

Dec 17, 2023 – 12:10 AM JST

| PDB ID       | :     | 8JHO                                                                       |
|--------------|-------|----------------------------------------------------------------------------|
| EMDB ID      | :     | EMD-36283                                                                  |
| Title        | :     | Cryo-EM structure of the histone deacetylase complex Rpd3S in complex with |
|              |       | di-nucleosome                                                              |
| Authors      | :     | Wang, H.                                                                   |
| Deposited on | :     | 2023-05-25                                                                 |
| Resolution   | :     | 7.60  Å(reported)                                                          |
|              |       |                                                                            |
| This is      | s a l | Full wwPDB EM Validation Report for a publicly released PDB entry.         |

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

| EMDB validation analysis       | : | FAILED                                                             |
|--------------------------------|---|--------------------------------------------------------------------|
| Mogul                          | : | 1.8.5 (274361), CSD as541be (2020)                                 |
| MolProbity                     | : | 4.02b-467                                                          |
| Percentile statistics          | : | 20191225.v01 (using entries in the PDB archive December 25th 2019) |
| $\operatorname{MapQ}$          | : | FAILED                                                             |
| Ideal geometry (proteins)      | : | Engh & Huber (2001)                                                |
| Ideal geometry (DNA, RNA)      | : | Parkinson et al. (1996)                                            |
| Validation Pipeline (wwPDB-VP) | : | 2.36                                                               |

#### Overall quality at a glance (i) 1

The following experimental techniques were used to determine the structure: ELECTRON MICROSCOPY

The reported resolution of this entry is 7.60 Å.

Ramachandran outliers

Sidechain outliers

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

| Metric                                | Percentile Ran                   | ks Value            |  |  |  |  |  |
|---------------------------------------|----------------------------------|---------------------|--|--|--|--|--|
| Ramachandran outliers                 |                                  | 0                   |  |  |  |  |  |
| Sidechain outliers                    |                                  | 0.1%                |  |  |  |  |  |
| Worse                                 |                                  | Better              |  |  |  |  |  |
| Percentile relative to all structures |                                  |                     |  |  |  |  |  |
| Percenti                              | le relative to all EM structures |                     |  |  |  |  |  |
|                                       | Whole anabiyo                    | FM structures       |  |  |  |  |  |
| Metric                                | whole archive                    | ENI structures      |  |  |  |  |  |
|                                       | $(\# { m Entries})$              | $(\# { m Entries})$ |  |  |  |  |  |
| Ramachandran outliers                 | 154571                           | 4023                |  |  |  |  |  |

154315

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

3826

| Mol | Chain | Length | Quality of chain | Quality of chain |         |  |  |  |  |  |  |
|-----|-------|--------|------------------|------------------|---------|--|--|--|--|--|--|
| 1   | А     | 135    | 73%              | •                | 24%     |  |  |  |  |  |  |
| 1   | Е     | 135    | 81%              |                  | • • 13% |  |  |  |  |  |  |
| 1   | a     | 135    | 76%              |                  | 24%     |  |  |  |  |  |  |
| 1   | е     | 135    | 70% .            |                  | 27%     |  |  |  |  |  |  |
| 2   | В     | 102    | 77%              | ••               | 21%     |  |  |  |  |  |  |
| 2   | F     | 102    | 73%              | 5%•              | 22%     |  |  |  |  |  |  |
| 2   | b     | 102    | 80%              |                  | 20%     |  |  |  |  |  |  |
| 2   | f     | 102    | 78%              |                  | 22%     |  |  |  |  |  |  |
| 3   | С     | 129    | 79%              | 5%               | o 16%   |  |  |  |  |  |  |
| 3   | G     | 129    | 81%              | •                | 18%     |  |  |  |  |  |  |



| Mol | Chain | Length | Quality of chain | Quality of chain |     |  |  |  |  |  |  |
|-----|-------|--------|------------------|------------------|-----|--|--|--|--|--|--|
| 3   | С     | 129    | 84%              |                  | 16% |  |  |  |  |  |  |
| 3   | g     | 129    | 82%              |                  | 18% |  |  |  |  |  |  |
| 4   | D     | 122    | 75%              | •••              | 21% |  |  |  |  |  |  |
| 4   | Н     | 122    | 78%              |                  | 22% |  |  |  |  |  |  |
| 4   | d     | 122    | 78%              |                  | 21% |  |  |  |  |  |  |
| 4   | h     | 122    | 76%              | •                | 22% |  |  |  |  |  |  |
| 5   | Ι     | 350    | 60%              | 33%              | ••• |  |  |  |  |  |  |
| 6   | J     | 350    | 61%              | 32%              | • • |  |  |  |  |  |  |
| 7   | K     | 1536   | 36%              | 64%              |     |  |  |  |  |  |  |
| 8   | L     | 433    | 88%              |                  | 11% |  |  |  |  |  |  |
| 9   | М     | 401    | 72%              |                  | 27% |  |  |  |  |  |  |
| 9   | 0     | 401    | 66%              | 33               | %   |  |  |  |  |  |  |
| 10  | N     | 684    | 54%              | 46%              |     |  |  |  |  |  |  |
| 10  | P     | 684    | 22% 78%          | -070             |     |  |  |  |  |  |  |

Continued from previous page...



## 2 Entry composition (i)

There are 11 unique types of molecules in this entry. The entry contains 42813 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

| Mol | Chain | Residues |       | At  | oms |     | AltConf      | Trace |   |
|-----|-------|----------|-------|-----|-----|-----|--------------|-------|---|
| 1   | Δ     | 102      | Total | С   | Ν   | Ο   | S            | 0     | 0 |
|     | 102   | 837      | 529   | 162 | 143 | 3   | 0            | 0     |   |
| 1   | F     | 117      | Total | С   | Ν   | Ο   | $\mathbf{S}$ | 0     | 0 |
|     | 117   | 954      | 597   | 191 | 164 | 2   | 0            | 0     |   |
| 1   | 0     | 102      | Total | С   | Ν   | 0   | S            | 0     | 0 |
|     | 102   | 837      | 529   | 162 | 143 | 3   | 0            | U     |   |
| 1   | e 98  | 08       | Total | С   | Ν   | 0   | S            | 0     | 0 |
|     |       | 98       | 810   | 512 | 157 | 139 | 2            |       | 0 |

• Molecule 1 is a protein called Histone H3.

There are 4 discrepancies between the modelled and reference sequences:

| Chain | Residue | Modelled | Actual | Comment             | Reference      |
|-------|---------|----------|--------|---------------------|----------------|
| А     | 110     | ALA      | CYS    | engineered mutation | UNP A0A310TTQ1 |
| Е     | 110     | ALA      | CYS    | engineered mutation | UNP A0A310TTQ1 |
| a     | 110     | ALA      | CYS    | engineered mutation | UNP A0A310TTQ1 |
| е     | 110     | ALA      | CYS    | engineered mutation | UNP A0A310TTQ1 |

• Molecule 2 is a protein called Histone H4.

| Mol | Chain | Residues |       | At  | oms |     | AltConf | Trace |   |
|-----|-------|----------|-------|-----|-----|-----|---------|-------|---|
| 9   | В     | 81       | Total | С   | Ν   | 0   | S       | 0     | 0 |
|     | 01    | 646      | 407   | 126 | 112 | 1   | 0       | 0     |   |
| 2   | F     | 80       | Total | С   | Ν   | 0   | S       | 0     | 0 |
|     | 80    | 638      | 401   | 125 | 111 | 1   | 0       | 0     |   |
| 9   | h     | 00       | Total | С   | Ν   | 0   | S       | 0     | 0 |
|     | 82    | 653      | 412   | 127 | 113 | 1   | 0       | 0     |   |
| 2   | f     | 80       | Total | С   | Ν   | Ο   | S       | 0     | 0 |
|     |       | 1 80     | 638   | 401 | 125 | 111 | 1       | 0     | 0 |

• Molecule 3 is a protein called Histone H2A.



| Mol      | Chain | Residues |       | Ato | ms  |     | AltConf | Trace |
|----------|-------|----------|-------|-----|-----|-----|---------|-------|
| 3        | С     | 100      | Total | С   | Ν   | Ο   | 0       | 0     |
| <u> </u> | 105   | 843      | 531   | 167 | 145 | 0   | 0       |       |
| 3        | С     | 106      | Total | С   | Ν   | Ο   | 0       | 0     |
| 3 G      | G     | 100      | 818   | 516 | 160 | 142 | 0       |       |
| 2        | 0     | 100      | Total | С   | Ν   | Ο   | 0       | 0     |
| 0        | 5 C   | 109      | 843   | 531 | 167 | 145 | 0       |       |
| 2        | G     | 106      | Total | С   | Ν   | Ο   | 0       | 0     |
| 3        | g     | 100      | 818   | 516 | 160 | 142 | 0       | 0     |

• Molecule 4 is a protein called Histone H2B.

| Mol | Chain | Residues |       | At  | oms |     | AltConf | Trace |   |
|-----|-------|----------|-------|-----|-----|-----|---------|-------|---|
| 4   | 4 D   | 96       | Total | С   | Ν   | Ο   | S       | 0     | 0 |
| 4 D | 30    | 757      | 475   | 140 | 140 | 2   | 0       | 0     |   |
| 4   | Ц     | 05       | Total | С   | Ν   | 0   | S       | 0     | 0 |
| 4 П | 95    | 745      | 469   | 134 | 140 | 2   | 0       | 0     |   |
| 4   | d     | 06       | Total | С   | Ν   | 0   | S       | 0     | 0 |
| 4 u | 90    | 757      | 475   | 140 | 140 | 2   | 0       | 0     |   |
| 4   | h     | 05       | Total | С   | Ν   | 0   | S       | 0     | 0 |
|     | 11    | 90       | 745   | 469 | 134 | 140 | 2       | 0     | 0 |

• Molecule 5 is a DNA chain called Di-nucleosome template foward.

| Mol | Chain | Residues |               | A         | AltConf   | Trace     |          |   |   |
|-----|-------|----------|---------------|-----------|-----------|-----------|----------|---|---|
| 5   | Ι     | 340      | Total<br>6937 | C<br>3299 | N<br>1252 | 0<br>2046 | P<br>340 | 0 | 0 |

• Molecule 6 is a DNA chain called Di-nucleosome template reverse.

| Mol | Chain | Residues |               | A         | AltConf   | Trace     |          |   |   |
|-----|-------|----------|---------------|-----------|-----------|-----------|----------|---|---|
| 6   | J     | 340      | Total<br>7003 | C<br>3319 | N<br>1310 | O<br>2034 | Р<br>340 | 0 | 0 |

• Molecule 7 is a protein called Transcriptional regulatory protein SIN3.

| Mol | Chain | Residues | Atoms         |           |          |          |             | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|-------------|---------|-------|
| 7   | K     | 549      | Total<br>4597 | C<br>2954 | N<br>774 | 0<br>854 | ${ m S}$ 15 | 0       | 0     |

• Molecule 8 is a protein called Histone deacetylase RPD3.



| Mol | Chain | Residues | Atoms         |           |          |          |         | AltConf | Trace |
|-----|-------|----------|---------------|-----------|----------|----------|---------|---------|-------|
| 8   | L     | 384      | Total<br>3048 | C<br>1941 | N<br>512 | O<br>569 | S<br>26 | 0       | 0     |

• Molecule 9 is a protein called Chromatin modification-related protein EAF3.

| Mol | Chain | Residues | Atoms |      |     |     | AltConf | Trace |   |
|-----|-------|----------|-------|------|-----|-----|---------|-------|---|
| 9 M | 204   | Total    | С     | Ν    | Ο   | S   | 0       | 0     |   |
|     | 111   | 294      | 2398  | 1541 | 394 | 449 | 14      | 0     | U |
| 0   | 9 O   | 267      | Total | С    | Ν   | 0   | S       | 0     | 0 |
| 9   |       | 207      | 2190  | 1414 | 359 | 404 | 13      | 0     | U |

• Molecule 10 is a protein called RCO1 isoform 1.

| Mol | Chain | Residues | Atoms         |           |          |          | AltConf | Trace |   |
|-----|-------|----------|---------------|-----------|----------|----------|---------|-------|---|
| 10  | Ν     | 372      | Total<br>3045 | C<br>1935 | N<br>526 | O<br>566 | S<br>18 | 0     | 0 |
| 10  | Р     | 151      | Total<br>1249 | C<br>802  | N<br>206 | 0<br>231 | S<br>10 | 0     | 0 |

• Molecule 11 is ZINC ION (three-letter code: ZN) (formula: Zn).

| Mol | Chain | Residues | Atoms           | AltConf |
|-----|-------|----------|-----------------|---------|
| 11  | L     | 1        | Total Zn<br>1 1 | 0       |
| 11  | Ν     | 4        | Total Zn<br>4 4 | 0       |
| 11  | Р     | 2        | Total Zn<br>2 2 | 0       |



## 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.



• Molecule 1: Histone H3



| SER<br>GLY<br>GLY<br>GLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>C                                                              | VAL<br>VAL<br>R35<br>R35<br>R35<br>R78<br>K79<br>Y98<br>G102<br>G102                  |        |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|--------|
| • Molecule 2: Histone H4                                                                                                                                  |                                                                                       |        |
| Chain b:                                                                                                                                                  | 80%                                                                                   | 20%    |
| SER<br>GLY<br>GLY<br>GLY<br>CLY<br>CLY<br>CLY<br>GLY<br>GLY<br>GLY<br>GLY<br>GLY<br>GLY<br>ARG<br>GLY<br>ARG<br>ARG                                       | 0102<br>0102                                                                          |        |
| • Molecule 2: Histone H4                                                                                                                                  |                                                                                       |        |
| Chain f:                                                                                                                                                  | 78%                                                                                   | 22%    |
| SER<br>GLY<br>GLY<br>GLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>C                                                              | VAL<br>LEU<br>R23<br>G102                                                             |        |
| • Molecule 3: Histone H2A                                                                                                                                 |                                                                                       |        |
| Chain C:                                                                                                                                                  | 79%                                                                                   | 5% 16% |
| SER<br>GLY<br>GLY<br>GLY<br>CLYS<br>CLN<br>GLY<br>GLY<br>CLYS<br>GLY<br>CLYS<br>GLY<br>R20<br>R20<br>R20<br>R20<br>R20<br>R20<br>R20<br>R20<br>R20<br>R20 | R77<br>R88<br>F119<br>F119<br>SER<br>SER<br>SER<br>L175<br>SER<br>L175<br>SER<br>L175 |        |
| • Molecule 3: Histone H2A                                                                                                                                 |                                                                                       |        |
| Chain G:                                                                                                                                                  | 81%                                                                                   | • 18%  |
| SER<br>GLY<br>GLY<br>CLY<br>CLY<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>CLN<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>ALA<br>A      | SER<br>SER<br>LYES<br>SER<br>ALA<br>LYS<br>SER<br>LYS                                 |        |
| • Molecule 3: Histone H2A                                                                                                                                 |                                                                                       |        |
| Chain c:                                                                                                                                                  | 84%                                                                                   | 16%    |
| SER<br>GLY<br>GLY<br>CLYS<br>LYS<br>CLN<br>GLY<br>GLY<br>THR<br>K11<br>K11<br>SER<br>SER<br>SER<br>SER<br>SER<br>SER<br>SER<br>SER                        | LYS<br>LYS<br>LYS                                                                     |        |
| • Molecule 3: Histone H2A                                                                                                                                 |                                                                                       |        |
| Chain g:                                                                                                                                                  | 82%                                                                                   | 18%    |
| SER<br>GLY<br>GLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>CLY<br>K118<br>K118<br>K118<br>K118<br>K118<br>K118<br>K118<br>K11                  | SER<br>ALA<br>LYS<br>SER<br>LYS                                                       |        |
| • Molecule 4: Histone H2B                                                                                                                                 |                                                                                       |        |
| Chain D:                                                                                                                                                  | 75%                                                                                   | •• 21% |
|                                                                                                                                                           |                                                                                       |        |



# 

• Molecule 4: Histone H2B







• Molecule 8: Histone deacetylase RPD3







#### 

• Molecule 10: RCO1 isoform 1



GLN SER GLU



## 4 Experimental information (i)

| Property                           | Value                         | Source    |
|------------------------------------|-------------------------------|-----------|
| EM reconstruction method           | SINGLE PARTICLE               | Depositor |
| Imposed symmetry                   | POINT, Not provided           |           |
| Number of particles used           | 31310                         | Depositor |
| Resolution determination method    | FSC 0.143 CUT-OFF             | Depositor |
| CTF correction method              | PHASE FLIPPING AND AMPLITUDE  | Depositor |
|                                    | CORRECTION                    |           |
| Microscope                         | FEI TITAN KRIOS               | Depositor |
| Voltage (kV)                       | 300                           | Depositor |
| Electron dose $(e^-/\text{\AA}^2)$ | 44                            | Depositor |
| Minimum defocus (nm)               | 800                           | Depositor |
| Maximum defocus (nm)               | 2000                          | Depositor |
| Magnification                      | Not provided                  |           |
| Image detector                     | GATAN K3 BIOQUANTUM (6k x 4k) | Depositor |



## 5 Model quality (i)

### 5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: ML3, ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal | Chain | Bo   | ond lengths    | Bond angles |                                |  |
|-----|-------|------|----------------|-------------|--------------------------------|--|
|     | Unam  | RMSZ | # Z  > 5       | RMSZ        | # Z  > 5                       |  |
| 1   | А     | 0.57 | 0/836          | 1.03        | 3/1120~(0.3%)                  |  |
| 1   | Е     | 0.60 | 0/966          | 1.13        | 7/1291~(0.5%)                  |  |
| 1   | a     | 0.34 | 0/836          | 0.80        | 0/1120                         |  |
| 1   | е     | 0.43 | 0/822          | 0.86        | 3/1103~(0.3%)                  |  |
| 2   | В     | 0.54 | 0/653          | 0.95        | 3/873~(0.3%)                   |  |
| 2   | F     | 0.61 | 0/645          | 1.33        | 8/862~(0.9%)                   |  |
| 2   | b     | 0.34 | 0/660          | 0.80        | 0/883                          |  |
| 2   | f     | 0.40 | 0/645          | 0.83        | 0/862                          |  |
| 3   | С     | 0.66 | 0/853          | 1.25        | 5/1149~(0.4%)                  |  |
| 3   | G     | 0.44 | 0/828          | 0.77        | 0/1117                         |  |
| 3   | с     | 0.37 | 0/853          | 0.76        | 0/1149                         |  |
| 3   | g     | 0.33 | 0/828          | 0.68        | 0/1117                         |  |
| 4   | D     | 0.68 | 0/768          | 1.25        | 3/1032~(0.3%)                  |  |
| 4   | Н     | 0.44 | 0/756          | 0.74        | 0/1015                         |  |
| 4   | d     | 0.44 | 0/768          | 0.78        | 0/1032                         |  |
| 4   | h     | 0.36 | 0/756          | 0.69        | 2/1015~(0.2%)                  |  |
| 5   | Ι     | 1.14 | 1/7773~(0.0%)  | 1.66        | 231/11987~(1.9%)               |  |
| 6   | J     | 1.12 | 3/7865~(0.0%)  | 1.64        | 232/12145~(1.9%)               |  |
| 7   | Κ     | 0.32 | 0/4699         | 0.54        | 1/6334~(0.0%)                  |  |
| 8   | L     | 0.34 | 0/3127         | 0.51        | 0/4231                         |  |
| 9   | М     | 0.32 | 0/2446         | 0.57        | 3/3292~(0.1%)                  |  |
| 9   | 0     | 0.30 | 0/2235         | 0.58        | 2/3008~(0.1%)                  |  |
| 10  | Ν     | 0.32 | 0/3115         | 0.56        | 3/4195~(0.1%)                  |  |
| 10  | Р     | 0.31 | 0/1278         | 0.60        | 2/1716~(0.1%)                  |  |
| All | All   | 0.74 | 4/45011~(0.0%) | 1.17        | $50\overline{8}/63648~(0.8\%)$ |  |

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.



| Mol | Chain | #Chirality outliers | #Planarity outliers |
|-----|-------|---------------------|---------------------|
| 1   | А     | 0                   | 1                   |
| 1   | Е     | 0                   | 1                   |
| 2   | В     | 0                   | 1                   |
| 2   | F     | 0                   | 1                   |
| 3   | С     | 0                   | 2                   |
| 3   | G     | 0                   | 1                   |
| 4   | D     | 0                   | 4                   |
| 4   | d     | 0                   | 1                   |
| 5   | Ι     | 0                   | 23                  |
| 6   | J     | 0                   | 18                  |
| All | All   | 0                   | 53                  |

All (4) bond length outliers are listed below:

| Mol | Chain | Res | Type | Atoms | Z     | Observed(Å) | $\mathrm{Ideal}(\mathrm{\AA})$ |
|-----|-------|-----|------|-------|-------|-------------|--------------------------------|
| 6   | J     | 42  | DG   | C2-N2 | -5.38 | 1.29        | 1.34                           |
| 6   | J     | 67  | DC   | C4-N4 | -5.34 | 1.29        | 1.33                           |
| 5   | Ι     | 22  | DG   | C2-N2 | -5.11 | 1.29        | 1.34                           |
| 6   | J     | 60  | DG   | C2-N2 | -5.11 | 1.29        | 1.34                           |

All (508) bond angle outliers are listed below:

| Mol | Chain | Res  | Type | Atoms     | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|------|------|-----------|-------|------------------|---------------|
| 2   | F     | 78   | ARG  | NE-CZ-NH2 | 10.19 | 125.39           | 120.30        |
| 1   | А     | 72   | ARG  | NE-CZ-NH2 | 9.84  | 125.22           | 120.30        |
| 5   | Ι     | 5    | DA   | N1-C6-N6  | -9.59 | 112.85           | 118.60        |
| 6   | J     | 31   | DA   | N1-C6-N6  | -9.36 | 112.99           | 118.60        |
| 6   | J     | 14   | DA   | N1-C6-N6  | -9.28 | 113.03           | 118.60        |
| 6   | J     | 349  | DA   | N1-C6-N6  | -9.10 | 113.14           | 118.60        |
| 5   | Ι     | 163  | DA   | C5-C6-N1  | 8.40  | 121.90           | 117.70        |
| 6   | J     | 25   | DA   | N1-C6-N6  | -8.37 | 113.58           | 118.60        |
| 7   | Κ     | 1288 | LEU  | CA-CB-CG  | 8.36  | 134.54           | 115.30        |
| 6   | J     | 170  | DA   | N1-C6-N6  | -8.36 | 113.58           | 118.60        |
| 1   | Ε     | 116  | ARG  | NE-CZ-NH2 | 8.28  | 124.44           | 120.30        |
| 5   | Ι     | -6   | DA   | N1-C6-N6  | -8.25 | 113.65           | 118.60        |
| 5   | Ι     | 236  | DA   | C5-C6-N1  | 8.25  | 121.83           | 117.70        |
| 5   | Ι     | 237  | DA   | C5-C6-N1  | 8.18  | 121.79           | 117.70        |
| 6   | J     | 20   | DA   | C5-C6-N1  | 8.13  | 121.77           | 117.70        |
| 6   | J     | 172  | DA   | N1-C6-N6  | -8.11 | 113.73           | 118.60        |
| 6   | J     | 182  | DA   | C5-C6-N1  | 8.08  | 121.74           | 117.70        |
| 6   | J     | 75   | DG   | P-O3'-C3' | 8.04  | 129.35           | 119.70        |
| 10  | Р     | 300  | ASP  | CB-CG-OD1 | 7.99  | 125.49           | 118.30        |
| 5   | Ι     | 185  | DA   | C5-C6-N1  | 7.88  | 121.64           | 117.70        |



Continued from previous page...

| Mol | Chain | Res | Type | Atoms      | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|-------|------------------|---------------|
| 6   | J     | 11  | DA   | N1-C6-N6   | -7.86 | 113.88           | 118.60        |
| 5   | Ι     | 274 | DA   | C5-C6-N1   | 7.83  | 121.62           | 117.70        |
| 6   | J     | 109 | DA   | C5-C6-N1   | 7.81  | 121.60           | 117.70        |
| 5   | Ι     | 182 | DA   | C5-C6-N1   | 7.79  | 121.59           | 117.70        |
| 5   | Ι     | -1  | DA   | N1-C6-N6   | -7.76 | 113.94           | 118.60        |
| 6   | J     | 173 | DA   | N1-C6-N6   | -7.71 | 113.97           | 118.60        |
| 5   | Ι     | 310 | DA   | N1-C6-N6   | -7.69 | 113.99           | 118.60        |
| 6   | J     | 31  | DA   | C4-C5-C6   | -7.65 | 113.18           | 117.00        |
| 5   | Ι     | 7   | DA   | O4'-C1'-N9 | 7.63  | 113.34           | 108.00        |
| 6   | J     | 192 | DC   | O4'-C1'-N1 | 7.58  | 113.31           | 108.00        |
| 6   | J     | 344 | DA   | N1-C6-N6   | -7.58 | 114.05           | 118.60        |
| 6   | J     | 182 | DA   | N1-C6-N6   | -7.56 | 114.06           | 118.60        |
| 6   | J     | 63  | DA   | N1-C6-N6   | -7.55 | 114.07           | 118.60        |
| 6   | J     | 59  | DA   | C5-C6-N1   | 7.55  | 121.47           | 117.70        |
| 5   | Ι     | 161 | DG   | O4'-C1'-N9 | 7.54  | 113.28           | 108.00        |
| 5   | Ι     | -6  | DA   | C4-C5-C6   | -7.52 | 113.24           | 117.00        |
| 5   | Ι     | 163 | DA   | N1-C6-N6   | -7.51 | 114.10           | 118.60        |
| 6   | J     | 342 | DA   | N1-C6-N6   | -7.50 | 114.10           | 118.60        |
| 5   | Ι     | 169 | DA   | N1-C6-N6   | -7.48 | 114.11           | 118.60        |
| 6   | J     | 62  | DA   | C4-C5-C6   | -7.44 | 113.28           | 117.00        |
| 5   | Ι     | 5   | DA   | C4-C5-C6   | -7.42 | 113.29           | 117.00        |
| 6   | J     | 348 | DA   | N1-C6-N6   | -7.40 | 114.16           | 118.60        |
| 6   | J     | 325 | DC   | N3-C2-O2   | -7.39 | 116.72           | 121.90        |
| 5   | Ι     | 237 | DA   | C4-C5-C6   | -7.39 | 113.30           | 117.00        |
| 5   | Ι     | 301 | DA   | N1-C6-N6   | -7.30 | 114.22           | 118.60        |
| 6   | J     | 344 | DA   | C4-C5-C6   | -7.29 | 113.35           | 117.00        |
| 5   | Ι     | 1   | DA   | N1-C6-N6   | -7.27 | 114.24           | 118.60        |
| 5   | Ι     | 8   | DA   | N1-C6-N6   | -7.25 | 114.25           | 118.60        |
| 5   | Ι     | 275 | DA   | C4-C5-C6   | -7.23 | 113.39           | 117.00        |
| 6   | J     | 179 | DA   | N1-C6-N6   | -7.22 | 114.27           | 118.60        |
| 5   | Ι     | 177 | DA   | C4-C5-C6   | -7.22 | 113.39           | 117.00        |
| 5   | Ι     | 8   | DA   | C5-C6-N1   | 7.21  | 121.31           | 117.70        |
| 5   | Ι     | 316 | DA   | C5-C6-N1   | 7.20  | 121.30           | 117.70        |
| 5   | Ι     | 290 | DA   | N1-C6-N6   | -7.17 | 114.30           | 118.60        |
| 6   | J     | 29  | DA   | C5-C6-N1   | 7.17  | 121.28           | 117.70        |
| 6   | J     | 16  | DA   | N1-C6-N6   | -7.16 | 114.31           | 118.60        |
| 6   | J     | 50  | DA   | C4-C5-C6   | -7.14 | 113.43           | 117.00        |
| 6   | J     | 119 | DA   | C5-C6-N1   | 7.11  | 121.25           | 117.70        |
| 6   | J     | 158 | DA   | N1-C6-N6   | -7.11 | 114.34           | 118.60        |
| 6   | J     | 335 | DA   | N1-C6-N6   | -7.11 | 114.34           | 118.60        |
| 6   | J     | 52  | DA   | C4-C5-C6   | -7.10 | 113.45           | 117.00        |
| 3   | С     | 77  | ARG  | NE-CZ-NH2  | 7.09  | 123.85           | 120.30        |



Continued from previous page...

| Mol | Chain | $\operatorname{Res}$ | Type | Atoms      | Z     | $Observed(^{o})$    | $Ideal(^{o})$ |
|-----|-------|----------------------|------|------------|-------|---------------------|---------------|
| 6   | J     | 40                   | DA   | C5-C6-N1   | 7.09  | 121.25              | 117.70        |
| 6   | J     | 348                  | DA   | C5-C6-N1   | 7.08  | 121.24              | 117.70        |
| 5   | Ι     | 197                  | DA   | C5-C6-N1   | 7.07  | 121.23              | 117.70        |
| 5   | Ι     | 184                  | DA   | C5-C6-N1   | 7.07  | 121.23              | 117.70        |
| 5   | Ι     | 194                  | DC   | N3-C2-O2   | -7.06 | 116.96              | 121.90        |
| 6   | J     | 164                  | DC   | N3-C2-O2   | -7.06 | 116.96              | 121.90        |
| 6   | J     | 63                   | DA   | C4-C5-C6   | -7.04 | 113.48              | 117.00        |
| 3   | С     | 29                   | ARG  | NE-CZ-NH2  | 7.00  | 123.80              | 120.30        |
| 6   | J     | 158                  | DA   | C5-C6-N1   | 6.99  | 121.20              | 117.70        |
| 6   | J     | 12                   | DA   | C5-C6-N1   | 6.99  | 121.19              | 117.70        |
| 5   | Ι     | 184                  | DA   | N1-C6-N6   | -6.96 | 114.42              | 118.60        |
| 5   | Ι     | 280                  | DA   | C4-C5-C6   | -6.95 | 113.53              | 117.00        |
| 5   | Ι     | 177                  | DA   | C5-C6-N1   | 6.95  | 121.17              | 117.70        |
| 6   | J     | 52                   | DA   | C5-C6-N1   | 6.93  | 121.16              | 117.70        |
| 6   | J     | 172                  | DA   | C4-C5-C6   | -6.93 | 113.54              | 117.00        |
| 6   | J     | 349                  | DA   | C5-C6-N1   | 6.91  | 121.16              | 117.70        |
| 2   | В     | 92                   | ARG  | NE-CZ-NH2  | 6.91  | 123.75              | 120.30        |
| 5   | Ι     | 318                  | DA   | N1-C6-N6   | -6.90 | 114.46              | 118.60        |
| 2   | F     | 39                   | ARG  | NE-CZ-NH2  | 6.90  | 123.75              | 120.30        |
| 6   | J     | 190                  | DT   | O4'-C1'-N1 | 6.89  | 112.82              | 108.00        |
| 5   | Ι     | 169                  | DA   | C5-C6-N1   | 6.88  | 121.14              | 117.70        |
| 6   | J     | 109                  | DA   | N1-C6-N6   | -6.88 | 114.47              | 118.60        |
| 6   | J     | 11                   | DA   | C5-C6-N1   | 6.87  | 121.14              | 117.70        |
| 6   | J     | 40                   | DA   | N1-C6-N6   | -6.86 | 114.49              | 118.60        |
| 6   | J     | 342                  | DA   | C5-C6-N1   | 6.84  | 121.12              | 117.70        |
| 6   | J     | 22                   | DA   | N1-C6-N6   | -6.83 | 114.50              | 118.60        |
| 6   | J     | 40                   | DA   | C4-C5-C6   | -6.82 | 113.59              | 117.00        |
| 5   | Ι     | 195                  | DC   | N3-C2-O2   | -6.82 | 117.13              | 121.90        |
| 5   | Ι     | 327                  | DA   | C5-C6-N1   | 6.80  | 121.10              | 117.70        |
| 5   | Ι     | 173                  | DC   | N3-C2-O2   | -6.79 | 117.15              | 121.90        |
| 6   | J     | 110                  | DA   | C5-C6-N1   | 6.77  | 121.09              | 117.70        |
| 5   | Ι     | 17                   | DC   | N3-C2-O2   | -6.77 | 117.16              | 121.90        |
| 5   | Ι     | 246                  | DA   | C5-C6-N1   | 6.77  | 121.08              | 117.70        |
| 6   | J     | 182                  | DA   | C4-C5-C6   | -6.76 | 113.62              | 117.00        |
| 6   | J     | 319                  | DC   | N3-C2-O2   | -6.76 | 117.17              | 121.90        |
| 5   | Ι     | 20                   | DA   | N1-C6-N6   | -6.75 | 114.55              | 118.60        |
| 6   | J     | 170                  | DA   | C4-C5-C6   | -6.75 | 113.63              | 117.00        |
| 2   | F     | 39                   | ARG  | NE-CZ-NH1  | -6.74 | 116.93              | 120.30        |
| 5   | Ι     | 175                  | DA   | C5-C6-N1   | 6.74  | 121.07              | 117.70        |
| 5   | Ι     | 327                  | DA   | C4-C5-C6   | -6.73 | 113.64              | 117.00        |
| 5   | I     | 3                    | DC   | N3-C2-02   | -6.73 | $117.1\overline{9}$ | 121.90        |
| 6   | J     | 189                  | DA   | C5-C6-N1   | 6.72  | 121.06              | 117.70        |



| Mol | Chain | Res | Type | Atoms     |       | $Observed(^{o})$    | $Ideal(^{o})$ |
|-----|-------|-----|------|-----------|-------|---------------------|---------------|
| 5   | Ι     | 316 | DA   | N1-C6-N6  | -6.72 | 114.57              | 118.60        |
| 6   | J     | 67  | DC   | N3-C4-C5  | 6.72  | 124.59              | 121.90        |
| 6   | J     | 59  | DA   | C4-C5-C6  | -6.70 | 113.65              | 117.00        |
| 6   | J     | 179 | DA   | C4-C5-C6  | -6.69 | 113.66              | 117.00        |
| 5   | Ι     | 163 | DA   | C4-C5-C6  | -6.68 | 113.66              | 117.00        |
| 5   | Ι     | 310 | DA   | C5-C6-N1  | 6.68  | 121.04              | 117.70        |
| 5   | Ι     | 297 | DA   | C5-C6-N1  | 6.68  | 121.04              | 117.70        |
| 6   | J     | 349 | DA   | C4-C5-C6  | -6.67 | 113.66              | 117.00        |
| 6   | J     | 39  | DC   | N3-C2-O2  | -6.67 | 117.23              | 121.90        |
| 5   | Ι     | 312 | DA   | C4-C5-C6  | -6.65 | 113.67              | 117.00        |
| 6   | J     | 173 | DA   | C4-C5-C6  | -6.64 | 113.68              | 117.00        |
| 6   | J     | 146 | DC   | N3-C2-O2  | -6.63 | 117.26              | 121.90        |
| 6   | J     | 340 | DC   | N3-C2-O2  | -6.63 | 117.26              | 121.90        |
| 3   | С     | 11  | ARG  | NE-CZ-NH2 | 6.63  | 123.61              | 120.30        |
| 5   | Ι     | 274 | DA   | C4-C5-C6  | -6.62 | 113.69              | 117.00        |
| 5   | Ι     | -6  | DA   | C5-C6-N1  | 6.62  | 121.01              | 117.70        |
| 6   | J     | 179 | DA   | C5-C6-N1  | 6.60  | 121.00              | 117.70        |
| 5   | Ι     | 314 | DA   | N1-C6-N6  | -6.60 | 114.64              | 118.60        |
| 5   | Ι     | 18  | DC   | N3-C2-O2  | -6.59 | 117.28              | 121.90        |
| 6   | J     | 25  | DA   | C4-C5-C6  | -6.59 | 113.71              | 117.00        |
| 5   | Ι     | 177 | DA   | N1-C6-N6  | -6.59 | 114.65              | 118.60        |
| 10  | N     | 374 | ASP  | CB-CG-OD1 | 6.58  | 124.22              | 118.30        |
| 4   | h     | 97  | LEU  | CA-CB-CG  | 6.57  | 130.42              | 115.30        |
| 5   | Ι     | 226 | DA   | N1-C6-N6  | -6.57 | 114.66              | 118.60        |
| 6   | J     | 25  | DA   | C5-C6-N1  | 6.56  | 120.98              | 117.70        |
| 10  | N     | 408 | ASP  | CB-CG-OD1 | 6.56  | 124.20              | 118.30        |
| 5   | Ι     | 185 | DA   | C4-C5-C6  | -6.56 | 113.72              | 117.00        |
| 5   | Ι     | 197 | DA   | N1-C6-N6  | -6.56 | 114.67              | 118.60        |
| 5   | Ι     | 185 | DA   | N1-C6-N6  | -6.55 | 114.67              | 118.60        |
| 6   | J     | 329 | DA   | C5-C6-N1  | 6.55  | 120.97              | 117.70        |
| 5   | Ι     | 280 | DA   | C5-C6-N1  | 6.50  | 120.95              | 117.70        |
| 5   | Ι     | 182 | DA   | C4-C5-C6  | -6.50 | 113.75              | 117.00        |
| 5   | Ι     | 292 | DT   | C6-C5-C7  | -6.48 | 119.01              | 122.90        |
| 6   | J     | 173 | DA   | C5-C6-N1  | 6.47  | 120.94              | 117.70        |
| 6   | J     | 74  | DG   | N3-C2-N2  | -6.47 | 115.37              | 119.90        |
| 5   | Ι     | 328 | DT   | C6-C5-C7  | -6.45 | 119.03              | 122.90        |
| 6   | J     | 33  | DA   | C4-C5-C6  | -6.45 | 113.77              | 117.00        |
| 6   | J     | 55  | DA   | C5-C6-N1  | 6.44  | 120.92              | 117.70        |
| 6   | J     | 165 | DA   | C5-C6-N1  | 6.44  | 120.92              | 117.70        |
| 6   | J     | 172 | DA   | C5-C6-N1  | 6.44  | 120.92              | 117.70        |
| 5   | I     | 280 | DA   | N1-C6-N6  | -6.43 | $114.7\overline{4}$ | 118.60        |
| 6   | J     | 36  | DT   | C6-C5-C7  | -6.42 | 119.05              | 122.90        |



Continued from previous page...

| Mol | Chain | Res | Type | Atoms      | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|------------|-------|------------------|---------------|
| 5   | Ι     | 317 | DC   | N3-C2-O2   | -6.42 | 117.41           | 121.90        |
| 6   | J     | 50  | DA   | C5-C6-N1   | 6.41  | 120.90           | 117.70        |
| 6   | J     | 170 | DA   | C5-C6-N1   | 6.40  | 120.90           | 117.70        |
| 5   | Ι     | 175 | DA   | N1-C6-N6   | -6.39 | 114.77           | 118.60        |
| 2   | F     | 98  | TYR  | CB-CG-CD2  | -6.39 | 117.17           | 121.00        |
| 1   | Е     | 42  | ARG  | NE-CZ-NH2  | 6.39  | 123.49           | 120.30        |
| 6   | J     | 175 | DT   | C6-C5-C7   | -6.39 | 119.07           | 122.90        |
| 5   | Ι     | 275 | DA   | N1-C6-N6   | -6.38 | 114.77           | 118.60        |
| 5   | Ι     | -3  | DC   | N3-C2-O2   | -6.38 | 117.43           | 121.90        |
| 9   | 0     | 234 | ASP  | CB-CG-OD1  | 6.37  | 124.03           | 118.30        |
| 5   | Ι     | 238 | DA   | O4'-C1'-N9 | 6.37  | 112.46           | 108.00        |
| 6   | J     | 330 | DC   | N3-C2-O2   | -6.37 | 117.44           | 121.90        |
| 5   | Ι     | 175 | DA   | C4-C5-C6   | -6.36 | 113.82           | 117.00        |
| 5   | Ι     | 164 | DC   | N3-C2-O2   | -6.36 | 117.45           | 121.90        |
| 6   | J     | 188 | DA   | C5-C6-N1   | 6.36  | 120.88           | 117.70        |
| 6   | J     | 168 | DC   | N3-C2-O2   | -6.33 | 117.47           | 121.90        |
| 6   | J     | 46  | DC   | N3-C2-O2   | -6.33 | 117.47           | 121.90        |
| 5   | Ι     | 168 | DC   | N3-C2-O2   | -6.33 | 117.47           | 121.90        |
| 5   | Ι     | 242 | DA   | C4-C5-C6   | -6.32 | 113.84           | 117.00        |
| 6   | J     | 103 | DG   | N3-C2-N2   | -6.32 | 115.47           | 119.90        |
| 6   | J     | 16  | DA   | C4-C5-C6   | -6.32 | 113.84           | 117.00        |
| 9   | М     | 348 | ASP  | CB-CG-OD1  | 6.32  | 123.98           | 118.30        |
| 2   | F     | 39  | ARG  | CD-NE-CZ   | 6.31  | 132.43           | 123.60        |
| 2   | F     | 67  | ARG  | NE-CZ-NH2  | 6.31  | 123.45           | 120.30        |
| 5   | Ι     | 237 | DA   | N1-C6-N6   | -6.30 | 114.82           | 118.60        |
| 5   | Ι     | 10  | DC   | N3-C2-O2   | -6.30 | 117.49           | 121.90        |
| 5   | Ι     | 247 | DC   | N3-C2-O2   | -6.30 | 117.49           | 121.90        |
| 5   | Ι     | 2   | DT   | C6-C5-C7   | -6.29 | 119.12           | 122.90        |
| 5   | Ι     | 5   | DA   | C5-C6-N1   | 6.29  | 120.85           | 117.70        |
| 5   | Ι     | 187 | DC   | N3-C2-O2   | -6.29 | 117.50           | 121.90        |
| 5   | Ι     | 226 | DA   | C4-C5-C6   | -6.28 | 113.86           | 117.00        |
| 5   | Ι     | 269 | DC   | N3-C2-O2   | -6.28 | 117.50           | 121.90        |
| 6   | J     | 152 | DA   | C5-C6-N1   | 6.28  | 120.84           | 117.70        |
| 6   | J     | 29  | DA   | C4-C5-C6   | -6.27 | 113.87           | 117.00        |
| 6   | J     | 50  | DA   | N1-C6-N6   | -6.27 | 114.84           | 118.60        |
| 5   | Ι     | 316 | DA   | C4-C5-C6   | -6.26 | 113.87           | 117.00        |
| 5   | Ι     | 154 | DA   | C5-C6-N1   | 6.26  | 120.83           | 117.70        |
| 6   | J     | 11  | DA   | C4-C5-C6   | -6.25 | 113.88           | 117.00        |
| 5   | Ι     | 169 | DA   | C4-C5-C6   | -6.24 | 113.88           | 117.00        |
| 5   | Ι     | 7   | DA   | C5-C6-N1   | 6.23  | 120.82           | 117.70        |
| 5   | Ι     | 269 | DC   | N1-C2-O2   | 6.23  | 122.64           | 118.90        |
| 2   | F     | 35  | ARG  | NE-CZ-NH2  | 6.23  | 123.42           | 120.30        |



Continued from previous page...

| Mol | Chain | Res | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|------------------|---------------|
| 5   | Ι     | 20  | DA   | C5-C6-N1    | 6.23  | 120.81           | 117.70        |
| 6   | J     | 328 | DC   | N3-C2-O2    | -6.23 | 117.54           | 121.90        |
| 6   | J     | 188 | DA   | N1-C6-N6    | -6.22 | 114.87           | 118.60        |
| 6   | J     | 350 | DT   | C6-C5-C7    | -6.21 | 119.17           | 122.90        |
| 6   | J     | 12  | DA   | C4-C5-C6    | -6.21 | 113.90           | 117.00        |
| 5   | Ι     | 283 | DA   | C4-C5-C6    | -6.18 | 113.91           | 117.00        |
| 5   | Ι     | 312 | DA   | N1-C6-N6    | -6.18 | 114.89           | 118.60        |
| 6   | J     | 64  | DT   | C6-C5-C7    | -6.18 | 119.19           | 122.90        |
| 5   | Ι     | 238 | DA   | C5-C6-N1    | 6.17  | 120.79           | 117.70        |
| 6   | J     | 31  | DA   | C5-C6-N1    | 6.17  | 120.78           | 117.70        |
| 5   | Ι     | 333 | DT   | N3-C2-O2    | -6.17 | 118.60           | 122.30        |
| 6   | J     | 346 | DC   | N3-C2-O2    | -6.16 | 117.59           | 121.90        |
| 5   | Ι     | -4  | DT   | C6-C5-C7    | -6.15 | 119.21           | 122.90        |
| 5   | Ι     | 331 | DA   | C5-C6-N1    | 6.15  | 120.78           | 117.70        |
| 6   | J     | 62  | DA   | C5-C6-N1    | 6.15  | 120.78           | 117.70        |
| 5   | Ι     | 306 | DT   | C6-C5-C7    | -6.15 | 119.21           | 122.90        |
| 6   | J     | 110 | DA   | C4-C5-C6    | -6.15 | 113.93           | 117.00        |
| 6   | J     | 158 | DA   | C4-C5-C6    | -6.14 | 113.93           | 117.00        |
| 6   | J     | 153 | DC   | N3-C2-O2    | -6.13 | 117.61           | 121.90        |
| 4   | D     | 69  | ARG  | NE-CZ-NH2   | 6.12  | 123.36           | 120.30        |
| 6   | J     | 342 | DA   | C4-C5-C6    | -6.12 | 113.94           | 117.00        |
| 6   | J     | 323 | DC   | N3-C2-O2    | -6.11 | 117.62           | 121.90        |
| 5   | Ι     | 161 | DG   | N1-C6-O6    | -6.10 | 116.24           | 119.90        |
| 5   | Ι     | 269 | DC   | O4'-C1'-C2' | -6.10 | 101.02           | 105.90        |
| 6   | J     | 33  | DA   | C5-C6-N1    | 6.10  | 120.75           | 117.70        |
| 5   | Ι     | 167 | DC   | N3-C2-O2    | -6.10 | 117.63           | 121.90        |
| 5   | Ι     | 0   | DT   | C6-C5-C7    | -6.08 | 119.25           | 122.90        |
| 5   | Ι     | 300 | DC   | N3-C2-O2    | -6.08 | 117.64           | 121.90        |
| 5   | Ι     | 242 | DA   | N1-C6-N6    | -6.08 | 114.95           | 118.60        |
| 5   | Ι     | 153 | DT   | O4'-C1'-N1  | 6.07  | 112.25           | 108.00        |
| 6   | J     | 345 | DT   | C6-C5-C7    | -6.07 | 119.26           | 122.90        |
| 6   | J     | 159 | DT   | C6-C5-C7    | -6.06 | 119.26           | 122.90        |
| 6   | J     | 331 | DC   | N3-C4-C5    | 6.05  | 124.32           | 121.90        |
| 6   | J     | 112 | DC   | N3-C2-O2    | -6.04 | 117.67           | 121.90        |
| 6   | J     | 163 | DC   | O4'-C4'-C3' | 6.03  | 109.61           | 106.00        |
| 6   | J     | 183 | DC   | N3-C2-O2    | -6.02 | 117.68           | 121.90        |
| 5   | I     | 228 | DC   | N3-C2-O2    | -6.02 | 117.69           | 121.90        |
| 6   | J     | 21  | DC   | N3-C2-O2    | -6.02 | 117.69           | 121.90        |
| 5   | Ι     | 308 | DA   | C5-C6-N1    | 6.01  | 120.71           | 117.70        |
| 5   | Ι     | 332 | DT   | C6-C5-C7    | -6.01 | 119.30           | 122.90        |
| 5   | I     | 275 | DA   | C5-C6-N1    | 6.00  | 120.70           | 117.70        |
| 6   | J     | 103 | DG   | N9-C4-C5    | 5.99  | 107.80           | 105.40        |



| $\alpha$ $\cdot$ $\cdot$ $\cdot$ | C    | •        |             |
|----------------------------------|------|----------|-------------|
| Continued                        | trom | previous | <i>paae</i> |
| • • • • • • • • • • • • •        | J    | P        | r ~g ····   |

| Mol | Chain | Res | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|------------------|---------------|
| 5   | Ι     | 11  | DC   | N3-C2-O2    | -5.99 | 117.71           | 121.90        |
| 5   | Ι     | 318 | DA   | C5-C6-N1    | 5.98  | 120.69           | 117.70        |
| 5   | Ι     | 283 | DA   | C5-C6-N1    | 5.98  | 120.69           | 117.70        |
| 5   | Ι     | 1   | DA   | C5-C6-N1    | 5.97  | 120.69           | 117.70        |
| 6   | J     | 164 | DC   | N1-C2-O2    | 5.97  | 122.48           | 118.90        |
| 5   | Ι     | 238 | DA   | C5'-C4'-C3' | -5.97 | 103.36           | 114.10        |
| 5   | Ι     | 310 | DA   | C4-C5-C6    | -5.96 | 114.02           | 117.00        |
| 5   | Ι     | 8   | DA   | C4-C5-C6    | -5.96 | 114.02           | 117.00        |
| 6   | J     | 12  | DA   | N1-C6-N6    | -5.96 | 115.03           | 118.60        |
| 6   | J     | 163 | DC   | N3-C2-O2    | -5.96 | 117.73           | 121.90        |
| 6   | J     | 336 | DT   | C6-C5-C7    | -5.95 | 119.33           | 122.90        |
| 5   | Ι     | 294 | DT   | C6-C5-C7    | -5.94 | 119.34           | 122.90        |
| 6   | J     | 60  | DG   | N3-C2-N2    | -5.94 | 115.74           | 119.90        |
| 6   | J     | 154 | DC   | N3-C4-C5    | 5.94  | 124.27           | 121.90        |
| 1   | Е     | 63  | ARG  | NE-CZ-NH2   | 5.93  | 123.27           | 120.30        |
| 5   | Ι     | 7   | DA   | C4-C5-C6    | -5.93 | 114.04           | 117.00        |
| 6   | J     | 61  | DT   | C6-C5-C7    | -5.92 | 119.35           | 122.90        |
| 6   | J     | 174 | DC   | N3-C2-O2    | -5.92 | 117.76           | 121.90        |
| 5   | Ι     | 322 | DT   | C6-C5-C7    | -5.91 | 119.35           | 122.90        |
| 6   | J     | 337 | DT   | C6-C5-C7    | -5.91 | 119.35           | 122.90        |
| 6   | J     | 14  | DA   | C5-C6-N1    | 5.91  | 120.66           | 117.70        |
| 5   | Ι     | 192 | DT   | C6-C5-C7    | -5.91 | 119.36           | 122.90        |
| 2   | В     | 92  | ARG  | NE-CZ-NH1   | -5.90 | 117.35           | 120.30        |
| 6   | J     | 103 | DG   | N1-C6-O6    | -5.90 | 116.36           | 119.90        |
| 6   | J     | 66  | DC   | N3-C2-O2    | -5.90 | 117.77           | 121.90        |
| 6   | J     | 34  | DT   | C6-C5-C7    | -5.89 | 119.36           | 122.90        |
| 5   | Ι     | 282 | DT   | C6-C5-C7    | -5.88 | 119.37           | 122.90        |
| 5   | Ι     | 331 | DA   | N1-C6-N6    | -5.88 | 115.07           | 118.60        |
| 6   | J     | 147 | DT   | C6-C5-C7    | -5.88 | 119.37           | 122.90        |
| 1   | е     | 42  | ARG  | NE-CZ-NH2   | 5.88  | 123.24           | 120.30        |
| 5   | Ι     | 15  | DT   | C1'-O4'-C4' | -5.87 | 104.23           | 110.10        |
| 5   | Ι     | 324 | DT   | C1'-O4'-C4' | -5.86 | 104.24           | 110.10        |
| 6   | J     | 119 | DA   | N1-C6-N6    | -5.86 | 115.08           | 118.60        |
| 5   | Ι     | 315 | DT   | C6-C5-C7    | -5.86 | 119.39           | 122.90        |
| 5   | Ι     | 184 | DA   | C4-C5-C6    | -5.86 | 114.07           | 117.00        |
| 6   | J     | 339 | DT   | C6-C5-C7    | -5.85 | 119.39           | 122.90        |
| 6   | J     | 32  | DT   | C6-C5-C7    | -5.85 | 119.39           | 122.90        |
| 10  | N     | 508 | PRO  | CA-N-CD     | -5.85 | 103.31           | 111.50        |
| 5   | I     | 281 | DT   | C6-C5-C7    | -5.85 | 119.39           | 122.90        |
| 5   | Ι     | 289 | DT   | O4'-C1'-C2' | -5.85 | 101.22           | 105.90        |
| 5   | I     | 24  | DC   | N3-C2-O2    | -5.85 | 117.81           | 121.90        |
| 2   | В     | 72  | TYR  | CB-CG-CD2   | -5.84 | 117.50           | 121.00        |



Continued from previous page...

| Mol | Chain | Res | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|------------------|---------------|
| 6   | J     | 188 | DA   | C4-C5-C6    | -5.84 | 114.08           | 117.00        |
| 6   | J     | 147 | DT   | N3-C2-O2    | -5.83 | 118.80           | 122.30        |
| 5   | Ι     | 153 | DT   | C6-C5-C7    | -5.82 | 119.41           | 122.90        |
| 5   | Ι     | 271 | DG   | C1'-O4'-C4' | -5.81 | 104.29           | 110.10        |
| 5   | Ι     | 311 | DT   | C6-C5-C7    | -5.81 | 119.42           | 122.90        |
| 5   | Ι     | -5  | DT   | C6-C5-C7    | -5.81 | 119.42           | 122.90        |
| 5   | Ι     | 9   | DT   | C6-C5-C7    | -5.79 | 119.42           | 122.90        |
| 6   | J     | 67  | DC   | N3-C2-O2    | -5.79 | 117.85           | 121.90        |
| 6   | J     | 178 | DC   | N3-C2-O2    | -5.79 | 117.85           | 121.90        |
| 5   | Ι     | 289 | DT   | C6-C5-C7    | -5.79 | 119.43           | 122.90        |
| 6   | J     | 331 | DC   | N3-C2-O2    | -5.79 | 117.85           | 121.90        |
| 5   | Ι     | 237 | DA   | P-O3'-C3'   | 5.78  | 126.64           | 119.70        |
| 6   | J     | 154 | DC   | N3-C2-O2    | -5.78 | 117.85           | 121.90        |
| 5   | Ι     | 186 | DT   | C6-C5-C7    | -5.78 | 119.43           | 122.90        |
| 5   | Ι     | 290 | DA   | C4-C5-C6    | -5.78 | 114.11           | 117.00        |
| 5   | Ι     | 171 | DT   | C6-C5-C7    | -5.77 | 119.44           | 122.90        |
| 6   | J     | 329 | DA   | N1-C6-N6    | -5.77 | 115.14           | 118.60        |
| 5   | Ι     | 303 | DG   | N3-C2-N2    | -5.76 | 115.87           | 119.90        |
| 6   | J     | 15  | DC   | N3-C2-O2    | -5.76 | 117.87           | 121.90        |
| 5   | Ι     | 326 | DC   | N3-C2-O2    | -5.76 | 117.87           | 121.90        |
| 6   | J     | 35  | DC   | N3-C2-O2    | -5.76 | 117.87           | 121.90        |
| 6   | J     | 55  | DA   | C4-C5-C6    | -5.76 | 114.12           | 117.00        |
| 5   | Ι     | 304 | DT   | C6-C5-C7    | -5.73 | 119.46           | 122.90        |
| 6   | J     | 16  | DA   | C5-C6-N1    | 5.73  | 120.56           | 117.70        |
| 6   | J     | 65  | DC   | N3-C2-O2    | -5.73 | 117.89           | 121.90        |
| 5   | Ι     | 319 | DT   | O4'-C1'-N1  | 5.71  | 112.00           | 108.00        |
| 5   | Ι     | 319 | DT   | C6-C5-C7    | -5.71 | 119.47           | 122.90        |
| 6   | J     | 13  | DT   | C6-C5-C7    | -5.71 | 119.47           | 122.90        |
| 5   | Ι     | 274 | DA   | N1-C6-N6    | -5.71 | 115.17           | 118.60        |
| 6   | J     | 189 | DA   | C4-C5-C6    | -5.71 | 114.15           | 117.00        |
| 5   | Ι     | 20  | DA   | C4-C5-C6    | -5.70 | 114.15           | 117.00        |
| 6   | J     | 319 | DC   | O4'-C1'-N1  | 5.70  | 111.99           | 108.00        |
| 5   | Ι     | 244 | DG   | C5-C6-N1    | 5.70  | 114.35           | 111.50        |
| 6   | J     | 38  | DA   | C5-C6-N1    | 5.70  | 120.55           | 117.70        |
| 6   | J     | 20  | DA   | C4-C5-C6    | -5.69 | 114.15           | 117.00        |
| 6   | J     | 191 | DA   | C5-C6-N1    | 5.69  | 120.55           | 117.70        |
| 5   | Ι     | 222 | DC   | N3-C4-C5    | 5.69  | 124.17           | 121.90        |
| 5   | I     | 324 | DT   | C6-C5-C7    | -5.68 | 119.49           | 122.90        |
| 6   | J     | 344 | DA   | C5-C6-N1    | 5.68  | 120.54           | 117.70        |
| 6   | J     | 151 | DC   | N3-C4-C5    | 5.66  | 124.17           | 121.90        |
| 5   | Ι     | 164 | DC   | C1'-O4'-C4' | -5.65 | 104.45           | 110.10        |
| 5   | Ι     | 312 | DA   | C5-C6-N1    | 5.65  | 120.53           | 117.70        |



| Mol | Chain | $\mathbf{Res}$ | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|----------------|------|-------------|-------|------------------|---------------|
| 5   | Ι     | 287            | DC   | N3-C2-O2    | -5.65 | 117.95           | 121.90        |
| 6   | J     | 341            | DG   | O4'-C1'-N9  | 5.64  | 111.95           | 108.00        |
| 5   | Ι     | 226            | DA   | C5-C6-N1    | 5.64  | 120.52           | 117.70        |
| 5   | Ι     | 290            | DA   | C5-C6-N1    | 5.64  | 120.52           | 117.70        |
| 6   | J     | 348            | DA   | C4-C5-C6    | -5.64 | 114.18           | 117.00        |
| 6   | J     | 102            | DT   | C6-C5-C7    | -5.64 | 119.52           | 122.90        |
| 5   | Ι     | 162            | DT   | N3-C2-O2    | -5.63 | 118.92           | 122.30        |
| 4   | D     | 30             | ARG  | NE-CZ-NH2   | 5.63  | 123.11           | 120.30        |
| 4   | h     | 77             | LEU  | CA-CB-CG    | 5.63  | 128.24           | 115.30        |
| 6   | J     | 324            | DT   | C6-C5-C7    | -5.62 | 119.53           | 122.90        |
| 2   | F     | 79             | LYS  | CB-CA-C     | 5.62  | 121.63           | 110.40        |
| 5   | Ι     | 327            | DA   | N1-C6-N6    | -5.61 | 115.23           | 118.60        |
| 6   | J     | 29             | DA   | N1-C6-N6    | -5.61 | 115.24           | 118.60        |
| 6   | J     | 41             | DC   | N3-C2-O2    | -5.61 | 117.98           | 121.90        |
| 6   | J     | 119            | DA   | C4-C5-C6    | -5.60 | 114.20           | 117.00        |
| 5   | Ι     | -1             | DA   | C5-C6-N1    | 5.60  | 120.50           | 117.70        |
| 5   | Ι     | 155            | DT   | O4'-C4'-C3' | 5.60  | 109.36           | 106.00        |
| 5   | Ι     | 1              | DA   | C4-C5-C6    | -5.59 | 114.20           | 117.00        |
| 10  | Р     | 319            | LEU  | CA-CB-CG    | 5.59  | 128.17           | 115.30        |
| 6   | J     | 62             | DA   | N1-C6-N6    | -5.59 | 115.25           | 118.60        |
| 6   | J     | 17             | DT   | C6-C5-C7    | -5.59 | 119.55           | 122.90        |
| 6   | J     | 327            | DG   | O4'-C4'-C3' | 5.58  | 109.35           | 106.00        |
| 6   | J     | 329            | DA   | C4-C5-C6    | -5.58 | 114.21           | 117.00        |
| 5   | Ι     | 243            | DC   | N3-C2-O2    | -5.58 | 118.00           | 121.90        |
| 1   | Ε     | 69             | ARG  | NE-CZ-NH2   | 5.57  | 123.08           | 120.30        |
| 5   | Ι     | 330            | DT   | C6-C5-C7    | -5.57 | 119.56           | 122.90        |
| 5   | Ι     | 318            | DA   | C4-C5-C6    | -5.57 | 114.22           | 117.00        |
| 5   | Ι     | 296            | DC   | N3-C4-C5    | 5.57  | 124.13           | 121.90        |
| 6   | J     | 38             | DA   | C4-C5-C6    | -5.56 | 114.22           | 117.00        |
| 5   | Ι     | 223            | DT   | C6-C5-C7    | -5.55 | 119.57           | 122.90        |
| 5   | Ι     | 178            | DC   | N3-C2-O2    | -5.55 | 118.02           | 121.90        |
| 6   | J     | 118            | DT   | C6-C5-C7    | -5.54 | 119.57           | 122.90        |
| 6   | J     | 45             | DC   | N3-C2-O2    | -5.53 | 118.03           | 121.90        |
| 5   | Ι     | 174            | DT   | C6-C5-C7    | -5.53 | 119.58           | 122.90        |
| 6   | J     | 169            | DT   | C6-C5-C7    | -5.53 | 119.58           | 122.90        |
| 5   | Ι     | 289            | DT   | N3-C2-O2    | -5.53 | 118.98           | 122.30        |
| 9   | 0     | 18             | HIS  | N-CA-C      | -5.53 | 96.08            | 111.00        |
| 1   | е     | 40             | ARG  | NE-CZ-NH2   | 5.52  | 123.06           | 120.30        |
| 6   | J     | 112            | DC   | O4'-C4'-C3' | 5.52  | 109.31           | 106.00        |
| 9   | М     | 18             | HIS  | N-CA-C      | -5.52 | 96.10            | 111.00        |
| 6   | J     | 20             | DA   | N1-C6-N6    | -5.52 | 115.29           | 118.60        |
| 1   | А     | 40             | ARG  | NE-CZ-NH2   | 5.51  | 123.06           | 120.30        |

Continued from previous page...



Continued from previous page...

| Mol | Chain | Res | Type | Atoms       |                   | $Observed(^{o})$    | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------------------|---------------------|---------------|
| 6   | J     | 14  | DA   | C4-C5-C6    | -5.51             | 114.25              | 117.00        |
| 6   | J     | 66  | DC   | N3-C4-C5    | 5.51              | 124.10              | 121.90        |
| 5   | Ι     | 179 | DT   | C6-C5-C7    | -5.51             | 119.59              | 122.90        |
| 5   | Ι     | 308 | DA   | C4-C5-C6    | -5.50             | 114.25              | 117.00        |
| 5   | Ι     | 301 | DA   | C5-C6-N1    | 5.49              | 120.44              | 117.70        |
| 6   | J     | 59  | DA   | N1-C6-N6    | -5.48             | 115.31              | 118.60        |
| 5   | Ι     | 224 | DC   | N3-C2-O2    | -5.48             | 118.06              | 121.90        |
| 6   | J     | 335 | DA   | C5-C6-N1    | 5.48              | 120.44              | 117.70        |
| 6   | J     | 55  | DA   | N1-C6-N6    | -5.48             | 115.31              | 118.60        |
| 5   | Ι     | 23  | DC   | N3-C2-O2    | -5.47             | 118.07              | 121.90        |
| 6   | J     | 65  | DC   | N3-C4-C5    | 5.47              | 124.09              | 121.90        |
| 5   | Ι     | 0   | DT   | P-O3'-C3'   | 5.46              | 126.25              | 119.70        |
| 6   | J     | 67  | DC   | N1-C2-O2    | 5.46              | 122.17              | 118.90        |
| 6   | J     | 181 | DT   | N3-C2-O2    | -5.46             | 119.03              | 122.30        |
| 5   | Ι     | 289 | DT   | O4'-C1'-N1  | 5.45              | 111.82              | 108.00        |
| 5   | Ι     | 285 | DT   | C1'-O4'-C4' | -5.45             | 104.65              | 110.10        |
| 6   | J     | 167 | DT   | C6-C5-C7    | -5.45             | 119.63              | 122.90        |
| 6   | J     | 43  | DT   | C6-C5-C7    | -5.45             | 119.63              | 122.90        |
| 5   | Ι     | 314 | DA   | C4-C5-C6    | -5.44             | 114.28              | 117.00        |
| 6   | J     | 160 | DT   | C6-C5-C7    | -5.44             | 119.64              | 122.90        |
| 5   | Ι     | -1  | DA   | C4-C5-C6    | -5.44             | 114.28              | 117.00        |
| 6   | J     | 26  | DT   | C6-C5-C7    | -5.44             | 119.64              | 122.90        |
| 9   | М     | 355 | LEU  | CA-CB-CG    | 5.44              | 127.81              | 115.30        |
| 5   | Ι     | 3   | DC   | O4'-C4'-C3' | 5.44              | 109.26              | 106.00        |
| 6   | J     | 70  | DT   | N3-C2-O2    | -5.42             | 119.05              | 122.30        |
| 5   | Ι     | 156 | DT   | C6-C5-C7    | -5.42             | 119.65              | 122.90        |
| 5   | Ι     | 333 | DT   | C6-C5-C7    | -5.42             | 119.65              | 122.90        |
| 6   | J     | 325 | DC   | N1-C2-O2    | 5.42              | 122.15              | 118.90        |
| 5   | Ι     | 15  | DT   | C6-C5-C7    | -5.41             | 119.65              | 122.90        |
| 6   | J     | 190 | DT   | C6-C5-C7    | -5.41             | 119.66              | 122.90        |
| 5   | Ι     | 297 | DA   | C4-C5-C6    | -5.40             | 114.30              | 117.00        |
| 5   | Ι     | 155 | DT   | C6-C5-C7    | -5.40             | 119.66              | 122.90        |
| 5   | Ι     | 182 | DA   | N1-C6-N6    | -5.40             | 115.36              | 118.60        |
| 5   | Ι     | -5  | DT   | C5-C6-N1    | -5.39             | 120.46              | 123.70        |
| 5   | Ι     | 165 | DT   | N3-C2-O2    | -5.39             | 119.06              | 122.30        |
| 5   | Ι     | 165 | DT   | C6-C5-C7    | -5.39             | 119.67              | 122.90        |
| 6   | J     | 101 | DG   | C8-N9-C4    | -5.38             | 104.25              | 106.40        |
| 5   | Ι     | 313 | DT   | C6-C5-C7    | -5.37             | 119.68              | 122.90        |
| 6   | J     | 22  | DA   | C4-C5-C6    | -5.37             | 114.31              | 117.00        |
| 6   | J     | 54  | DT   | C6-C5-C7    | -5.37             | 119.68              | 122.90        |
| 5   | I     | 168 | DC   | N1-C2-O2    | $5.3\overline{6}$ | $122.1\overline{2}$ | 118.90        |
| 5   | Ι     | 305 | DG   | P-O3'-C3'   | 5.36              | 126.14              | 119.70        |



| Continued  | from          | previous  | page |
|------------|---------------|-----------|------|
| contentaca | <i>Jioiio</i> | proceeduo | pago |

| Mol | Chain | $\operatorname{Res}$ | Type | Atoms       |                   | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|----------------------|------|-------------|-------------------|------------------|---------------|
| 5   | Ι     | 295                  | DC   | N3-C2-O2    | -5.36             | 118.15           | 121.90        |
| 6   | J     | 191                  | DA   | N1-C6-N6    | -5.35             | 115.39           | 118.60        |
| 6   | J     | 109                  | DA   | C4-C5-C6    | -5.34             | 114.33           | 117.00        |
| 6   | J     | 39                   | DC   | N3-C4-C5    | 5.34              | 124.03           | 121.90        |
| 6   | J     | 164                  | DC   | N3-C4-C5    | 5.34              | 124.03           | 121.90        |
| 6   | J     | 27                   | DG   | N1-C6-O6    | -5.33             | 116.70           | 119.90        |
| 6   | J     | 335                  | DA   | C4-C5-C6    | -5.33             | 114.34           | 117.00        |
| 6   | J     | 30                   | DT   | C6-C5-C7    | -5.32             | 119.71           | 122.90        |
| 5   | Ι     | 195                  | DC   | N1-C2-O2    | 5.31              | 122.09           | 118.90        |
| 5   | Ι     | 19                   | DG   | N3-C2-N2    | -5.31             | 116.19           | 119.90        |
| 6   | J     | 48                   | DG   | O4'-C4'-C3' | 5.31              | 109.18           | 106.00        |
| 6   | J     | 27                   | DG   | O4'-C4'-C3' | 5.30              | 109.18           | 106.00        |
| 5   | Ι     | 282                  | DT   | C5-C6-N1    | -5.30             | 120.52           | 123.70        |
| 5   | Ι     | 222                  | DC   | O4'-C4'-C3' | 5.28              | 109.17           | 106.00        |
| 6   | J     | 65                   | DC   | N1-C2-O2    | 5.28              | 122.07           | 118.90        |
| 5   | Ι     | 302                  | DC   | N3-C2-O2    | -5.28             | 118.20           | 121.90        |
| 5   | Ι     | 321                  | DC   | N3-C2-O2    | -5.28             | 118.20           | 121.90        |
| 6   | J     | 190                  | DT   | O4'-C1'-C2' | -5.27             | 101.68           | 105.90        |
| 1   | Ε     | 60                   | LEU  | CB-CA-C     | 5.27              | 120.22           | 110.20        |
| 6   | J     | 178                  | DC   | N3-C4-C5    | 5.27              | 124.01           | 121.90        |
| 6   | J     | 165                  | DA   | C4-C5-C6    | -5.27             | 114.37           | 117.00        |
| 6   | J     | 30                   | DT   | O4'-C4'-C3' | 5.26              | 109.16           | 106.00        |
| 5   | Ι     | 281                  | DT   | C5-C6-N1    | -5.26             | 120.55           | 123.70        |
| 5   | Ι     | 172                  | DT   | O4'-C4'-C3' | 5.26              | 109.15           | 106.00        |
| 4   | D     | 103                  | LEU  | CB-CG-CD1   | 5.25              | 119.92           | 111.00        |
| 5   | Ι     | 246                  | DA   | C4-C5-C6    | -5.24             | 114.38           | 117.00        |
| 5   | Ι     | 272                  | DC   | N3-C4-C5    | 5.24              | 124.00           | 121.90        |
| 5   | Ι     | 238                  | DA   | N1-C6-N6    | -5.23             | 115.46           | 118.60        |
| 5   | Ι     | 283                  | DA   | N1-C6-N6    | -5.23             | 115.46           | 118.60        |
| 6   | J     | 190                  | DT   | C1'-O4'-C4' | -5.23             | 104.87           | 110.10        |
| 6   | J     | 19                   | DC   | N3-C4-C5    | 5.22              | 123.99           | 121.90        |
| 5   | Ι     | 288                  | DC   | N3-C2-O2    | -5.22             | 118.25           | 121.90        |
| 6   | J     | 60                   | DG   | N9-C4-C5    | 5.22              | 107.49           | 105.40        |
| 6   | J     | 343                  | DT   | C6-C5-C7    | -5.22             | 119.77           | 122.90        |
| 5   | Ι     | 172                  | DT   | C6-C5-C7    | -5.22             | 119.77           | 122.90        |
| 1   | A     | 49                   | ARG  | NE-CZ-NH2   | $5.2\overline{1}$ | 122.91           | 120.30        |
| 6   | J     | 39                   | DC   | O4'-C4'-C3' | 5.21              | 109.13           | 106.00        |
| 6   | J     | 70                   | DT   | C6-C5-C7    | -5.21             | 119.77           | 122.90        |
| 5   | Ι     | 320                  | DC   | N3-C2-O2    | -5.21             | 118.25           | 121.90        |
| 6   | J     | 319                  | DC   | O4'-C1'-C2' | -5.21             | 101.74           | 105.90        |
| 6   | J     | 191                  | DA   | C4-C5-C6    | -5.20             | 114.40           | 117.00        |
| 6   | J     | 151                  | DC   | N3-C2-O2    | -5.20             | 118.26           | 121.90        |



Continued from previous page...

| Mol | Chain | $\operatorname{Res}$ | Type | Atoms       |       | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|----------------------|------|-------------|-------|------------------|---------------|
| 5   | Ι     | 285                  | DT   | P-O3'-C3'   | 5.20  | 125.93           | 119.70        |
| 5   | Ι     | 15                   | DT   | O4'-C1'-N1  | 5.19  | 111.64           | 108.00        |
| 6   | J     | 180                  | DG   | N1-C6-O6    | -5.19 | 116.79           | 119.90        |
| 5   | Ι     | 242                  | DA   | C5-C6-N1    | 5.18  | 120.29           | 117.70        |
| 3   | С     | 20                   | ARG  | NE-CZ-NH2   | 5.18  | 122.89           | 120.30        |
| 5   | Ι     | -3                   | DC   | O4'-C1'-N1  | 5.18  | 111.63           | 108.00        |
| 5   | Ι     | 314                  | DA   | C5-C6-N1    | 5.18  | 120.29           | 117.70        |
| 6   | J     | 154                  | DC   | N1-C2-O2    | 5.17  | 122.00           | 118.90        |
| 5   | Ι     | 162                  | DT   | C6-C5-C7    | -5.17 | 119.80           | 122.90        |
| 6   | J     | 169                  | DT   | O4'-C4'-C3' | 5.17  | 109.10           | 106.00        |
| 5   | Ι     | 286                  | DC   | N3-C2-O2    | -5.16 | 118.29           | 121.90        |
| 5   | Ι     | 301                  | DA   | C4-C5-C6    | -5.16 | 114.42           | 117.00        |
| 6   | J     | 148                  | DC   | N3-C2-O2    | -5.16 | 118.29           | 121.90        |
| 5   | Ι     | 177                  | DA   | P-O3'-C3'   | 5.16  | 125.89           | 119.70        |
| 6   | J     | 330                  | DC   | N1-C2-O2    | 5.15  | 121.99           | 118.90        |
| 6   | J     | 68                   | DC   | N3-C2-O2    | -5.15 | 118.30           | 121.90        |
| 5   | Ι     | 307                  | DC   | N3-C4-C5    | 5.15  | 123.96           | 121.90        |
| 6   | J     | 104                  | DC   | N3-C2-O2    | -5.15 | 118.30           | 121.90        |
| 5   | Ι     | 247                  | DC   | O4'-C1'-N1  | 5.14  | 111.60           | 108.00        |
| 6   | J     | 337                  | DT   | O4'-C4'-C3' | 5.14  | 109.08           | 106.00        |
| 5   | Ι     | 307                  | DC   | N3-C2-O2    | -5.14 | 118.30           | 121.90        |
| 5   | Ι     | 285                  | DT   | C6-C5-C7    | -5.13 | 119.82           | 122.90        |
| 5   | Ι     | 243                  | DC   | N3-C4-C5    | 5.13  | 123.95           | 121.90        |
| 6   | J     | 104                  | DC   | O4'-C4'-C3' | 5.12  | 109.07           | 106.00        |
| 6   | J     | 145                  | DC   | N3-C2-O2    | -5.11 | 118.32           | 121.90        |
| 1   | Е     | 122                  | LYS  | CA-CB-CG    | 5.11  | 124.63           | 113.40        |
| 6   | J     | 53                   | DC   | O4'-C4'-C3' | 5.10  | 109.06           | 106.00        |
| 5   | Ι     | 24                   | DC   | N3-C4-C5    | 5.10  | 123.94           | 121.90        |
| 6   | J     | 28                   | DT   | C6-C5-C7    | -5.10 | 119.84           | 122.90        |
| 1   | Ε     | 72                   | ARG  | NE-CZ-NH2   | 5.09  | 122.85           | 120.30        |
| 5   | Ι     | 286                  | DC   | N3-C4-C5    | 5.09  | 123.94           | 121.90        |
| 6   | J     | 52                   | DA   | N1-C6-N6    | -5.08 | 115.55           | 118.60        |
| 6   | J     | 149                  | DG   | C8-N9-C4    | -5.08 | 104.37           | 106.40        |
| 6   | J     | 22                   | DA   | C5-C6-N1    | 5.08  | 120.24           | 117.70        |
| 6   | J     | 111                  | DG   | C5-C6-N1    | 5.08  | 114.04           | 111.50        |
| 5   | Ι     | 296                  | DC   | N1-C2-O2    | 5.08  | 121.94           | 118.90        |
| 6   | J     | 189                  | DA   | N1-C6-N6    | -5.08 | 115.56           | 118.60        |
| 5   | Ι     | 330                  | DT   | N3-C2-O2    | -5.07 | 119.26           | 122.30        |
| 1   | е     | 122                  | LYS  | CA-CB-CG    | 5.07  | 124.55           | 113.40        |
| 5   | Ι     | 245                  | DT   | C6-C5-C7    | -5.06 | 119.86           | 122.90        |
| 6   | J     | 19                   | DC   | N3-C2-O2    | -5.06 | 118.36           | 121.90        |
| 3   | С     | 88                   | ARG  | NE-CZ-NH2   | 5.06  | 122.83           | 120.30        |



| Mol | Chain | Res | Type | Atoms       | Z     | $Observed(^{o})$ | $Ideal(^{o})$ |
|-----|-------|-----|------|-------------|-------|------------------|---------------|
| 5   | Ι     | 194 | DC   | C6-N1-C2    | -5.06 | 118.28           | 120.30        |
| 6   | J     | 151 | DC   | N1-C2-O2    | 5.05  | 121.93           | 118.90        |
| 5   | Ι     | 308 | DA   | N1-C6-N6    | -5.05 | 115.57           | 118.60        |
| 6   | J     | 178 | DC   | N1-C2-O2    | 5.05  | 121.93           | 118.90        |
| 6   | J     | 173 | DA   | O4'-C4'-C3' | 5.05  | 109.03           | 106.00        |
| 5   | Ι     | 15  | DT   | O4'-C1'-C2' | -5.04 | 101.87           | 105.90        |
| 5   | Ι     | 168 | DC   | O4'-C1'-N1  | 5.04  | 111.53           | 108.00        |
| 5   | Ι     | 17  | DC   | C6-N1-C2    | -5.03 | 118.29           | 120.30        |
| 5   | Ι     | 4   | DG   | C5-C6-N1    | 5.03  | 114.01           | 111.50        |
| 6   | J     | 175 | DT   | N3-C2-O2    | -5.03 | 119.28           | 122.30        |
| 5   | Ι     | 273 | DC   | N3-C2-O2    | -5.03 | 118.38           | 121.90        |
| 6   | J     | 161 | DC   | N3-C4-C5    | 5.03  | 123.91           | 121.90        |
| 5   | Ι     | 196 | DG   | P-O3'-C3'   | 5.02  | 125.73           | 119.70        |
| 5   | Ι     | 284 | DC   | N3-C2-O2    | -5.02 | 118.38           | 121.90        |
| 6   | J     | 192 | DC   | N3-C2-O2    | -5.02 | 118.38           | 121.90        |
| 6   | J     | 324 | DT   | N3-C2-O2    | -5.02 | 119.29           | 122.30        |
| 6   | J     | 122 | DG   | C5-C6-N1    | 5.02  | 114.01           | 111.50        |
| 5   | Ι     | 228 | DC   | N3-C4-C5    | 5.02  | 123.91           | 121.90        |
| 6   | J     | 73  | DC   | N3-C4-C5    | 5.01  | 123.90           | 121.90        |
| 6   | J     | 74  | DG   | O4'-C1'-C2' | 5.01  | 109.91           | 105.90        |
| 6   | J     | 153 | DC   | N1-C2-O2    | 5.01  | 121.91           | 118.90        |
| 5   | Ι     | 188 | DC   | O4'-C4'-C3' | 5.00  | 109.00           | 106.00        |
| 5   | Ι     | 289 | DT   | C4-C5-C6    | 5.00  | 121.00           | 118.00        |
| 5   | Ι     | 296 | DC   | N3-C2-O2    | -5.00 | 118.40           | 121.90        |
| 6   | J     | 159 | DT   | O4'-C4'-C3' | 5.00  | 109.00           | 106.00        |
| 6   | J     | 338 | DC   | N3-C2-O2    | -5.00 | 118.40           | 121.90        |

Continued from previous page...

There are no chirality outliers.

All (53) planarity outliers are listed below:

| Mol | Chain | Res | Type | Group     |
|-----|-------|-----|------|-----------|
| 1   | А     | 53  | ARG  | Sidechain |
| 2   | В     | 92  | ARG  | Sidechain |
| 3   | С     | 32  | ARG  | Sidechain |
| 3   | С     | 50  | TYR  | Sidechain |
| 4   | D     | 105 | LYS  | Mainchain |
| 4   | D     | 30  | ARG  | Sidechain |
| 4   | D     | 69  | ARG  | Sidechain |
| 4   | D     | 96  | ARG  | Sidechain |
| 1   | Е     | 63  | ARG  | Sidechain |
| 2   | F     | 35  | ARG  | Sidechain |
| 3   | G     | 77  | ARG  | Sidechain |



| Mol | Chain | Res | Type | Group     |
|-----|-------|-----|------|-----------|
| 5   | Ι     | -5  | DT   | Sidechain |
| 5   | Ι     | -6  | DA   | Sidechain |
| 5   | Ι     | 157 | DG   | Sidechain |
| 5   | Ι     | 16  | DG   | Sidechain |
| 5   | Ι     | 164 | DC   | Sidechain |
| 5   | Ι     | 167 | DC   | Sidechain |
| 5   | Ι     | 173 | DC   | Sidechain |
| 5   | Ι     | 18  | DC   | Sidechain |
| 5   | Ι     | 183 | DG   | Sidechain |
| 5   | Ι     | 186 | DT   | Sidechain |
| 5   | Ι     | 19  | DG   | Sidechain |
| 5   | Ι     | 195 | DC   | Sidechain |
| 5   | Ι     | 227 | DG   | Sidechain |
| 5   | Ι     | 242 | DA   | Sidechain |
| 5   | Ι     | 246 | DA   | Sidechain |
| 5   | Ι     | 279 | DG   | Sidechain |
| 5   | Ι     | 291 | DG   | Sidechain |
| 5   | Ι     | 298 | DG   | Sidechain |
| 5   | Ι     | 305 | DG   | Sidechain |
| 5   | Ι     | 308 | DA   | Sidechain |
| 5   | Ι     | 331 | DA   | Sidechain |
| 5   | Ι     | 332 | DT   | Sidechain |
| 5   | Ι     | 6   | DG   | Sidechain |
| 6   | J     | 103 | DG   | Sidechain |
| 6   | J     | 119 | DA   | Sidechain |
| 6   | J     | 124 | DT   | Sidechain |
| 6   | J     | 13  | DT   | Sidechain |
| 6   | J     | 149 | DG   | Sidechain |
| 6   | J     | 155 | DG   | Sidechain |
| 6   | J     | 182 | DA   | Sidechain |
| 6   | J     | 188 | DA   | Sidechain |
| 6   | J     | 25  | DA   | Sidechain |
| 6   | J     | 332 | DG   | Sidechain |
| 6   | J     | 338 | DC   | Sidechain |
| 6   | J     | 339 | DT   | Sidechain |
| 6   | J     | 344 | DA   | Sidechain |
| 6   | J     | 349 | DA   | Sidechain |
| 6   | J     | 350 | DT   | Sidechain |
| 6   | J     | 37  | DG   | Sidechain |
| 6   | J     | 51  | DG   | Sidechain |
| 6   | J     | 74  | DG   | Sidechain |
| 4   | d     | 30  | ARG  | Sidechain |

Continued from previous page...



#### 5.2 Too-close contacts (i)

Due to software issues we are unable to calculate clashes - this section is therefore empty.

#### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed       | Favoured  | Allowed | Outliers | Perce | entiles |
|-----|-------|----------------|-----------|---------|----------|-------|---------|
| 1   | А     | 99/135~(73%)   | 92~(93%)  | 7 (7%)  | 0        | 100   | 100     |
| 1   | Е     | 113/135 (84%)  | 110 (97%) | 3 (3%)  | 0        | 100   | 100     |
| 1   | a     | 99/135~(73%)   | 96 (97%)  | 3 (3%)  | 0        | 100   | 100     |
| 1   | е     | 96/135~(71%)   | 94 (98%)  | 2 (2%)  | 0        | 100   | 100     |
| 2   | В     | 79/102~(78%)   | 77 (98%)  | 2 (2%)  | 0        | 100   | 100     |
| 2   | F     | 78/102~(76%)   | 76 (97%)  | 2 (3%)  | 0        | 100   | 100     |
| 2   | b     | 80/102~(78%)   | 78 (98%)  | 2 (2%)  | 0        | 100   | 100     |
| 2   | f     | 78/102~(76%)   | 76 (97%)  | 2 (3%)  | 0        | 100   | 100     |
| 3   | С     | 107/129~(83%)  | 104 (97%) | 3 (3%)  | 0        | 100   | 100     |
| 3   | G     | 104/129~(81%)  | 102 (98%) | 2 (2%)  | 0        | 100   | 100     |
| 3   | с     | 107/129~(83%)  | 105 (98%) | 2 (2%)  | 0        | 100   | 100     |
| 3   | g     | 104/129~(81%)  | 101 (97%) | 3 (3%)  | 0        | 100   | 100     |
| 4   | D     | 94/122~(77%)   | 90 (96%)  | 4 (4%)  | 0        | 100   | 100     |
| 4   | Н     | 93/122~(76%)   | 84 (90%)  | 9 (10%) | 0        | 100   | 100     |
| 4   | d     | 94/122~(77%)   | 92~(98%)  | 2 (2%)  | 0        | 100   | 100     |
| 4   | h     | 93/122~(76%)   | 84 (90%)  | 9 (10%) | 0        | 100   | 100     |
| 7   | K     | 543/1536~(35%) | 526 (97%) | 17 (3%) | 0        | 100   | 100     |
| 8   | L     | 382/433~(88%)  | 369~(97%) | 13 (3%) | 0        | 100   | 100     |
| 9   | М     | 288/401 (72%)  | 284 (99%) | 4 (1%)  | 0        | 100   | 100     |
| 9   | Ο     | 261/401~(65%)  | 255 (98%) | 6 (2%)  | 0        | 100   | 100     |
| 10  | N     | 362/684~(53%)  | 347 (96%) | 15 (4%) | 0        | 100   | 100     |



Continued from previous page...

| Mol | Chain | Analysed        | Favoured   | Allowed  | Outliers | Perce | ntiles |
|-----|-------|-----------------|------------|----------|----------|-------|--------|
| 10  | Р     | 147/684~(22%)   | 140 (95%)  | 7(5%)    | 0        | 100   | 100    |
| All | All   | 3501/6091~(58%) | 3382 (97%) | 119 (3%) | 0        | 100   | 100    |

There are no Ramachandran outliers to report.

#### 5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

| Mol | Chain | Analysed                    | Rotameric  | Outliers | Percentiles |     |  |
|-----|-------|-----------------------------|------------|----------|-------------|-----|--|
| 1   | А     | 86/108~(80%)                | 86 (100%)  | 0        | 100         | 100 |  |
| 1   | Ε     | 99/108~(92%)                | 98~(99%)   | 1 (1%)   | 76          | 86  |  |
| 1   | a     | 86/108 (80%)                | 86 (100%)  | 0        | 100         | 100 |  |
| 1   | е     | 85/108~(79%)                | 85 (100%)  | 0        | 100         | 100 |  |
| 2   | В     | 66/78~(85%)                 | 66 (100%)  | 0        | 100         | 100 |  |
| 2   | F     | 65/78~(83%)                 | 65~(100%)  | 0        | 100         | 100 |  |
| 2   | b     | 67/78~(86%)                 | 67~(100%)  | 0        | 100         | 100 |  |
| 2   | f     | 65/78~(83%)                 | 65~(100%)  | 0        | 100         | 100 |  |
| 3   | С     | 86/101~(85%)                | 86 (100%)  | 0        | 100         | 100 |  |
| 3   | G     | 84/101~(83%)                | 84 (100%)  | 0        | 100         | 100 |  |
| 3   | с     | 86/101~(85%)                | 86 (100%)  | 0        | 100         | 100 |  |
| 3   | g     | 84/101 (83%)                | 84 (100%)  | 0        | 100         | 100 |  |
| 4   | D     | 82/102~(80%)                | 82 (100%)  | 0        | 100         | 100 |  |
| 4   | Н     | 81/102~(79%)                | 81 (100%)  | 0        | 100         | 100 |  |
| 4   | d     | 82/102~(80%)                | 82 (100%)  | 0        | 100         | 100 |  |
| 4   | h     | 81/102~(79%)                | 81 (100%)  | 0        | 100         | 100 |  |
| 7   | K     | 510/1391~(37%)              | 510 (100%) | 0        | 100         | 100 |  |
| 8   | L     | 326/367~(89%)               | 324 (99%)  | 2 (1%)   | 86          | 92  |  |
| 9   | М     | $26\overline{8}/359~(75\%)$ | 267~(100%) | 1 (0%)   | 91          | 94  |  |
| 9   | О     | 245/359~(68%)               | 245 (100%) | 0        | 100         | 100 |  |



| Mol | Chain | Analysed        | Rotameric   | Outliers | Percentiles |  |  |
|-----|-------|-----------------|-------------|----------|-------------|--|--|
| 10  | Ν     | 353/653~(54%)   | 353~(100%)  | 0        | 100 100     |  |  |
| 10  | Р     | 146/653~(22%)   | 146 (100%)  | 0        | 100 100     |  |  |
| All | All   | 3133/5338~(59%) | 3129 (100%) | 4 (0%)   | 93 97       |  |  |

Continued from previous page...

All (4) residues with a non-rotameric sidechain are listed below:

| Mol | Chain | Res | Type |
|-----|-------|-----|------|
| 1   | Е     | 63  | ARG  |
| 8   | L     | 150 | HIS  |
| 8   | L     | 259 | MET  |
| 9   | М     | 292 | CYS  |

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (15) such sidechains are listed below:

| Mol | Chain | Res  | Type |
|-----|-------|------|------|
| 1   | А     | 93   | GLN  |
| 2   | В     | 93   | GLN  |
| 1   | Е     | 19   | GLN  |
| 4   | Н     | 81   | ASN  |
| 7   | Κ     | 690  | ASN  |
| 7   | Κ     | 937  | GLN  |
| 7   | Κ     | 1311 | HIS  |
| 9   | М     | 389  | ASN  |
| 10  | Ν     | 304  | ASN  |
| 10  | Ν     | 393  | GLN  |
| 10  | Ν     | 517  | ASN  |
| 9   | 0     | 275  | GLN  |
| 2   | b     | 93   | GLN  |
| 3   | с     | 38   | ASN  |
| 1   | е     | 108  | ASN  |

#### 5.3.3 RNA (i)

There are no RNA molecules in this entry.

#### 5.4 Non-standard residues in protein, DNA, RNA chains (i)

2 non-standard protein/DNA/RNA residues are modelled in this entry.



In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mal Turna C |      | Chain | Dec | Tink | Bo       | ond leng | $\mathbf{ths}$ | В        | ond ang | les    |
|-------------|------|-------|-----|------|----------|----------|----------------|----------|---------|--------|
| IVIOI       | туре | Unam  | nes |      | Counts   | RMSZ     | # Z >2         | Counts   | RMSZ    | # Z >2 |
| 1           | ML3  | А     | 36  | 1    | 10,11,12 | 0.77     | 0              | 10,14,16 | 0.83    | 0      |
| 1           | ML3  | a     | 36  | 1    | 10,11,12 | 0.76     | 0              | 10,14,16 | 0.82    | 0      |

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

| Mol | Type | Chain | Res | Link | Chirals | Torsions  | Rings |
|-----|------|-------|-----|------|---------|-----------|-------|
| 1   | ML3  | А     | 36  | 1    | -       | 5/8/10/12 | -     |
| 1   | ML3  | a     | 36  | 1    | -       | 5/8/10/12 | -     |

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

All (10) torsion outliers are listed below:

| Mol | Chain | $\mathbf{Res}$ | Type | Atoms        |
|-----|-------|----------------|------|--------------|
| 1   | А     | 36             | ML3  | SG-CD-CE-NZ  |
| 1   | а     | 36             | ML3  | SG-CD-CE-NZ  |
| 1   | А     | 36             | ML3  | CD-CE-NZ-CM1 |
| 1   | А     | 36             | ML3  | CD-CE-NZ-CM2 |
| 1   | a     | 36             | ML3  | CD-CE-NZ-CM1 |
| 1   | a     | 36             | ML3  | CD-CE-NZ-CM2 |
| 1   | А     | 36             | ML3  | CD-CE-NZ-CM3 |
| 1   | a     | 36             | ML3  | CD-CE-NZ-CM3 |
| 1   | А     | 36             | ML3  | CA-CB-SG-CD  |
| 1   | a     | 36             | ML3  | CA-CB-SG-CD  |

There are no ring outliers.

No monomer is involved in short contacts.



#### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

#### 5.6 Ligand geometry (i)

Of 7 ligands modelled in this entry, 7 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

#### 5.7 Other polymers (i)

There are no such residues in this entry.

#### 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

