

# Full wwPDB X-ray Structure Validation Report (i)

#### Oct 9, 2023 – 09:29 PM EDT

PDB ID : 7JPA

Title : Self-assembly of a 3D DNA crystal lattice (4x6 duplex version) containing the

J5 immobile Holliday junction

Authors: Simmons, C.R.; MacCulloch, T.; Stephanopoulos, N.; Yan, H.

Deposited on : 2020-08-07

Resolution : 3.16 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org*A user guide is available at

https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity: 4.02b-467 Xtriage (Phenix): 1.13

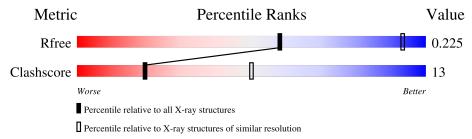
EDS : 2.35.1

Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

Refmac : 5.8.0158

CCP4 : 7.0.044 (Gargrove)

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.35.1

# 1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: X- $RAY\ DIFFRACTION$ 

The reported resolution of this entry is 3.16 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.



| Metric     | Whole archive           | Similar resolution                                     |
|------------|-------------------------|--------------------------------------------------------|
|            | $(\# \mathrm{Entries})$ | $(\# 	ext{Entries}, 	ext{ resolution range}(	ext{Å}))$ |
| $R_{free}$ | 130704                  | 1665 (3.20-3.12)                                       |
| Clashscore | 141614                  | 1804 (3.20-3.12)                                       |

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

| Mol | Chain | Length | Quality of chain |     |  |  |  |
|-----|-------|--------|------------------|-----|--|--|--|
| 1   | A     | 21     | 62%              | 38% |  |  |  |
| 2   | В     | 6      | 33%              | 67% |  |  |  |
| 3   | С     | 8      | 62%              | 38% |  |  |  |
| 4   | D     | 7      | 29%              | 71% |  |  |  |



# 2 Entry composition (i)

There are 4 unique types of molecules in this entry. The entry contains 855 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a DNA chain called DNA (5'-D(\*GP\*AP\*GP\*CP\*AP\*GP\*AP\*CP\*CP\*CP\* GP\*AP\*CP\*GP\*GP\*AP\*CP\*TP\*CP\*A)-3').

| Mol | Chain | Residues | Atoms        |          |         | ZeroOcc  | AltConf | Trace |   |   |
|-----|-------|----------|--------------|----------|---------|----------|---------|-------|---|---|
| 1   | A     | 21       | Total<br>430 | C<br>203 | N<br>88 | O<br>119 | P<br>20 | 0     | 0 | 0 |

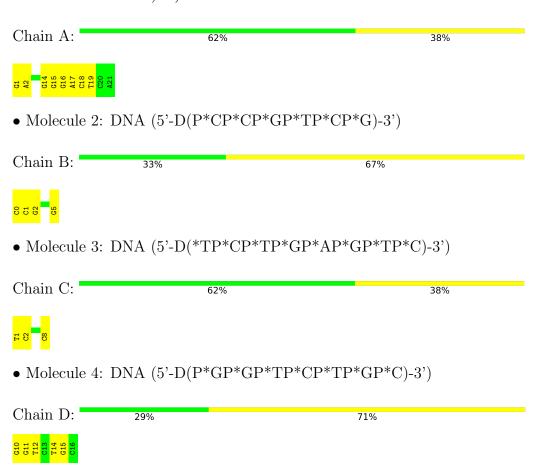
• Molecule 2 is a DNA chain called DNA (5'-D(P\*CP\*CP\*GP\*TP\*CP\*G)-3').

| Mol | Chain | Residues | Atoms |    |    | ZeroOcc | AltConf | Trace |   |   |
|-----|-------|----------|-------|----|----|---------|---------|-------|---|---|
| 2   | B     | 6        | Total | С  | N  | О       | Р       | 0     | 0 | 0 |
|     | Ъ     | 0        | 121   | 57 | 21 | 37      | 6       | 0     | 0 |   |

• Molecule 3 is a DNA chain called DNA (5'-D(\*TP\*CP\*TP\*GP\*AP\*GP\*TP\*C)-3').

| Mol | Chain | Residues | Atoms |    |    | ZeroOcc | AltConf | Trace |   |   |
|-----|-------|----------|-------|----|----|---------|---------|-------|---|---|
| 2   | C     | Q        | Total | С  | N  | О       | Р       | 0     | 0 | 0 |
| 3   |       | 8        | 160   | 78 | 27 | 48      | 7       | 0     | U | U |

• Molecule 4 is a DNA chain called DNA (5'-D(P\*GP\*GP\*TP\*CP\*TP\*GP\*C)-3').


| Mol | Chain | Residues | Atoms        |         |         | ZeroOcc | AltConf | Trace |   |   |
|-----|-------|----------|--------------|---------|---------|---------|---------|-------|---|---|
| 4   | D     | 7        | Total<br>144 | C<br>68 | N<br>25 | O<br>44 | P<br>7  | 0     | 0 | 0 |



# 3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: DNA (5'-D(\*GP\*AP\*GP\*CP\*AP\*GP\*AP\*CP\*CP\*CP\*GP\*AP\*CP\*GP\*GP\*GP\*AP\*CP\*TP\*CP\*A)-3')





# 4 Data and refinement statistics (i)

| Property                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Value                                            | Source    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------|-----------|
| Space group                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | P 32                                             | Depositor |
| Cell constants                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 68.17Å 68.17Å 53.23Å                             | Donositon |
| a, b, c, $\alpha$ , $\beta$ , $\gamma$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $90.00^{\circ}$ $90.00^{\circ}$ $120.00^{\circ}$ | Depositor |
| Resolution (Å)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 34.08 - 3.16                                     | Depositor |
| rtesolution (A)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 34.08 - 3.16                                     | EDS       |
| % Data completeness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 66.3 (34.08-3.16)                                | Depositor |
| (in resolution range)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 73.5 (34.08-3.16)                                | EDS       |
| $R_{merge}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.10                                             | Depositor |
| $R_{sym}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (Not available)                                  | Depositor |
| $< I/\sigma(I) > 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 3.30  (at  3.18Å)                                | Xtriage   |
| Refinement program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PHENIX 1.11.1_2575                               | Depositor |
| $R, R_{free}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.201 , $0.216$                                  | Depositor |
| , and the second | 0.206 , $0.225$                                  | DCC       |
| $R_{free}$ test set                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 322  reflections  (9.26%)                        | wwPDB-VP  |
| Wilson B-factor (Å <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 152.5                                            | Xtriage   |
| Anisotropy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 3.957                                            | Xtriage   |
| Bulk solvent $k_{sol}(e/Å^3)$ , $B_{sol}(Å^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 0.05 , -110.0                                    | EDS       |
| L-test for twinning <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $< L > = 0.46, < L^2> = 0.29$                    | Xtriage   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.064  for -h,-k,l                               |           |
| Estimated twinning fraction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 0.076  for h,-h-k,-l                             | Xtriage   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.077  for -k,-h,-l                              |           |
| $F_o, F_c$ correlation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.32                                             | EDS       |
| Total number of atoms                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 855                                              | wwPDB-VP  |
| Average B, all atoms $(\mathring{A}^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 163.0                                            | wwPDB-VP  |

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 9.03% of the height of the origin peak. No significant pseudotranslation is detected.

<sup>&</sup>lt;sup>2</sup>Theoretical values of <|L|>,  $<L^2>$  for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.



<sup>&</sup>lt;sup>1</sup>Intensities estimated from amplitudes.

# 5 Model quality (i)

## 5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

| Mol   | Chain | Bond                       | lengths | Bond angles |          |  |
|-------|-------|----------------------------|---------|-------------|----------|--|
| IVIOI | Chain | $\mid RMSZ \mid \# Z  > 5$ |         | RMSZ        | # Z  > 5 |  |
| 1     | A     | 0.36                       | 0/484   | 0.83        | 0/745    |  |
| 2     | В     | 0.63                       | 0/134   | 0.84        | 0/204    |  |
| 3     | С     | 0.38                       | 0/178   | 0.77        | 0/273    |  |
| 4     | D     | 0.33                       | 0/160   | 0.83        | 0/245    |  |
| All   | All   | 0.41                       | 0/956   | 0.82        | 0/1467   |  |

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

### 5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

| Mol | Chain | Non-H | H(model) | H(added) | Clashes | Symm-Clashes |
|-----|-------|-------|----------|----------|---------|--------------|
| 1   | A     | 430   | 0        | 234      | 7       | 0            |
| 2   | В     | 121   | 0        | 68       | 5       | 1            |
| 3   | С     | 160   | 0        | 93       | 2       | 1            |
| 4   | D     | 144   | 0        | 80       | 6       | 1            |
| All | All   | 855   | 0        | 475      | 17      | 2            |

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 13.

All (17) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.



| Atom-1        | Atom-2        | Interatomic<br>distance (Å) | Clash<br>overlap (Å) |
|---------------|---------------|-----------------------------|----------------------|
| 2:B:5:DG:H2"  | 4:D:10:DG:O4' | 2.00                        | 0.61                 |
| 3:C:1:DT:H2'  | 3:C:2:DC:C6   | 2.40                        | 0.56                 |
| 1:A:15:DG:H2" | 1:A:16:DG:OP2 | 2.09                        | 0.52                 |
| 1:A:1:DG:H2"  | 1:A:2:DA:O5'  | 2.11                        | 0.49                 |
| 1:A:18:DC:H2" | 1:A:19:DT:OP2 | 2.11                        | 0.49                 |
| 2:B:0:DC:H2'  | 2:B:1:DC:C6   | 2.48                        | 0.49                 |
| 2:B:5:DG:C2'  | 4:D:10:DG:O4' | 2.60                        | 0.49                 |
| 1:A:14:DG:C6  | 1:A:15:DG:C6  | 3.01                        | 0.49                 |
| 4:D:14:DT:H2" | 4:D:15:DG:C8  | 2.49                        | 0.47                 |
| 3:C:1:DT:H2"  | 3:C:2:DC:O5'  | 2.15                        | 0.46                 |
| 1:A:16:DG:H2" | 1:A:17:DA:C8  | 2.52                        | 0.45                 |
| 2:B:5:DG:C6   | 4:D:10:DG:C5  | 3.06                        | 0.44                 |
| 4:D:11:DG:H2' | 4:D:12:DT:C6  | 2.52                        | 0.44                 |
| 2:B:1:DC:H2"  | 2:B:2:DG:H8   | 1.85                        | 0.41                 |
| 4:D:10:DG:H2' | 4:D:11:DG:O4' | 2.21                        | 0.40                 |
| 1:A:1:DG:H2'  | 1:A:2:DA:C8   | 2.57                        | 0.40                 |
| 1:A:17:DA:C4  | 1:A:18:DC:C5  | 3.10                        | 0.40                 |

All (2) symmetry-related close contacts are listed below. The label for Atom-2 includes the symmetry operator and encoded unit-cell translations to be applied.

| Atom-1       | Atom-2               | $\begin{array}{c} {\rm Interatomic} \\ {\rm distance} \ ({\rm \AA}) \end{array}$ | $\begin{array}{c} \text{Clash} \\ \text{overlap } (\text{\AA}) \end{array}$ |
|--------------|----------------------|----------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| 2:B:0:DC:OP2 | 2:B:5:DG:O3'[3_655]  | 2.12                                                                             | 0.08                                                                        |
| 3:C:8:DC:O3' | 4:D:10:DG:OP1[3_655] | 2.13                                                                             | 0.07                                                                        |

### 5.3 Torsion angles (i)

#### 5.3.1 Protein backbone (i)

There are no protein molecules in this entry.

#### 5.3.2 Protein sidechains (i)

There are no protein molecules in this entry.

## 5.3.3 RNA (i)

There are no RNA molecules in this entry.



# 5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

### 5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

### 5.6 Ligand geometry (i)

There are no ligands in this entry.

### 5.7 Other polymers (i)

There are no such residues in this entry.

### 5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.



# 6 Fit of model and data (i)

### 6.1 Protein, DNA and RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

## 6.2 Non-standard residues in protein, DNA, RNA chains (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

## 6.3 Carbohydrates (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

### 6.4 Ligands (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

## 6.5 Other polymers (i)

Unable to reproduce the depositors R factor - this section is therefore empty.

