

wwPDB EM Validation Summary Report (i)

Aug 11, 2024 – 12:31 AM JST

PDB ID	:	8K60
EMDB ID	:	EMD-36914
Title	:	Cryo-EM structure of Streptomyces coelicolor transcription initiation complex with the global transcription factor AfsR
Authors Deposited on Resolution	: : :	Lin, W.; Shi, J. 2023-07-24 3.40 Å(reported)

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	FAILED
MolProbity	:	4.02b-467
Percentile statistics	:	20191225.v01 (using entries in the PDB archive December 25th 2019)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.37.1

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.40 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive $(\#$ Entries)	(#Entries)		
Clashscore	158937	4297		
Ramachandran outliers	154571	4023		
Sidechain outliers	154315	3826		

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality	of chain		
1	А	340	57%	10%	34%	
1	В	340	61%	8%	31%	-
1	K	340	13% •	83%		-
2	С	1161	82%		14%	•
3	D	1299	85%		12%	•
4	Е	90	78%		8% 14%	-
5	F	511	53%	8%	38%	-
6	G	59	56%		39% 5%	%
7	Н	59	69%		27% •	

Continued on next page...

Continued from previous page...

Mol	Chain	Length		Quality of chain							
8	Ι	993	22%	·	75%						
8	J	993	21%	•	75%						

2 Entry composition (i)

There are 10 unique types of molecules in this entry. The entry contains 31659 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called DNA-directed RNA polymerase subunit alpha.

Mol	Chain	Residues	Atoms	AltConf	Trace
1	А	226	Total C N O S 1742 1102 302 334 4	0	0
1	В	233	Total C N O S 1785 1125 308 347 5	0	0
1	K	57	Total C N O S 438 274 77 85 2	0	0

• Molecule 2 is a protein called DNA-directed RNA polymerase subunit beta.

Mol	Chain	Residues		Α	AltConf	Trace			
2	С	1116	Total 8692	C 5450	N 1513	O 1698	S 31	0	0

• Molecule 3 is a protein called DNA-directed RNA polymerase subunit beta'.

Mol	Chain	Residues		A	AltConf	Trace			
3	D	1259	Total	С	Ν	0	\mathbf{S}	0	0
0	Ľ	1200	9812	6137	1778	1856	41	Ū	Ŭ

• Molecule 4 is a protein called DNA-directed RNA polymerase subunit omega.

Mol	Chain	Residues	Atoms				AltConf	Trace
4	Е	77	Total 594	C 379	N 98	0 117	0	0

• Molecule 5 is a protein called RNA polymerase principal sigma factor HrdB.

Mol	Chain	Residues		Ate	AltConf	Trace			
5	F	315	Total 2465	C 1546	N 437	0 475	${ m S} 7$	0	0

• Molecule 6 is a DNA chain called Non-template strand DNA for AfsS promoter.

Mol	Chain	Residues		A	toms	AltConf	Trace		
6	G	56	Total 1148	C 546	N 204	O 342	Р 56	0	0

• Molecule 7 is a DNA chain called Template strand DNA for AfsS promoter.

Mol	Chain	Residues		\mathbf{A}^{\dagger}	toms	AltConf	Trace		
7	Н	57	Total 1180	$\begin{array}{c} \mathrm{C} \\ 557 \end{array}$	N 232	O 334	Р 57	0	0

• Molecule 8 is a protein called Regulatory protein AfsR.

Mol	Chain	Residues	Atoms					AltConf	Trace
8	Ι	250	Total 1904	C 1184	N 359	O 357	${S \atop 4}$	0	0
8	J	249	Total 1896	C 1178	N 358	O 356	${ m S}$ 4	0	0

• Molecule 9 is MAGNESIUM ION (three-letter code: MG) (formula: Mg) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	Atoms	AltConf
9	D	1	Total Mg 1 1	0

• Molecule 10 is ZINC ION (three-letter code: ZN) (formula: Zn) (labeled as "Ligand of Interest" by depositor).

Mol	Chain	Residues	lesidues Atoms		
10	D	2	Total Zn 2 2	0	

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: DNA-directed RNA polymerase subunit alpha

VAL GLU GLU GLU GLN TYR

• Molecule 2: DNA-directed RNA polymerase subunit beta

[•] Molecule 3: DNA-directed RNA polymerase subunit beta'

• Molecule 4: DNA-directed RNA polymerase subunit omega

Chain E:	78%		8%	14%	
MET SER SER SER SER LLE RLA RLA RLA R16 R16 R36 R36 R38 R38	E65 R73 CLU CLU CLU CLU CLU CLU CLN				
• Molecule 5: RNA poly	merase principal sign	na factor HrdE	3		
Chain F:	53%	8%	38%		
MET SER ALA SER ALA SER THR THR THR THR THR THR THR THR THR TH	VAL MET ALA ILEU CLU CLU ALA ALA CLU CLU CLU ALA ALA	GLY ASP ASP ASP ARG ARG PHE CLU ALA ASP	GLN TLE PRO ALA THR GLN	TRP LYS ASN VAL LEU ARG SER	LEU ASN GLN
ILE LEU GLU GLU GLU GLU GLU CLU VAL VAL SER ALA ALA ALA ALA ALA ALA ALA ALA ALA AL	THR ARG LYS SER VAL ALA ALA ALA ALA ALA	THR LYS ALA ALA ALA ALA ALA ALA PRO VAL YAL SER	ARG LYS ALA THR ALA ALA PRO	ALA ALA PRO ALA ALA PRO ALA	THR GLU PRO
ALA ALA ALA VAL GLU GLU GLU GLU GLU ALA ALA ALA ALA ALA ALA ALA ALA THR THR	ALA LYS LYS LYS LYS LYS LYS LYS ALA ALA ALA	ALA LYS LYS LYS LYS THR THR THR THR ALA CVS GLU	GLU LEU LEU GLU GLU GLU	ALA THR GLU GLU PRO LYS ALA	ALA THR GLU
GLU PRO GLY GLY GLY ALA ALA ASN ALA ASN SER SER SER SER SER SER SER SER SER SER	Q203 K216 R239 R239 E241 E241 1244 1267 A268 E268	R272 R273 R273 R273 R273 R273 L285 L285 S288 S288	L301 D302 L303 1304 I338	M342 R350 V356	N360 T389
P390 E391 E394 L410 D424 V429 V429 D432 L443 L450	V458 R485 Q485 7492 7493 7493 7493 8495 K495 K496 R499 R499 R499 R499	P500 S501 S501 R502 S503 S503 S503 S503 S503 S503 S503 S503 S503 S501 S501 S501 S501 S501 S501 S501 S501 S501 S501 S501 S501 S501 S501 S502 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S504 S504 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S503 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504 S504			
• Molecule 6: Non-templ	ate strand DNA for	AfsS promoter			
Chain G:	56%	399	%	5%	
000 000 000 000 000 000 000 000 000 00	723 724 724 726 726 726 739 739 733 733 733 733 733 733 733 733	C49 G50 G51 A56			
• Molecule 7: Template s	strand DNA for AfsS	5 promoter			
Chain H:	69%		27%	·	
H C 14 C 14 C 17 C 17 C 17 C 41 C 41 C 41 C 41 C 41 C 41 C 41 C 41	849 849 859 850 850 850 850 860 860 860 860 87				
• Molecule 8: Regulatory	v protein AfsR				
Chain I: 22% .		75%			
MET ASP GLY GLY PR0 GLV PR0 GLV GLV GLV GLV PHE PR0 GLV GLU GLU GLU	61U 61U 61U 61U 623 857 863 865 865 865 865 865 865 865 865 865 865	T65 E68 R87 R94 K95 V96 S104	A110 D120 C141	H142 A143 R144 V158 V168	T169 0170

• Molecule 8: Regulatory protein AfsR

VAL	SER	GLU ARG	GLN GLN	ALA	ASP	VAL VAL	GLY	ALA CYS	GLY	LEU LEU	PRO	ALA	ILE	ARG	ALA	ALA	SER	LEU	ALA	ALA ARG	ARG	THR	THR	VAL	VAL	LEU	ALA	LYS	ALA	ASP	GLU	ARG	ARG I FII	ASP	GLU	GLN	ALA GLY	ASP	GLN
VAL	ALA	THR PHE	GLU GLU	GLY	TYR GLY	GLN	GLU	PRO ALA	GLN	ALA ARG	ALA	PHE	LEU	LEU	LEU	ALA	ASP GLY	PRO	ASP	SER	LEU	ALA ALA	ALA	ALA ATA	VAL	LEU	LEU	PRO	GLN	ASP	CLU	ASP	LEU	GLU	SER	VAL	ASP THR	SER	LEU
GLU SFR	ALA	ALA PRO	GLY	TYR	ARG PHE	HIS	LEU	VAL ARG	LEU	ALA	ARG	ALA CYS	ALA	GLU	THR	GLU	ARG	GLY	ASN	ALA PRO	SER	GLU ARG	GLY	AL.A AT A	LEU	SER	LEU	LEU	PHE	TYR	ALA	THR	ALA AT A	GLY	VAL	ALA	ILE GLU	ARG	GLY
ASP	LEU	VAL ASP	GLY CLY	GLU	PRO THR	GLU TYR	PRO	GLY LEU	THR	THR	GLU	GLY SER	ALA	ALA	ASP	TRP	LEU TYR	THR	GLU	ALA ALA	PRO	LEU	ALA	CYS	ARG	GLN	ALA	GLY	ALA	ARG	ARG	ARG	ALA VAT	ASP	LEU	TRP	AL.A AI.A	LYS	ASP LEU
THR GLII	SER	GLY ALA	ASN	HIS	GLN TYR	GLU ALA	THR	ALA ARG	ALA	CYS	ASP	ALA THR	GLY	SER	ALA	ASP	THR ARG	ALA	GLU	GLY ARG	ALA	ARG THR	VAL	LEU SFR	ASP	VAL TETT	LEU	VAL	GLY	ARG	1 LE GLU	SIH	ALA	GLU	GLU AT A	ALA ARG	L.EU AT.A	MET	ARG LEU
ALA SLV	SER	VLA SLU	ASP	ALA	ALA /AL	SER TRP	/AL	ALA ASN	ASN	ARG 3LY	E	AL	EU	IIS	ARG	ARG	ryr Ala	BLU	3LY	LYS JLY	EU	°HE HIS	SLN	VLA LTF	ALA	JLY	ARG	ALA	ASP	ASN	ARG	JLY	3LU	SER	ALA Err	SER	ASN	ER	ARG
N III	× 1	TE	SN A	A L	N N	AL SP	E	AG I	N.		N N	AL YB	I NI	0.1	- A	RG I	H L	20	n=	NS N	X	IS HE	A P		AL I	LA C	H H	3G I	A N	SG I		n		2	1 I	E E			
н 1 1 1 1 1 1 1 1		0.0	N AS		u B B	Y VI		N AI				- 1 F	n N	A 4	A A	- P		R	A .	A A	5	H H	N AJ		E N E	U A		E H	Y G A	P	н 5 		Y N		54	A D			A U
Hd	AS	HI AR	GL	E	GL	GL	HL	AS	AR	AL	TD :	H	TE	AL	GL	AR	PR	SE	AL	AL	H	AL	GL	AL	AL	EE	5	H	EL EL	AS	ME	AR	19 V	VA	LE	LE	E.E.	AR	AL
SER	LEU	GLN	ALA	ARG	ALA	ALA CYS	TRP	GLU	ALA	SER	LEU	U T T H	GLN	HIS	ALA	GLN	GLU	GLY	GLU	ARG	ALA	LEU	ALA	ARG	VAL	ALA	NUM												

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	231221	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	PHASE FLIPPING AND AMPLITUDE	Depositor
	CORRECTION	
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	52	Depositor
Minimum defocus (nm)	1000	Depositor
Maximum defocus (nm)	2000	Depositor
Magnification	Not provided	
Image detector	GATAN K3 $(6k \ge 4k)$	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: MG, ZN

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	lengths	Bond	angles
	Chain	RMSZ	# Z > 5	RMSZ	# Z > 5
1	А	0.44	0/1768	0.68	0/2400
1	В	0.39	0/1811	0.66	0/2459
1	Κ	0.31	0/441	0.56	0/591
2	С	0.47	0/8848	0.63	0/11982
3	D	0.45	0/9963	0.64	0/13446
4	Е	0.47	0/604	0.65	0/822
5	F	0.36	0/2500	0.59	0/3377
6	G	0.73	0/1285	1.01	0/1982
7	Н	0.83	0/1328	0.98	0/2049
8	Ι	0.34	0/1931	0.56	0/2620
8	J	0.29	0/1923	0.58	0/2609
All	All	0.47	0/32402	0.67	0/44337

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	1742	0	1796	19	0
1	В	1785	0	1821	16	0

Continued on next page...

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	K	438	0	452	6	0
2	С	8692	0	8632	107	0
3	D	9812	0	9951	90	0
4	Ε	594	0	595	5	0
5	F	2465	0	2487	33	0
6	G	1148	0	633	62	0
7	Н	1180	0	637	36	0
8	Ι	1904	0	1933	21	0
8	J	1896	0	1922	28	0
9	D	1	0	0	0	0
10	D	2	0	0	0	0
All	All	31659	0	30859	382	0

Continued from previous page...

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 6.

The worst 5 of 382 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
6:G:8:DC:H2"	6:G:9:DA:H5'	1.22	1.08
6:G:8:DC:H2"	6:G:9:DA:C5'	2.00	0.91
7:H:47:DC:C6	7:H:48:DT:H71	2.07	0.89
6:G:8:DC:C2'	6:G:9:DA:H5'	2.01	0.88
7:H:49:DG:C2	7:H:50:DA:C4	2.64	0.86

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	224/340~(66%)	218 (97%)	6 (3%)	0	100 100

Continued on next page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	ntiles
1	В	231/340~(68%)	228~(99%)	3~(1%)	0	100	100
1	K	55/340~(16%)	55 (100%)	0	0	100	100
2	С	1114/1161~(96%)	1080 (97%)	34(3%)	0	100	100
3	D	1257/1299~(97%)	1221 (97%)	36~(3%)	0	100	100
4	Ε	75/90~(83%)	74 (99%)	1 (1%)	0	100	100
5	F	313/511~(61%)	307~(98%)	6(2%)	0	100	100
8	Ι	248/993~(25%)	245~(99%)	3 (1%)	0	100	100
8	J	247/993~(25%)	243 (98%)	4 (2%)	0	100	100
All	All	3764/6067~(62%)	3671 (98%)	93~(2%)	0	100	100

Continued from previous page...

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Perce	\mathbf{n} tiles
1	А	194/279~(70%)	192~(99%)	2(1%)	76	88
1	В	197/279~(71%)	195~(99%)	2(1%)	76	88
1	Κ	47/279~(17%)	47 (100%)	0	100	100
2	\mathbf{C}	942/979~(96%)	934~(99%)	8 (1%)	81	91
3	D	1047/1087~(96%)	1037~(99%)	10 (1%)	76	88
4	Ε	63/74~(85%)	63~(100%)	0	100	100
5	F	261/413~(63%)	258~(99%)	3~(1%)	73	86
8	Ι	187/722~(26%)	186 (100%)	1 (0%)	88	94
8	J	186/722~(26%)	186 (100%)	0	100	100
All	All	$312\overline{4/4834}$ (65%)	3098~(99%)	26~(1%)	82	91

5 of 26 residues with a non-rotameric sidechain are listed below:

Mol	Chain	Res	Type
3	D	137	THR
3	D	637	ARG
5	F	502	ARG
3	D	392	THR
3	D	762	LYS

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. 5 of 30 such sidechains are listed below:

Mol	Chain	Res	Type
3	D	752	GLN
8	J	192	GLN
3	D	935	ASN
1	Κ	270	HIS
5	F	371	GLN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no monosaccharides in this entry.

5.6 Ligand geometry (i)

Of 3 ligands modelled in this entry, 3 are monoatomic - leaving 0 for Mogul analysis.

There are no bond length outliers.

There are no bond angle outliers.

There are no chirality outliers.

There are no torsion outliers.

There are no ring outliers.

No monomer is involved in short contacts.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

