generated. No masks/segmentation were deposited.

7 Map analysis (i)

This section contains the results of statistical analysis of the map.

7.1 Map-value distribution (i)

The map-value distribution is plotted in 128 intervals along the x-axis. The y-axis is logarithmic. A spike in this graph at zero usually indicates that the volume has been masked.

7.2 Volume estimate (i)

The volume at the recommended contour level is 742 $\rm nm^3;$ this corresponds to an approximate mass of 670 kDa.

The volume estimate graph shows how the enclosed volume varies with the contour level. The recommended contour level is shown as a vertical line and the intersection between the line and the curve gives the volume of the enclosed surface at the given level.

7.3 Rotationally averaged power spectrum (i)

*Reported resolution corresponds to spatial frequency of 0.357 \AA^{-1}

8 Fourier-Shell correlation (i)

This section was not generated. No FSC curve or half-maps provided.

9 Map-model fit (i)

This section contains information regarding the fit between EMDB map EMD-6583 and PDB model 3JCS. Per-residue inclusion information can be found in section 3 on page 14.

9.1 Map-model overlay (i)

The images above show the 3D surface view of the map at the recommended contour level 0.02 at 50% transparency in yellow overlaid with a ribbon representation of the model coloured in blue. These images allow for the visual assessment of the quality of fit between the atomic model and the map.

9.2 Q-score mapped to coordinate model (i)

The images above show the model with each residue coloured according its Q-score. This shows their resolvability in the map with higher Q-score values reflecting better resolvability. Please note: Q-score is calculating the resolvability of atoms, and thus high values are only expected at resolutions at which atoms can be resolved. Low Q-score values may therefore be expected for many entries.

9.3 Atom inclusion mapped to coordinate model (i)

The images above show the model with each residue coloured according to its atom inclusion. This shows to what extent they are inside the map at the recommended contour level (0.02).

9.4 Atom inclusion (i)

At the recommended contour level, 76% of all backbone atoms, 77% of all non-hydrogen atoms, are inside the map.

1.0

0.0 <0.0

9.5 Map-model fit summary (i)

The table lists the average atom inclusion at the recommended contour level (0.02) and Q-score for the entire model and for each chain.

\mathbf{Chain}	Atom inclusion	$\mathbf{Q} extsf{-score}$
All	0.7680	0.4990
1	0.8180	0.5060
2	0.7560	0.4850
3	0.6910	0.4460
4	0.7950	0.4970
5	0.8880	0.5440
6	0.6720	0.3910
7	0.8930	0.5550
8	0.8060	0.4420
А	0.8580	0.5770
В	0.8240	0.5530
C	0.8480	0.5580
D	0.4590	0.3530
Ε	0.1210	0.2290
F	0.8040	0.5200
G	0.7570	0.5140
Н	0.7840	0.5300
Ι	0.8460	0.5620
J	0.8230	0.5510
К	0.7090	0.4450
L	0.8400	0.5570
М	0.8660	0.5820
Ν	0.0710	0.2100
О	0.7580	0.4740
Р	0.8270	0.5570
Q	0.7300	0.5080
R	0.8150	0.5220
S	0.7310	0.5060
Т	0.8350	0.5590
U	0.4480	0.3960
V	0.8280	0.5500
W	0.8310	0.5460
Х	0.7290	0.5210
Y	0.7680	0.4950
Ζ	0.6280	0.4930

Chain	Atom inclusion	Q-score
a	0.8040	0.5310
b	0.8320	0.5530
с	0.8070	0.5410
d	0.6440	0.4540
е	0.7910	0.5220
f	0.8240	0.5580
g	0.8670	0.5780
h	0.7500	0.5290
i	0.7340	0.5140
j	0.8740	0.5930
k	0.5530	0.4250
1	0.8280	0.5680
m	0.7580	0.5320
n	0.6650	0.4980

