This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org

A user guide is available at
with specific help available everywhere you see the symbol.

The following versions of software and data (see references) were used in the production of this report:

- MolProbity : 4.02b-467
- Mogul : 1.7.3 (157068), CSD as539be (2018)
- Xtriage (Phenix) : 1.13
- EDS : trunk30967
- Percentile statistics : 20171227.v01 (using entries in the PDB archive December 27th 2017)
- Refmac : 5.8.0158
- CCP4 : 7.0 (Gargrove)
- Ideal geometry (proteins) : Engh & Huber (2001)
- Ideal geometry (DNA, RNA) : Parkinson et al. (1996)
- Validation Pipeline (wwPDB-VP) : trunk30967
1 Overall quality at a glance

The following experimental techniques were used to determine the structure: **X-RAY DIFFRACTION**

The reported resolution of this entry is 2.14 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Table 1: Validation scores for different metrics

<table>
<thead>
<tr>
<th>Metric</th>
<th>Whole archive (#Entries)</th>
<th>Similar resolution (#Entries, resolution range(Å))</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{free}</td>
<td>111664</td>
<td>2128 (2.16-2.12)</td>
</tr>
<tr>
<td>Clashscore</td>
<td>122126</td>
<td>2253 (2.16-2.12)</td>
</tr>
<tr>
<td>Ramachandran outliers</td>
<td>120053</td>
<td>2223 (2.16-2.12)</td>
</tr>
<tr>
<td>Sidechain outliers</td>
<td>120020</td>
<td>2222 (2.16-2.12)</td>
</tr>
<tr>
<td>RSRZ outliers</td>
<td>108989</td>
<td>2086 (2.16-2.12)</td>
</tr>
</tbody>
</table>

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments on the lower bar indicate the fraction of residues that contain outliers for $>\geq 3$, 2, 1 and 0 types of geometric quality criteria. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions $\leq 5\%$. The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Table 2: Geometric quality criteria

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>103</td>
<td>71%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>24%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5%</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>103</td>
<td>71%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5%</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>103</td>
<td>73%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>22%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5%</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>103</td>
<td>76%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>21%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5%</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>103</td>
<td>77%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>19%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5%</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>103</td>
<td>58%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>39%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>5%</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Length</th>
<th>Quality of chain</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>103</td>
<td></td>
</tr>
</tbody>
</table>

The following table lists non-polymeric compounds, carbohydrate monomers and non-standard residues in protein, DNA, RNA chains that are outliers for geometric or electron-density-fit criteria:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Chirality</th>
<th>Geometry</th>
<th>Clashes</th>
<th>Electron density</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A32</td>
<td>V</td>
<td>104</td>
<td>X</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
2 Entry composition

There are 3 unique types of molecules in this entry. The entry contains 13904 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

- Molecule 1 is a protein called HEAT-LABILE ENTEROTOXIN B CHAIN.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
<th>Trace</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>103</td>
<td>Total</td>
<td>C 516 N 139 O 163 S 6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>103</td>
<td>Total</td>
<td>C 516 N 139 O 163 S 6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>103</td>
<td>Total</td>
<td>C 516 N 139 O 163 S 6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>103</td>
<td>Total</td>
<td>C 516 N 139 O 163 S 6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>103</td>
<td>Total</td>
<td>C 516 N 139 O 163 S 6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>103</td>
<td>Total</td>
<td>C 516 N 139 O 163 S 6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>103</td>
<td>Total</td>
<td>C 516 N 139 O 163 S 6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>103</td>
<td>Total</td>
<td>C 516 N 139 O 163 S 6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>103</td>
<td>Total</td>
<td>C 516 N 139 O 163 S 6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>103</td>
<td>Total</td>
<td>C 516 N 139 O 163 S 6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>103</td>
<td>Total</td>
<td>C 516 N 139 O 163 S 6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>103</td>
<td>Total</td>
<td>C 516 N 139 O 163 S 6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>103</td>
<td>Total</td>
<td>C 516 N 139 O 163 S 6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>103</td>
<td>Total</td>
<td>C 516 N 163 S 6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>103</td>
<td>Total</td>
<td>C 516 N 163 S 6</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

- Molecule 2 is (3-NITRO-5-(3-MORPHOLIN-4-YL-PROPYLAMINOCARBONYL)PHENYL)-GALACTOPYRANOSIDE (three-letter code: A32) (formula: C_{20}H_{29}N_{3}O_{10}).
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>D</td>
<td>1</td>
<td>Total</td>
<td>C N O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>20 3 10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>1</td>
<td>Total</td>
<td>C N O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>20 3 10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>1</td>
<td>Total</td>
<td>C N O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>20 3 10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>1</td>
<td>Total</td>
<td>C N O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>20 3 10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>1</td>
<td>Total</td>
<td>C N O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>20 3 10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>1</td>
<td>Total</td>
<td>C N O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>20 3 10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>1</td>
<td>Total</td>
<td>C N O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>20 3 10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>1</td>
<td>Total</td>
<td>C N O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>20 3 10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>1</td>
<td>Total</td>
<td>C N O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>20 3 10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td>1</td>
<td>Total</td>
<td>C N O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>20 3 10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>1</td>
<td>Total</td>
<td>C N O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>20 3 10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>1</td>
<td>Total</td>
<td>C N O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>20 3 10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>1</td>
<td>Total</td>
<td>C N O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>20 3 10</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>1</td>
<td>Total</td>
<td>C N O</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>33</td>
<td>20 3 10</td>
<td>0</td>
</tr>
</tbody>
</table>
- Molecule 3 is water.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Residues</th>
<th>Atoms</th>
<th>ZeroOcc</th>
<th>AltConf</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>D</td>
<td>89</td>
<td>Total O 89</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>87</td>
<td>Total O 87</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>113</td>
<td>Total O 113</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>78</td>
<td>Total O 78</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>100</td>
<td>Total O 100</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>L</td>
<td>51</td>
<td>Total O 51</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>49</td>
<td>Total O 49</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>N</td>
<td>65</td>
<td>Total O 65</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>75</td>
<td>Total O 75</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>P</td>
<td>80</td>
<td>Total O 80</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>V</td>
<td>41</td>
<td>Total O 41</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>W</td>
<td>49</td>
<td>Total O 49</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>81</td>
<td>Total O 81</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Y</td>
<td>63</td>
<td>Total O 63</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Z</td>
<td>61</td>
<td>Total O 61</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
3 Residue-property plots

These plots are drawn for all protein, RNA and DNA chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

- Molecule 1: HEAT-LABILE ENTEROTOXIN B CHAIN

 Chain D:

- Molecule 1: HEAT-LABILE ENTEROTOXIN B CHAIN

 Chain E:

- Molecule 1: HEAT-LABILE ENTEROTOXIN B CHAIN

 Chain F:

- Molecule 1: HEAT-LABILE ENTEROTOXIN B CHAIN

 Chain G:

- Molecule 1: HEAT-LABILE ENTEROTOXIN B CHAIN

 Chain H:

- Molecule 1: HEAT-LABILE ENTEROTOXIN B CHAIN

 Chain L:
• Molecule 1: HEAT-LABILE ENTEROTOXIN B CHAIN

Chain M:

• Molecule 1: HEAT-LABILE ENTEROTOXIN B CHAIN

Chain N:

• Molecule 1: HEAT-LABILE ENTEROTOXIN B CHAIN

Chain O:

• Molecule 1: HEAT-LABILE ENTEROTOXIN B CHAIN

Chain P:

• Molecule 1: HEAT-LABILE ENTEROTOXIN B CHAIN

Chain V:

• Molecule 1: HEAT-LABILE ENTEROTOXIN B CHAIN
• Molecule 1: HEAT-LABILE ENTEROTOXIN B CHAIN

• Molecule 1: HEAT-LABILE ENTEROTOXIN B CHAIN

• Molecule 1: HEAT-LABILE ENTEROTOXIN B CHAIN
4 Data and refinement statistics

<table>
<thead>
<tr>
<th>Property</th>
<th>Value</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Space group</td>
<td>P 1 21 1</td>
<td>Depositor</td>
</tr>
<tr>
<td>Cell constants</td>
<td>64.99Å 166.01Å 74.42Å</td>
<td>Depositor</td>
</tr>
<tr>
<td>a, b, c, α, β, γ</td>
<td>90.00° 92.13° 90.00°</td>
<td>Depositor</td>
</tr>
<tr>
<td>Resolution (Å)</td>
<td>25.00 – 2.14</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>19.99 – 2.14</td>
<td>EDS</td>
</tr>
<tr>
<td>% Data completeness</td>
<td>(Not available) (25.00-2.14)</td>
<td>Depositor</td>
</tr>
<tr>
<td>(in resolution range)</td>
<td>97.4 (19.99-2.14)</td>
<td>EDS</td>
</tr>
<tr>
<td>R<sub>merge</sub></td>
<td>0.05</td>
<td>Depositor</td>
</tr>
<tr>
<td>R<sub>sym</sub></td>
<td>(Not available)</td>
<td>Depositor</td>
</tr>
<tr>
<td><I/σ(I)><sup>1</sup></td>
<td>4.46 (at 2.15Å)</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Refinement program</td>
<td>REFMAC</td>
<td>Depositor</td>
</tr>
<tr>
<td>R, R<sub>free</sub></td>
<td>0.211 , 0.284</td>
<td>Depositor</td>
</tr>
<tr>
<td></td>
<td>0.200 , 0.265</td>
<td>DCC</td>
</tr>
<tr>
<td>R<sub>free</sub> test set</td>
<td>4235 reflections (5.03%)</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Wilson B-factor (Å²)</td>
<td>23.2</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Anisotropy</td>
<td>0.186</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Bulk solvent k<sub>sol</sub>(e/Å³), B<sub>sol</sub>(Å²)</td>
<td>0.32 , 61.5</td>
<td>EDS</td>
</tr>
<tr>
<td>L-test for twinning<sup>2</sup></td>
<td><L> = 0.48, <L²> = 0.31</td>
<td>Xtriage</td>
</tr>
<tr>
<td>Estimated twinning fraction</td>
<td>0.038 for h̅,k̅,l</td>
<td>Xtriage</td>
</tr>
<tr>
<td>F<sub>o</sub>-F<sub>c</sub> correlation</td>
<td>0.93</td>
<td>EDS</td>
</tr>
<tr>
<td>Total number of atoms</td>
<td>13904</td>
<td>wwPDB-VP</td>
</tr>
<tr>
<td>Average B, all atoms (Å²)</td>
<td>38.0</td>
<td>wwPDB-VP</td>
</tr>
</tbody>
</table>

Xtriage’s analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.26% of the height of the origin peak. No significant pseudotranslation is detected.

¹Intensities estimated from amplitudes.

²Theoretical values of <L>, <L²> for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.
5 Model quality

5.1 Standard geometry

Bond lengths and bond angles in the following residue types are not validated in this section: A32

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with $|Z| > 5$ is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RMSZ</td>
<td>$</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>0.86</td>
<td>0/835</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>0.88</td>
<td>0/835</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>0.89</td>
<td>0/835</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>0.81</td>
<td>0/835</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>0.86</td>
<td>0/835</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>0.66</td>
<td>0/835</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>0.62</td>
<td>0/835</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>0.73</td>
<td>0/835</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>0.68</td>
<td>0/835</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>0.80</td>
<td>0/835</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>0.55</td>
<td>0/835</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>0.61</td>
<td>0/835</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>0.76</td>
<td>0/835</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>0.72</td>
<td>0/835</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>0.68</td>
<td>0/835</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>0.75</td>
<td>0/12525</td>
</tr>
</tbody>
</table>

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>#Chirality outliers</th>
<th>#Planarity outliers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N</td>
<td>0</td>
<td>1</td>
</tr>
</tbody>
</table>

There are no bond length outliers.

All (215) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P</td>
<td>73</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>24.32</td>
<td>132.46</td>
<td>120.30</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P</td>
<td>13</td>
<td>ARG</td>
<td>CD-NE-CZ</td>
<td>21.60</td>
<td>153.84</td>
<td>123.60</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>73</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-20.18</td>
<td>110.21</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>35</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-16.96</td>
<td>111.82</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>35</td>
<td>ARG</td>
<td>CD-NE-CZ</td>
<td>16.48</td>
<td>146.68</td>
<td>123.60</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>35</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-15.30</td>
<td>112.65</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>67</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-15.28</td>
<td>112.66</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>35</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>14.62</td>
<td>127.61</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>73</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-14.35</td>
<td>113.12</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>35</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-14.21</td>
<td>113.20</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>73</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>13.69</td>
<td>127.15</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>67</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>13.67</td>
<td>127.13</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>67</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-13.54</td>
<td>113.53</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>67</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-13.40</td>
<td>113.60</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>13</td>
<td>ARG</td>
<td>CD-NE-CZ</td>
<td>13.37</td>
<td>142.32</td>
<td>123.60</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>43</td>
<td>LYS</td>
<td>CA-CB-CG</td>
<td>13.15</td>
<td>142.32</td>
<td>113.40</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>13</td>
<td>ARG</td>
<td>CG-CD-NE</td>
<td>12.84</td>
<td>138.77</td>
<td>111.80</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>73</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>12.54</td>
<td>126.57</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>35</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>12.45</td>
<td>126.53</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>59</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>11.85</td>
<td>128.96</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>35</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>11.84</td>
<td>126.22</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>35</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-11.71</td>
<td>114.45</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>73</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>11.65</td>
<td>126.13</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>13</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>11.62</td>
<td>126.11</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>67</td>
<td>ARG</td>
<td>CD-NE-CZ</td>
<td>11.48</td>
<td>139.67</td>
<td>123.60</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>73</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-11.32</td>
<td>114.64</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>35</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>11.11</td>
<td>125.86</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>73</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-10.97</td>
<td>114.81</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>76</td>
<td>TYR</td>
<td>CB-CG-CD1</td>
<td>-10.63</td>
<td>114.62</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>73</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-10.63</td>
<td>114.99</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>35</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>-10.53</td>
<td>115.03</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>73</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-10.42</td>
<td>115.09</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>76</td>
<td>TYR</td>
<td>CB-CG-CD2</td>
<td>10.19</td>
<td>127.12</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>83</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>10.04</td>
<td>127.34</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>13</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-10.03</td>
<td>115.29</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>70</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>-9.41</td>
<td>109.83</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>73</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>9.34</td>
<td>124.97</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>73</td>
<td>ARG</td>
<td>CD-NE-CZ</td>
<td>9.20</td>
<td>136.47</td>
<td>123.60</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>59</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>9.18</td>
<td>126.56</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>11</td>
<td>GLU</td>
<td>OE1-CD-OE2</td>
<td>-9.16</td>
<td>112.30</td>
<td>123.30</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>73</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>9.14</td>
<td>124.87</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>35</td>
<td>ARG</td>
<td>CD-NE-CZ</td>
<td>8.97</td>
<td>136.16</td>
<td>123.60</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>59</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>8.91</td>
<td>126.32</td>
<td>118.30</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O</td>
<td>59</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>-8.88</td>
<td>110.30</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>67</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>8.69</td>
<td>124.65</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>81</td>
<td>LYS</td>
<td>CA-CB-CG</td>
<td>8.53</td>
<td>132.17</td>
<td>113.40</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>35</td>
<td>ARG</td>
<td>NH1-CZ-NH2</td>
<td>-8.49</td>
<td>110.06</td>
<td>119.40</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>59</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>8.28</td>
<td>125.75</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>102</td>
<td>LYS</td>
<td>CA-C-O</td>
<td>8.27</td>
<td>137.46</td>
<td>120.10</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>73</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>8.22</td>
<td>124.41</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>73</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-8.20</td>
<td>116.20</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>67</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-8.18</td>
<td>116.21</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>92</td>
<td>THR</td>
<td>CA-CB-CG2</td>
<td>-8.17</td>
<td>100.96</td>
<td>112.40</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>22</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>8.06</td>
<td>125.56</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>29</td>
<td>GLU</td>
<td>OE1-CD-OE2</td>
<td>-8.05</td>
<td>113.63</td>
<td>123.30</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>7</td>
<td>GLU</td>
<td>CA-CB-CG</td>
<td>8.04</td>
<td>131.10</td>
<td>113.40</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>102</td>
<td>LYS</td>
<td>CA-CB-CG</td>
<td>7.92</td>
<td>130.83</td>
<td>113.40</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>67</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-7.77</td>
<td>116.42</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>96</td>
<td>ILE</td>
<td>C-N-CA</td>
<td>7.71</td>
<td>140.99</td>
<td>121.70</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>13</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-7.70</td>
<td>116.45</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>66</td>
<td>GLU</td>
<td>OE1-CD-OE2</td>
<td>-7.69</td>
<td>114.07</td>
<td>123.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>73</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-7.66</td>
<td>116.47</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>35</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>7.63</td>
<td>124.11</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>59</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>7.56</td>
<td>125.10</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>59</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>7.50</td>
<td>125.05</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>7</td>
<td>GLU</td>
<td>OE1-CD-OE2</td>
<td>7.43</td>
<td>132.22</td>
<td>123.30</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>76</td>
<td>TYR</td>
<td>CB-CG-CD1</td>
<td>-7.40</td>
<td>116.56</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>35</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>7.39</td>
<td>124.00</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>7</td>
<td>GLU</td>
<td>OE1-CD-OE2</td>
<td>7.37</td>
<td>132.14</td>
<td>123.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>103</td>
<td>ASN</td>
<td>CA-CB-CG</td>
<td>7.35</td>
<td>129.58</td>
<td>113.40</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>13</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-7.34</td>
<td>116.63</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>18</td>
<td>TYR</td>
<td>CB-CG-CD1</td>
<td>-7.34</td>
<td>116.60</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>22</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>-7.33</td>
<td>111.71</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>22</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>7.28</td>
<td>124.85</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>83</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>7.23</td>
<td>124.81</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>73</td>
<td>ARG</td>
<td>CD-NE-CZ</td>
<td>7.23</td>
<td>133.72</td>
<td>123.60</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>35</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>7.22</td>
<td>123.91</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>36</td>
<td>GLU</td>
<td>OE1-CD-OE2</td>
<td>-7.03</td>
<td>114.86</td>
<td>123.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>70</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>7.00</td>
<td>124.59</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>13</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.98</td>
<td>123.79</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>34</td>
<td>LYS</td>
<td>CD-CE-NZ</td>
<td>6.93</td>
<td>127.64</td>
<td>111.70</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>18</td>
<td>TYR</td>
<td>CB-CG-CD2</td>
<td>-6.91</td>
<td>116.86</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>59</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>-6.90</td>
<td>112.09</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>3</td>
<td>GLN</td>
<td>CA-CB-CG</td>
<td>6.86</td>
<td>128.48</td>
<td>113.40</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Z</td>
<td>86</td>
<td>CYS</td>
<td>CA-CB-SG</td>
<td>-6.83</td>
<td>101.71</td>
<td>114.00</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>73</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-6.80</td>
<td>116.90</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>12</td>
<td>TYR</td>
<td>CB-CG-CD1</td>
<td>-6.77</td>
<td>116.94</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>35</td>
<td>ARG</td>
<td>CD-NE-CZ</td>
<td>6.74</td>
<td>133.04</td>
<td>123.60</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>59</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>6.74</td>
<td>124.36</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>13</td>
<td>ARG</td>
<td>CD-NE-CZ</td>
<td>6.74</td>
<td>133.03</td>
<td>123.60</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>13</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-6.72</td>
<td>116.94</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>11</td>
<td>GLU</td>
<td>CA-CB-CG</td>
<td>6.70</td>
<td>128.15</td>
<td>113.40</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>50</td>
<td>VAL</td>
<td>N-CA-C</td>
<td>-6.70</td>
<td>92.91</td>
<td>111.00</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>10</td>
<td>SER</td>
<td>CB-CA-C</td>
<td>6.67</td>
<td>122.78</td>
<td>110.10</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>18</td>
<td>ARG</td>
<td>CD-NE-CZ</td>
<td>6.59</td>
<td>132.81</td>
<td>123.60</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>101</td>
<td>MET</td>
<td>CA-CB-CG</td>
<td>6.55</td>
<td>124.44</td>
<td>113.30</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>7</td>
<td>GLU</td>
<td>OE1-CD-OE2</td>
<td>6.52</td>
<td>131.13</td>
<td>123.30</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>35</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-6.47</td>
<td>117.06</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>67</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-6.45</td>
<td>117.08</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>33</td>
<td>GLY</td>
<td>O-C-N</td>
<td>-6.43</td>
<td>112.41</td>
<td>122.70</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>59</td>
<td>ASP</td>
<td>OD1-CG-OD2</td>
<td>-6.41</td>
<td>111.12</td>
<td>123.30</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>7</td>
<td>GLU</td>
<td>CA-CB-CG</td>
<td>6.41</td>
<td>127.50</td>
<td>113.40</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>73</td>
<td>ARG</td>
<td>NH1-CZ-NH2</td>
<td>6.37</td>
<td>126.41</td>
<td>119.40</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>13</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.35</td>
<td>123.48</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>21</td>
<td>ASN</td>
<td>CB-CG-OD1</td>
<td>-6.35</td>
<td>108.89</td>
<td>121.60</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>85</td>
<td>LEU</td>
<td>CA-CB-CG</td>
<td>6.35</td>
<td>129.90</td>
<td>115.30</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>68</td>
<td>MET</td>
<td>CG-SD-CE</td>
<td>6.33</td>
<td>110.33</td>
<td>100.20</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>27</td>
<td>TYR</td>
<td>CB-CG-CD2</td>
<td>6.29</td>
<td>124.78</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>35</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-6.27</td>
<td>117.17</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>76</td>
<td>TYR</td>
<td>CB-CG-CD1</td>
<td>-6.20</td>
<td>117.28</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>70</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>6.19</td>
<td>123.87</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>11</td>
<td>GLU</td>
<td>OE1-CD-OE2</td>
<td>-6.18</td>
<td>115.88</td>
<td>123.30</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>13</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.15</td>
<td>123.38</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>35</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>6.15</td>
<td>123.37</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>73</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>6.13</td>
<td>123.36</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>67</td>
<td>ARG</td>
<td>NH1-CZ-NH2</td>
<td>6.11</td>
<td>126.12</td>
<td>119.40</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>59</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>6.09</td>
<td>123.78</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>70</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>6.08</td>
<td>123.77</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>83</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>6.07</td>
<td>123.76</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>35</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-6.05</td>
<td>117.27</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>33</td>
<td>GLY</td>
<td>CA-C-O</td>
<td>6.03</td>
<td>131.46</td>
<td>120.60</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>35</td>
<td>ARG</td>
<td>CD-NE-CZ</td>
<td>6.02</td>
<td>132.03</td>
<td>123.60</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>70</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>6.01</td>
<td>123.71</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>18</td>
<td>TYR</td>
<td>CB-CG-CD2</td>
<td>-6.00</td>
<td>117.40</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>70</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.98</td>
<td>123.68</td>
<td>118.30</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>P</td>
<td>22</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.98</td>
<td>123.68</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>63</td>
<td>LYS</td>
<td>N-CA-CB</td>
<td>5.97</td>
<td>121.34</td>
<td>110.60</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>67</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>-5.96</td>
<td>117.32</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>60</td>
<td>SER</td>
<td>N-CA-CB</td>
<td>-5.96</td>
<td>101.56</td>
<td>110.50</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>62</td>
<td>LYS</td>
<td>CA-CB-CG</td>
<td>5.87</td>
<td>126.31</td>
<td>113.40</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>4</td>
<td>THR</td>
<td>CA-CB</td>
<td>5.85</td>
<td>121.42</td>
<td>110.30</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>73</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.82</td>
<td>123.21</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>63</td>
<td>LYS</td>
<td>CB-CA-C</td>
<td>-5.82</td>
<td>98.76</td>
<td>110.40</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>59</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.81</td>
<td>123.53</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>83</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>-5.79</td>
<td>113.08</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>26</td>
<td>SER</td>
<td>N-CA-CB</td>
<td>-5.79</td>
<td>101.81</td>
<td>110.50</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>28</td>
<td>THR</td>
<td>CA-CB-CG2</td>
<td>5.78</td>
<td>120.49</td>
<td>112.40</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>35</td>
<td>ARG</td>
<td>CG-CD-NE</td>
<td>5.77</td>
<td>123.91</td>
<td>111.80</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>22</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.75</td>
<td>123.48</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>62</td>
<td>LYS</td>
<td>CA-CB-CG</td>
<td>5.75</td>
<td>126.05</td>
<td>113.40</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>102</td>
<td>LYS</td>
<td>C-N-CA</td>
<td>5.74</td>
<td>136.05</td>
<td>121.70</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>4</td>
<td>THR</td>
<td>N-CA-CB</td>
<td>5.73</td>
<td>121.18</td>
<td>110.30</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>36</td>
<td>GLU</td>
<td>OE1-CD-OE2</td>
<td>-5.71</td>
<td>116.44</td>
<td>123.30</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>73</td>
<td>ARG</td>
<td>NH1-CZ-NH2</td>
<td>-5.71</td>
<td>113.12</td>
<td>119.40</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>63</td>
<td>LYS</td>
<td>CA-CB-CG</td>
<td>-5.70</td>
<td>100.86</td>
<td>113.40</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>35</td>
<td>ARG</td>
<td>CD-NE-CZ</td>
<td>5.69</td>
<td>131.56</td>
<td>123.60</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>35</td>
<td>ARG</td>
<td>CD-NE-CZ</td>
<td>5.69</td>
<td>131.56</td>
<td>123.60</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>59</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.67</td>
<td>123.40</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>11</td>
<td>GLU</td>
<td>OE1-CD-OE2</td>
<td>-5.67</td>
<td>116.50</td>
<td>123.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>11</td>
<td>GLU</td>
<td>OE1-CD-OE2</td>
<td>-5.67</td>
<td>116.50</td>
<td>123.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>35</td>
<td>ARG</td>
<td>CG-CD-NE</td>
<td>5.66</td>
<td>123.69</td>
<td>111.80</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>41</td>
<td>THR</td>
<td>N-CA-CB</td>
<td>5.66</td>
<td>121.06</td>
<td>110.30</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>75</td>
<td>THR</td>
<td>O-C-N</td>
<td>-5.64</td>
<td>113.68</td>
<td>122.70</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>13</td>
<td>ARG</td>
<td>CA-CB-CG</td>
<td>5.64</td>
<td>125.80</td>
<td>113.40</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>64</td>
<td>ALA</td>
<td>CB-CA-C</td>
<td>5.63</td>
<td>118.55</td>
<td>110.10</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>7</td>
<td>GLU</td>
<td>CA-CB-CG</td>
<td>5.62</td>
<td>125.77</td>
<td>113.40</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>84</td>
<td>LYS</td>
<td>CA-CB-CG</td>
<td>5.62</td>
<td>125.77</td>
<td>113.40</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>26</td>
<td>SER</td>
<td>N-CA-CB</td>
<td>5.62</td>
<td>118.93</td>
<td>110.50</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>22</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>-5.59</td>
<td>113.27</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>7</td>
<td>GLU</td>
<td>OE1-CD-OE2</td>
<td>5.58</td>
<td>130.00</td>
<td>123.30</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>103</td>
<td>ASN</td>
<td>CA-CB-CG</td>
<td>5.58</td>
<td>125.68</td>
<td>113.40</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>35</td>
<td>ARG</td>
<td>CA-CB-CG</td>
<td>5.58</td>
<td>125.67</td>
<td>113.40</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>67</td>
<td>ARG</td>
<td>NH1-CZ-NH2</td>
<td>5.57</td>
<td>125.53</td>
<td>119.40</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>62</td>
<td>LYS</td>
<td>CB-CD-CG</td>
<td>5.57</td>
<td>126.08</td>
<td>111.60</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>7</td>
<td>GLU</td>
<td>CG-CD-OE2</td>
<td>-5.55</td>
<td>107.19</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>67</td>
<td>ARG</td>
<td>NH1-CZ-NH2</td>
<td>5.54</td>
<td>125.49</td>
<td>119.40</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>95</td>
<td>SER</td>
<td>N-CA-CB</td>
<td>-5.54</td>
<td>102.20</td>
<td>110.50</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Y</td>
<td>73</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.52</td>
<td>117.54</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>92</td>
<td>THR</td>
<td>CB-CA-C</td>
<td>-5.50</td>
<td>96.75</td>
<td>111.60</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>22</td>
<td>ASP</td>
<td>OD1-CG-OD2</td>
<td>-5.48</td>
<td>112.89</td>
<td>123.30</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>28</td>
<td>THR</td>
<td>CA-CB-CG2</td>
<td>-5.47</td>
<td>104.74</td>
<td>112.40</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>67</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>-5.47</td>
<td>117.56</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>44</td>
<td>SER</td>
<td>CB-CA-C</td>
<td>-5.45</td>
<td>99.75</td>
<td>110.10</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>27</td>
<td>TYR</td>
<td>CB-CG-CD1</td>
<td>-5.45</td>
<td>117.73</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>48</td>
<td>PHE</td>
<td>N-CA-CB</td>
<td>5.42</td>
<td>120.35</td>
<td>110.60</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>62</td>
<td>LYS</td>
<td>N-CA-CB</td>
<td>5.41</td>
<td>120.34</td>
<td>110.60</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>41</td>
<td>THR</td>
<td>N-CA-CB</td>
<td>5.41</td>
<td>120.58</td>
<td>110.30</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>58</td>
<td>ILE</td>
<td>O-C-N</td>
<td>-5.41</td>
<td>114.05</td>
<td>122.70</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>98</td>
<td>ALA</td>
<td>N-CA-CB</td>
<td>5.38</td>
<td>117.64</td>
<td>110.10</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>13</td>
<td>ARG</td>
<td>CG-CD-NE</td>
<td>5.37</td>
<td>123.08</td>
<td>111.80</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>71</td>
<td>THR</td>
<td>CA-CB-CG2</td>
<td>-5.35</td>
<td>104.90</td>
<td>112.40</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>68</td>
<td>MET</td>
<td>N-CA-CB</td>
<td>5.35</td>
<td>120.23</td>
<td>110.60</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>22</td>
<td>ASP</td>
<td>CB-CG-OD2</td>
<td>5.33</td>
<td>123.10</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>100</td>
<td>SER</td>
<td>N-CA-CB</td>
<td>5.29</td>
<td>118.43</td>
<td>110.50</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>73</td>
<td>ARG</td>
<td>NE-CZ-NH1</td>
<td>5.28</td>
<td>122.94</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>92</td>
<td>THR</td>
<td>CA-CB-OG1</td>
<td>5.27</td>
<td>120.07</td>
<td>109.00</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>98</td>
<td>ALA</td>
<td>N-CA-CB</td>
<td>5.26</td>
<td>117.46</td>
<td>110.10</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>48</td>
<td>PHE</td>
<td>O-C-N</td>
<td>5.25</td>
<td>131.10</td>
<td>122.70</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>68</td>
<td>MET</td>
<td>CA-CB-CG</td>
<td>5.24</td>
<td>122.21</td>
<td>113.30</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>89</td>
<td>ASN</td>
<td>CA-C-N</td>
<td>5.24</td>
<td>128.73</td>
<td>117.20</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>16</td>
<td>GLN</td>
<td>CB-CG-CD</td>
<td>5.23</td>
<td>125.20</td>
<td>111.60</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>41</td>
<td>THR</td>
<td>N-CA-CB</td>
<td>5.22</td>
<td>120.21</td>
<td>110.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>93</td>
<td>PRO</td>
<td>CB-CA-C</td>
<td>-5.19</td>
<td>99.03</td>
<td>112.00</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>50</td>
<td>VAL</td>
<td>CA-CB-CG1</td>
<td>-5.18</td>
<td>103.12</td>
<td>110.90</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>35</td>
<td>ARG</td>
<td>CD-NE-CZ</td>
<td>5.16</td>
<td>130.83</td>
<td>123.60</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>35</td>
<td>ARG</td>
<td>NE-CZ-NH2</td>
<td>5.14</td>
<td>122.87</td>
<td>120.30</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>100</td>
<td>SER</td>
<td>C-N-CA</td>
<td>5.14</td>
<td>134.54</td>
<td>121.70</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>11</td>
<td>GLU</td>
<td>OE1-CD-OE2</td>
<td>-5.13</td>
<td>117.14</td>
<td>123.30</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>83</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.13</td>
<td>122.91</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>22</td>
<td>ASP</td>
<td>CB-CG-OD1</td>
<td>5.13</td>
<td>122.91</td>
<td>118.30</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>58</td>
<td>ILE</td>
<td>C-N-CA</td>
<td>5.12</td>
<td>134.49</td>
<td>121.70</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>48</td>
<td>PHE</td>
<td>N-CA-CB</td>
<td>5.06</td>
<td>119.70</td>
<td>110.60</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>63</td>
<td>LYS</td>
<td>CA-CB-CG</td>
<td>5.06</td>
<td>124.53</td>
<td>113.40</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>18</td>
<td>TYR</td>
<td>CB-CG-CD1</td>
<td>5.03</td>
<td>124.02</td>
<td>121.00</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>101</td>
<td>MET</td>
<td>CA-CB-CG</td>
<td>5.02</td>
<td>121.83</td>
<td>113.30</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>71</td>
<td>THR</td>
<td>CA-CB-OG1</td>
<td>-5.02</td>
<td>98.46</td>
<td>109.00</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>35</td>
<td>ARG</td>
<td>NH1-CZ-NH2</td>
<td>-5.01</td>
<td>113.89</td>
<td>119.40</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>102</td>
<td>LYS</td>
<td>CA-C-N</td>
<td>-5.01</td>
<td>106.17</td>
<td>117.20</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>81</td>
<td>LYS</td>
<td>CA-CB-CG</td>
<td>5.01</td>
<td>124.43</td>
<td>113.40</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>L</td>
<td>78</td>
<td>THR</td>
<td>CA-CB-CG2</td>
<td>-5.01</td>
<td>105.39</td>
<td>112.40</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>57</td>
<td>HIS</td>
<td>CA-CB-CG</td>
<td>-5.01</td>
<td>105.09</td>
<td>113.60</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>85</td>
<td>LEU</td>
<td>CB-CA-C</td>
<td>-5.00</td>
<td>100.69</td>
<td>110.20</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>79</td>
<td>GLU</td>
<td>OE1-CD-OE2</td>
<td>-5.00</td>
<td>117.30</td>
<td>123.30</td>
</tr>
</tbody>
</table>

There are no chirality outliers.

All (1) planarity outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Group</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N</td>
<td>52</td>
<td>VAL</td>
<td>Mainchain</td>
</tr>
</tbody>
</table>

5.2 Too-close contacts

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry related clashes.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>824</td>
<td>0</td>
<td>841</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>824</td>
<td>0</td>
<td>841</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>824</td>
<td>0</td>
<td>841</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>824</td>
<td>0</td>
<td>841</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>824</td>
<td>0</td>
<td>841</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>824</td>
<td>0</td>
<td>841</td>
<td>26</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>824</td>
<td>0</td>
<td>841</td>
<td>25</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>824</td>
<td>0</td>
<td>840</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>824</td>
<td>0</td>
<td>841</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>824</td>
<td>0</td>
<td>841</td>
<td>23</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>824</td>
<td>0</td>
<td>841</td>
<td>55</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>824</td>
<td>0</td>
<td>841</td>
<td>39</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>824</td>
<td>0</td>
<td>841</td>
<td>22</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>824</td>
<td>0</td>
<td>841</td>
<td>41</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>824</td>
<td>0</td>
<td>841</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>33</td>
<td>0</td>
<td>28</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>33</td>
<td>0</td>
<td>29</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>33</td>
<td>0</td>
<td>29</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>33</td>
<td>0</td>
<td>29</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>33</td>
<td>0</td>
<td>28</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>33</td>
<td>0</td>
<td>28</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>33</td>
<td>0</td>
<td>28</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Non-H</th>
<th>H(model)</th>
<th>H(added)</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>O</td>
<td>33</td>
<td>0</td>
<td>28</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>33</td>
<td>0</td>
<td>29</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td>33</td>
<td>0</td>
<td>28</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>33</td>
<td>0</td>
<td>28</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>33</td>
<td>0</td>
<td>29</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>33</td>
<td>0</td>
<td>28</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>33</td>
<td>0</td>
<td>28</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>D</td>
<td>89</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>E</td>
<td>87</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>F</td>
<td>113</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>G</td>
<td>78</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>H</td>
<td>100</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>L</td>
<td>51</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>M</td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>N</td>
<td>65</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>O</td>
<td>75</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>P</td>
<td>80</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>V</td>
<td>41</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>W</td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>X</td>
<td>81</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Y</td>
<td>63</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>Z</td>
<td>61</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>13904</td>
<td>0</td>
<td>13011</td>
<td>351</td>
<td>0</td>
</tr>
</tbody>
</table>

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 14.

All (351) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:O:104:A32:H5’1</td>
<td>1:P:34:LYS:HB2</td>
<td>1.33</td>
<td>1.06</td>
</tr>
<tr>
<td>2:D:104:A32:H5’2</td>
<td>1:E:34:LYS:HB2</td>
<td>1.47</td>
<td>0.97</td>
</tr>
<tr>
<td>1:N:57:HIS:HB3</td>
<td>1:N:62:LYS:HZ2</td>
<td>1.29</td>
<td>0.96</td>
</tr>
<tr>
<td>1:W:1:ALA:HB1</td>
<td>1:W:2:PRO:HD2</td>
<td>1.53</td>
<td>0.89</td>
</tr>
<tr>
<td>1:V:34:LYS:HB3</td>
<td>2:Z:104:A32:H2’2</td>
<td>1.52</td>
<td>0.89</td>
</tr>
<tr>
<td>1:V:47:THR:HG21</td>
<td>1:Z:3:GLN:HB3</td>
<td>1.55</td>
<td>0.89</td>
</tr>
<tr>
<td>2:O:104:A32:H9’1</td>
<td>2:O:104:A32:H4’1</td>
<td>1.55</td>
<td>0.89</td>
</tr>
<tr>
<td>1:H:56:GLN:HE21</td>
<td>1:H:56:GLN:H</td>
<td>1.20</td>
<td>0.88</td>
</tr>
<tr>
<td>1:Y:58:ILE:HG21</td>
<td>2:Y:104:A32:H7’2</td>
<td>1.58</td>
<td>0.85</td>
</tr>
<tr>
<td>1:E:16:GLN:HE21</td>
<td>1:E:89:ASN:HD22</td>
<td>1.25</td>
<td>0.84</td>
</tr>
<tr>
<td>1:V:1:ALA:HB1</td>
<td>1:V:2:PRO:HD2</td>
<td>1.58</td>
<td>0.83</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:P:56:GLN:HE21</td>
<td>1:P:56:GLN:H</td>
<td>1.25</td>
<td>0.82</td>
</tr>
<tr>
<td>1:Z:11:GLU:HB3</td>
<td>2:Z:104:A32:H5'1</td>
<td>1.63</td>
<td>0.81</td>
</tr>
<tr>
<td>1:N:1:ALA:HB1</td>
<td>1:N:2:PRO:HD2</td>
<td>1.61</td>
<td>0.81</td>
</tr>
<tr>
<td>1:Y:3:GLN:HG2</td>
<td>1:Z:93:PRO:HG3</td>
<td>1.64</td>
<td>0.78</td>
</tr>
<tr>
<td>1:Z:56:GLN:H</td>
<td>1:Z:56:GLN:HE21</td>
<td>1.28</td>
<td>0.78</td>
</tr>
<tr>
<td>1:N:57:HIS:CB</td>
<td>1:N:62:LYS:HZ2</td>
<td>1.97</td>
<td>0.77</td>
</tr>
<tr>
<td>1:O:4:THR:OG1</td>
<td>1:O:7:GLU:HG2</td>
<td>1.85</td>
<td>0.77</td>
</tr>
<tr>
<td>1:M:103:ASN:HB2</td>
<td>3:M:133:HOH:O</td>
<td>1.85</td>
<td>0.76</td>
</tr>
<tr>
<td>1:N:57:HIS:HB3</td>
<td>1:N:62:LYS:NZ</td>
<td>2.00</td>
<td>0.76</td>
</tr>
<tr>
<td>1:N:103:ASN:HD22</td>
<td>1:O:23:LYS:HE2</td>
<td>1.51</td>
<td>0.76</td>
</tr>
<tr>
<td>1:V:3:GLN:HG2</td>
<td>1:W:93:PRO:HG3</td>
<td>1.69</td>
<td>0.75</td>
</tr>
<tr>
<td>1:W:1:ALA:HB1</td>
<td>1:W:2:PRO:CD</td>
<td>2.16</td>
<td>0.75</td>
</tr>
<tr>
<td>2:O:104:A32:C9'1</td>
<td>2:O:104:A32:H4'1</td>
<td>2.18</td>
<td>0.74</td>
</tr>
<tr>
<td>1:X:26:SER:HB3</td>
<td>1:X:41:THR:OG1</td>
<td>1.88</td>
<td>0.73</td>
</tr>
<tr>
<td>1:N:62:LYS:HD2</td>
<td>3:N:142:HOH:O</td>
<td>1.88</td>
<td>0.73</td>
</tr>
<tr>
<td>2:O:104:A32:H5'1</td>
<td>1:P:34:LYS:CB</td>
<td>2.15</td>
<td>0.72</td>
</tr>
<tr>
<td>1:M:65:ILE:HG22</td>
<td>1:M:69:LYS:HE2</td>
<td>1.72</td>
<td>0.72</td>
</tr>
<tr>
<td>2:O:104:A32:C5B</td>
<td>1:P:34:LYS:HB2</td>
<td>2.15</td>
<td>0.72</td>
</tr>
<tr>
<td>1:O:16:GLN:HE21</td>
<td>1:O:89:ASN:HD22</td>
<td>1.37</td>
<td>0.70</td>
</tr>
<tr>
<td>1:V:19:THR:HA</td>
<td>1:V:84:LYS:HG3</td>
<td>1.72</td>
<td>0.70</td>
</tr>
<tr>
<td>1:P:20:ILE:HG13</td>
<td>1:P:85:LEU:HD12</td>
<td>1.74</td>
<td>0.69</td>
</tr>
<tr>
<td>1:E:16:GLN:NE2</td>
<td>1:E:89:ASN:HD22</td>
<td>1.91</td>
<td>0.69</td>
</tr>
<tr>
<td>1:Y:65:ILE:HG22</td>
<td>1:Y:69:LYS:HE2</td>
<td>1.75</td>
<td>0.69</td>
</tr>
<tr>
<td>1:M:26:SER:HB3</td>
<td>1:M:41:THR:OG1</td>
<td>1.94</td>
<td>0.68</td>
</tr>
<tr>
<td>1:V:1:ALA:HB1</td>
<td>1:V:2:PRO:CD</td>
<td>2.25</td>
<td>0.67</td>
</tr>
<tr>
<td>1:V:2:PRO:HG3</td>
<td>1:V:11:GLU:OE2</td>
<td>1.94</td>
<td>0.67</td>
</tr>
<tr>
<td>1:D:25:LEU:O</td>
<td>1:H:103:ASN:HB2</td>
<td>1.95</td>
<td>0.66</td>
</tr>
<tr>
<td>1:X:92:THR:HG22</td>
<td>1:X:93:PRO:HA</td>
<td>1.77</td>
<td>0.66</td>
</tr>
<tr>
<td>1:M:82:ILE:HG12</td>
<td>1:M:99:ILE:HD11</td>
<td>1.75</td>
<td>0.66</td>
</tr>
<tr>
<td>1:N:9:CYS:HB3</td>
<td>3:N:159:HOH:O</td>
<td>1.94</td>
<td>0.66</td>
</tr>
<tr>
<td>1:V:34:LYS:CB</td>
<td>2:Z:104:A32:H2'2</td>
<td>2.26</td>
<td>0.66</td>
</tr>
<tr>
<td>2:D:104:A32:H4'1</td>
<td>2:D:104:A32:H9'1</td>
<td>1.79</td>
<td>0.65</td>
</tr>
<tr>
<td>1:Y:48:PHE:CD2</td>
<td>1:Y:87:VAL:HG11</td>
<td>2.33</td>
<td>0.64</td>
</tr>
<tr>
<td>2:D:104:A32:H5'2</td>
<td>1:E:34:LYS:CB</td>
<td>2.27</td>
<td>0.64</td>
</tr>
<tr>
<td>1:L:9:CYS:HB2</td>
<td>1:L:17:ILE:HD11</td>
<td>1.81</td>
<td>0.63</td>
</tr>
<tr>
<td>1:N:58:ILE:O</td>
<td>1:N:62:LYS:NZ</td>
<td>2.30</td>
<td>0.63</td>
</tr>
</tbody>
</table>

Continued on next page...
<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:L:104:A32:H6'1</td>
<td>3:L:154:HOH:O</td>
<td>1.96</td>
<td>0.63</td>
</tr>
<tr>
<td>2:O:104:A32:C4'</td>
<td>2:O:104:A32:H9'1</td>
<td>2.29</td>
<td>0.62</td>
</tr>
<tr>
<td>2:D:104:A32:N2'</td>
<td>1:E:33:GLY:HA3</td>
<td>2.14</td>
<td>0.62</td>
</tr>
<tr>
<td>1:V:65:ILE:HG22</td>
<td>1:V:69:LYS:HE2</td>
<td>1.83</td>
<td>0.61</td>
</tr>
<tr>
<td>2:D:104:A32:C5B</td>
<td>1:E:34:LYS:HB2</td>
<td>2.27</td>
<td>0.60</td>
</tr>
<tr>
<td>1:Y:65:ILE:HG12</td>
<td>1:Z:31:MET:HE3</td>
<td>1.84</td>
<td>0.60</td>
</tr>
<tr>
<td>1:V:93:PRO:HG3</td>
<td>1:Z:3:GLN:HG2</td>
<td>1.83</td>
<td>0.60</td>
</tr>
<tr>
<td>1:P:56:GLN:HE21</td>
<td>1:P:56:GLN:N</td>
<td>1.99</td>
<td>0.60</td>
</tr>
<tr>
<td>1:Y:51:GLU:OE1</td>
<td>1:Y:91:LYS:HE2</td>
<td>2.02</td>
<td>0.60</td>
</tr>
<tr>
<td>1:P:13:ARG:HG3</td>
<td>1:P:14:ASN:N</td>
<td>2.16</td>
<td>0.60</td>
</tr>
<tr>
<td>1:Z:88:TRP:CH2</td>
<td>2:Z:104:A32:H62</td>
<td>2.37</td>
<td>0.60</td>
</tr>
<tr>
<td>1:Y:58:ILE:HD13</td>
<td>2:Y:104:A32:H7'2</td>
<td>1.84</td>
<td>0.59</td>
</tr>
<tr>
<td>1:W:27:TYR:OH</td>
<td>1:W:29:GLU:OE1</td>
<td>2.18</td>
<td>0.59</td>
</tr>
<tr>
<td>1:Y:48:PHE:CE2</td>
<td>1:Y:87:VAL:HG11</td>
<td>2.38</td>
<td>0.59</td>
</tr>
<tr>
<td>1:M:2:PRO:HB3</td>
<td>1:M:7:GLU:HG2</td>
<td>1.84</td>
<td>0.58</td>
</tr>
<tr>
<td>1:V:83:ASP:OD2</td>
<td>1:V:84:LYS:HD2</td>
<td>2.03</td>
<td>0.58</td>
</tr>
<tr>
<td>1:X:92:THR:HA</td>
<td>1:X:93:PRO:C</td>
<td>2.22</td>
<td>0.58</td>
</tr>
<tr>
<td>1:V:12:TYR:CE2</td>
<td>2:V:104:A32:H6'2</td>
<td>2.39</td>
<td>0.58</td>
</tr>
<tr>
<td>1:M:44:SER:OG</td>
<td>1:M:46:GLU:HG3</td>
<td>2.04</td>
<td>0.58</td>
</tr>
<tr>
<td>1:Y:89:ASN:HD22</td>
<td>1:Y:89:ASN:C</td>
<td>2.05</td>
<td>0.58</td>
</tr>
<tr>
<td>1:X:1:ALA:HB1</td>
<td>1:X:2:PRO:HD2</td>
<td>1.86</td>
<td>0.57</td>
</tr>
<tr>
<td>1:P:2:PRO:HG3</td>
<td>1:P:8:LEU:HD12</td>
<td>1.85</td>
<td>0.57</td>
</tr>
<tr>
<td>1:Z:51:GLU:HG3</td>
<td>1:Z:95:SER:HB2</td>
<td>1.87</td>
<td>0.57</td>
</tr>
<tr>
<td>1:V:35:ARG:NH1</td>
<td>2:Z:104:A32:O1B</td>
<td>2.38</td>
<td>0.57</td>
</tr>
<tr>
<td>1:G:61:GLN:HG2</td>
<td>1:H:31:MET:O</td>
<td>2.05</td>
<td>0.56</td>
</tr>
<tr>
<td>1:Z:11:GLU:O</td>
<td>2:Z:104:A32:H7'2</td>
<td>2.06</td>
<td>0.56</td>
</tr>
<tr>
<td>1:V:12:TYR:CE2</td>
<td>2:V:104:A32:H6'2</td>
<td>2.40</td>
<td>0.56</td>
</tr>
<tr>
<td>1:M:102:LYS:NZ</td>
<td>1:N:25:LEU:HD11</td>
<td>2.20</td>
<td>0.56</td>
</tr>
<tr>
<td>1:P:20:ILE:HG13</td>
<td>1:P:85:LEU:CD1</td>
<td>2.35</td>
<td>0.56</td>
</tr>
<tr>
<td>1:V:60:SER:O</td>
<td>1:W:36:GLU:HG2</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>1:L:11:GLU:O</td>
<td>2:L:104:A32:H7'1</td>
<td>2.06</td>
<td>0.55</td>
</tr>
<tr>
<td>1:X:11:GLU:OE2</td>
<td>1:Y:35:ARG:NH2</td>
<td>2.34</td>
<td>0.55</td>
</tr>
<tr>
<td>1:X:8:LEU:HD11</td>
<td>1:Y:30:SER:HB2</td>
<td>1.88</td>
<td>0.55</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:Z:56:GLN:HG2</td>
<td>1:Z:57:HIS:N</td>
<td>2.20</td>
<td>0.55</td>
</tr>
<tr>
<td>1:M:51:GLU:HG3</td>
<td>1:M:95:SER:OG</td>
<td>2.06</td>
<td>0.54</td>
</tr>
<tr>
<td>1:O:20:ILE:HG13</td>
<td>1:O:85:LEU:HD12</td>
<td>1.88</td>
<td>0.54</td>
</tr>
<tr>
<td>1:Z:17:ILE:HG21</td>
<td>1:Z:84:LYS:HD3</td>
<td>1.90</td>
<td>0.54</td>
</tr>
<tr>
<td>1:L:76:TYR:OH</td>
<td>1:P:103:ASN:HB2</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:V:17:ILE:HG23</td>
<td>1:V:84:LYS:HG2</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:M:84:LYS:HB2</td>
<td>1:M:100:SER:OG</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>1:O:1:ALA:HB1</td>
<td>1:O:2:PRO:HD2</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:W:88:TRP:HB2</td>
<td>1:W:95:SER:HB3</td>
<td>1.89</td>
<td>0.54</td>
</tr>
<tr>
<td>1:V:35:ARG:HB2</td>
<td>1:Z:12:TYR:OH</td>
<td>2.07</td>
<td>0.54</td>
</tr>
<tr>
<td>1:D:34:LYS:HE2</td>
<td>3:D:139:HOH:O</td>
<td>2.08</td>
<td>0.54</td>
</tr>
<tr>
<td>1:M:102:LYS:HZ3</td>
<td>1:N:25:LEU:HD11</td>
<td>1.72</td>
<td>0.54</td>
</tr>
<tr>
<td>1:L:52:VAL:HG12</td>
<td>1:L:53:PRO:O</td>
<td>2.07</td>
<td>0.53</td>
</tr>
<tr>
<td>1:F:3:GLN:NE2</td>
<td>1:G:92:THR:HG22</td>
<td>2.24</td>
<td>0.53</td>
</tr>
<tr>
<td>1:L:58:ILE:HD13</td>
<td>1:M:34:LYS:HE2</td>
<td>1.90</td>
<td>0.53</td>
</tr>
<tr>
<td>1:H:56:GLN:HE21</td>
<td>1:H:56:GLN:N</td>
<td>2.00</td>
<td>0.53</td>
</tr>
<tr>
<td>1:Y:102:LYS:O</td>
<td>1:Y:103:ASN:HB2</td>
<td>2.09</td>
<td>0.53</td>
</tr>
<tr>
<td>1:D:23:LYS:HE2</td>
<td>1:H:103:ASN:ND2</td>
<td>2.25</td>
<td>0.52</td>
</tr>
<tr>
<td>1:N:12:TYR:OH</td>
<td>1:O:35:ARG:HG2</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>1:H:43:LYS:HG3</td>
<td>3:H:119:HOH:O</td>
<td>2.08</td>
<td>0.52</td>
</tr>
<tr>
<td>1:Y:89:ASN:HD22</td>
<td>1:Y:90:ASN:N</td>
<td>2.08</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:75:THR:HG23</td>
<td>1:F:80:THR:HB</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>1:L:2:PRO:HD3</td>
<td>1:M:35:ARG:CZ</td>
<td>2.40</td>
<td>0.52</td>
</tr>
<tr>
<td>1:L:93:PRO:HG3</td>
<td>1:P:3:GLN:HG2</td>
<td>1.90</td>
<td>0.52</td>
</tr>
<tr>
<td>1:V:13:ARG:O</td>
<td>1:V:14:ASN:HB2</td>
<td>2.09</td>
<td>0.52</td>
</tr>
<tr>
<td>1:P:1:ALA:HB1</td>
<td>1:P:2:PRO:HD2</td>
<td>1.91</td>
<td>0.52</td>
</tr>
<tr>
<td>1:F:103:ASN:HD22</td>
<td>1:G:23:LYS:NZ</td>
<td>2.07</td>
<td>0.52</td>
</tr>
<tr>
<td>1:L:62:LYS:HZ1</td>
<td>1:L:63:LYS:HE2</td>
<td>1.75</td>
<td>0.52</td>
</tr>
<tr>
<td>1:N:1:ALA:HB1</td>
<td>1:N:2:PRO:CD</td>
<td>2.34</td>
<td>0.52</td>
</tr>
<tr>
<td>1:V:100:SER:HB2</td>
<td>1:W:28:THR:OG1</td>
<td>2.10</td>
<td>0.52</td>
</tr>
<tr>
<td>2:D:104:A32:C4'</td>
<td>2:D:104:A32:H9'1</td>
<td>2.40</td>
<td>0.51</td>
</tr>
<tr>
<td>1:E:12:TYR:CZ</td>
<td>1:F:32:ALA:HB1</td>
<td>2.45</td>
<td>0.51</td>
</tr>
<tr>
<td>1:X:103:ASN:O</td>
<td>1:Y:25:LEU:HD12</td>
<td>2.09</td>
<td>0.51</td>
</tr>
<tr>
<td>2:F:104:A32:H6'1</td>
<td>3:F:216:HOH:O</td>
<td>2.10</td>
<td>0.51</td>
</tr>
<tr>
<td>1:L:62:LYS:NZ</td>
<td>1:L:63:LYS:HG2</td>
<td>2.26</td>
<td>0.51</td>
</tr>
<tr>
<td>1:W:100:SER:HB2</td>
<td>3:W:142:HOH:O</td>
<td>2.09</td>
<td>0.51</td>
</tr>
<tr>
<td>1:L:21:ASN:HD21</td>
<td>1:L:81:LYS:HZ1</td>
<td>1.58</td>
<td>0.51</td>
</tr>
<tr>
<td>2:W:104:A32:H2A1</td>
<td>1:X:34:LYS:HB2</td>
<td>1.93</td>
<td>0.51</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:M:49:GLN:HB3</td>
<td>1:M:93:PRO:HG2</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>1:N:43:LYS:HG2</td>
<td>3:N:147:HOH:O</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:P:13:ARG:O</td>
<td>1:P:14:ASN:HB2</td>
<td>2.10</td>
<td>0.50</td>
</tr>
<tr>
<td>1:Z:11:GLU:HB3</td>
<td>2:Z:104:A32:C5B</td>
<td>2.38</td>
<td>0.50</td>
</tr>
<tr>
<td>1:W:93:PRO:HA</td>
<td>3:W:140:HOH:O</td>
<td>2.11</td>
<td>0.50</td>
</tr>
<tr>
<td>1:V:101:MET:HE2</td>
<td>1:W:76:TYR:HE2</td>
<td>1.76</td>
<td>0.50</td>
</tr>
<tr>
<td>1:X:51:GLU:HG3</td>
<td>1:X:95:SER:OG</td>
<td>2.12</td>
<td>0.50</td>
</tr>
<tr>
<td>1:D:2:PRO:HB3</td>
<td>1:D:7:GLU:HG2</td>
<td>1.93</td>
<td>0.50</td>
</tr>
<tr>
<td>1:X:8:LEU:HD11</td>
<td>1:Y:30:SER:CB</td>
<td>2.40</td>
<td>0.50</td>
</tr>
<tr>
<td>1:Y:12:TYR:HB2</td>
<td>1:Y:15:THR:HG21</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>1:Z:2:PRO:HB3</td>
<td>1:Z:7:GLU:HB2</td>
<td>1.92</td>
<td>0.49</td>
</tr>
<tr>
<td>1:N:30:SER:O</td>
<td>1:N:36:GLU:HA</td>
<td>2.12</td>
<td>0.49</td>
</tr>
<tr>
<td>1:V:2:PRO:HD3</td>
<td>1:W:35:ARG:CZ</td>
<td>2.42</td>
<td>0.49</td>
</tr>
<tr>
<td>1:W:37:MET:HE1</td>
<td>1:W:39:ILE:HG12</td>
<td>1.93</td>
<td>0.49</td>
</tr>
<tr>
<td>1:L:9:CYS:CB</td>
<td>1:L:17:ILE:HD11</td>
<td>2.43</td>
<td>0.49</td>
</tr>
<tr>
<td>1:E:82:ILE:HG12</td>
<td>1:E:99:ILE:HD11</td>
<td>1.95</td>
<td>0.49</td>
</tr>
<tr>
<td>1:L:35:ARG:HB3</td>
<td>1:P:8:LEU:HD11</td>
<td>1.94</td>
<td>0.49</td>
</tr>
<tr>
<td>1:V:20:ILE:HG21</td>
<td>1:V:42:PHE:CE1</td>
<td>2.47</td>
<td>0.49</td>
</tr>
<tr>
<td>1:V:30:SER:HB3</td>
<td>1:V:35:ARG:O</td>
<td>2.13</td>
<td>0.49</td>
</tr>
<tr>
<td>1:W:78:THR:O</td>
<td>1:W:79:GLU:C</td>
<td>2.52</td>
<td>0.48</td>
</tr>
<tr>
<td>1:Z:88:TRP:CZ3</td>
<td>2:Z:104:A32:H62</td>
<td>2.48</td>
<td>0.48</td>
</tr>
<tr>
<td>2:O:104:A32:C4'</td>
<td>2:O:104:A32:C9'</td>
<td>2.86</td>
<td>0.48</td>
</tr>
<tr>
<td>1:V:49:GLN:O</td>
<td>1:V:96:ILE:HG13</td>
<td>2.13</td>
<td>0.48</td>
</tr>
<tr>
<td>1:Y:81:LYS:HB2</td>
<td>1:Y:81:LYS:NZ</td>
<td>2.28</td>
<td>0.48</td>
</tr>
<tr>
<td>1:X:30:SER:O</td>
<td>1:X:36:GLU:HA</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>1:L:61:GLN:HG2</td>
<td>1:M:31:MET:O</td>
<td>2.14</td>
<td>0.48</td>
</tr>
<tr>
<td>1:V:75:THR:HG23</td>
<td>1:V:80:THR:HB</td>
<td>1.96</td>
<td>0.48</td>
</tr>
<tr>
<td>1:P:43:LYS:HB2</td>
<td>3:P:139:HOH:O</td>
<td>2.13</td>
<td>0.47</td>
</tr>
<tr>
<td>1:V:16:GLN:HB2</td>
<td>1:V:89:ASN:ND2</td>
<td>2.29</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:3:GLN:HG2</td>
<td>1:E:93:PRO:HD3</td>
<td>1.96</td>
<td>0.47</td>
</tr>
<tr>
<td>1:F:103:ASN:HB3</td>
<td>1:G:23:LYS:HZ1</td>
<td>1.79</td>
<td>0.47</td>
</tr>
<tr>
<td>1:X:21:ASN:OD1</td>
<td>1:X:81:LYS:HD2</td>
<td>2.14</td>
<td>0.47</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:V:80:THR:HG21</td>
<td>1:V:101:MET:CE</td>
<td>2.43</td>
<td>0.47</td>
</tr>
<tr>
<td>1:W:32:ALA:O</td>
<td>1:W:33:GLY:C</td>
<td>2.52</td>
<td>0.47</td>
</tr>
<tr>
<td>1:X:103:ASN:ND2</td>
<td>1:Y:23:LYS:NZ</td>
<td>2.63</td>
<td>0.47</td>
</tr>
<tr>
<td>1:P:56:GLN:NE2</td>
<td>1:P:56:GLN:H</td>
<td>2.03</td>
<td>0.47</td>
</tr>
<tr>
<td>1:V:93:PRO:HG3</td>
<td>1:Z:3:GLN:CG</td>
<td>2.43</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:101:MET:HE3</td>
<td>1:E:77:LEU:HD21</td>
<td>1.97</td>
<td>0.47</td>
</tr>
<tr>
<td>1:D:62:LYS:HD2</td>
<td>1:D:62:LYS:O</td>
<td>2.15</td>
<td>0.47</td>
</tr>
<tr>
<td>1:V:61:GLN:NE2</td>
<td>1:W:33:GLY:H</td>
<td>2.12</td>
<td>0.47</td>
</tr>
<tr>
<td>1:Y:91:LYS:NZ</td>
<td>2:Y:104:A32:O3</td>
<td>2.41</td>
<td>0.47</td>
</tr>
<tr>
<td>2:D:104:A32:H4'1</td>
<td>2:D:104:A32:C9'</td>
<td>2.45</td>
<td>0.47</td>
</tr>
<tr>
<td>2:W:104:A32:H8'1</td>
<td>2:W:104:A32:H3'1</td>
<td>1.75</td>
<td>0.47</td>
</tr>
<tr>
<td>1:O:20:ILE:CG1</td>
<td>1:O:85:LEU:HD12</td>
<td>2.45</td>
<td>0.47</td>
</tr>
<tr>
<td>1:W:91:LYS:O</td>
<td>1:W:94:ASN:ND2</td>
<td>2.47</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:12:TYR:CE1</td>
<td>2:F:104:A32:H7'2</td>
<td>2.50</td>
<td>0.46</td>
</tr>
<tr>
<td>2:G:104:A32:H2'1</td>
<td>2:G:104:A32:H51</td>
<td>1.97</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:103:ASN:HD22</td>
<td>1:G:23:LYS:HZ3</td>
<td>1.63</td>
<td>0.46</td>
</tr>
<tr>
<td>1:O:33:GLY:O</td>
<td>1:O:34:LYS:HB2</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:X:35:ARG:O</td>
<td>1:X:37:MET:HG2</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:D:16:GLN:OE1</td>
<td>1:D:89:ASN:HB3</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:V:57:HIS:HA</td>
<td>1:V:61:GLN:OE1</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:H:43:LYS:O</td>
<td>1:Z:13:ARG:HD3</td>
<td>2.15</td>
<td>0.46</td>
</tr>
<tr>
<td>1:V:101:MET:HE1</td>
<td>1:W:77:LEU:HD21</td>
<td>1.98</td>
<td>0.46</td>
</tr>
<tr>
<td>1:Y:18:TYR:O</td>
<td>1:Y:84:LYS:HA</td>
<td>2.16</td>
<td>0.46</td>
</tr>
<tr>
<td>1:V:99:ILE:HG12</td>
<td>1:V:100:SER:H</td>
<td>1.79</td>
<td>0.46</td>
</tr>
<tr>
<td>1:Y:88:TRP:CE2</td>
<td>2:Y:104:A32:H51</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>1:L:89:ASN:HA</td>
<td>1:L:94:ASN:ND2</td>
<td>2.30</td>
<td>0.46</td>
</tr>
<tr>
<td>1:O:16:GLN:HG2</td>
<td>1:O:18:TYR:CE1</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>1:V:12:TYR:CE1</td>
<td>2:V:104:A32:H2A1</td>
<td>2.51</td>
<td>0.46</td>
</tr>
<tr>
<td>1:Z:20:ILE:O</td>
<td>1:Z:21:ASN:C</td>
<td>2.54</td>
<td>0.46</td>
</tr>
<tr>
<td>1:F:103:ASN:ND2</td>
<td>1:G:79:GLU:OE2</td>
<td>2.34</td>
<td>0.45</td>
</tr>
<tr>
<td>1:W:7:GLU:O</td>
<td>1:W:8:LEU:C</td>
<td>2.55</td>
<td>0.45</td>
</tr>
<tr>
<td>1:G:57:HIS:O</td>
<td>1:G:62:LYS:NZ</td>
<td>2.50</td>
<td>0.45</td>
</tr>
<tr>
<td>1:M:88:TRP:HE3</td>
<td>1:M:95:SER:HB3</td>
<td>1.82</td>
<td>0.45</td>
</tr>
</tbody>
</table>

Continued on next page...
### Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:D:80:THR:HG21 | 1:D:101:MET:CE | 2.46 | 0.45
1:H:9:CYS:HB2 | 1:H:17:ILE:HD11 | 1.98 | 0.45
1:V:75:THR:HG23 | 1:V:80:THR:CG2 | 2.46 | 0.45
1:Z:10:SER:HB2 | 3:Z:146:HOH:O | 2.16 | 0.45
1:N:48:PHE:CD2 | 1:N:87:VAL:HG11 | 2.51 | 0.45
1:V:20:ILE:O | 1:V:21:ASN:C | 2.54 | 0.45
1:W:64:ALA:HB1 | 1:X:31:MET:HA | 1.98 | 0.45
1:E:44:SER:HA | 3:E:146:HOH:O | 2.17 | 0.45
1:X:8:LEU:CD1 | 1:Y:30:SER:HB2 | 2.46 | 0.45
1:N:20:ILE:HG21 | 1:N:42:PHE:CE1 | 2.52 | 0.45
1:D:102:LYS:HE3 | 1:E:25:LEU:HD11 | 1.98 | 0.45
2:O:104:A32:H5'1 | 1:P:34:LYS:CG | 2.47 | 0.45
1:P:9:CYS:O | 1:P:10:SER:C | 2.55 | 0.45
1:F:11:GLU:OE1 | 2:F:104:A32:H3'1 | 2.18 | 0.44
1:L:101:MET:HE2 | 1:M:76:TYR:HE2 | 1.82 | 0.44
1:W:20:ILE:HD13 | 1:W:42:PHE:CE2 | 2.51 | 0.44
1:G:20:ILE:HG21 | 1:G:42:PHE:CE1 | 2.52 | 0.44
1:V:17:ILE:CG2 | 1:V:84:LYS:HG2 | 2.47 | 0.44
1:L:21:ASN:O | 1:L:22:ASP:HB2 | 2.17 | 0.44
1:P:86:CYS:HB3 | 1:P:98:ALA:HB3 | 1.98 | 0.44
1:W:33:GLY:O | 1:W:34:LYS:HB2 | 2.18 | 0.44
1:G:20:ILE:O | 1:G:21:ASN:C | 2.55 | 0.44
2:M:104:A32:O5 | 2:M:104:A32:H2'1 | 2.16 | 0.44
2:L:104:A32:H6A1 | 1:M:34:LYS:HD2 | 2.00 | 0.44
1:W:88:TRP:CH2 | 2:W:104:A32:H62 | 2.52 | 0.44
3:H:164:HOH:O | 1:Z:13:ARG:HD2 | 2.18 | 0.44
1:Z:44:SER:OG | 1:Z:46:GLU:OE1 | 2.36 | 0.44
1:V:75:THR:HG23 | 1:V:80:THR:HG22 | 2.00 | 0.44
1:Y:85:LEU:HD13 | 1:Y:96:ILE:HG12 | 2.00 | 0.44
1:V:58:ILE:HD11 | 1:W:33:GLY:HA2 | 2.00 | 0.44
1:G:58:ILE:CD1 | 1:G:60:SER:OG | 2.66 | 0.43
1:X:85:LEU:HD23 | 1:X:99:ILE:HG13 | 2.00 | 0.43
1:Y:57:HIS:NE2 | 2:Y:104:A32:H61 | 2.33 | 0.43
1:D:75:THR:HG23 | 1:D:80:THR:HB | 2.00 | 0.43

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2:E:104:A32:H3'1</td>
<td>2:E:104:A32:H8'1</td>
<td>1.46</td>
<td>0.43</td>
</tr>
<tr>
<td>1:O:2:PRO:CB</td>
<td>1:O:7:GLU:HG3</td>
<td>2.48</td>
<td>0.43</td>
</tr>
<tr>
<td>1:V:35:ARG:HA</td>
<td>1:V:35:ARG:HD3</td>
<td>1.73</td>
<td>0.43</td>
</tr>
<tr>
<td>1:V:19:THR:HG23</td>
<td>1:V:84:LYS:HE2</td>
<td>1.99</td>
<td>0.43</td>
</tr>
<tr>
<td>1:Y:49:GLN:HB3</td>
<td>1:Y:93:PRO:HG2</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>1:Z:91:LYS:NZ</td>
<td>2:Z:104:A32:O4</td>
<td>2.51</td>
<td>0.43</td>
</tr>
<tr>
<td>2:F:104:A32:H5'1</td>
<td>2:F:104:A32:H8'1</td>
<td>1.50</td>
<td>0.43</td>
</tr>
<tr>
<td>1:V:30:SER:O</td>
<td>1:V:36:GLU:HA</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:G:92:THR:HA</td>
<td>1:G:93:PRO:C</td>
<td>2.38</td>
<td>0.43</td>
</tr>
<tr>
<td>1:M:85:LEU:HD23</td>
<td>1:M:99:ILE:HG13</td>
<td>2.00</td>
<td>0.43</td>
</tr>
<tr>
<td>2:V:104:A32:H2'1</td>
<td>2:V:104:A32:H11</td>
<td>1.78</td>
<td>0.43</td>
</tr>
<tr>
<td>1:W:26:SER:HB3</td>
<td>1:W:41:THR:OG1</td>
<td>2.18</td>
<td>0.43</td>
</tr>
<tr>
<td>1:V:35:ARG:HH11</td>
<td>1:V:35:ARG:HG2</td>
<td>1.84</td>
<td>0.43</td>
</tr>
<tr>
<td>1:F:67:ARG:HG2</td>
<td>1:G:29:GLU:OE2</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:G:59:ASP:HA</td>
<td>1:G:62:LYS:HG2</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>1:G:8:LEU:C</td>
<td>1:G:8:LEU:HD23</td>
<td>2.39</td>
<td>0.43</td>
</tr>
<tr>
<td>1:Y:21:ASN:OD1</td>
<td>1:Y:81:LYS:HD3</td>
<td>2.17</td>
<td>0.43</td>
</tr>
<tr>
<td>1:P:20:ILE:HG21</td>
<td>1:P:42:PHE:CE2</td>
<td>2.54</td>
<td>0.43</td>
</tr>
<tr>
<td>1:Z:6:THR:HG23</td>
<td>1:Z:17:ILE:HD12</td>
<td>2.01</td>
<td>0.43</td>
</tr>
<tr>
<td>2:E:104:A32:H6'1</td>
<td>3:E:191:HOH:O</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:X:67:ARG:HG2</td>
<td>1:Y:29:GLU:OE2</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:Y:78:THR:O</td>
<td>1:Y:79:GLU:HB2</td>
<td>2.19</td>
<td>0.43</td>
</tr>
<tr>
<td>1:L:102:LYS:HE3</td>
<td>1:M:25:LEU:HD11</td>
<td>2.00</td>
<td>0.42</td>
</tr>
<tr>
<td>1:V:62:LYS:HE3</td>
<td>1:V:63:LYS:HG2</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:Z:31:MET:HB2</td>
<td>1:Z:31:MET:HE3</td>
<td>1.83</td>
<td>0.42</td>
</tr>
<tr>
<td>1:H:9:CYS:CB</td>
<td>1:H:17:ILE:HD11</td>
<td>2.49</td>
<td>0.42</td>
</tr>
<tr>
<td>1:M:6:THR:HG23</td>
<td>1:M:17:ILE:HG13</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:V:58:ILE:HG13</td>
<td>1:V:61:GLN:HG3</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:W:1:ALA:CB</td>
<td>1:W:2:PRO:CD</td>
<td>2.87</td>
<td>0.42</td>
</tr>
<tr>
<td>1:Y:20:ILE:HG21</td>
<td>1:Y:42:PHE:CZ</td>
<td>2.54</td>
<td>0.42</td>
</tr>
<tr>
<td>1:E:9:CYS:HB3</td>
<td>3:E:122:HOH:O</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:M:87:VAL:HA</td>
<td>1:M:95:SER:O</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:P:22:ASP:HA</td>
<td>1:P:81:LYS:HG3</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>2:D:104:A32:H8'1</td>
<td>1:E:34:LYS:HE2</td>
<td>2.02</td>
<td>0.42</td>
</tr>
<tr>
<td>1:F:102:LYS:HE3</td>
<td>1:F:102:LYS:HB2</td>
<td>1.82</td>
<td>0.42</td>
</tr>
<tr>
<td>1:Y:99:ILE:HG22</td>
<td>1:Z:29:GLU:HB3</td>
<td>2.01</td>
<td>0.42</td>
</tr>
<tr>
<td>1:Z:15:THR:O</td>
<td>1:Z:16:GLN:HB3</td>
<td>2.19</td>
<td>0.42</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:P:21:ASN:HA</td>
<td>1:P:82:ILE:O</td>
<td>2.20</td>
<td>0.42</td>
</tr>
<tr>
<td>1:W:30:SER:O</td>
<td>1:W:36:GLU:HA</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:Y:15:THR:O</td>
<td>1:Y:16:GLN:HB3</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>2:G:104:A32:H8’1</td>
<td>2:G:104:A32:H5’1</td>
<td>1.51</td>
<td>0.41</td>
</tr>
<tr>
<td>1:V:49:GLN:OE1</td>
<td>1:V:51:GLU:HA</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>1:V:58:ILE:HD11</td>
<td>1:W:33:GLY:CA</td>
<td>2.49</td>
<td>0.41</td>
</tr>
<tr>
<td>1:O:16:GLN:NE2</td>
<td>1:O:89:ASN:HD22</td>
<td>2.11</td>
<td>0.41</td>
</tr>
<tr>
<td>1:V:5:ILE:HG22</td>
<td>3:V:110:HOH:O</td>
<td>2.19</td>
<td>0.41</td>
</tr>
<tr>
<td>1:V:93:PRO:HD3</td>
<td>1:Z:1:ALA:O</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:W:4:THR:O</td>
<td>1:W:5:ILE:C</td>
<td>2.58</td>
<td>0.41</td>
</tr>
<tr>
<td>1:Y:40:ILE:HG13</td>
<td>1:Y:40:ILE:O</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:Z:92:THR:HA</td>
<td>1:Z:93:PRO:C</td>
<td>2.40</td>
<td>0.41</td>
</tr>
<tr>
<td>1:E:43:LYS:HB3</td>
<td>1:E:43:LYS:HE2</td>
<td>1.84</td>
<td>0.41</td>
</tr>
<tr>
<td>1:Y:33:GLY:O</td>
<td>1:Y:34:LYS:HB2</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:F:92:THR:HA</td>
<td>1:F:93:PRO:C</td>
<td>2.40</td>
<td>0.41</td>
</tr>
<tr>
<td>1:V:20:ILE:HG21</td>
<td>1:V:42:PHE:CD1</td>
<td>2.54</td>
<td>0.41</td>
</tr>
<tr>
<td>1:W:89:ASN:O</td>
<td>1:W:91:LYS:N</td>
<td>2.52</td>
<td>0.41</td>
</tr>
<tr>
<td>1:W:12:TYR:CE2</td>
<td>2:W:104:A32:H7’2</td>
<td>2.55</td>
<td>0.41</td>
</tr>
<tr>
<td>1:Y:41:THR:HG22</td>
<td>1:Y:47:THR:HG23</td>
<td>2.02</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:12:TYR:OH</td>
<td>2:D:104:A32:H6A1</td>
<td>2.20</td>
<td>0.41</td>
</tr>
<tr>
<td>1:X:25:LEU:HD22</td>
<td>1:X:43:LYS:HA</td>
<td>2.01</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:17:ILE:HD13</td>
<td>1:D:17:ILE:HA</td>
<td>1.89</td>
<td>0.41</td>
</tr>
<tr>
<td>1:H:30:SER:O</td>
<td>1:H:36:GLU:HA</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:N:57:HIS:O</td>
<td>1:N:62:LYS:HE3</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:V:99:ILE:HG12</td>
<td>1:V:100:SER:N</td>
<td>2.36</td>
<td>0.41</td>
</tr>
<tr>
<td>1:Z:90:ASN:OD1</td>
<td>1:Z:90:ASN:N</td>
<td>2.50</td>
<td>0.41</td>
</tr>
<tr>
<td>1:L:31:MET:O</td>
<td>1:P:61:GLN:HG2</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:L:92:THR:HA</td>
<td>1:L:93:PRO:HA</td>
<td>1.85</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:99:ILE:HG21</td>
<td>1:D:99:ILE:HD13</td>
<td>1.88</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:23:LYS:CE</td>
<td>1:H:103:ASN:ND2</td>
<td>2.84</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:34:LYS:HB2</td>
<td>2:H:104:A32:H7’2</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:N:103:ASN:HD22</td>
<td>1:O:23:LYS:CE</td>
<td>2.28</td>
<td>0.41</td>
</tr>
<tr>
<td>1:O:51:GLU:OE2</td>
<td>1:O:91:LYS:HE2</td>
<td>2.21</td>
<td>0.41</td>
</tr>
<tr>
<td>1:Y:8:LEU:HD23</td>
<td>1:Y:8:LEU:C</td>
<td>2.41</td>
<td>0.41</td>
</tr>
<tr>
<td>1:Y:82:ILE:HG12</td>
<td>1:Y:99:ILE:HD11</td>
<td>2.03</td>
<td>0.41</td>
</tr>
<tr>
<td>1:D:21:ASN:ND2</td>
<td>1:D:81:LYS:HD3</td>
<td>2.36</td>
<td>0.40</td>
</tr>
<tr>
<td>1:F:103:ASN:ND2</td>
<td>1:G:23:LYS:NZ</td>
<td>2.69</td>
<td>0.40</td>
</tr>
<tr>
<td>1:L:88:TRP:HB3</td>
<td>1:L:90:ASN:OD1</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>1:M:88:TRP:CE2</td>
<td>2:M:104:A32:H51</td>
<td>2.55</td>
<td>0.40</td>
</tr>
<tr>
<td>1:M:20:ILE:CD1</td>
<td>1:M:85:LEU:HG</td>
<td>2.51</td>
<td>0.40</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Atom-1</th>
<th>Atom-2</th>
<th>Interatomic distance (Å)</th>
<th>Clash overlap (Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1:N:25:LEU:CD2</td>
<td>1:N:43:LYS:HA</td>
<td>2.51</td>
<td>0.40</td>
</tr>
<tr>
<td>1:V:58:ILE:HD13</td>
<td>1:W:34:LYS:HE2</td>
<td>2.01</td>
<td>0.40</td>
</tr>
<tr>
<td>1:L:26:SER:O</td>
<td>1:L:40:ILE:HA</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>1:Z:87:VAL:HB</td>
<td>1:Z:95:SER:O</td>
<td>2.21</td>
<td>0.40</td>
</tr>
<tr>
<td>1:E:20:ILE:O</td>
<td>1:E:21:ASN:C</td>
<td>2.60</td>
<td>0.40</td>
</tr>
<tr>
<td>1:L:28:THR:HB</td>
<td>1:L:39:ILE:HB</td>
<td>2.03</td>
<td>0.40</td>
</tr>
<tr>
<td>1:L:12:TYR:CZ</td>
<td>1:M:32:ALA:HB1</td>
<td>2.57</td>
<td>0.40</td>
</tr>
<tr>
<td>1:N:58:ILE:CD1</td>
<td>1:O:34:LYS:HE3</td>
<td>2.52</td>
<td>0.40</td>
</tr>
<tr>
<td>1:V:12:TYR:CD2</td>
<td>2:V:104:A32:H62</td>
<td>2.55</td>
<td>0.40</td>
</tr>
<tr>
<td>1:E:92:THR:HA</td>
<td>1:E:93:PRO:C</td>
<td>2.41</td>
<td>0.40</td>
</tr>
<tr>
<td>1:G:58:ILE:H</td>
<td>1:G:58:ILE:HG13</td>
<td>1.75</td>
<td>0.40</td>
</tr>
</tbody>
</table>

There are no symmetry-related clashes.

5.3 Torsion angles 📑

5.3.1 Protein backbone 📑

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Favoured</th>
<th>Allowed</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>101/103 (98%)</td>
<td>98 (97%)</td>
<td>3 (3%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>101/103 (98%)</td>
<td>99 (98%)</td>
<td>2 (2%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>101/103 (98%)</td>
<td>100 (99%)</td>
<td>1 (1%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>101/103 (98%)</td>
<td>98 (97%)</td>
<td>3 (3%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>101/103 (98%)</td>
<td>97 (96%)</td>
<td>4 (4%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>101/103 (98%)</td>
<td>97 (96%)</td>
<td>3 (3%)</td>
<td>1 (1%)</td>
<td>17 9</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>101/103 (98%)</td>
<td>97 (96%)</td>
<td>3 (3%)</td>
<td>1 (1%)</td>
<td>17 9</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>101/103 (98%)</td>
<td>96 (95%)</td>
<td>5 (5%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>101/103 (98%)</td>
<td>95 (94%)</td>
<td>6 (6%)</td>
<td>0</td>
<td>100 100</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>101/103 (98%)</td>
<td>98 (97%)</td>
<td>3 (3%)</td>
<td>0</td>
<td>100 100</td>
</tr>
</tbody>
</table>
All (9) Ramachandran outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>14</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>59</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>83</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>90</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>16</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>10</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>21</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>83</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>33</td>
<td>GLY</td>
</tr>
</tbody>
</table>

5.3.2 Protein sidechains

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>95/95 (100%)</td>
<td>90 (95%)</td>
<td>5 (5%)</td>
<td>25 20</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>95/95 (100%)</td>
<td>92 (97%)</td>
<td>3 (3%)</td>
<td>42 40</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>95/95 (100%)</td>
<td>91 (96%)</td>
<td>4 (4%)</td>
<td>32 29</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>95/95 (100%)</td>
<td>91 (96%)</td>
<td>4 (4%)</td>
<td>32 29</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>95/95 (100%)</td>
<td>91 (96%)</td>
<td>4 (4%)</td>
<td>32 29</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>95/95 (100%)</td>
<td>91 (96%)</td>
<td>4 (4%)</td>
<td>32 29</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>95/95 (100%)</td>
<td>89 (94%)</td>
<td>6 (6%)</td>
<td>20 14</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th>Rotameric</th>
<th>Outliers</th>
<th>Percentiles</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N</td>
<td>95/95 (100%)</td>
<td>91 (96%)</td>
<td>4 (4%)</td>
<td>32</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>95/95 (100%)</td>
<td>89 (94%)</td>
<td>6 (6%)</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>95/95 (100%)</td>
<td>89 (94%)</td>
<td>6 (6%)</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>95/95 (100%)</td>
<td>86 (90%)</td>
<td>9 (10%)</td>
<td>9</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>95/95 (100%)</td>
<td>89 (94%)</td>
<td>6 (6%)</td>
<td>20</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>95/95 (100%)</td>
<td>91 (96%)</td>
<td>4 (4%)</td>
<td>32</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>95/95 (100%)</td>
<td>92 (97%)</td>
<td>3 (3%)</td>
<td>42</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>95/95 (100%)</td>
<td>84 (88%)</td>
<td>11 (12%)</td>
<td>6</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1425/1425 (100%)</td>
<td>1346 (94%)</td>
<td>79 (6%)</td>
<td>24</td>
</tr>
</tbody>
</table>

All (79) residues with a non-rotameric sidechain are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>34</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>43</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>62</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>63</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>81</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>44</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>101</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>103</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>3</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>16</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>74</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>101</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>13</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>27</td>
<td>TYR</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>102</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>103</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>13</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>56</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>59</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>103</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>34</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>43</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>62</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>103</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>55</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>81</td>
<td>LYS</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>M</td>
<td>84</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>95</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>102</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>103</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>55</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>59</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>62</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>95</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>16</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>23</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>43</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>59</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>81</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>103</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>13</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>43</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>55</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>56</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>81</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>103</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>28</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>34</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>35</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>43</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>62</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>63</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>84</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>100</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>101</td>
<td>MET</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>3</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>34</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>81</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>92</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>102</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>103</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>3</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>10</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>38</td>
<td>VAL</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>92</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>13</td>
<td>ARG</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>16</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>89</td>
<td>ASN</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Z</td>
<td>4</td>
<td>THR</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>7</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>43</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>55</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>56</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>59</td>
<td>ASP</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>62</td>
<td>LYS</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>79</td>
<td>GLU</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>82</td>
<td>ILE</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>95</td>
<td>SER</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>99</td>
<td>ILE</td>
</tr>
</tbody>
</table>

Some sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (29) such sidechains are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>21</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>D</td>
<td>103</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>16</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>94</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>3</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>103</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>3</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>56</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>103</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>21</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>103</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>3</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>94</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>103</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>89</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>56</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>103</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>21</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>94</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>103</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>3</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>94</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>103</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>3</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>14</td>
<td>ASN</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>16</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>89</td>
<td>ASN</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Z</td>
<td>3</td>
<td>GLN</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>56</td>
<td>GLN</td>
</tr>
</tbody>
</table>

5.3.3 RNA

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates

There are no carbohydrates in this entry.

5.6 Ligand geometry

14 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with \(|Z| > 2\) is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>D</td>
<td>104</td>
<td>-</td>
<td>34,35,35</td>
<td>1.79</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>E</td>
<td>104</td>
<td>-</td>
<td>34,35,35</td>
<td>1.87</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>F</td>
<td>104</td>
<td>-</td>
<td>34,35,35</td>
<td>1.70</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>G</td>
<td>104</td>
<td>-</td>
<td>34,35,35</td>
<td>1.61</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>H</td>
<td>104</td>
<td>-</td>
<td>34,35,35</td>
<td>2.08</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>L</td>
<td>104</td>
<td>-</td>
<td>34,35,35</td>
<td>1.74</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>M</td>
<td>104</td>
<td>-</td>
<td>34,35,35</td>
<td>1.67</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>O</td>
<td>104</td>
<td>-</td>
<td>34,35,35</td>
<td>1.73</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>P</td>
<td>104</td>
<td>-</td>
<td>34,35,35</td>
<td>1.78</td>
</tr>
</tbody>
</table>
Bond lengths and Bond angles

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Bond lengths</th>
<th>Bond angles</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Counts</td>
<td>RMSZ</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>V</td>
<td>104</td>
<td>-</td>
<td>34,35,35</td>
<td>1.80</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>W</td>
<td>104</td>
<td>-</td>
<td>34,35,35</td>
<td>1.82</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>X</td>
<td>104</td>
<td>-</td>
<td>34,35,35</td>
<td>1.69</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>Y</td>
<td>104</td>
<td>-</td>
<td>34,35,35</td>
<td>1.83</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>Z</td>
<td>104</td>
<td>-</td>
<td>34,35,35</td>
<td>1.84</td>
</tr>
</tbody>
</table>

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Link</th>
<th>Chirals</th>
<th>Torsions</th>
<th>Rings</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A32</td>
<td>D</td>
<td>104</td>
<td>-</td>
<td>0/19/49/49</td>
<td>0/3/3/3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>E</td>
<td>104</td>
<td>-</td>
<td>0/19/49/49</td>
<td>0/3/3/3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>F</td>
<td>104</td>
<td>-</td>
<td>0/19/49/49</td>
<td>0/3/3/3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>G</td>
<td>104</td>
<td>-</td>
<td>0/19/49/49</td>
<td>0/3/3/3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>H</td>
<td>104</td>
<td>-</td>
<td>0/19/49/49</td>
<td>0/3/3/3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>L</td>
<td>104</td>
<td>-</td>
<td>0/19/49/49</td>
<td>0/3/3/3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>M</td>
<td>104</td>
<td>-</td>
<td>0/19/49/49</td>
<td>0/3/3/3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>O</td>
<td>104</td>
<td>-</td>
<td>0/19/49/49</td>
<td>0/3/3/3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>P</td>
<td>104</td>
<td>-</td>
<td>0/19/49/49</td>
<td>0/3/3/3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>V</td>
<td>104</td>
<td>-</td>
<td>1/1/8/9</td>
<td>0/19/49/49</td>
<td>0/3/3/3</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>W</td>
<td>104</td>
<td>-</td>
<td>0/19/49/49</td>
<td>0/3/3/3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>X</td>
<td>104</td>
<td>-</td>
<td>0/19/49/49</td>
<td>0/3/3/3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>Y</td>
<td>104</td>
<td>-</td>
<td>0/19/49/49</td>
<td>0/3/3/3</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>Z</td>
<td>104</td>
<td>-</td>
<td>0/19/49/49</td>
<td>0/3/3/3</td>
<td></td>
</tr>
</tbody>
</table>

All (127) bond length outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>C7'-N2'</td>
<td>-4.33</td>
<td>1.24</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>104</td>
<td>A32</td>
<td>C5'-C7'</td>
<td>-4.25</td>
<td>1.41</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td>104</td>
<td>A32</td>
<td>C7'-N2'</td>
<td>-4.15</td>
<td>1.24</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>104</td>
<td>A32</td>
<td>C7'-N2'</td>
<td>-4.13</td>
<td>1.24</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>104</td>
<td>A32</td>
<td>C7'-N2'</td>
<td>-4.03</td>
<td>1.24</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>104</td>
<td>A32</td>
<td>C5'-C7'</td>
<td>-3.88</td>
<td>1.42</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>104</td>
<td>A32</td>
<td>C7'-N2'</td>
<td>-3.86</td>
<td>1.25</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>104</td>
<td>A32</td>
<td>C7'-N2'</td>
<td>-3.84</td>
<td>1.25</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>104</td>
<td>A32</td>
<td>C5'-C7'</td>
<td>-3.83</td>
<td>1.42</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>104</td>
<td>A32</td>
<td>C5'-C7'</td>
<td>-3.76</td>
<td>1.42</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td>104</td>
<td>A32</td>
<td>C5'-C7'</td>
<td>-3.74</td>
<td>1.42</td>
<td>1.50</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Y</td>
<td>104</td>
<td>A32</td>
<td>C7'-N2'</td>
<td>-3.73</td>
<td>1.25</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>104</td>
<td>A32</td>
<td>C5'-C7'</td>
<td>-3.70</td>
<td>1.42</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>104</td>
<td>A32</td>
<td>C7'-N2'</td>
<td>-3.66</td>
<td>1.25</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>104</td>
<td>A32</td>
<td>C5'-C7'</td>
<td>-3.64</td>
<td>1.42</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>C7'-N2'</td>
<td>-3.59</td>
<td>1.42</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>104</td>
<td>A32</td>
<td>C7'-N2'</td>
<td>-3.58</td>
<td>1.42</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>104</td>
<td>A32</td>
<td>C5'-C7'</td>
<td>-3.57</td>
<td>1.42</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>104</td>
<td>A32</td>
<td>C5'-C7'</td>
<td>-3.57</td>
<td>1.42</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>104</td>
<td>A32</td>
<td>C5'-C7'</td>
<td>-4.46</td>
<td>1.42</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>104</td>
<td>A32</td>
<td>C5'-C7'</td>
<td>-3.34</td>
<td>1.43</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>104</td>
<td>A32</td>
<td>C7'-N2'</td>
<td>-3.17</td>
<td>1.26</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>104</td>
<td>A32</td>
<td>C7'-N2'</td>
<td>-3.14</td>
<td>1.26</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>104</td>
<td>A32</td>
<td>C7'-N2'</td>
<td>-3.12</td>
<td>1.26</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>104</td>
<td>A32</td>
<td>C7'-N2'</td>
<td>-3.02</td>
<td>1.43</td>
<td>1.50</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>104</td>
<td>A32</td>
<td>C7'-N2'</td>
<td>-2.85</td>
<td>1.27</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>104</td>
<td>A32</td>
<td>C7'-N2'</td>
<td>-2.60</td>
<td>1.28</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>104</td>
<td>A32</td>
<td>C7'-N2'</td>
<td>-2.56</td>
<td>1.28</td>
<td>1.33</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>104</td>
<td>A32</td>
<td>C9'-N2'</td>
<td>-2.48</td>
<td>1.40</td>
<td>1.46</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>104</td>
<td>A32</td>
<td>C3'-N1'</td>
<td>-2.45</td>
<td>1.40</td>
<td>1.45</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>104</td>
<td>A32</td>
<td>C9'-N2'</td>
<td>-2.39</td>
<td>1.40</td>
<td>1.46</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>104</td>
<td>A32</td>
<td>C3'-N1'</td>
<td>-2.37</td>
<td>1.41</td>
<td>1.45</td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td>104</td>
<td>A32</td>
<td>C3'-N1'</td>
<td>-2.33</td>
<td>1.41</td>
<td>1.45</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>104</td>
<td>A32</td>
<td>C3'-N1'</td>
<td>-2.28</td>
<td>1.41</td>
<td>1.45</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>104</td>
<td>A32</td>
<td>C3'-N1'</td>
<td>-2.18</td>
<td>1.41</td>
<td>1.45</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>104</td>
<td>A32</td>
<td>O3-C3'</td>
<td>-2.16</td>
<td>1.37</td>
<td>1.43</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>C3'-N1'</td>
<td>-2.09</td>
<td>1.41</td>
<td>1.45</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>104</td>
<td>A32</td>
<td>C9'-N2'</td>
<td>-2.03</td>
<td>1.41</td>
<td>1.46</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>104</td>
<td>A32</td>
<td>O3-C7'</td>
<td>2.00</td>
<td>1.27</td>
<td>1.23</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>104</td>
<td>A32</td>
<td>C4'-C3'</td>
<td>2.01</td>
<td>1.42</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>104</td>
<td>A32</td>
<td>C3B-N4'</td>
<td>2.01</td>
<td>1.52</td>
<td>1.46</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>104</td>
<td>A32</td>
<td>C5B-N4'</td>
<td>2.01</td>
<td>1.52</td>
<td>1.46</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>C4-C3'</td>
<td>2.02</td>
<td>1.57</td>
<td>1.52</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>104</td>
<td>A32</td>
<td>C4'-C5'</td>
<td>2.02</td>
<td>1.42</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>104</td>
<td>A32</td>
<td>O2'-N1'</td>
<td>2.02</td>
<td>1.26</td>
<td>1.22</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>104</td>
<td>A32</td>
<td>C5B-N4'</td>
<td>2.02</td>
<td>1.52</td>
<td>1.46</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>104</td>
<td>A32</td>
<td>C7B-N4'</td>
<td>2.04</td>
<td>1.52</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>104</td>
<td>A32</td>
<td>C2'-C3'</td>
<td>2.04</td>
<td>1.42</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>104</td>
<td>A32</td>
<td>C3B-N4'</td>
<td>2.07</td>
<td>1.52</td>
<td>1.46</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>104</td>
<td>A32</td>
<td>C4'-C5'</td>
<td>2.07</td>
<td>1.42</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>104</td>
<td>A32</td>
<td>C3B-N4'</td>
<td>2.07</td>
<td>1.52</td>
<td>1.46</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>104</td>
<td>A32</td>
<td>C3B-N4'</td>
<td>2.08</td>
<td>1.52</td>
<td>1.46</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>104</td>
<td>A32</td>
<td>O1-C1'</td>
<td>2.08</td>
<td>1.42</td>
<td>1.38</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(Å)</th>
<th>Ideal(Å)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>P</td>
<td>104</td>
<td>A32</td>
<td>C3B-N4'</td>
<td>2.10</td>
<td>1.52</td>
<td>1.46</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>104</td>
<td>A32</td>
<td>O5-C1</td>
<td>2.11</td>
<td>1.47</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>104</td>
<td>A32</td>
<td>C4'-C3'</td>
<td>2.12</td>
<td>1.42</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>104</td>
<td>A32</td>
<td>C5B-N4'</td>
<td>2.13</td>
<td>1.52</td>
<td>1.46</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>104</td>
<td>A32</td>
<td>C4'-C5'</td>
<td>2.14</td>
<td>1.42</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>104</td>
<td>A32</td>
<td>C4'-C3'</td>
<td>2.15</td>
<td>1.42</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>104</td>
<td>A32</td>
<td>C2'-C3'</td>
<td>2.16</td>
<td>1.42</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>104</td>
<td>A32</td>
<td>O2'-N1'</td>
<td>2.17</td>
<td>1.26</td>
<td>1.22</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>104</td>
<td>A32</td>
<td>O3'-C7'</td>
<td>2.17</td>
<td>1.27</td>
<td>1.23</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>104</td>
<td>A32</td>
<td>O2'-N1'</td>
<td>2.20</td>
<td>1.26</td>
<td>1.22</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>104</td>
<td>A32</td>
<td>O2'-N1'</td>
<td>2.21</td>
<td>1.26</td>
<td>1.22</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>104</td>
<td>A32</td>
<td>C7B-N4'</td>
<td>2.22</td>
<td>1.52</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>104</td>
<td>A32</td>
<td>C7B-N4'</td>
<td>2.24</td>
<td>1.52</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>104</td>
<td>A32</td>
<td>O3'-C7'</td>
<td>2.25</td>
<td>1.27</td>
<td>1.23</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>104</td>
<td>A32</td>
<td>O2'-N1'</td>
<td>2.26</td>
<td>1.26</td>
<td>1.22</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>104</td>
<td>A32</td>
<td>C2'-C3'</td>
<td>2.26</td>
<td>1.43</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td>104</td>
<td>A32</td>
<td>C4'-C3'</td>
<td>2.27</td>
<td>1.43</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>104</td>
<td>A32</td>
<td>C5B-N4'</td>
<td>2.27</td>
<td>1.53</td>
<td>1.46</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>104</td>
<td>A32</td>
<td>C4'-C5'</td>
<td>2.31</td>
<td>1.42</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>104</td>
<td>A32</td>
<td>C2'-C3'</td>
<td>2.37</td>
<td>1.43</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>104</td>
<td>A32</td>
<td>C7B-N4'</td>
<td>2.37</td>
<td>1.53</td>
<td>1.47</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>104</td>
<td>A32</td>
<td>C6'-C5'</td>
<td>2.40</td>
<td>1.43</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>C6'-C5'</td>
<td>2.40</td>
<td>1.43</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>104</td>
<td>A32</td>
<td>C4'-C5'</td>
<td>2.47</td>
<td>1.43</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>104</td>
<td>A32</td>
<td>O2'-N1'</td>
<td>2.48</td>
<td>1.27</td>
<td>1.22</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>104</td>
<td>A32</td>
<td>C6'-C5'</td>
<td>2.48</td>
<td>1.43</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>104</td>
<td>A32</td>
<td>C4-C3</td>
<td>2.48</td>
<td>1.58</td>
<td>1.52</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>104</td>
<td>A32</td>
<td>O1-C1</td>
<td>2.53</td>
<td>1.45</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>104</td>
<td>A32</td>
<td>C4-C3</td>
<td>2.53</td>
<td>1.58</td>
<td>1.52</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>104</td>
<td>A32</td>
<td>C2'-C3'</td>
<td>2.55</td>
<td>1.43</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>104</td>
<td>A32</td>
<td>C4'-C5'</td>
<td>2.57</td>
<td>1.43</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>104</td>
<td>A32</td>
<td>O2'-N1'</td>
<td>2.63</td>
<td>1.27</td>
<td>1.22</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>104</td>
<td>A32</td>
<td>C4'-C3'</td>
<td>2.65</td>
<td>1.43</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>104</td>
<td>A32</td>
<td>O1-C1'</td>
<td>2.69</td>
<td>1.43</td>
<td>1.38</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>104</td>
<td>A32</td>
<td>C4'-C5'</td>
<td>2.69</td>
<td>1.43</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>C4'-C3'</td>
<td>2.69</td>
<td>1.43</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>104</td>
<td>A32</td>
<td>C2'-C3'</td>
<td>2.73</td>
<td>1.43</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>104</td>
<td>A32</td>
<td>O1-C1</td>
<td>2.75</td>
<td>1.45</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>104</td>
<td>A32</td>
<td>C5B-N4'</td>
<td>2.75</td>
<td>1.54</td>
<td>1.46</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>104</td>
<td>A32</td>
<td>O1-C1</td>
<td>2.76</td>
<td>1.45</td>
<td>1.41</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>104</td>
<td>A32</td>
<td>C4'-C3'</td>
<td>2.80</td>
<td>1.44</td>
<td>1.39</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>O3'-C7'</td>
<td>2.83</td>
<td>1.29</td>
<td>1.23</td>
</tr>
</tbody>
</table>

Continued on next page...
All (192) bond angle outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>H</td>
<td>104</td>
<td>A32</td>
<td>C2'-C3'-N1'</td>
<td>-7.00</td>
<td>112.80</td>
<td>118.80</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>104</td>
<td>A32</td>
<td>O3'-C7'-N2'</td>
<td>-5.62</td>
<td>111.27</td>
<td>122.60</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>104</td>
<td>A32</td>
<td>C6'-C5'-C4'</td>
<td>-5.29</td>
<td>113.17</td>
<td>119.62</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>104</td>
<td>A32</td>
<td>C6'-C5'-C4'</td>
<td>-5.09</td>
<td>113.41</td>
<td>119.62</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>O3'-C7'-C5'</td>
<td>-5.07</td>
<td>112.04</td>
<td>120.93</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>104</td>
<td>A32</td>
<td>C6'-C5'-C4'</td>
<td>-4.97</td>
<td>113.56</td>
<td>119.62</td>
</tr>
</tbody>
</table>
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>P</td>
<td>104</td>
<td>A32</td>
<td>O3'-C7'-N2'</td>
<td>-4.56</td>
<td>113.41</td>
<td>122.60</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>104</td>
<td>A32</td>
<td>C2'-C3'-N1'</td>
<td>-4.32</td>
<td>115.09</td>
<td>118.80</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>104</td>
<td>A32</td>
<td>C6'-C5'-C4'</td>
<td>-4.32</td>
<td>114.35</td>
<td>119.62</td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td>104</td>
<td>A32</td>
<td>O3'-C7'-C5'</td>
<td>-4.09</td>
<td>113.76</td>
<td>120.93</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>104</td>
<td>A32</td>
<td>O3'-C7'-N2'</td>
<td>-4.05</td>
<td>114.42</td>
<td>122.60</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>104</td>
<td>A32</td>
<td>C1'-O1-C1</td>
<td>-3.97</td>
<td>111.91</td>
<td>117.84</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>C1'-O1-C1</td>
<td>-3.92</td>
<td>111.98</td>
<td>117.84</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>104</td>
<td>A32</td>
<td>C2'-C3'-N1'</td>
<td>-3.88</td>
<td>115.47</td>
<td>118.80</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>104</td>
<td>A32</td>
<td>O3'-C7'-C5'</td>
<td>-3.80</td>
<td>114.27</td>
<td>120.93</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>104</td>
<td>A32</td>
<td>C4-C3-C2</td>
<td>-3.79</td>
<td>104.18</td>
<td>110.83</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>104</td>
<td>A32</td>
<td>C2B-C3B-N4'</td>
<td>-3.72</td>
<td>104.98</td>
<td>110.11</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>104</td>
<td>A32</td>
<td>C6'-C5'-C4'</td>
<td>-3.59</td>
<td>115.25</td>
<td>119.62</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>104</td>
<td>A32</td>
<td>O3'-C7'-N2'</td>
<td>-3.59</td>
<td>115.36</td>
<td>122.60</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>104</td>
<td>A32</td>
<td>C2B-C3B-N4'</td>
<td>-3.49</td>
<td>105.29</td>
<td>110.11</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>C5'-C6'-C1'</td>
<td>-3.46</td>
<td>115.86</td>
<td>119.58</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>104</td>
<td>A32</td>
<td>C6B-C5B-N4'</td>
<td>-3.42</td>
<td>105.39</td>
<td>110.11</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>104</td>
<td>A32</td>
<td>O3'-C7'-C5'</td>
<td>-3.39</td>
<td>114.98</td>
<td>120.93</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>104</td>
<td>A32</td>
<td>C8'-C7B-N4'</td>
<td>-3.39</td>
<td>105.46</td>
<td>113.88</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>104</td>
<td>A32</td>
<td>C6'-C5'-C4'</td>
<td>-3.35</td>
<td>115.54</td>
<td>119.62</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>104</td>
<td>A32</td>
<td>C6'-C5'-C4'</td>
<td>-3.28</td>
<td>115.63</td>
<td>119.62</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>104</td>
<td>A32</td>
<td>C1'-O1-C1</td>
<td>-3.25</td>
<td>112.98</td>
<td>117.84</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>104</td>
<td>A32</td>
<td>O3-C3-C4</td>
<td>-3.24</td>
<td>102.77</td>
<td>110.34</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>104</td>
<td>A32</td>
<td>C4'-C3'-C2'</td>
<td>-3.20</td>
<td>115.56</td>
<td>120.75</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>104</td>
<td>A32</td>
<td>C8'-C7B-N4'</td>
<td>-3.16</td>
<td>106.02</td>
<td>113.88</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>C6'-C5'-C4'</td>
<td>-2.95</td>
<td>116.02</td>
<td>119.62</td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td>104</td>
<td>A32</td>
<td>C4'-C3'-C2'</td>
<td>-2.93</td>
<td>106.07</td>
<td>110.11</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>104</td>
<td>A32</td>
<td>O3'-C7'-C5'</td>
<td>-2.84</td>
<td>115.96</td>
<td>120.93</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>104</td>
<td>A32</td>
<td>C3-C4-C5</td>
<td>-2.79</td>
<td>105.25</td>
<td>110.24</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>C4'-C3'-C2'</td>
<td>-2.78</td>
<td>116.23</td>
<td>120.75</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>104</td>
<td>A32</td>
<td>C2B-C3B-N4'</td>
<td>-2.76</td>
<td>106.30</td>
<td>110.11</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>104</td>
<td>A32</td>
<td>O2'-N1'-C3'</td>
<td>-2.75</td>
<td>114.44</td>
<td>118.80</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>104</td>
<td>A32</td>
<td>C8'-C7B-N4'</td>
<td>-2.75</td>
<td>107.06</td>
<td>113.88</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>104</td>
<td>A32</td>
<td>C6'-C5'-C4'</td>
<td>-2.63</td>
<td>116.42</td>
<td>119.62</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>104</td>
<td>A32</td>
<td>C6B-C5B-N4'</td>
<td>-2.62</td>
<td>106.49</td>
<td>110.11</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>104</td>
<td>A32</td>
<td>C4'-C3'-C2'</td>
<td>-2.62</td>
<td>116.50</td>
<td>120.75</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>104</td>
<td>A32</td>
<td>C6'-C5'-C4'</td>
<td>-2.58</td>
<td>116.48</td>
<td>119.62</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>104</td>
<td>A32</td>
<td>O3-C3-C2</td>
<td>-2.57</td>
<td>104.35</td>
<td>110.34</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>104</td>
<td>A32</td>
<td>O2-C2-C3</td>
<td>-2.49</td>
<td>104.54</td>
<td>110.34</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>104</td>
<td>A32</td>
<td>C7B-N4'-C5B</td>
<td>-2.47</td>
<td>104.78</td>
<td>111.24</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>L</td>
<td>104</td>
<td>A32</td>
<td>C6'-C5'-C4'</td>
<td>-2.42</td>
<td>116.68</td>
<td>119.62</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>104</td>
<td>A32</td>
<td>C4'-C3'-C2'</td>
<td>-2.40</td>
<td>116.86</td>
<td>120.75</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>104</td>
<td>A32</td>
<td>C6B-C5B-N4'</td>
<td>-2.39</td>
<td>106.81</td>
<td>110.11</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>104</td>
<td>A32</td>
<td>O3'-C7'-C5'</td>
<td>-2.28</td>
<td>116.94</td>
<td>120.93</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>104</td>
<td>A32</td>
<td>C1-O5-C5</td>
<td>-2.27</td>
<td>109.23</td>
<td>113.71</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>104</td>
<td>A32</td>
<td>C3'-C2'-C1'</td>
<td>-2.26</td>
<td>116.65</td>
<td>119.23</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>104</td>
<td>A32</td>
<td>O1B-C2B-C3B</td>
<td>-2.25</td>
<td>106.87</td>
<td>111.81</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>104</td>
<td>A32</td>
<td>C4'-C3'-C2'</td>
<td>-2.24</td>
<td>117.12</td>
<td>120.75</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>104</td>
<td>A32</td>
<td>O5-C1-C2</td>
<td>-2.21</td>
<td>105.59</td>
<td>110.34</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>104</td>
<td>A32</td>
<td>O3'-C7'-N2'</td>
<td>-2.21</td>
<td>118.13</td>
<td>122.60</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>104</td>
<td>A32</td>
<td>C4'-C3'-C2'</td>
<td>-2.21</td>
<td>117.17</td>
<td>120.75</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>104</td>
<td>A32</td>
<td>O3'-C7'-N2'</td>
<td>-2.19</td>
<td>118.18</td>
<td>122.60</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>104</td>
<td>A32</td>
<td>C3'-C2'-C1'</td>
<td>-2.17</td>
<td>116.75</td>
<td>119.23</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>104</td>
<td>A32</td>
<td>O5-C5-C4</td>
<td>-2.16</td>
<td>105.72</td>
<td>109.69</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>104</td>
<td>A32</td>
<td>O3'-C7'-C5'</td>
<td>-2.15</td>
<td>117.16</td>
<td>120.93</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>104</td>
<td>A32</td>
<td>O1B-C2B-C3B</td>
<td>-2.15</td>
<td>107.10</td>
<td>111.81</td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td>104</td>
<td>A32</td>
<td>O1'-O1-C1</td>
<td>-2.11</td>
<td>114.69</td>
<td>117.84</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>104</td>
<td>A32</td>
<td>C8'-C7B-N4'</td>
<td>-2.10</td>
<td>108.66</td>
<td>113.88</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>C4'-C3'-N1'</td>
<td>-2.09</td>
<td>117.00</td>
<td>118.80</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>104</td>
<td>A32</td>
<td>C9'-N2'-C7'</td>
<td>-2.07</td>
<td>117.44</td>
<td>122.09</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>104</td>
<td>A32</td>
<td>C2'-C3'-N1'</td>
<td>-2.04</td>
<td>117.05</td>
<td>118.80</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>C7B-C8'-C9'</td>
<td>-2.02</td>
<td>106.38</td>
<td>113.83</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>104</td>
<td>A32</td>
<td>O5-C5-C6</td>
<td>2.02</td>
<td>111.51</td>
<td>106.43</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>104</td>
<td>A32</td>
<td>C9'-N2'-C7'</td>
<td>2.02</td>
<td>126.63</td>
<td>122.09</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>104</td>
<td>A32</td>
<td>C6B-O1B-C2B</td>
<td>2.02</td>
<td>116.69</td>
<td>109.89</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>C8'-C7B-N4'</td>
<td>2.04</td>
<td>118.94</td>
<td>113.88</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>104</td>
<td>A32</td>
<td>O5-C5-C6</td>
<td>2.04</td>
<td>111.56</td>
<td>106.43</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>104</td>
<td>A32</td>
<td>C5'-C6'-C1'</td>
<td>2.06</td>
<td>121.79</td>
<td>119.58</td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td>104</td>
<td>A32</td>
<td>C5B-N4'-C3B</td>
<td>2.07</td>
<td>113.44</td>
<td>108.87</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>O2-C2-C1</td>
<td>2.07</td>
<td>115.15</td>
<td>110.06</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>104</td>
<td>A32</td>
<td>C6'-C1'-C2'</td>
<td>2.07</td>
<td>124.31</td>
<td>120.96</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>104</td>
<td>A32</td>
<td>C5B-N4'-C3B</td>
<td>2.08</td>
<td>113.46</td>
<td>108.87</td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td>104</td>
<td>A32</td>
<td>O3'-C7'-N2'</td>
<td>2.09</td>
<td>126.82</td>
<td>122.60</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>C4'-C5'-C7'</td>
<td>2.11</td>
<td>127.50</td>
<td>120.44</td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td>104</td>
<td>A32</td>
<td>O4-C4-C3</td>
<td>2.12</td>
<td>115.30</td>
<td>110.34</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>104</td>
<td>A32</td>
<td>O5-C1-O1</td>
<td>2.13</td>
<td>113.65</td>
<td>108.38</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>O5-C1-O1</td>
<td>2.13</td>
<td>114.44</td>
<td>109.98</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>104</td>
<td>A32</td>
<td>C3'-C2'-C1'</td>
<td>2.15</td>
<td>121.68</td>
<td>119.23</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>104</td>
<td>A32</td>
<td>C5'-C7'-N2'</td>
<td>2.15</td>
<td>121.62</td>
<td>117.12</td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td>104</td>
<td>A32</td>
<td>C4-C3-C2</td>
<td>2.16</td>
<td>114.62</td>
<td>110.83</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>C6B-O1B-C2B</td>
<td>2.20</td>
<td>117.29</td>
<td>109.89</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>104</td>
<td>A32</td>
<td>C6B-O1B-C2B</td>
<td>2.20</td>
<td>117.30</td>
<td>109.89</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>P</td>
<td>104</td>
<td>A32</td>
<td>C6'-C1'-C2'</td>
<td>2.21</td>
<td>124.54</td>
<td>120.96</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>104</td>
<td>A32</td>
<td>C1-C2-C3</td>
<td>2.26</td>
<td>114.71</td>
<td>109.98</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>104</td>
<td>A32</td>
<td>C4'-C5'-C7'</td>
<td>2.31</td>
<td>128.16</td>
<td>120.44</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>104</td>
<td>A32</td>
<td>C2'-C3'-N1'</td>
<td>2.33</td>
<td>120.80</td>
<td>118.80</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>104</td>
<td>A32</td>
<td>C5B-N4'-C3B</td>
<td>2.45</td>
<td>114.28</td>
<td>108.87</td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td>104</td>
<td>A32</td>
<td>C6-C5-C4</td>
<td>2.45</td>
<td>118.79</td>
<td>112.99</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>104</td>
<td>A32</td>
<td>C6'-C1'-C2'</td>
<td>2.49</td>
<td>124.99</td>
<td>120.96</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>104</td>
<td>A32</td>
<td>C9'-N2'-C7'</td>
<td>2.52</td>
<td>127.75</td>
<td>122.09</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>104</td>
<td>A32</td>
<td>C5'-C4'-C3'</td>
<td>2.55</td>
<td>122.86</td>
<td>119.86</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>104</td>
<td>A32</td>
<td>C5'-C7'-N2'</td>
<td>2.58</td>
<td>122.51</td>
<td>117.12</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>104</td>
<td>A32</td>
<td>C9'-N2'-C7'</td>
<td>2.58</td>
<td>127.89</td>
<td>122.09</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>104</td>
<td>A32</td>
<td>C6B-C5B-N4'</td>
<td>2.65</td>
<td>113.75</td>
<td>110.11</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>C7B-N4'-C3B</td>
<td>2.66</td>
<td>118.18</td>
<td>111.24</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>104</td>
<td>A32</td>
<td>C3'-C2'-C1'</td>
<td>2.68</td>
<td>122.28</td>
<td>119.23</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>104</td>
<td>A32</td>
<td>O2-C2-C3</td>
<td>2.68</td>
<td>116.59</td>
<td>110.34</td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td>104</td>
<td>A32</td>
<td>O3-C3-C4</td>
<td>2.68</td>
<td>116.61</td>
<td>110.34</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>104</td>
<td>A32</td>
<td>O5-C1-O1</td>
<td>2.76</td>
<td>115.22</td>
<td>108.38</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>104</td>
<td>A32</td>
<td>C7B-N4'-C3B</td>
<td>2.80</td>
<td>118.54</td>
<td>111.24</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>104</td>
<td>A32</td>
<td>O2-C2-C3</td>
<td>2.80</td>
<td>116.88</td>
<td>110.34</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>104</td>
<td>A32</td>
<td>O3-C3-C4</td>
<td>2.81</td>
<td>116.90</td>
<td>110.34</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>104</td>
<td>A32</td>
<td>C6'-C5'-C7'</td>
<td>2.81</td>
<td>129.85</td>
<td>120.44</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>104</td>
<td>A32</td>
<td>O5-C1-O1</td>
<td>2.85</td>
<td>115.43</td>
<td>108.38</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>104</td>
<td>A32</td>
<td>C5'-C4'-C3'</td>
<td>2.86</td>
<td>115.46</td>
<td>108.38</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>104</td>
<td>A32</td>
<td>O2-C2-C3</td>
<td>2.86</td>
<td>116.88</td>
<td>110.34</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>104</td>
<td>A32</td>
<td>C5'-C4'-C3'</td>
<td>2.89</td>
<td>123.47</td>
<td>118.80</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>104</td>
<td>A32</td>
<td>O2'-N1'-C3'</td>
<td>2.95</td>
<td>123.73</td>
<td>119.86</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>C6B-C5B-N4'</td>
<td>2.97</td>
<td>114.20</td>
<td>110.11</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>104</td>
<td>A32</td>
<td>C5'-C4'-C3'</td>
<td>2.99</td>
<td>123.39</td>
<td>119.86</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>104</td>
<td>A32</td>
<td>C5'-C4'-C3'</td>
<td>3.02</td>
<td>123.42</td>
<td>119.86</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>104</td>
<td>A32</td>
<td>O5-C1-O1</td>
<td>3.03</td>
<td>115.88</td>
<td>108.38</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>104</td>
<td>A32</td>
<td>C5'-C6'-C1'</td>
<td>3.12</td>
<td>122.93</td>
<td>119.58</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>104</td>
<td>A32</td>
<td>C5'-C4'-C3'</td>
<td>3.15</td>
<td>123.58</td>
<td>119.86</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>104</td>
<td>A32</td>
<td>C1'-O1-C1</td>
<td>3.18</td>
<td>122.58</td>
<td>117.84</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>104</td>
<td>A32</td>
<td>C5'-C7'-N2'</td>
<td>3.18</td>
<td>123.77</td>
<td>117.12</td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td>104</td>
<td>A32</td>
<td>C9'-N2'-C7'</td>
<td>3.20</td>
<td>129.28</td>
<td>122.09</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>104</td>
<td>A32</td>
<td>C5'-C4'-C3'</td>
<td>3.21</td>
<td>123.64</td>
<td>119.86</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>104</td>
<td>A32</td>
<td>O2-C2-C1</td>
<td>3.26</td>
<td>118.06</td>
<td>110.06</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>104</td>
<td>A32</td>
<td>O1-C1-C2</td>
<td>3.27</td>
<td>111.92</td>
<td>107.12</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>104</td>
<td>A32</td>
<td>C4'-C3'-N1'</td>
<td>3.27</td>
<td>121.61</td>
<td>118.80</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>104</td>
<td>A32</td>
<td>C5'-C4'-C3'</td>
<td>3.28</td>
<td>123.73</td>
<td>119.86</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>H</td>
<td>104</td>
<td>A32</td>
<td>C6'-C1'-C2'</td>
<td>3.30</td>
<td>126.28</td>
<td>120.96</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>104</td>
<td>A32</td>
<td>O4-C4-C3</td>
<td>3.37</td>
<td>118.21</td>
<td>110.34</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>104</td>
<td>A32</td>
<td>C5B-N4'-C3B</td>
<td>3.40</td>
<td>116.39</td>
<td>108.87</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>104</td>
<td>A32</td>
<td>C5B-N4'-C3B</td>
<td>3.43</td>
<td>116.45</td>
<td>108.87</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>104</td>
<td>A32</td>
<td>O5-C1-O1</td>
<td>3.44</td>
<td>116.90</td>
<td>108.38</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>104</td>
<td>A32</td>
<td>C4'-C3'-N1'</td>
<td>3.45</td>
<td>121.76</td>
<td>118.80</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>104</td>
<td>A32</td>
<td>C4'-C5'-C7'</td>
<td>3.46</td>
<td>132.01</td>
<td>120.44</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>C5'-C7'-N2'</td>
<td>3.50</td>
<td>124.44</td>
<td>117.12</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>104</td>
<td>A32</td>
<td>C5'-C4'-C3'</td>
<td>3.52</td>
<td>124.01</td>
<td>119.86</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>104</td>
<td>A32</td>
<td>C4'-C3'-N1'</td>
<td>3.54</td>
<td>121.84</td>
<td>118.80</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>104</td>
<td>A32</td>
<td>C2B-C3B-N4'</td>
<td>3.56</td>
<td>115.01</td>
<td>110.11</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>104</td>
<td>A32</td>
<td>C1'-O1-C1</td>
<td>3.56</td>
<td>123.16</td>
<td>117.84</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>C6B-C5B-N4'</td>
<td>3.59</td>
<td>115.05</td>
<td>110.11</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>104</td>
<td>A32</td>
<td>C1'-O1-C1</td>
<td>3.59</td>
<td>123.20</td>
<td>117.84</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>104</td>
<td>A32</td>
<td>C9'-N2'-C7'</td>
<td>3.77</td>
<td>130.55</td>
<td>122.09</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>C6'-C1'-C2'</td>
<td>3.88</td>
<td>127.23</td>
<td>120.96</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>104</td>
<td>A32</td>
<td>O3'-C7'-C5'</td>
<td>3.93</td>
<td>127.82</td>
<td>120.93</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>104</td>
<td>A32</td>
<td>C5'-C4'-C3'</td>
<td>4.04</td>
<td>124.63</td>
<td>119.86</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>104</td>
<td>A32</td>
<td>O5-C1-O1</td>
<td>4.06</td>
<td>118.45</td>
<td>108.38</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>104</td>
<td>A32</td>
<td>C5'-C6'-C1'</td>
<td>4.08</td>
<td>123.96</td>
<td>119.58</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>C5'-C4'-C3'</td>
<td>4.11</td>
<td>124.71</td>
<td>119.86</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>104</td>
<td>A32</td>
<td>C7B-N4'-C3B</td>
<td>4.14</td>
<td>122.04</td>
<td>111.24</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>104</td>
<td>A32</td>
<td>C5'-C6'-C1'</td>
<td>4.31</td>
<td>124.21</td>
<td>119.58</td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td>104</td>
<td>A32</td>
<td>O2-C2-C1</td>
<td>4.32</td>
<td>120.67</td>
<td>110.06</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>104</td>
<td>A32</td>
<td>C5'-C7'-N2'</td>
<td>4.42</td>
<td>126.38</td>
<td>117.12</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>O1B-C2B-C3B</td>
<td>4.49</td>
<td>121.66</td>
<td>111.81</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>104</td>
<td>A32</td>
<td>C4'-C3'-N1'</td>
<td>4.54</td>
<td>122.69</td>
<td>118.80</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>104</td>
<td>A32</td>
<td>C1'-O1-C1</td>
<td>4.56</td>
<td>124.66</td>
<td>117.84</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>104</td>
<td>A32</td>
<td>O1-C1-C2</td>
<td>4.60</td>
<td>113.86</td>
<td>107.12</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>104</td>
<td>A32</td>
<td>O1-C1-C2</td>
<td>4.61</td>
<td>113.88</td>
<td>107.12</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>104</td>
<td>A32</td>
<td>O1-C1-C2</td>
<td>4.82</td>
<td>114.18</td>
<td>107.12</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>104</td>
<td>A32</td>
<td>C9'-N2'-C7'</td>
<td>5.07</td>
<td>133.49</td>
<td>122.09</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>104</td>
<td>A32</td>
<td>O1-C1-C2</td>
<td>5.11</td>
<td>114.62</td>
<td>107.12</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>C9'-N2'-C7'</td>
<td>5.23</td>
<td>133.84</td>
<td>122.09</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>104</td>
<td>A32</td>
<td>O5-C1-O1</td>
<td>5.26</td>
<td>121.41</td>
<td>108.38</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>104</td>
<td>A32</td>
<td>C1'-O1-C1</td>
<td>5.31</td>
<td>125.77</td>
<td>117.84</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>104</td>
<td>A32</td>
<td>C5'-C7'-N2'</td>
<td>5.38</td>
<td>128.38</td>
<td>117.12</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>104</td>
<td>A32</td>
<td>O3-C3-C2</td>
<td>5.48</td>
<td>123.14</td>
<td>110.34</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>104</td>
<td>A32</td>
<td>C5'-C6'-C1'</td>
<td>5.65</td>
<td>125.65</td>
<td>119.58</td>
</tr>
<tr>
<td>2</td>
<td>Z</td>
<td>104</td>
<td>A32</td>
<td>C4'-C3'-N1'</td>
<td>5.65</td>
<td>123.65</td>
<td>118.80</td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td>104</td>
<td>A32</td>
<td>C2'-C3'-N1'</td>
<td>5.69</td>
<td>123.69</td>
<td>118.80</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>104</td>
<td>A32</td>
<td>C5'-C4'-C3'</td>
<td>5.70</td>
<td>126.59</td>
<td>119.86</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atoms</th>
<th>Z</th>
<th>Observed(°)</th>
<th>Ideal(°)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>X</td>
<td>104</td>
<td>A32</td>
<td>O1-C1-C2</td>
<td>5.73</td>
<td>115.52</td>
<td>107.12</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>104</td>
<td>A32</td>
<td>O2-C2-C1</td>
<td>5.76</td>
<td>124.19</td>
<td>110.06</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>C2’-C3’-N1’</td>
<td>6.15</td>
<td>124.08</td>
<td>118.80</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>O1-C1-C2</td>
<td>6.24</td>
<td>116.28</td>
<td>107.12</td>
</tr>
<tr>
<td>2</td>
<td>P</td>
<td>104</td>
<td>A32</td>
<td>O3’-C7’-C5’</td>
<td>6.98</td>
<td>133.19</td>
<td>120.93</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>104</td>
<td>A32</td>
<td>O1-C1-C2</td>
<td>7.06</td>
<td>117.47</td>
<td>107.12</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>104</td>
<td>A32</td>
<td>O2-C2-C1</td>
<td>7.17</td>
<td>127.67</td>
<td>110.06</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>104</td>
<td>A32</td>
<td>C4’-C3’-N1’</td>
<td>7.21</td>
<td>124.98</td>
<td>118.80</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>104</td>
<td>A32</td>
<td>O1-C1-C2</td>
<td>7.37</td>
<td>117.93</td>
<td>107.12</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>104</td>
<td>A32</td>
<td>O1-C1-C2</td>
<td>7.58</td>
<td>118.23</td>
<td>107.12</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>104</td>
<td>A32</td>
<td>C1’-O1-C1</td>
<td>8.92</td>
<td>131.16</td>
<td>117.84</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>C2’-C3’-N1’</td>
<td>9.24</td>
<td>126.73</td>
<td>118.80</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>104</td>
<td>A32</td>
<td>C1’-O1-C1</td>
<td>9.91</td>
<td>132.64</td>
<td>117.84</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>104</td>
<td>A32</td>
<td>C4’-C3’-N1’</td>
<td>9.94</td>
<td>127.33</td>
<td>118.80</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>104</td>
<td>A32</td>
<td>C4’-C3’-N1’</td>
<td>9.95</td>
<td>127.34</td>
<td>118.80</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>104</td>
<td>A32</td>
<td>C4’-C3’-N1’</td>
<td>10.48</td>
<td>127.79</td>
<td>118.80</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>104</td>
<td>A32</td>
<td>C4’-C3’-N1’</td>
<td>13.88</td>
<td>130.70</td>
<td>118.80</td>
</tr>
</tbody>
</table>

All (1) chirality outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Atom</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>V</td>
<td>104</td>
<td>A32</td>
<td>C2</td>
</tr>
</tbody>
</table>

There are no torsion outliers.

There are no ring outliers.

13 monomers are involved in 57 short contacts:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>D</td>
<td>104</td>
<td>A32</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>E</td>
<td>104</td>
<td>A32</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>F</td>
<td>104</td>
<td>A32</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>G</td>
<td>104</td>
<td>A32</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>H</td>
<td>104</td>
<td>A32</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>L</td>
<td>104</td>
<td>A32</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>M</td>
<td>104</td>
<td>A32</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>O</td>
<td>104</td>
<td>A32</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>V</td>
<td>104</td>
<td>A32</td>
<td>6</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>W</td>
<td>104</td>
<td>A32</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>X</td>
<td>104</td>
<td>A32</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>Y</td>
<td>104</td>
<td>A32</td>
<td>5</td>
<td>0</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>Clashes</th>
<th>Symm-Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Z</td>
<td>104</td>
<td>A32</td>
<td>9</td>
<td>0</td>
</tr>
</tbody>
</table>

5.7 Other polymers

There are no such residues in this entry.

5.8 Polymer linkage issues

There are no chain breaks in this entry.
6 Fit of model and data

6.1 Protein, DNA and RNA chains

In the following table, the column labelled ‘#RSRZ> 2’ contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95th percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled ‘Q< 0.9’ lists the number of (and percentage) of residues with an average occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Analysed</th>
<th><RSRZ></th>
<th>#RSRZ>2</th>
<th>OWAB(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>D</td>
<td>103/103 (100%)</td>
<td>-0.42</td>
<td>0/100</td>
<td>12, 23, 36, 48</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>103/103 (100%)</td>
<td>-0.49</td>
<td>1/0%</td>
<td>12, 21, 40, 54</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>103/103 (100%)</td>
<td>-0.51</td>
<td>1/0%</td>
<td>12, 21, 33, 50</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>103/103 (100%)</td>
<td>-0.26</td>
<td>2/1%</td>
<td>13, 26, 42, 59</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>103/103 (100%)</td>
<td>-0.48</td>
<td>1/0%</td>
<td>12, 23, 34, 60</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>103/103 (100%)</td>
<td>0.10</td>
<td>3/2%</td>
<td>18, 37, 70, 84</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>103/103 (100%)</td>
<td>0.45</td>
<td>5/4%</td>
<td>22, 46, 78, 102</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>103/103 (100%)</td>
<td>0.16</td>
<td>3/2%</td>
<td>17, 36, 57, 71</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>103/103 (100%)</td>
<td>0.12</td>
<td>3/2%</td>
<td>18, 36, 60, 83</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>103/103 (100%)</td>
<td>-0.22</td>
<td>1/0%</td>
<td>17, 28, 46, 62</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>103/103 (100%)</td>
<td>1.52</td>
<td>37/35%</td>
<td>27, 68, 106, 117</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>103/103 (100%)</td>
<td>0.98</td>
<td>19/18%</td>
<td>21, 50, 77, 86</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>103/103 (100%)</td>
<td>0.25</td>
<td>8/7%</td>
<td>16, 36, 64, 77</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>103/103 (100%)</td>
<td>0.34</td>
<td>7/6%</td>
<td>17, 37, 62, 79</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>103/103 (100%)</td>
<td>0.47</td>
<td>6/5%</td>
<td>19, 42, 72, 93</td>
<td>0</td>
</tr>
<tr>
<td>All</td>
<td>All</td>
<td>1545/1545 (100%)</td>
<td>0.13</td>
<td>97/6%</td>
<td>12, 33, 73, 117</td>
<td>0</td>
</tr>
</tbody>
</table>

All (97) RSRZ outliers are listed below:

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V</td>
<td>88</td>
<td>TRP</td>
<td>7.0</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>85</td>
<td>LEU</td>
<td>6.9</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>86</td>
<td>CYS</td>
<td>6.3</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>87</td>
<td>VAL</td>
<td>5.7</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>17</td>
<td>ILE</td>
<td>5.5</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>96</td>
<td>ILE</td>
<td>5.3</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>103</td>
<td>ASN</td>
<td>5.2</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>W</td>
<td>40</td>
<td>ILE</td>
<td>4.5</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>16</td>
<td>GLN</td>
<td>4.5</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>103</td>
<td>ASN</td>
<td>4.2</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>88</td>
<td>TRP</td>
<td>4.0</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>33</td>
<td>GLY</td>
<td>4.0</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>98</td>
<td>ALA</td>
<td>3.9</td>
</tr>
<tr>
<td>1</td>
<td>H</td>
<td>103</td>
<td>ASN</td>
<td>3.7</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>103</td>
<td>ASN</td>
<td>3.7</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>48</td>
<td>PHE</td>
<td>3.6</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>5</td>
<td>ILE</td>
<td>3.6</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>10</td>
<td>SER</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>15</td>
<td>THR</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>103</td>
<td>ASN</td>
<td>3.5</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>12</td>
<td>TYR</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>18</td>
<td>TYR</td>
<td>3.4</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>20</td>
<td>ILE</td>
<td>3.3</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>99</td>
<td>ILE</td>
<td>3.3</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>92</td>
<td>THR</td>
<td>3.3</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>14</td>
<td>ASN</td>
<td>3.3</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>13</td>
<td>ARG</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>13</td>
<td>ARG</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>103</td>
<td>ASN</td>
<td>3.2</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>6</td>
<td>THR</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>97</td>
<td>ALA</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>85</td>
<td>LEU</td>
<td>3.1</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>12</td>
<td>TYR</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>6</td>
<td>THR</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>96</td>
<td>ILE</td>
<td>3.0</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>10</td>
<td>SER</td>
<td>2.9</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>15</td>
<td>THR</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>G</td>
<td>13</td>
<td>ARG</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>93</td>
<td>PRO</td>
<td>2.7</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>19</td>
<td>THR</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>50</td>
<td>VAL</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>96</td>
<td>ILE</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>88</td>
<td>TRP</td>
<td>2.6</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>50</td>
<td>VAL</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>42</td>
<td>PHE</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>103</td>
<td>ASN</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>38</td>
<td>VAL</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>6</td>
<td>THR</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>84</td>
<td>LYS</td>
<td>2.5</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Y</td>
<td>92</td>
<td>THR</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>M</td>
<td>13</td>
<td>ARG</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>102</td>
<td>LYS</td>
<td>2.5</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>15</td>
<td>THR</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>95</td>
<td>SER</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>39</td>
<td>ILE</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>58</td>
<td>ILE</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>99</td>
<td>ILE</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>86</td>
<td>CYS</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>10</td>
<td>SER</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>20</td>
<td>ILE</td>
<td>2.4</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>48</td>
<td>PHE</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>43</td>
<td>LYS</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>87</td>
<td>VAL</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>55</td>
<td>SER</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>Z</td>
<td>12</td>
<td>TYR</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>L</td>
<td>19</td>
<td>THR</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>P</td>
<td>103</td>
<td>ASN</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>10</td>
<td>SER</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>103</td>
<td>ASN</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>F</td>
<td>13</td>
<td>ARG</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>N</td>
<td>99</td>
<td>ILE</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>24</td>
<td>ILE</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>59</td>
<td>ASP</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>13</td>
<td>ARG</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>13</td>
<td>ARG</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>40</td>
<td>ILE</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>46</td>
<td>GLU</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>52</td>
<td>VAL</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>44</td>
<td>SER</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>14</td>
<td>ASN</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>82</td>
<td>ILE</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>92</td>
<td>THR</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>62</td>
<td>LYS</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>93</td>
<td>PRO</td>
<td>2.2</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>8</td>
<td>LEU</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>13</td>
<td>ARG</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>54</td>
<td>GLY</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>18</td>
<td>TYR</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>44</td>
<td>SER</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>O</td>
<td>88</td>
<td>TRP</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>59</td>
<td>ASP</td>
<td>2.1</td>
</tr>
</tbody>
</table>

Continued on next page...
Continued from previous page...

<table>
<thead>
<tr>
<th>Mol</th>
<th>Chain</th>
<th>Res</th>
<th>Type</th>
<th>RSRZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>V</td>
<td>19</td>
<td>THR</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>18</td>
<td>TYR</td>
<td>2.1</td>
</tr>
<tr>
<td>1</td>
<td>V</td>
<td>13</td>
<td>ARG</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>W</td>
<td>97</td>
<td>ALA</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>Y</td>
<td>18</td>
<td>TYR</td>
<td>2.0</td>
</tr>
<tr>
<td>1</td>
<td>X</td>
<td>99</td>
<td>ILE</td>
<td>2.0</td>
</tr>
</tbody>
</table>

6.2 Non-standard residues in protein, DNA, RNA chains

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates

There are no carbohydrates in this entry.

6.4 Ligands

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95th percentile and maximum values of B factors of atoms in the group. The column labelled ‘Q<0.9’ lists the number of atoms with occupancy less than 0.9.

<table>
<thead>
<tr>
<th>Mol</th>
<th>Type</th>
<th>Chain</th>
<th>Res</th>
<th>Atoms</th>
<th>RSCC</th>
<th>RSR</th>
<th>B-factors(Å²)</th>
<th>Q<0.9</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>A32</td>
<td>V</td>
<td>104</td>
<td>33/33</td>
<td>0.47</td>
<td>0.36</td>
<td>86,97,102,103</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>W</td>
<td>104</td>
<td>33/33</td>
<td>0.51</td>
<td>0.40</td>
<td>60,87,108,108</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>L</td>
<td>104</td>
<td>33/33</td>
<td>0.58</td>
<td>0.32</td>
<td>47,77,83,84</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>Y</td>
<td>104</td>
<td>33/33</td>
<td>0.58</td>
<td>0.37</td>
<td>65,84,92,94</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>O</td>
<td>104</td>
<td>33/33</td>
<td>0.66</td>
<td>0.32</td>
<td>57,94,111,112</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>Z</td>
<td>104</td>
<td>33/33</td>
<td>0.70</td>
<td>0.25</td>
<td>55,76,87,88</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>M</td>
<td>104</td>
<td>33/33</td>
<td>0.71</td>
<td>0.24</td>
<td>64,82,87,87</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>F</td>
<td>104</td>
<td>33/33</td>
<td>0.75</td>
<td>0.23</td>
<td>24,58,77,77</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>X</td>
<td>104</td>
<td>33/33</td>
<td>0.77</td>
<td>0.24</td>
<td>25,58,71,72</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>D</td>
<td>104</td>
<td>33/33</td>
<td>0.78</td>
<td>0.23</td>
<td>26,54,80,81</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>P</td>
<td>104</td>
<td>33/33</td>
<td>0.80</td>
<td>0.22</td>
<td>34,72,94,95</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>H</td>
<td>104</td>
<td>33/33</td>
<td>0.82</td>
<td>0.22</td>
<td>22,58,81,81</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>G</td>
<td>104</td>
<td>33/33</td>
<td>0.87</td>
<td>0.17</td>
<td>31,56,78,79</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>A32</td>
<td>E</td>
<td>104</td>
<td>33/33</td>
<td>0.87</td>
<td>0.17</td>
<td>23,48,59,59</td>
<td>0</td>
</tr>
</tbody>
</table>
6.5 Other polymers

There are no such residues in this entry.