

Full wwPDB X-ray Structure Validation Report (i)

Nov 15, 2023 – 04:08 PM JST

PDB ID	:	6JUY
Title	:	Crystal Structure of ArgZ, apo structure, an Arginine Dihydrolase from the
		Ornithine-Ammonia Cycle in Cyanobacteria
Authors	:	Zhuang, N.; Li, L.; Wu, X.; Zhang, Y.
Deposited on	:	2019-04-15
Resolution	:	2.97 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity	:	4.02b-467
Xtriage (Phenix)	:	1.13
EDS	:	2.36
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
Refmac	:	5.8.0158
CCP4	:	7.0.044 (Gargrove)
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.36

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY \, DIFFRACTION$

The reported resolution of this entry is 2.97 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	$egin{array}{c} { m Whole \ archive} \ (\#{ m Entries}) \end{array}$	${f Similar\ resolution}\ (\#{ m Entries,\ resolution\ range}({ m \AA}))$		
R_{free}	130704	2754 (3.00-2.96)		
Clashscore	141614	3103 (3.00-2.96)		
Ramachandran outliers	138981	2993 (3.00-2.96)		
Sidechain outliers	138945	2996 (3.00-2.96)		
RSRZ outliers	127900	2644 (3.00-2.96)		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	707	6% 74%	16%	10%
1	В	707	7%	17%	• 10%
1	С	707	7%	19%	7%
1	D	707	13%	17% •	12%

2 Entry composition (i)

There are 2 unique types of molecules in this entry. The entry contains 18519 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
1	Λ	630	Total	С	Ν	Ο	\mathbf{S}	0	0	0
1	Л	039	4736	3005	812	889	30	0	0	0
1	В	637	Total	С	Ν	Ο	S	0	0	0
1	I D		4722	2991	817	885	29			
1	C	656	Total	С	Ν	0	S	0	0	0
		000	4723	3000	803	893	27		0	
1	1 D	623	Total	С	Ν	0	S	0	0	0
	025	4333	2745	737	823	28	0	0	U	

• Molecule 1 is a protein called Sll1336 protein.

There are 8 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	-1	GLY	-	expression tag	UNP P74535
А	0	ALA	-	expression tag	UNP P74535
В	-1	GLY	-	expression tag	UNP P74535
В	0	ALA	-	expression tag	UNP P74535
С	-1	GLY	-	expression tag	UNP P74535
С	0	ALA	-	expression tag	UNP P74535
D	-1	GLY	-	expression tag	UNP P74535
D	0	ALA	-	expression tag	UNP P74535

• Molecule 2 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
2	А	5	Total O 5 5	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Sll1336 protein

4 Data and refinement statistics (i)

Property	Value	Source	
Space group	C 1 2 1	Depositor	
Cell constants	189.87Å 105.44Å 165.91Å	Deperitor	
a, b, c, α , β , γ	90.00° 113.18° 90.00°	Depositor	
$\mathbf{B}_{\mathrm{ascolution}}\left(\mathring{A}\right)$	41.06 - 2.97	Depositor	
Resolution (A)	48.74 - 2.97	EDS	
% Data completeness	97.1 (41.06-2.97)	Depositor	
(in resolution range)	97.2 (48.74-2.97)	EDS	
R_{merge}	0.04	Depositor	
R_{sym}	(Not available)	Depositor	
$< I/\sigma(I) > 1$	$1.96 (at 2.96 \text{\AA})$	Xtriage	
Refinement program	PHENIX 1.17_3644	Depositor	
D D .	0.234 , 0.275	Depositor	
n, n_{free}	0.234 , 0.274	DCC	
R_{free} test set	1990 reflections (3.29%)	wwPDB-VP	
Wilson B-factor $(Å^2)$	109.2	Xtriage	
Anisotropy	0.456	Xtriage	
Bulk solvent $k_{sol}(e/Å^3), B_{sol}(Å^2)$	0.30 , 79.8	EDS	
L-test for $twinning^2$	$< L >=0.50, < L^2>=0.33$	Xtriage	
	0.000 for 1/2 *h-3/2 *k,-1/2 *h-1/2 *k,-1/2 *h		
Estimated twinning fraction	$+1/2^{*}k$ -l	Xtriage	
	0.003 for $1/2^{h+3}/2^{k}, 1/2^{h-1}/2^{k}, -1/2^{h-1}/2^{h-$		
E.E. completion	$\frac{1/2^{\kappa} k-1}{0.04}$	EDC	
$\mathbf{F}_{o}, \mathbf{F}_{c}$ correlation	0.94		
Total number of atoms	18519	wwPDB-VP	
Average B, all atoms (A^2)	109.0	wwPDB-VP	

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 3.46% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bo	nd lengths	Bond angles		
10101	Ullalli	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.27	0/4825	0.50	0/6572	
1	В	0.28	0/4814	0.51	1/6565~(0.0%)	
1	С	0.32	1/4821~(0.0%)	0.54	2/6597~(0.0%)	
1	D	0.27	0/4412	0.53	1/6041~(0.0%)	
All	All	0.29	1/18872~(0.0%)	0.52	4/25775~(0.0%)	

Chiral center outliers are detected by calculating the chiral volume of a chiral center and verifying if the center is modelled as a planar moiety or with the opposite hand. A planarity outlier is detected by checking planarity of atoms in a peptide group, atoms in a mainchain group or atoms of a sidechain that are expected to be planar.

Mol	Chain	#Chirality outliers	#Planarity outliers
1	А	0	1
1	В	0	2
1	С	0	2
1	D	0	1
All	All	0	6

All (1) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	Ideal(Å)
1	С	341	GLN	CD-OE1	-5.59	1.11	1.24

All (4) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	D	559	LEU	CB-CG-CD1	-6.85	99.36	111.00
1	С	659	ASN	C-N-CD	-6.81	105.61	120.60
1	В	414	PRO	C-N-CD	-5.40	108.73	120.60
1	С	659	ASN	C-N-CA	5.24	144.00	122.00

There are no chirality outliers.

Mol	Chain	Res	Type	Group
1	А	605	GLY	Peptide
1	В	223	VAL	Peptide
1	В	634	LEU	Peptide
1	С	223	VAL	Peptide
1	С	277	VAL	Peptide
1	D	605	GLY	Peptide

All (6) planarity outliers are listed below:

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	4736	0	4513	67	2
1	В	4722	0	4476	80	1
1	С	4723	0	4314	88	1
1	D	4333	0	3874	82	0
2	А	5	0	0	0	0
All	All	18519	0	17177	297	2

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 8.

All (297) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)	
1:A:659:ASN:HB3	1:A:662:VAL:HB	1.55	0.88	
1:D:493:VAL:HG12	1:D:520:ALA:HB3	1.55	0.88	
1:C:76:LEU:HB3	1:C:152:LEU:HD12	1.59	0.82	
1:B:338:PRO:HD2	1:B:342:ILE:HD11	1.63	0.80	
1:B:340:HIS:O	1:B:341:GLN:NE2	2.13	0.79	
1:A:155:GLU:HG3	1:A:280:THR:HB	1.66	0.78	
1:A:294:LEU:HA	1:A:299:ILE:HG22	1.65	0.77	
1:B:347:MET:HB3	1:B:435:VAL:HG11	1.64	0.77	
1:D:636:SER:HB2	1:D:639:HIS:HB3	1.67	0.77	
1:D:510:SER:HB2	1:D:587:GLU:HG3	1.67	0.76	
1:C:153:ASP:HA	1:C:279:ALA:HB2	1.67	0.74	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:C:8:LEU:HD21	1:C:57:VAL:HG23	1.70	0.73	
1:B:281:VAL:HG12	1:B:283:ILE:H	1.53	0.73	
1:A:691:GLN:NE2	1:D:210:GLU:OE2	2.21	0.73	
1:B:214:VAL:HG11	1:C:480:TRP:HE1	1.54	0.73	
1:A:411:THR:OG1	1:A:416:SER:OG	2.05	0.73	
1:C:219:ASN:HB3	1:C:261:ALA:HB3	1.72	0.72	
1:A:219:ASN:HB3	1:A:261:ALA:HB3	1.72	0.72	
1:B:339:SER:HB3	1:B:342:ILE:HG12	1.71	0.71	
1:C:40:GLN:HE22	1:C:253:THR:HG22	1.56	0.70	
1:C:423:ARG:HA	1:D:566:ARG:HH22	1.57	0.70	
1:C:493:VAL:HG13	1:C:520:ALA:HB3	1.73	0.69	
1:D:219:ASN:HB3	1:D:261:ALA:HB3	1.74	0.69	
1:B:667:SER:HA	1:B:674:SER:HA	1.76	0.67	
1:D:153:ASP:HA	1:D:279:ALA:HB2	1.77	0.66	
1:A:403:ARG:NH2	1:A:404:MET:O	2.29	0.65	
1:B:306:LEU:HD13	1:B:349:GLU:HG3	1.76	0.65	
1:A:68:PHE:CE1	1:A:260:GLY:HA3	2.31	0.65	
1:C:365:ILE:HG12	1:C:390:VAL:HG13	1.79	0.65	
1:C:385:ILE:HG23	1:C:649:SER:HB2	1.80	0.64	
1:A:281:VAL:HG13	1:A:283:ILE:H	1.63	0.64	
1:B:351:ILE:HD13	1:B:438:ILE:HG23	1.79	0.64	
1:C:351:ILE:HD13	1:C:438:ILE:HB	1.79	0.64	
1:D:493:VAL:HG23	1:D:631:ILE:HG23	1.80	0.64	
1:A:89:GLU:N	1:A:89:GLU:OE1	2.30	0.64	
1:C:380:PHE:O	1:D:560:LYS:NZ	2.24	0.64	
1:A:296:ASP:O	1:D:301:ASN:ND2	2.30	0.63	
1:C:232:VAL:HG11	1:C:247:VAL:HG11	1.79	0.62	
1:D:310:ASN:HB3	1:D:346:ILE:HG12	1.80	0.62	
1:D:365:ILE:HG22	1:D:437:GLY:HA3	1.81	0.62	
1:D:115:LEU:HD21	1:D:144:SER:HA	1.81	0.62	
1:C:189:ASP:OD2	1:C:311:SER:OG	2.10	0.62	
1:D:636:SER:O	1:D:640:SER:N	2.19	0.62	
1:A:318:ASN:ND2	1:A:332:GLU:OE1	2.33	0.62	
1:A:541:LEU:HA	1:A:558:HIS:HE1	1.63	0.61	
1:C:411:THR:OG1	1:C:416:SER:OG	2.19	0.61	
1:D:375:VAL:HG12	1:D:376:ALA:H	1.65	0.61	
1:C:81:VAL:HG23	1:C:152:LEU:HD21	1.82	0.61	
1:A:559:LEU:HD12	1:B:382:VAL:HG13	1.83	0.60	
1:B:360:GLN:HG3	1:B:361:GLU:HG3	1.83	0.60	
1:D:272:PRO:HB2	1:D:274:LEU:HD12	1.84	0.60	
1:B:63:TRP:CZ2	1:B:92:GLY:HA3	2.38	0.58	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:B:253:THR:HA	1:B:256:LEU:HD12	1.83	0.58	
1:A:132:LEU:HD23	1:A:156:VAL:HG22	1.85	0.58	
1:B:344:GLU:O	1:B:348:THR:HG23	2.02	0.58	
1:D:664:THR:HG1	1:D:670:GLY:N	2.02	0.58	
1:A:495:THR:HB	1:A:639:HIS:CE1	2.39	0.58	
1:C:141:GLU:HG3	1:C:143:ASP:H	1.69	0.58	
1:C:339:SER:HB3	1:C:342:ILE:HG13	1.85	0.58	
1:C:467:SER:HA	1:C:678:VAL:HG12	1.86	0.57	
1:A:286:ARG:NH1	1:A:436:GLU:OE2	2.38	0.57	
1:A:541:LEU:HA	1:A:558:HIS:CE1	2.38	0.57	
1:D:320:ASN:O	1:D:329:SER:OG	2.11	0.57	
1:C:16:ASP:H	1:C:64:PRO:HB2	1.69	0.57	
1:A:4:ASP:OD1	1:A:5:ILE:N	2.34	0.57	
1:B:494:VAL:HG22	1:B:632:LEU:HB2	1.87	0.57	
1:A:323:VAL:N	1:A:327:SER:OG	2.39	0.56	
1:B:379:ASP:HB3	1:B:433:VAL:HG13	1.86	0.56	
1:A:63:TRP:CH2	1:A:92:GLY:HA3	2.40	0.56	
1:B:177:SER:OG	1:B:224:ASN:O	2.14	0.56	
1:C:283:ILE:HG13	1:C:338:PRO:HA	1.88	0.56	
1:D:60:ALA:HB3	1:D:63:TRP:HD1	1.71	0.56	
1:D:232:VAL:HB	1:D:236:LEU:HD23	1.88	0.56	
1:D:471:VAL:HG12	1:D:472:GLU:HG3	1.87	0.56	
1:A:614:LEU:HD11	1:B:614:LEU:HD11	1.89	0.55	
1:B:344:GLU:HG3	1:B:435:VAL:HG23	1.89	0.55	
1:D:636:SER:CB	1:D:639:HIS:HB3	2.36	0.55	
1:C:57:VAL:HG22	1:C:100:TRP:CD1	2.42	0.55	
1:C:481:GLU:O	1:C:485:ILE:HG12	2.07	0.55	
1:D:124:LEU:HD21	1:D:263:LYS:HE2	1.89	0.55	
1:A:486:ARG:NH2	1:A:515:GLU:O	2.39	0.54	
1:B:98:LYS:HG3	1:B:108:VAL:HG11	1.88	0.54	
1:D:255:PHE:HD2	1:D:265:LEU:HD11	1.71	0.54	
1:A:657:ASP:O	1:A:678:VAL:HA	2.08	0.54	
1:C:636:SER:HB3	1:C:639:HIS:ND1	2.23	0.54	
1:D:220:ALA:O	1:D:263:LYS:HD2	2.08	0.54	
1:B:318:ASN:ND2	1:B:320:ASN:OD1	2.39	0.54	
1:B:132:LEU:HD23	1:B:156:VAL:HG22	1.90	0.53	
1:C:567:ARG:HH22	1:D:378:ASP:CG	2.12	0.53	
1:D:158:SER:OG	1:D:283:ILE:HD11	2.09	0.53	
1:B:604:ASP:O	1:B:606:PRO:HA	2.09	0.53	
1:A:475:VAL:HG11	1:A:687:LEU:HB3	1.91	0.52	
1:B:10:CYS:HB3	1:B:67:VAL:HA	1.91	0.52	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:C:614:LEU:HD11	1:D:614:LEU:HD11	1.90	0.52	
1:C:660:PRO:HB3	1:C:678:VAL:CG1	2.38	0.52	
1:C:677:VAL:HG12	1:C:679:THR:HG22	1.90	0.52	
1:A:469:ARG:HG3	1:A:470:ARG:H	1.75	0.52	
1:A:377:PRO:HD2	1:A:431:VAL:HG21	1.91	0.52	
1:B:388:THR:HG21	1:B:438:ILE:HD11	1.90	0.52	
1:C:358:PRO:HG2	1:C:359:PRO:HD3	1.92	0.52	
1:A:632:LEU:HD23	1:A:654:VAL:HB	1.90	0.52	
1:C:22:ASN:HB2	1:C:23:PRO:HD2	1.92	0.52	
1:A:423:ARG:NH2	1:A:618:GLN:OE1	2.43	0.51	
1:D:236:LEU:O	1:D:240:LEU:HG	2.11	0.51	
1:C:138:PHE:HB3	1:C:139:ARG:HH21	1.76	0.51	
1:C:486:ARG:NH1	1:C:515:GLU:O	2.42	0.51	
1:C:660:PRO:HB3	1:C:678:VAL:HG13	1.91	0.51	
1:D:255:PHE:CD2	1:D:265:LEU:HD11	2.45	0.51	
1:C:158:SER:OG	1:C:283:ILE:HD11	2.11	0.51	
1:A:33:SER:HB3	1:A:254:GLU:OE1	2.10	0.51	
1:A:338:PRO:HD2	1:A:342:ILE:HG21	1.92	0.51	
1:C:658:ILE:HG23	1:C:679:THR:C	2.31	0.51	
1:C:344:GLU:HG3	1:C:435:VAL:HG23	1.93	0.51	
1:C:347:MET:HB3	1:C:435:VAL:HG11	1.93	0.50	
1:B:219:ASN:HB3	1:B:261:ALA:HB3	1.94	0.50	
1:B:556:ARG:HE	1:B:560:LYS:HE3	1.77	0.50	
1:D:111:LEU:HD22	1:D:115:LEU:HD23	1.93	0.50	
1:D:136:TYR:CZ	1:D:160:ARG:HB2	2.46	0.50	
1:A:564:SER:O	1:A:568:TYR:HD1	1.94	0.50	
1:B:659:ASN:C	1:B:661:ALA:H	2.15	0.50	
1:D:344:GLU:HG3	1:D:435:VAL:HG23	1.94	0.50	
1:B:220:ALA:O	1:B:263:LYS:HD2	2.12	0.50	
1:B:292:GLY:H	1:B:328:THR:HB	1.77	0.50	
1:C:405:ASP:OD1	1:D:555:HIS:HA	2.12	0.50	
1:D:602:ARG:O	1:D:602:ARG:HG2	2.11	0.49	
1:B:414:PRO:HD2	1:B:415:PRO:HA	1.93	0.49	
1:C:220:ALA:HB2	1:C:229:MET:HB3	1.94	0.49	
1:D:347:MET:HB3	1:D:435:VAL:HG11	1.95	0.49	
1:D:300:LEU:O	1:D:304:LEU:HG	2.12	0.49	
1:D:314:PHE:HA	1:D:334:ARG:O	2.13	0.49	
1:B:340:HIS:ND1	1:B:341:GLN:HG2	2.28	0.49	
1:C:657:ASP:OD1	1:C:658:ILE:N	2.46	0.49	
1:B:223:VAL:HG12	1:B:224:ASN:H	1.78	0.48	
1:C:212:ASP:OD1	1:C:233:SER:OG	2.18	0.48	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:D:606:PRO:HB2	1:D:610:THR:OG1	2.12	0.48	
1:B:525:ASN:O	1:B:529:VAL:HG13	2.13	0.48	
1:C:411:THR:O	1:C:415:PRO:HA	2.12	0.48	
1:B:347:MET:CB	1:B:435:VAL:HG11	2.37	0.48	
1:C:132:LEU:HD23	1:C:156:VAL:HG22	1.95	0.48	
1:A:63:TRP:HB3	1:A:93:GLU:HG2	1.95	0.48	
1:A:363:CYS:SG	1:A:364:ASP:N	2.86	0.48	
1:A:370:VAL:HG23	1:A:429:ASP:O	2.14	0.48	
1:C:559:LEU:HD12	1:D:382:VAL:CG1	2.43	0.48	
1:C:555:HIS:ND1	1:D:405:ASP:OD1	2.45	0.48	
1:A:525:ASN:O	1:A:529:VAL:HG13	2.13	0.48	
1:C:63:TRP:CH2	1:C:92:GLY:HA3	2.48	0.48	
1:C:21:ILE:O	1:C:139:ARG:NH1	2.47	0.48	
1:D:387:PRO:HD3	1:D:649:SER:OG	2.14	0.48	
1:D:521:LEU:O	1:D:595:TYR:HA	2.14	0.48	
1:A:385:ILE:HG13	1:A:649:SER:HB3	1.96	0.48	
1:D:346:ILE:O	1:D:350:LEU:HB2	2.13	0.48	
1:A:495:THR:HG21	1:A:643:VAL:HG11	1.95	0.47	
1:C:481:GLU:OE2	1:C:652:LYS:HE3	2.14	0.47	
1:D:155:GLU:HA	1:D:280:THR:O	2.13	0.47	
1:C:679:THR:OG1	1:C:680:ASP:N	2.47	0.47	
1:A:210:GLU:O	1:A:214:VAL:HG13	2.13	0.47	
1:A:378:ASP:OD1	1:B:567:ARG:NH1	2.47	0.47	
1:C:36:ARG:HB3	1:C:254:GLU:HG3	1.95	0.47	
1:C:92:GLY:O	1:C:95:PRO:HD2	2.14	0.47	
1:B:89:GLU:OE1	1:B:89:GLU:N	2.48	0.47	
1:C:405:ASP:C	1:D:559:LEU:HD11	2.34	0.47	
1:C:559:LEU:HD12	1:D:382:VAL:HG13	1.97	0.47	
1:D:304:LEU:HD13	1:D:314:PHE:CE1	2.49	0.47	
1:D:494:VAL:HG22	1:D:632:LEU:HB2	1.96	0.47	
1:C:303:ALA:O	1:C:307:VAL:HG23	2.15	0.47	
1:D:223:VAL:HG12	1:D:226:ILE:H	1.79	0.47	
1:B:112:PRO:HG2	1:B:147:TYR:HE2	1.80	0.47	
1:C:223:VAL:HG12	1:C:224:ASN:H	1.79	0.47	
1:D:653:MET:N	1:D:674:SER:OG	2.41	0.47	
1:B:423:ARG:NH2	1:B:618:GLN:OE1	2.39	0.46	
1:C:229:MET:CE	1:C:232:VAL:HG12	2.45	0.46	
1:D:149:ALA:O	1:D:153:ASP:N	2.48	0.46	
1:D:379:ASP:HB3	1:D:433:VAL:HG13	1.95	0.46	
1:B:412:SER:HB2	1:B:430:ARG:HH11	1.80	0.46	
1:D:281:VAL:HG12	1:D:283:ILE:H	1.79	0.46	

		Interatomic	Clash	
Atom-1	Atom-2	distance (Å)	overlap (Å)	
1:A:123:ALA:HB1	1:A:132:LEU:HD11	1.98	0.46	
1:B:292:GLY:N	1:B:328:THR:HB	2.30	0.46	
1:B:493:VAL:O	1:B:631:ILE:HA	2.16	0.46	
1:C:564:SER:O	1:C:568:TYR:HD1	1.99	0.46	
1:B:123:ALA:HB1	1:B:132:LEU:HD11	1.97	0.46	
1:A:521:LEU:O	1:A:595:TYR:HA	2.15	0.46	
1:C:376:ALA:N	1:D:563:ASN:OD1	2.44	0.46	
1:D:375:VAL:HG12	1:D:376:ALA:N	2.30	0.46	
1:B:283:ILE:HG12	1:B:338:PRO:HA	1.98	0.46	
1:C:621:TYR:HB3	1:C:646:MET:SD	2.56	0.46	
1:A:188:PHE:HB3	1:A:192:SER:HB2	1.98	0.46	
1:B:481:GLU:O	1:B:485:ILE:HG13	2.16	0.46	
1:A:495:THR:HB	1:A:639:HIS:HE1	1.80	0.45	
1:B:63:TRP:HB3	1:B:93:GLU:HG2	1.97	0.45	
1:B:98:LYS:NZ	1:B:110:GLU:OE2	2.40	0.45	
1:C:118:GLU:HG3	1:C:139:ARG:HB3	1.98	0.45	
1:C:663:VAL:HG21	1:C:678:VAL:HG22	1.98	0.45	
1:D:571:ILE:HG12	1:D:609:ASP:OD2	2.16	0.45	
1:B:401:GLY:O	1:B:419:CYS:HB2	2.15	0.45	
1:A:469:ARG:CG	1:A:470:ARG:H	2.28	0.45	
1:C:352:ASP:O	1:C:353:LEU:HD13	2.16	0.45	
1:D:170:ASP:O	1:D:219:ASN:ND2	2.39	0.45	
1:A:75:VAL:HG13	1:A:80:VAL:HG22	1.99	0.45	
1:A:303:ALA:O	1:A:307:VAL:HG23	2.15	0.45	
1:C:525:ASN:O	1:C:529:VAL:HG13	2.16	0.45	
1:C:467:SER:HA	1:C:678:VAL:CG1	2.46	0.45	
1:D:622:SER:O	1:D:625:ILE:HG22	2.17	0.45	
1:A:253:THR:HA	1:A:256:LEU:HB2	1.98	0.45	
1:B:191:TYR:OH	1:B:339:SER:HB2	2.16	0.45	
1:C:376:ALA:O	1:D:563:ASN:ND2	2.27	0.45	
1:D:303:ALA:O	1:D:307:VAL:HG23	2.17	0.45	
1:D:321:LEU:HD23	1:D:322:GLY:O	2.16	0.45	
1:D:525:ASN:O	1:D:529:VAL:HG13	2.16	0.45	
1:B:6:ARG:HG2	1:B:270:THR:HG23	1.99	0.45	
1:B:482:MET:HG2	1:B:630:MET:SD	2.57	0.44	
1:D:68:PHE:CE1	1:D:260:GLY:HA3	2.52	0.44	
1:D:141:GLU:HG3	1:D:143:ASP:H	1.82	0.44	
1:D:304:LEU:HD22	1:D:314:PHE:CD1	2.52	0.44	
1:A:230:ASN:HA	1:A:250:THR:O	2.17	0.44	
1:B:6:ARG:NH2	1:B:55:ASP:OD2	2.50	0.44	
1:A:127:ARG:HA	1:A:127:ARG:NE	2.32	0.44	

	• • • • • •	Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:A:46:GLN:O	1:A:49:LYS:HB3	2.18	0.44	
1:B:609:ASP:OD1	1:B:609:ASP:N	2.51	0.44	
1:C:183:TYR:HE1	1:C:205:ARG:HB3	1.83	0.44	
1:C:471:VAL:HG12	1:C:475:VAL:HG23	2.00	0.44	
1:A:75:VAL:HG22	1:A:80:VAL:HG22	2.00	0.44	
1:B:191:TYR:CZ	1:B:339:SER:HB2	2.53	0.44	
1:B:306:LEU:HD22	1:B:349:GLU:HG2	1.99	0.44	
1:B:606:PRO:HG3	1:B:612:MET:SD	2.58	0.44	
1:C:580:ILE:HG22	1:C:586:TYR:HB2	2.00	0.44	
1:D:633:MET:HE1	1:D:643:VAL:HB	2.00	0.44	
1:A:141:GLU:HG3	1:A:143:ASP:H	1.83	0.43	
1:B:133:TRP:CE3	1:B:159:LEU:HD11	2.53	0.43	
1:C:125:PHE:CE1	1:C:132:LEU:HB2	2.53	0.43	
1:D:604:ASP:O	1:D:605:GLY:C	2.57	0.43	
1:C:44:LEU:HD23	1:C:250:THR:HG21	2.00	0.43	
1:D:480:TRP:O	1:D:484:GLN:HG2	2.18	0.43	
1:A:372:GLN:HB3	1:A:375:VAL:HB	2.00	0.43	
1:C:657:ASP:O	1:C:678:VAL:HA	2.19	0.43	
1:D:475:VAL:HG11	1:D:687:LEU:HB3	1.99	0.43	
1:D:492:ILE:O	1:D:519:HIS:N	2.41	0.43	
1:A:319:PHE:HD1	1:A:331:ALA:HB2	1.83	0.43	
1:B:476:GLU:CD	1:C:165:ARG:HH12	2.22	0.43	
1:B:597:LEU:HB2	1:B:610:THR:HA	1.99	0.43	
1:A:467:SER:HA	1:A:678:VAL:HG22	2.00	0.43	
1:D:80:VAL:HG12	1:D:106:PHE:HB3	2.00	0.43	
1:D:291:GLU:HA	1:D:330:SER:OG	2.19	0.43	
1:B:92:GLY:O	1:B:95:PRO:HD2	2.19	0.43	
1:B:341:GLN:HB3	1:B:344:GLU:HB2	2.01	0.43	
1:B:403:ARG:NH2	1:B:646:MET:HG2	2.34	0.43	
1:B:635:SER:HB2	1:B:656:VAL:O	2.19	0.42	
1:C:65:ASP:O	1:C:90:ARG:NH2	2.52	0.42	
1:A:405:ASP:OD1	1:B:555:HIS:ND1	2.53	0.42	
1:B:136:TYR:OH	1:B:338:PRO:HG3	2.19	0.42	
1:C:609:ASP:OD1	1:C:609:ASP:N	2.52	0.42	
1:A:13:ASP:CG	1:A:59:PRO:HG2	2.40	0.42	
1:A:189:ASP:OD2	1:A:311:SER:OG	2.30	0.42	
1:D:414:PRO:HA	1:D:415:PRO:HD3	1.84	0.42	
1:B:276:ASP:OD1	1:B:276:ASP:N	2.53	0.42	
1:D:304:LEU:O	1:D:308:VAL:HG22	2.19	0.42	
1:A:600:SER:HB3	1:A:603:ASP:OD1	2.20	0.42	
1:B:321:LEU:HD23	1:B:321:LEU:HA	1.88	0.42	

		Interatomic	Clash	
Atom-1	Atom-2	distance (\AA)	overlap (Å)	
1:B:365:ILE:HG21	1:B:390:VAL:HB	2.02	0.42	
1:C:145:HIS:N	1:C:146:PRO:HD2	2.33	0.42	
1:A:571:ILE:HG13	1:A:572:ARG:N	2.34	0.42	
1:C:115:LEU:HD21	1:C:144:SER:HA	2.01	0.42	
1:D:609:ASP:N	1:D:609:ASP:OD1	2.52	0.42	
1:A:177:SER:OG	1:A:224:ASN:O	2.30	0.42	
1:B:231:LEU:HA	1:B:249:GLU:OE2	2.20	0.42	
1:C:10:CYS:HA	1:C:11:PRO:HD3	1.91	0.42	
1:C:233:SER:HB2	1:C:236:LEU:H	1.85	0.42	
1:A:136:TYR:CZ	1:A:160:ARG:HB2	2.55	0.42	
1:B:202:PRO:HA	1:B:205:ARG:HG3	2.00	0.42	
1:C:495:THR:HA	1:C:522:LEU:O	2.19	0.42	
1:C:222:ASN:HD21	1:C:245:PHE:HE1	1.67	0.41	
1:C:299:ILE:HD12	1:C:299:ILE:HA	1.86	0.41	
1:B:40:GLN:HB3	1:B:252:LEU:HD23	2.01	0.41	
1:B:80:VAL:HG13	1:B:108:VAL:HA	2.02	0.41	
1:C:530:HIS:HE2	1:C:558:HIS:CE1	2.38	0.41	
1:D:173:PHE:CZ	1:D:181:LEU:HD21	2.54	0.41	
1:D:176:LEU:HB3	1:D:245:PHE:CZ	2.55	0.41	
1:B:88:LYS:HA	1:B:91:GLN:CD	2.41	0.41	
1:B:290:MET:O	1:B:294:LEU:HD11	2.21	0.41	
1:B:372:GLN:HB3	1:B:375:VAL:HB	2.03	0.41	
1:B:491:LYS:HD2	1:B:627:GLY:C	2.41	0.41	
1:C:304:LEU:HD22	1:C:314:PHE:CG	2.55	0.41	
1:A:87:HIS:HB3	1:A:89:GLU:OE1	2.21	0.41	
1:B:572:ARG:HG3	1:B:589:VAL:HG13	2.02	0.41	
1:C:365:ILE:HG12	1:C:390:VAL:CG1	2.47	0.41	
1:C:471:VAL:HG21	1:C:679:THR:HB	2.02	0.41	
1:B:435:VAL:HG12	1:B:435:VAL:O	2.21	0.41	
1:C:60:ALA:HB3	1:C:63:TRP:HD1	1.86	0.41	
1:C:358:PRO:CG	1:C:359:PRO:HD3	2.51	0.41	
1:D:478:ILE:O	1:D:482:MET:HG3	2.21	0.41	
1:D:365:ILE:HG23	1:D:391:ARG:O	2.21	0.40	
1:A:36:ARG:NH2	1:A:253:THR:OG1	2.54	0.40	
1:A:92:GLY:O	1:A:95:PRO:HD2	2.21	0.40	
1:C:90:ARG:O	1:C:93:GLU:HG2	2.21	0.40	
1:A:559:LEU:HD11	1:B:405:ASP:C	2.42	0.40	
1:D:167:TYR:HE1	1:D:168:HIS:CE1	2.39	0.40	
1:D:557:HIS:O	1:D:560:LYS:N	2.51	0.40	
1:B:352:ASP:OD2	1:B:384:THR:HG21	2.22	0.40	

All (2) symmetry-related close contacts are listed below. The label for Atom-2 includes the sym-

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:A:279:ALA:O	$1:C:412:SER:OG[1_565]$	2.08	0.12
1:A:238:GLU:OE2	1:B:248:ARG:NH2[3_455]	2.13	0.07

metry operator and encoded unit-cell translations to be applied.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	А	629/707~(89%)	594 (94%)	34~(5%)	1 (0%)	47	80
1	В	627/707~(89%)	600 (96%)	27~(4%)	0	100	100
1	С	648/707~(92%)	619 (96%)	28 (4%)	1 (0%)	47	80
1	D	611/707~(86%)	580 (95%)	30~(5%)	1 (0%)	47	80
All	All	2515/2828 (89%)	2393~(95%)	119 (5%)	3~(0%)	51	83

All (3) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
1	С	278	HIS
1	D	605	GLY
1	А	578	GLY

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentile	\mathbf{s}
1	А	483/601~(80%)	475~(98%)	8 (2%)	60 84	
1	В	478/601~(80%)	470 (98%)	8 (2%)	60 84	
1	С	452/601~(75%)	446 (99%)	6 (1%)	69 88	
1	D	398/601~(66%)	391~(98%)	7 (2%)	59 83	
All	All	1811/2404 (75%)	1782 (98%)	29 (2%)	62 85	

All (29) residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
1	А	164	GLU
1	А	281	VAL
1	А	294	LEU
1	А	330	SER
1	А	411	THR
1	А	435	VAL
1	А	609	ASP
1	А	647	THR
1	В	248	ARG
1	В	276	ASP
1	В	342	ILE
1	В	378	ASP
1	В	438	ILE
1	В	609	ASP
1	В	636	SER
1	В	675	VAL
1	С	271	GLU
1	С	280	THR
1	С	351	ILE
1	С	411	THR
1	С	440	THR
1	С	484	GLN
1	D	160	ARG
1	D	223	VAL
1	D	274	LEU
1	D	382	VAL
1	D	388	THR
1	D	609	ASP
1	D	695	LEU

Sometimes side chains can be flipped to improve hydrogen bonding and reduce clashes. All (2) such side chains are listed below:

Mol	Chain	Res	Type
1	В	278	HIS
1	D	502	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	#RSRZ>2	$OWAB(Å^2)$	Q < 0.9
1	А	639/707~(90%)	0.41	44 (6%) 16 9	68, 97, 133, 156	0
1	В	637/707~(90%)	0.56	46 (7%) 15 8	68, 96, 132, 185	0
1	С	656/707~(92%)	0.49	53 (8%) 12 6	74, 116, 146, 185	0
1	D	623/707~(88%)	0.70	93 (14%) 2 1	85, 125, 151, 176	0
All	All	2555/2828 (90%)	0.54	236 (9%) 9 5	68, 108, 144, 185	0

All (236) RSRZ outliers are listed below:

Mol	Chain	\mathbf{Res}	Type	RSRZ
1	В	60	ALA	7.0
1	В	323	VAL	6.9
1	D	288	ILE	6.1
1	В	324	GLU	5.9
1	С	19	TYR	5.7
1	С	392	VAL	5.6
1	С	20	VAL	5.5
1	D	435	VAL	5.5
1	С	540	SER	5.2
1	В	8	LEU	5.1
1	D	405	ASP	5.0
1	С	18	ASP	4.9
1	D	355	ALA	4.7
1	D	381	TYR	4.6
1	D	416	SER	4.6
1	D	388	THR	4.5
1	D	630	MET	4.5
1	С	327	SER	4.5
1	D	289	ARG	4.5
1	С	322	GLY	4.4
1	D	290	MET	4.4

6JUY

Mol	Chain	Res	Type	RSRZ
1	А	521	LEU	4.4
1	D	295	LEU	4.3
1	А	492	ILE	4.3
1	D	632	LEU	4.2
1	D	354	GLY	4.2
1	С	541	LEU	4.1
1	С	290	MET	4.1
1	В	59	PRO	4.1
1	В	64	PRO	4.1
1	С	181	LEU	4.1
1	D	382	VAL	4.0
1	С	22	ASN	3.8
1	С	23	PRO	3.8
1	С	326	ASN	3.8
1	D	173	PHE	3.8
1	А	415	PRO	3.7
1	В	327	SER	3.7
1	D	521	LEU	3.7
1	D	408	ILE	3.7
1	D	415	PRO	3.6
1	С	17	VAL	3.6
1	А	545	MET	3.6
1	D	326	ASN	3.6
1	А	410	VAL	3.5
1	D	97	PHE	3.5
1	D	406	ALA	3.5
1	А	493	VAL	3.5
1	В	406	ALA	3.5
1	В	66	MET	3.5
1	D	221	VAL	3.5
1	С	28	ASN	3.5
1	В	417	ALA	3.5
1	D	323	VAL	3.5
1	D	80	VAL	3.5
1	D	364	ASP	3.5
1	A	132	LEU	3.4
1	В	258	ALA	3.4
1	A	392	VAL	3.4
1	В	261	ALA	3.4
1	C	14	HIS	3.4
1	D	228	ILE	3.4
1	А	688	LEU	3.4

Mol	Chain	Res	Type	RSRZ
1	D	206	ILE	3.3
1	D	414	PRO	3.3
1	С	698	PRO	3.3
1	D	356	VAL	3.3
1	D	113	GLN	3.3
1	D	407	ALA	3.2
1	D	174	CYS	3.2
1	А	639	HIS	3.2
1	D	396	TRP	3.2
1	В	331	ALA	3.2
1	D	182	LEU	3.2
1	С	16	ASP	3.2
1	В	294	LEU	3.2
1	С	300	LEU	3.2
1	D	480	TRP	3.1
1	В	290	MET	3.1
1	С	696	THR	3.1
1	С	229	MET	3.1
1	D	40	GLN	3.0
1	D	520	ALA	3.0
1	D	390	VAL	3.0
1	С	288	ILE	3.0
1	А	295	LEU	2.9
1	В	632	LEU	2.9
1	D	255	PHE	2.9
1	В	61	LYS	2.9
1	D	115	LEU	2.9
1	А	634	LEU	2.9
1	А	509	LEU	2.9
1	D	522	LEU	2.9
1	А	326	ASN	2.9
1	А	280	THR	2.9
1	D	68	PHE	2.8
1	С	539	THR	2.8
1	D	386	TYR	2.8
1	В	509	LEU	2.8
1	В	408	ILE	2.8
1	D	489	GLY	2.8
1	С	304	LEU	2.8
1	D	7	ILE	2.8
1	А	539	THR	2.8
1	D	392	VAL	2.8

Mol	Chain	Res	Type	RSRZ
1	D	440	THR	2.8
1	D	677	VAL	2.8
1	А	520	ALA	2.8
1	С	293	HIS	2.8
1	D	420	VAL	2.8
1	D	348	THR	2.8
1	D	384	THR	2.7
1	D	229	MET	2.7
1	А	672	VAL	2.7
1	D	75	VAL	2.7
1	D	595	TYR	2.7
1	D	175	PRO	2.7
1	D	688	LEU	2.7
1	D	494	VAL	2.7
1	В	278	HIS	2.7
1	В	494	VAL	2.7
1	С	555	HIS	2.7
1	А	154	THR	2.7
1	А	267	LEU	2.7
1	D	492	ILE	2.6
1	D	159	LEU	2.6
1	В	62	GLY	2.6
1	С	25	MET	2.6
1	С	29	ILE	2.6
1	D	358	PRO	2.6
1	В	539	THR	2.6
1	D	319	PHE	2.6
1	А	408	ILE	2.6
1	А	416	SER	2.6
1	D	44	LEU	2.6
1	D	353	LEU	2.6
1	В	540	SER	2.6
1	С	422	LEU	2.6
1	А	413	ASN	2.6
1	С	359	PRO	2.6
1	D	648	PRO	2.6
1	D	328	THR	2.5
1	D	362	LEU	2.5
1	А	133	TRP	2.5
1	В	333	VAL	2.5
1	С	350	LEU	2.5
1	С	232	VAL	2.5

Mol	Chain	Res	Type	RSRZ
1	А	684	PHE	2.5
1	С	24	TRP	2.5
1	А	322	GLY	2.5
1	В	9	MET	2.5
1	В	438	ILE	2.5
1	В	442	LYS	2.5
1	С	317	LEU	2.5
1	D	634	LEU	2.5
1	В	296	ASP	2.4
1	С	437	GLY	2.4
1	С	292	GLY	2.4
1	С	396	TRP	2.4
1	В	67	VAL	2.4
1	В	221	VAL	2.4
1	D	327	SER	2.4
1	А	544	ASP	2.4
1	А	290	MET	2.4
1	С	45	HIS	2.4
1	С	133	TRP	2.4
1	В	521	LEU	2.4
1	А	496	ALA	2.4
1	А	283	ILE	2.4
1	D	380	PHE	2.4
1	А	181	LEU	2.4
1	D	625	ILE	2.3
1	С	333	VAL	2.3
1	D	142	LEU	2.3
1	В	340	HIS	2.3
1	А	664	THR	2.3
1	А	397	VAL	2.3
1	В	517	TYR	2.3
1	D	532	ILE	2.3
1	С	262	ALA	2.3
1	С	319	PHE	2.2
1	D	184	TYR	2.2
1	A	335	VAL	2.2
1	А	632	LEU	2.2
1	С	44	LEU	2.2
1	D	81	VAL	2.2
1	A	159	LEU	2.2
1	А	355	ALA	2.2
1	В	72	ALA	2.2

Mol	Chain	Res	Type	RSRZ
1	В	198	MET	2.2
1	В	288	ILE	2.2
1	D	557	HIS	2.2
1	D	565	VAL	2.2
1	С	220	ALA	2.2
1	А	412	SER	2.2
1	С	206	ILE	2.2
1	В	556	ARG	2.2
1	В	319	PHE	2.2
1	С	521	LEU	2.2
1	В	649	SER	2.1
1	В	440	THR	2.1
1	D	322	GLY	2.1
1	D	493	VAL	2.1
1	В	425	LEU	2.1
1	D	421	LEU	2.1
1	С	406	ALA	2.1
1	В	355	ALA	2.1
1	D	279	ALA	2.1
1	А	75	VAL	2.1
1	С	466	SER	2.1
1	D	240	LEU	2.1
1	С	241	ALA	2.1
1	С	247	VAL	2.1
1	А	512	LEU	2.1
1	А	559	LEU	2.1
1	С	32	SER	2.1
1	D	559	LEU	2.1
1	A	441	ILE	2.1
1	D	568	TYR	2.1
1	D	654	VAL	2.1
1	D	34	GLN	2.0
1	D	631	ILE	2.0
1	A	594	PRO	2.0
1	D	333	VAL	2.0
1	В	267	LEU	2.0
1	С	408	ILE	2.0
1	В	74	LEU	2.0
1	С	101	PHE	2.0
1	А	569	GLY	2.0
1	D	227	ILE	2.0
1	D	357	PRO	2.0

Continued from previous page...

Mol	Chain	Res	Type	RSRZ
1	В	10	CYS	2.0
1	D	596	CYS	2.0
1	D	561	ILE	2.0
1	D	684	PHE	2.0
1	D	512	LEU	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

There are no ligands in this entry.

6.5 Other polymers (i)

There are no such residues in this entry.

