

Full wwPDB X-ray Structure Validation Report (i)

Oct 12, 2024 – 09:34 AM EDT

PDB ID	:	5K9Q
Title	:	Crystal structure of multidonor HV1-18-class broadly neutralizing Influenza
		A antibody 16.a.26 in complex with A/Hong Kong/1-4-MA21-1/1968 (H3N2)
		Hemagglutinin
Authors	:	Joyce, M.G.; Thomas, P.V.; Wheatley, A.K.; McDermott, A.B.; Mascola, J.R.;
		Kwong, P.D.
Deposited on	:	2016-06-01
Resolution	:	2.50 Å(reported)

This is a Full wwPDB X-ray Structure Validation Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/XrayValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity Mogul Xtriage (Phenix) EDS Percentile statistics CCP4 Density Fitness	:::::::::::::::::::::::::::::::::::::::	4.02b-467 2022.3.0, CSD as543be (2022) 1.20.1 3.0 20231227.v01 (using entries in the PDB archive December 27th 2023) 9.0.003 (Gargrove)
Density-Fitness	:	1.0.11
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $X\text{-}RAY\;DIFFRACTION$

The reported resolution of this entry is 2.50 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Motria	Whole archive	Similar resolution				
	$(\# { m Entries})$	$(\# { m Entries}, { m resolution} { m range}({ m \AA}))$				
R_{free}	164625	5504 (2.50-2.50)				
Clashscore	180529	$6282 \ (2.50-2.50)$				
Ramachandran outliers	177936	$6191 \ (2.50-2.50)$				
Sidechain outliers	177891	6193 (2.50-2.50)				
RSRZ outliers	164620	5504 (2.50-2.50)				

The table below summarises the geometric issues observed across the polymeric chains and their fit to the electron density. The red, orange, yellow and green segments of the lower bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5% The upper red bar (where present) indicates the fraction of residues that have poor fit to the electron density. The numeric value is given above the bar.

Mol	Chain	Length	Quality of chain		
1	А	320	% 92%	8%	/ 0
1	С	320	89%	10%	
1	Е	320	90%	8%	••
1	М	320	92%	7%	, •

Mol	Chain	Length	Quality of chain	
1	0	320	2% 89%	9% ••
1	Q	320	% • 89%	9% ••
2	В	170	91%	8% •
2	D	170	% 9 4%	5%•
2	F	170	% 9 0%	9% •
2	Ν	170	2% 	14% •
2	Р	170	2% 8 9%	6% •
2	R	170	3% 91%	8% •
3	G	231	75%	21% •
3	Н	231	77%	19% ••
3	J	231	82%	16% •
3	S	231	81%	18% •
3	U	231	4% 86%	13% •
3	X	231	84%	15% •
4	Ι	214	85%	15%
4	K	214	% 	16% •
4	L	214	2% 	19% •
4	Т	214	82%	14% •
4	V	214	% 	13% •
4	Y	214	3% 	13% •

2 Entry composition (i)

There are 6 unique types of molecules in this entry. The entry contains 45420 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the ZeroOcc column contains the number of atoms modelled with zero occupancy, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
1	Δ	320	Total	С	Ν	0	\mathbf{S}	0	0	0
1	1 11		2468	1544	433	478	13	0	0	0
1	C	210	Total	С	Ν	0	S	0	0	0
1		519	2467	1544	433	477	13	0	0	0
1	1 E	E 318	Total	С	Ν	0	S	0	0	0
			2458	1538	431	476	13		0	0
1	м	210	Total	С	Ν	0	S	0	0	0
	111	310	2458	1538	431	476	13	0	0	0
1	0	210	Total	С	Ν	0	S	0	0	0
		318	2458	1538	431	476	13	0	0	0
1	1 Q	318	Total	С	Ν	0	S	0	0	0
			2459	1540	431	475	13	0	0	

• Molecule 1 is a protein called Hemagglutinin HA1.

There are 12 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	218	GLU	GLY	conflict	UNP Q91MA7
А	327	ALA	GLN	conflict	UNP Q91MA7
С	218	GLU	GLY	conflict	UNP Q91MA7
С	327	ALA	GLN	conflict	UNP Q91MA7
E	218	GLU	GLY	conflict	UNP Q91MA7
Е	327	ALA	GLN	conflict	UNP Q91MA7
М	218	GLU	GLY	conflict	UNP Q91MA7
М	327	ALA	GLN	conflict	UNP Q91MA7
0	218	GLU	GLY	$\operatorname{conflict}$	UNP Q91MA7
0	327	ALA	GLN	conflict	UNP Q91MA7
Q	218	GLU	GLY	conflict	UNP Q91MA7
Q	327	ALA	GLN	conflict	UNP Q91MA7

• Molecule 2 is a protein called Hemagglutinin HA2.

Mol	Chain	Residues	Atoms					ZeroOcc	AltConf	Trace
9	В	168	Total	С	Ν	0	S	0	0	0
			1366	845	241	274	6	0	0	0
9	П	160	Total	С	Ν	0	S	0	0	0
	D	109	1377	854	242	275	6	0	0	0
9	F	168	Total	С	Ν	0	S	0	0	0
	Δ Γ		1371	848	242	275	6		0	0
2	N	160	Total	С	Ν	Ο	\mathbf{S}	0	0	0
2	11	105	1368	846	240	276	6	0	0	
2	р	163	Total	С	Ν	Ο	\mathbf{S}	0	0	0
2	2 P	105	1340	829	236	269	6	0	0	0
9	В	167	Total	С	Ν	Ο	S	0	0	0
2 R	107	1362	843	240	273	6			U	

• Molecule 3 is a protein called 16.a.26 Heavy chain.

Mol	Chain	Residues		At	oms		ZeroOcc	AltConf	Trace	
3	G	231	Total	С	Ν	Ο	S	0	0	0
0	G		1728	1089	294	338	7	0	0	
3	ц	228	Total	С	Ν	Ο	\mathbf{S}	0	0	0
0	П	220	1707	1077	290	333	7	0	0	0
3	3 J	231	Total	С	Ν	0	S	0	0	0
0			1728	1089	294	338	7	0	0	0
2	C	0.01	Total	С	Ν	0	S	0	0	0
0	U U	231	1728	1089	294	338	7	0	0	0
9	TT	921	Total	С	Ν	0	S	0	0	0
0	3 U	231	1728	1089	294	338	7	0	0	0
2 V	0.01	Total	С	Ν	0	S	0	0	0	
0	Λ	201	1728	1089	294	338	$\overline{7}$		0	

• Molecule 4 is a protein called 16.a.26 Light chain.

Mol	Chain	Residues		Ate	oms			ZeroOcc	AltConf	Trace
4		214	Total	С	Ν	0	S	0	0	0
4	1		1658	1034	283	335	6	0	0	0
4	4 K	914	Total	С	Ν	0	S	0	0	0
4		214	1658	1034	283	335	6	0	0	0
4	4 L	214	Total	С	Ν	0	S	0	0	0
4			1658	1034	283	335	6	0	0	0
4	т	014	Total	С	Ν	0	S	0	0	0
4	1	214	1658	1034	283	335	6	0	0	0
4	V	214	Total	С	Ν	0	S	0	0	0
4 V	214	1658	1034	283	335	6	0	0	0	
4 Y	v	214	Total	С	Ν	0	S	0	0	0
	214	1658	1034	283	335	6		0	0	

• Molecule 5 is 2-acetamido-2-deoxy-beta-D-glucopyranose (three-letter code: NAG) (formula: $C_8H_{15}NO_6$).

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf	
5	Δ	1	Total C N O	0	0	
5	A	T	14 8 1 5	0	0	
5	Δ	1	Total C N O	0	0	
5	Л	T	14 8 1 5	0	0	
5	Δ	1	Total C N O	0	0	
0	11	±	14 8 1 5	0	0	
5	А	1	Total C N O	0	0	
	11	1	14 8 1 5	0	0	
5	А	1	Total C N O	0	0	
		1	14 8 1 5	0	V	
5	В	1	Total C N O	0	0	
	D	1	14 8 1 5	0		
5	С	1	Total C N O	0	0	
		-	14 8 1 5		0	
5	С	1	Total C N O	0	0	
		-			<u> </u>	
5	С	1	Total C N O	0	0	
		-	14 8 1 5		<u> </u>	
5	С	1	Total C N O	0	0	
		-	14 8 1 5		U U	
5	С	1	Total C N O	0	0	
		-	14 8 1 5		<u> </u>	
5	D	1	Total C N O	0	0	
		±	14 8 1 5			

Continued from previous page...

Mol	Chain	Residues	A	ton	ns		ZeroOcc	AltConf	
Б	Б	1	Total	С	Ν	0	0	0	
5	E	1	14	8	1	5	0	0	
F	Б	1	Total	С	Ν	0	0	0	
0	E	1	14	8	1	5	0	0	
5	F	1	Total	С	Ν	0	0	0	
0	Ľ	1	14	8	1	5	0	0	
5	E	1	Total	С	Ν	Ο	0	0	
0	Ľ	1	14	8	1	5	0	0	
5	E	1	Total	С	Ν	Ο	0	0	
0		L	14	8	1	5	0	0	
5	F	1	Total	С	Ν	Ο	0	0	
0	Ľ	1	14	8	1	5	0	0	
5	М	1	Total	С	Ν	Ο	0	0	
0	111	1	14	8	1	5	0	0	
5	М	1	Total	С	Ν	0	0	0	
0	111	1	14	8	1	5	0	0	
5	М	1	Total	С	Ν	0	0	0	
5	111	1	14	8	1	5	0	0	
5	М	1	Total	С	Ν	Ο	0	0	
5	111	1	14	8	1	5	0	0	
5	М	1	Total	С	Ν	0	0	0	
5	111	1	14	8	1	5	0	0	
5	N	1	Total	С	Ν	0	0	0	
5	11	1	14	8	1	5	0	0	
5	0	1	Total	С	Ν	Ο	0	0	
5	0	1	14	8	1	5	0	0	
5	0	1	Total	С	Ν	0	0	0	
5	0	1	14	8	1	5	0	0	
5	0	1	Total	С	Ν	0	0	0	
0	0	1	14	8	1	5	0	0	
5	0	1	Total	С	Ν	0	0	0	
0	0	1	14	8	1	5	0	0	
5	0	1	Total	С	Ν	0	0	0	
0	0	1	14	8	1	5	0	0	
5	D	1	Total	С	Ν	0	0	0	
5	Р	1	14	8	1	5	0	U	
۲	5 Q	1	Total	С	Ν	Ο	0	Ο	
5			14	8	1	5		U	
F	5 Q	Q	1	Total	С	Ν	0	0	0
б				14	8	1	5	0	U
F	0	1	Total	С	Ν	0	0	0	
G	Q		14	8	1	5	0	U	

	\mathbf{Mol}	Chain	Residues	Atoms	ZeroOcc	AltConf
F		0	1	Total C N O	0	0
G	5	Q	1	14 8 1 5	0	0
	5	Q	1	Total C N O	0	0
0	0		L	14 8 1 5	0	
	F	R	1	Total C N O	0	0
ز	0		n 1	14 8 1 5	0	0

• Molecule 6 is water.

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	А	173	Total O 173 173	0	0
6	В	81	Total O 81 81	0	0
6	С	156	Total O 156 156	0	0
6	D	74	Total O 74 74	0	0
6	Е	110	Total O 110 110	0	0
6	F	75	Total O 75 75	0	0
6	G	29	Total O 29 29	0	0
6	Н	62	Total O 62 62	0	0
6	Ι	34	Total O 34 34	0	0
6	J	29	Total O 29 29	0	0
6	К	30	Total O 30 30	0	0
6	L	75	Total O 75 75	0	0
6	М	126	Total O 126 126	0	0
6	Ν	50	Total O 50 50	0	0
6	О	96	Total O 96 96	0	0
6	Р	40	Total O 40 40	0	0

Continued from previous page...

Mol	Chain	Residues	Atoms	ZeroOcc	AltConf
6	Q	128	Total O 128 128	0	0
6	R	51	$\begin{array}{cc} \text{Total} & \text{O} \\ 51 & 51 \end{array}$	0	0
6	S	9	Total O 9 9	0	0
6	Т	19	Total O 19 19	0	0
6	U	61	Total O 61 61	0	0
6	V	55	$\begin{array}{cc} \text{Total} & \text{O} \\ 55 & 55 \end{array}$	0	0
6	Х	55	$\begin{array}{cc} {\rm Total} & {\rm O} \\ 55 & 55 \end{array}$	0	0
6	Y	51	$\begin{array}{cc} \text{Total} & \text{O} \\ 51 & 51 \end{array}$	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry and electron density. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. A red dot above a residue indicates a poor fit to the electron density (RSRZ > 2). Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: Hemagglutinin HA1

S1 68 K1 69 K1 69 K1 69 K1 90 K1 90 K1 90 V1 92 V1 92

• Molecule 4: 16.a.26 Light chain

4 Data and refinement statistics (i)

Property	Value	Source
Space group	P 21 21 21	Depositor
Cell constants	121.81Å 233.91Å 302.45Å	Depositor
a, b, c, α , β , γ	90.00° 90.00° 90.00°	Depositor
Bosolution (Å)	49.28 - 2.50	Depositor
Resolution (A)	49.28 - 2.50	EDS
% Data completeness	82.5 (49.28-2.50)	Depositor
(in resolution range)	82.5(49.28-2.50)	EDS
R_{merge}	(Not available)	Depositor
R_{sym}	(Not available)	Depositor
$< I/\sigma(I) > 1$	$2.02 (at 2.51 \text{\AA})$	Xtriage
Refinement program	PHENIX (1.10.1_2155: ???)	Depositor
P. P.	0.182 , 0.218	Depositor
II, II, <i>free</i>	0.185 , 0.217	DCC
R_{free} test set	14775 reflections (5.02%)	wwPDB-VP
Wilson B-factor $(Å^2)$	46.3	Xtriage
Anisotropy	0.015	Xtriage
Bulk solvent $k_{sol}(e/A^3), B_{sol}(A^2)$	0.29, 47.6	EDS
L-test for $twinning^2$	$ < L >=0.49, < L^2>=0.32$	Xtriage
Estimated twinning fraction	No twinning to report.	Xtriage
F_o, F_c correlation	0.95	EDS
Total number of atoms	45420	wwPDB-VP
Average B, all atoms $(Å^2)$	61.0	wwPDB-VP

Xtriage's analysis on translational NCS is as follows: The largest off-origin peak in the Patterson function is 4.17% of the height of the origin peak. No significant pseudotranslation is detected.

²Theoretical values of $\langle |L| \rangle$, $\langle L^2 \rangle$ for acentric reflections are 0.5, 0.333 respectively for untwinned datasets, and 0.375, 0.2 for perfectly twinned datasets.

¹Intensities estimated from amplitudes.

5 Model quality (i)

5.1 Standard geometry (i)

Bond lengths and bond angles in the following residue types are not validated in this section: NAG

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond lengths		Bond angles		
	Ullaill	RMSZ	# Z > 5	RMSZ	# Z > 5	
1	А	0.33	0/2524	0.49	0/3441	
1	С	0.35	0/2523	0.47	0/3438	
1	Е	0.33	0/2514	0.47	0/3427	
1	М	0.32	0/2514	0.48	0/3427	
1	0	0.32	0/2514	0.47	0/3427	
1	Q	0.32	0/2515	0.50	0/3427	
2	В	0.28	0/1389	0.42	0/1867	
2	D	0.33	0/1401	0.44	0/1883	
2	F	0.35	0/1394	0.45	0/1874	
2	Ν	0.33	0/1391	0.42	0/1870	
2	Р	0.28	0/1363	0.42	0/1832	
2	R	0.28	0/1385	0.43	0/1862	
3	G	0.33	0/1771	0.50	0/2411	
3	Н	0.32	0/1749	0.50	0/2381	
3	J	0.29	0/1771	0.48	0/2411	
3	S	0.30	0/1771	0.48	0/2411	
3	U	0.31	0/1771	0.49	0/2411	
3	Х	0.34	0/1771	0.52	0/2411	
4	Ι	0.34	0/1693	0.49	0/2294	
4	Κ	0.39	1/1693~(0.1%)	0.54	1/2294~(0.0%)	
4	L	0.35	0/1693	0.53	1/2294~(0.0%)	
4	Т	0.48	$3/\overline{1693}~(0.2\%)$	0.56	$1/\overline{2294}~(0.0\%)$	
4	V	0.47	$2/\overline{1693}~(0.1\%)$	0.55	1/2294~(0.0%)	
4	Y	0.51	$2/\overline{1693}~(0.1\%)$	0.56	1/2294~(0.0%)	
All	All	0.35	$8/4\overline{4189}\ (0.0\%)$	0.49	$5/5\overline{9975}~(0.0\%)$	

All (8) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
4	Y	95	PRO	N-CD	5.64	1.55	1.47
4	Т	95	PRO	N-CD	5.57	1.55	1.47

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\mathrm{Ideal}(\mathrm{\AA})$
4	Κ	8	PRO	N-CD	5.55	1.55	1.47
4	Y	8	PRO	N-CD	5.45	1.55	1.47
4	V	8	PRO	N-CD	5.31	1.55	1.47
4	Т	8	PRO	N-CD	5.24	1.55	1.47
4	V	40	PRO	N-CD	5.06	1.54	1.47
4	Т	40	PRO	N-CD	5.02	1.54	1.47

All (5) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
4	K	39	LYS	C-N-CD	5.95	140.89	128.40
4	Y	39	LYS	C-N-CD	5.92	140.82	128.40
4	Т	39	LYS	C-N-CD	5.81	140.60	128.40
4	L	58	GLY	C-N-CD	5.67	140.31	128.40
4	V	39	LYS	C-N-CD	5.58	140.13	128.40

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	А	2468	0	2406	19	0
1	С	2467	0	2412	21	0
1	Е	2458	0	2399	27	0
1	М	2458	0	2399	18	0
1	0	2458	0	2399	29	0
1	Q	2459	0	2406	35	0
2	В	1366	0	1282	15	0
2	D	1377	0	1291	8	0
2	F	1371	0	1287	15	0
2	N	1368	0	1278	17	0
2	Р	1340	0	1255	13	0
2	R	1362	0	1279	16	0
3	G	1728	0	1705	36	0
3	Н	1707	0	1681	23	1

5K9Q

Conti	nuea fron	<i>i previous</i>	page	II(addad)	Clashes	Summ Clashes
IVI01	Chain	1700	H(model)	H(added)	Clasnes	Symm-Clasnes
3	J	1728	0	1705	20	0
3	S	1728	0	1705	43	0
3	U	1728	0	1705	24	0
3	X	1728	0	1705	31	2
4	l	1658	0	1609	14	0
4	K	1658	0	1609	12	1
4	L	1658	0	1609	26	0
4	Т	1658	0	1611	25	0
4	V	1658	0	1609	19	0
4	Y	1658	0	1609	11	0
5	A	70	0	65	0	0
5	В	14	0	13	0	0
5	С	70	0	65	2	0
5	D	14	0	13	0	0
5	Е	70	0	65	0	0
5	F	14	0	13	0	0
5	М	70	0	65	1	0
5	Ν	14	0	13	0	0
5	0	70	0	65	0	0
5	Р	14	0	13	0	0
5	Q	70	0	65	0	0
5	R	14	0	13	0	0
6	А	173	0	0	2	0
6	В	81	0	0	1	0
6	С	156	0	0	3	0
6	D	74	0	0	0	0
6	Е	110	0	0	3	0
6	F	75	0	0	2	0
6	G	29	0	0	1	0
6	Н	62	0	0	2	0
6	Ι	34	0	0	0	0
6	J	29	0	0	0	0
6	K	30	0	0	1	0
6	L	75	0	0	3	0
6	М	126	0	0	2	0
6	Ν	50	0	0	1	0
6	0	96	0	0	2	0
6	Р	40	0	0	0	0
6	Q	128	0	0	3	0
6	R	51	0	0	2	0
6	S	9	0	0	0	0
6	Т	19	0	0	0	0
	1	1	1	1	Continu	ued on next page

 α ntia J fa .

L D W I D E

	$J \rightarrow J \rightarrow$					
Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
6	U	61	0	0	2	0
6	V	55	0	0	1	0
6	Х	55	0	0	1	0
6	Y	51	0	0	1	0
All	All	45420	0	42423	438	2

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 5.

All (438) close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom 1	Atom 2	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:S:146:THR:HG21	3:S:151:ALA:CA	1.48	1.43
3:S:146:THR:CG2	3:S:151:ALA:HA	1.52	1.38
3:S:146:THR:HG21	3:S:151:ALA:CB	1.54	1.36
3:J:147:SER:CB	3:J:150:THR:O	1.77	1.32
3:J:147:SER:HB2	3:J:150:THR:O	1.27	1.28
1:E:219:SER:OG	6:E:501:HOH:O	1.63	1.15
3:S:147:SER:HB2	3:S:150:THR:O	1.46	1.14
1:Q:15:LEU:HD12	2:R:119:PHE:CD1	1.83	1.11
1:O:325:GLU:HA	2:P:12:ASN:HD21	1.08	1.10
2:F:120:GLU:OE2	2:F:123:ARG:NH2	1.86	1.09
1:Q:15:LEU:HD12	2:R:119:PHE:HD1	1.07	1.08
3:J:147:SER:HB3	3:J:150:THR:O	1.59	1.03
1:M:218:GLU:OE1	1:Q:201:ARG:NH1	1.91	1.02
1:E:32:ASP:OD2	6:E:502:HOH:O	1.76	1.01
2:D:62:LYS:NZ	2:F:86:ASP:OD2	1.94	0.99
1:A:216:ASN:OD1	1:A:218:GLU:HG3	1.64	0.97
1:O:210:GLN:HE22	1:Q:220:ARG:HE	1.09	0.97
3:S:142:SER:O	3:S:146:THR:HA	1.63	0.97
3:S:146:THR:HG23	3:S:151:ALA:HA	1.44	0.97
3:X:146:THR:HG22	3:X:147:SER:H	1.27	0.97
1:O:210:GLN:NE2	1:Q:220:ARG:HE	1.60	0.96
3:X:142:SER:O	3:X:146:THR:HA	1.66	0.96
1:O:325:GLU:HA	2:P:12:ASN:ND2	1.81	0.95
3:G:31:ARG:HG3	3:G:31:ARG:HH11	1.28	0.94
3:S:146:THR:CG2	3:S:151:ALA:CB	2.43	0.94
3:X:142:SER:O	3:X:146:THR:CA	2.16	0.93
3:S:146:THR:CG2	3:S:151:ALA:CA	2.25	0.93
1:C:201:ARG:NH1	1:E:218:GLU:OE2	2.03	0.91
2:N:51:LYS:HD3	2:N:103:GLU:OE1	1.71	0.91

	ti a	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:H:147:SER:C	3:H:149:GLY:HA2	1.91	0.90
3:S:146:THR:HG21	3:S:151:ALA:HA	1.08	0.89
3:U:147:SER:HB3	3:U:150:THR:O	1.75	0.86
1:Q:15:LEU:CD1	2:R:119:PHE:HA	2.07	0.85
3:G:146:THR:HG22	3:G:147:SER:OG	1.75	0.85
1:O:18:HIS:HD2	2:P:21:TRP:HA	1.41	0.85
3:U:146:THR:HG21	3:U:152:ALA:H	1.42	0.85
1:O:185:PRO:HG2	1:O:191:GLN:HG2	1.59	0.85
4:T:79:GLN:HB3	4:T:81:GLU:OE1	1.76	0.85
3:X:142:SER:O	3:X:146:THR:N	2.10	0.85
1:Q:18:HIS:HD2	2:R:21:TRP:HA	1.42	0.84
3:X:148:GLY:O	3:X:201:SER:HB3	1.79	0.83
3:H:148:GLY:N	3:H:149:GLY:HA2	1.94	0.83
1:M:18:HIS:HD2	2:N:21:TRP:HA	1.42	0.83
2:D:127:ARG:NH2	2:F:131:GLU:OE2	2.11	0.83
4:T:21:ILE:HD12	4:T:102:THR:HG21	1.60	0.82
1:A:18:HIS:HD2	2:B:21:TRP:HA	1.46	0.81
3:G:31:ARG:HG3	3:G:31:ARG:NH1	1.95	0.80
1:A:325:GLU:HB3	2:B:13:GLY:O	1.82	0.80
2:N:128:GLU:O	2:N:170:ARG:NH1	2.15	0.79
1:A:326:LYS:H	2:B:12:ASN:HD22	1.29	0.79
1:O:210:GLN:NE2	1:Q:220:ARG:NE	2.31	0.78
3:S:141:PRO:HD2	3:S:228:PRO:HA	1.64	0.78
3:X:148:GLY:O	3:X:201:SER:CB	2.32	0.78
3:U:146:THR:HB	3:U:151:ALA:HA	1.65	0.78
4:L:197:THR:HG22	4:L:204:PRO:HB3	1.67	0.77
3:U:148:GLY:O	6:U:301:HOH:O	2.02	0.77
3:H:141:PRO:HB3	3:H:153:LEU:HB3	1.67	0.77
3:S:141:PRO:HG2	3:S:228:PRO:HB3	1.64	0.77
3:S:140:ALA:HB1	3:S:141:PRO:HD2	1.67	0.76
2:B:124:ARG:HD2	2:D:134:GLY:HA2	1.67	0.76
3:S:6:GLN:NE2	3:S:94:TYR:O	2.18	0.76
1:O:16:GLY:HA2	2:P:9:PHE:HB3	1.65	0.76
1:M:301:THR:OG1	1:M:305:CYS:SG	2.44	0.75
3:X:146:THR:HG22	3:X:147:SER:N	2.00	0.75
3:S:146:THR:HG21	3:S:151:ALA:HB1	1.64	0.75
3:S:147:SER:CB	3:S:150:THR:O	2.33	0.75
1:M:16:GLY:HA2	2:N:9:PHE:HB3	1.69	0.75
3:G:146:THR:HG21	4:I:116:PHE:HE2	1.50	0.74
1:O:325:GLU:OE2	2:P:13:GLY:O	2.05	0.74
4:T:4:MET:HE2	4:T:90:GLN:HG2	1.68	0.74

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
3:S:146:THR:HG21	3:S:151:ALA:HB2	1.63	0.73
3:S:174:LEU:HD11	3:S:197:VAL:HG21	1.71	0.72
1:E:18:HIS:HD2	2:F:21:TRP:HA	1.55	0.72
3:S:145:SER:HB3	3:S:147:SER:O	1.92	0.70
4:T:185:ASP:HA	4:T:188:LYS:HE2	1.74	0.70
2:D:54:ARG:HA	2:D:57:GLU:HG2	1.72	0.69
3:S:141:PRO:CG	3:S:228:PRO:HB3	2.22	0.69
1:M:99:PRO:HB2	1:M:229:ARG:HD3	1.72	0.69
2:B:134:GLY:HA2	2:F:124:ARG:HD2	1.74	0.69
3:S:145:SER:O	3:S:146:THR:HG22	1.92	0.68
1:C:8:ASN:N	6:C:505:HOH:O	2.27	0.67
3:H:146:THR:N	3:H:201:SER:HG	1.93	0.67
3:S:144:LYS:O	3:S:145:SER:HB2	1.93	0.67
3:H:69:THR:OG1	3:H:84:ARG:NH2	2.28	0.67
3:X:1:GLN:N	6:X:302:HOH:O	2.27	0.67
3:H:65:GLN:OE1	6:H:301:HOH:O	2.14	0.66
4:T:4:MET:CE	4:T:90:GLN:HG2	2.26	0.66
4:L:187:GLU:O	4:L:211:ARG:NH2	2.26	0.66
4:Y:29:ILE:HG21	4:Y:90:GLN:HG3	1.76	0.66
4:Y:189:HIS:O	4:Y:211:ARG:NH1	2.29	0.66
1:E:157:SER:O	6:E:503:HOH:O	2.14	0.66
1:C:150:ARG:HH12	5:C:403:NAG:H81	1.61	0.65
1:Q:15:LEU:HD13	2:R:119:PHE:HA	1.77	0.65
1:A:133:ASN:OD1	1:A:255:ARG:NH2	2.24	0.65
1:O:33:GLN:OE1	4:T:93:ASN:HB3	1.96	0.65
1:Q:102:VAL:HG22	1:Q:232:ILE:HB	1.79	0.65
2:D:124:ARG:HD2	2:F:134:GLY:HA2	1.79	0.65
1:Q:133:ASN:OD1	1:Q:255:ARG:NH2	2.27	0.64
1:Q:83:THR:HG22	1:Q:117:THR:HG22	1.77	0.64
3:S:146:THR:CG2	3:S:151:ALA:HB2	2.21	0.64
1:E:195:TYR:O	1:E:196:VAL:HG13	1.98	0.64
4:L:56:THR:O	6:L:301:HOH:O	2.15	0.64
3:G:144:LYS:NZ	6:G:302:HOH:O	2.29	0.63
4:I:185:ASP:HA	4:I:188:LYS:HE2	1.79	0.63
1:M:8:ASN:N	6:M:503:HOH:O	2.31	0.63
1:O:325:GLU:HA	1:O:325:GLU:OE2	1.99	0.63
4:V:147:GLN:OE1	4:V:154:LEU:HD11	1.98	0.63
4:V:108:ARG:HD2	4:V:170:ASP:O	1.99	0.63
1:E:32:ASP:HB3	4:I:93:ASN:HD21	1.64	0.63
4:L:183:LYS:O	4:L:187:GLU:HG2	1.98	0.63
3:S:134:PRO:HB3	3:S:160:TYR:HB3	1.80	0.63

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
3:J:146:THR:HG21	3:J:152:ALA:H	1.64	0.62
3:X:148:GLY:O	3:X:201:SER:OG	2.17	0.61
1:E:16:GLY:HA2	2:F:9:PHE:HB3	1.82	0.61
4:I:120:PRO:HD3	4:I:132:VAL:HG22	1.81	0.61
4:K:8:PRO:O	4:K:102:THR:HG23	2.00	0.61
4:L:34:ASN:HD22	4:L:89:GLN:HE22	1.48	0.61
2:N:171:PHE:O	2:N:172:GLN:HB2	1.99	0.61
3:X:147:SER:HB3	4:Y:116:PHE:HE1	1.66	0.60
4:K:186:TYR:O	4:K:192:TYR:OH	2.19	0.60
4:L:192:TYR:HB2	4:L:209:PHE:CE1	2.36	0.60
4:L:100:GLN:NE2	6:L:303:HOH:O	2.31	0.60
3:J:82:GLU:OE1	3:J:84:ARG:NH1	2.33	0.59
4:L:36:TYR:HE2	4:L:89:GLN:HE21	1.49	0.59
3:X:142:SER:N	3:X:146:THR:OG1	2.36	0.59
1:A:307:LYS:NZ	6:A:508:HOH:O	2.35	0.59
3:G:91:THR:HG23	3:G:125:THR:HA	1.85	0.59
3:U:99:ASP:O	3:U:100:LYS:HB2	2.03	0.59
1:A:216:ASN:OD1	1:A:218:GLU:CG	2.46	0.59
3:X:76:THR:O	3:X:76:THR:HG22	2.02	0.59
3:G:215:HIS:CD2	3:G:218:SER:H	2.20	0.58
3:J:6:GLN:HG2	3:J:22:CYS:SG	2.43	0.58
3:J:134:PRO:HB3	3:J:157:VAL:HG23	1.85	0.58
2:N:134:GLY:HA2	2:R:124:ARG:HD3	1.84	0.58
2:P:124:ARG:HD2	2:R:134:GLY:HA2	1.85	0.58
1:Q:97:CYS:O	1:Q:224:ARG:NH1	2.37	0.58
1:C:210:GLN:HE22	1:E:220:ARG:HE	1.52	0.58
1:Q:224:ARG:NH2	6:Q:504:HOH:O	2.35	0.58
3:S:196:VAL:HG21	4:T:135:LEU:HD22	1.85	0.58
3:U:144:LYS:HD2	3:U:144:LYS:O	2.04	0.58
4:V:164:THR:HG22	4:V:174:SER:H	1.69	0.58
4:L:39:LYS:NZ	6:L:305:HOH:O	2.35	0.57
1:A:325:GLU:HA	2:B:12:ASN:HB2	1.86	0.57
1:Q:62:ILE:HG22	1:Q:63:ASP:N	2.19	0.57
4:T:8:PRO:0	4:T:9:VAL:HG23	2.05	0.57
3:G:154:GLY:HA3	3:G:196:VAL:HG12	1.85	0.57
4:L:69:THR:HG22	4:L:70:GLU:OE1	2.04	0.57
3:J:71:THR:HG23	3:J:80:SER:HB2	1.85	0.57
3:H:6:GLN:HG2	3:H:22:CYS:SG	2.45	0.57
3:H:40:ALA:HB3	3:H:43:GLN:HG3	1.86	0.57
1:C:325:GLU:HB3	2:D:13:GLY:O	2.05	0.56
1:Q:15:LEU:HD11	2:R:119:PHE:HA	1.87	0.56

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (\AA)
3:G:143:SER:HB2	3:G:146:THR:HA	1.86	0.56
1:O:325:GLU:OE2	2:P:12:ASN:ND2	2.37	0.56
1:E:102:VAL:HG22	1:E:232:ILE:HB	1.88	0.56
1:Q:210:GLN:HG3	6:Q:523:HOH:O	2.05	0.56
3:G:199:VAL:HG22	3:G:200:PRO:HD2	1.87	0.56
3:J:89:ASP:OD1	3:J:89:ASP:N	2.39	0.55
4:L:4:MET:HE2	4:L:23:CYS:SG	2.47	0.55
1:C:102:VAL:HB	1:C:232:ILE:HB	1.88	0.55
2:N:150:GLU:OE1	2:N:153:ARG:NH1	2.40	0.55
3:J:145:SER:HB3	3:J:201:SER:OG	2.08	0.54
1:E:186:SER:HA	1:E:218:GLU:O	2.08	0.54
4:T:4:MET:HE3	4:T:90:GLN:HB3	1.90	0.54
3:H:134:PRO:HB3	3:H:160:TYR:HB3	1.89	0.54
1:Q:16:GLY:HA2	2:R:9:PHE:HB3	1.88	0.54
4:V:108:ARG:HG3	4:V:171:SER:HB2	1.88	0.54
1:A:238:LYS:NZ	6:A:511:HOH:O	2.41	0.53
4:T:189:HIS:O	4:T:211:ARG:NH1	2.41	0.53
3:S:12:LYS:HG3	3:S:18:VAL:HG13	1.90	0.53
3:U:6:GLN:NE2	3:U:122:THR:HG23	2.24	0.53
4:L:4:MET:CE	4:L:23:CYS:SG	2.97	0.53
4:L:21:ILE:HD12	4:L:102:THR:HG21	1.91	0.53
3:S:141:PRO:CD	3:S:228:PRO:HA	2.36	0.53
1:C:283:THR:HG22	1:C:301:THR:HG22	1.91	0.53
1:Q:9:SER:N	6:Q:505:HOH:O	2.42	0.53
1:A:326:LYS:H	2:B:12:ASN:ND2	2.01	0.52
1:C:169:PRO:HB3	1:C:242:VAL:HG22	1.91	0.52
1:E:18:HIS:CD2	2:F:21:TRP:HA	2.39	0.52
2:F:15:GLU:OE2	6:F:301:HOH:O	2.19	0.52
3:J:67:ARG:NH1	3:J:90:ASP:OD2	2.42	0.52
4:V:90:GLN:NE2	4:V:97:THR:OG1	2.43	0.52
1:E:15:LEU:HD22	2:F:119:PHE:HA	1.92	0.52
1:O:210:GLN:HE21	1:Q:220:ARG:HD3	1.73	0.52
4:K:163:VAL:HG23	4:K:175:LEU:HD12	1.91	0.52
3:J:143:SER:HB2	3:J:146:THR:HA	1.91	0.52
1:M:195:TYR:O	1:M:197:GLN:N	2.39	0.52
2:N:51:LYS:CD	2:N:103:GLU:OE1	2.51	0.52
4:V:29:ILE:HG21	4:V:90:GLN:HG3	1.92	0.52
1:C:127:TRP:O	6:C:501:HOH:O	2.19	0.52
1:Q:15:LEU:CD1	2:R:119:PHE:CD1	2.75	0.52
4:K:188:LYS:HB2	4:K:189:HIS:CE1	2.45	0.51
1:O:210:GLN:HE22	1:Q:220:ARG:NE	1.90	0.51

	hi a	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:G:2:VAL:HG13	3:G:27:TYR:HD1	1.75	0.51
3:G:141:PRO:HG2	3:G:228:PRO:HB3	1.92	0.51
1:O:132:GLN:NE2	6:O:504:HOH:O	2.40	0.51
4:T:197:THR:HG22	4:T:204:PRO:HG3	1.93	0.51
3:U:87:ARG:HD2	3:U:89:ASP:OD1	2.10	0.51
4:T:94:VAL:HG23	4:T:95:PRO:HA	1.93	0.51
1:E:196:VAL:HG22	1:E:197:GLN:OE1	2.11	0.51
3:G:145:SER:O	3:G:146:THR:HB	2.10	0.51
3:U:146:THR:CB	3:U:151:ALA:HA	2.36	0.51
3:G:138:PRO:HD3	3:G:224:LYS:NZ	2.25	0.51
3:U:146:THR:HG22	4:V:116:PHE:CD1	2.45	0.51
3:U:134:PRO:HB3	3:U:160:TYR:HB3	1.93	0.51
1:E:90:ARG:NH1	1:E:272:ALA:O	2.42	0.51
1:O:210:GLN:HE21	1:Q:220:ARG:CD	2.23	0.50
4:K:24:ARG:HG3	4:K:70:GLU:OE2	2.10	0.50
4:L:34:ASN:HD22	4:L:89:GLN:NE2	2.09	0.50
3:X:2:VAL:HG12	3:X:117:PRO:HG3	1.93	0.50
3:X:230:SER:O	3:X:231:CYS:SG	2.69	0.50
3:J:141:PRO:HG2	3:J:228:PRO:HB3	1.94	0.50
4:K:183:LYS:NZ	4:K:187:GLU:OE2	2.28	0.50
3:S:146:THR:CG2	3:S:147:SER:N	2.74	0.50
3:J:91:THR:HG23	3:J:125:THR:HA	1.92	0.50
2:F:120:GLU:CD	2:F:123:ARG:HH21	2.14	0.50
1:A:102:VAL:HG22	1:A:232:ILE:HB	1.93	0.50
4:T:7:SER:HA	4:T:8:PRO:C	2.32	0.50
3:U:148:GLY:HA2	6:U:317:HOH:O	2.12	0.50
3:J:138:PRO:HD3	3:J:224:LYS:NZ	2.27	0.49
4:T:125:LEU:O	4:T:183:LYS:HD2	2.12	0.49
4:Y:50:TYR:O	4:Y:51:ALA:HB3	2.12	0.49
3:G:67:ARG:NH1	3:G:90:ASP:OD2	2.45	0.49
1:0:238:LYS:NZ	6:O:506:HOH:O	2.44	0.49
1:C:297:VAL:HB	5:C:405:NAG:H82	1.94	0.49
4:V:166:GLN:HG3	4:V:173:TYR:CZ	2.47	0.49
1:A:217:ILE:C	1:A:218:GLU:HG2	2.32	0.49
3:J:145:SER:O	3:J:147:SER:N	2.41	0.49
1:Q:29:ILE:HD11	2:R:102:LEU:HD23	1.93	0.49
3:G:2:VAL:HG13	3:G:27:TYR:CD1	2.48	0.49
2:P:9:PHE:C	2:P:9:PHE:CD2	2.85	0.49
3:S:140:ALA:HB1	3:S:141:PRO:CD	2.42	0.49
3:G:146:THR:CG2	4:I:116:PHE:HE2	2.22	0.49
4:I:197:THR:HG22	4:I:204:PRO:HB3	1.94	0.49

	A L O	Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
2:N:60:ASN:ND2	6:N:302:HOH:O	2.44	0.49
4:T:21:ILE:CD1	4:T:102:THR:HG21	2.37	0.49
4:T:146:VAL:HG22	4:T:196:VAL:HG12	1.93	0.49
1:C:99:PRO:HB2	1:C:229:ARG:HD3	1.95	0.48
3:U:6:GLN:HE21	3:U:122:THR:HG23	1.78	0.48
3:G:146:THR:HG21	4:I:116:PHE:CE2	2.40	0.48
3:S:157:VAL:HG13	3:S:193:LEU:HB3	1.95	0.48
4:T:50:TYR:O	4:T:51:ALA:HB3	2.13	0.48
3:S:142:SER:O	3:S:143:SER:HB2	2.12	0.48
4:V:33:LEU:HD22	4:V:71:PHE:CG	2.49	0.48
3:X:91:THR:HG23	3:X:125:THR:HA	1.94	0.48
1:C:315:LYS:NZ	6:C:508:HOH:O	2.41	0.48
3:S:138:PRO:HD3	3:S:224:LYS:NZ	2.28	0.48
3:S:6:GLN:HE22	3:S:95:TYR:HA	1.79	0.48
4:V:105:GLU:OE1	4:V:173:TYR:OH	2.28	0.48
4:T:115:VAL:HG21	4:T:196:VAL:HG21	1.95	0.48
4:L:108:ARG:NH2	4:L:109:THR:O	2.46	0.47
1:M:244:VAL:HG21	1:O:221:PRO:HD3	1.96	0.47
1:O:210:GLN:NE2	1:Q:220:ARG:CD	2.77	0.47
3:X:76:THR:O	3:X:77:SER:C	2.48	0.47
1:E:97:CYS:O	1:E:224:ARG:NH1	2.48	0.47
1:C:210:GLN:HE22	1:E:220:ARG:NE	2.10	0.47
1:Q:28:THR:HG22	1:Q:31:ASP:H	1.79	0.47
3:G:50:TRP:CH2	3:G:52:SER:HB2	2.50	0.47
3:J:112:PHE:HA	3:J:114:TRP:CE2	2.49	0.47
3:X:166:THR:OG1	3:X:214:ASN:HB2	2.15	0.47
4:K:77:SER:OG	6:K:301:HOH:O	2.21	0.47
4:K:193:ALA:HB2	4:K:208:SER:HB3	1.96	0.47
1:0:183:HIS:ND1	1:0:195:TYR:OH	2.43	0.47
4:Y:166:GLN:HG3	4:Y:173:TYR:CZ	2.50	0.47
4:L:133:VAL:HG22	4:L:178:THR:HG22	1.97	0.46
4:V:113:PRO:HB3	4:V:139:PHE:HB3	1.97	0.46
3:X:134:PRO:HB3	3:X:160:TYR:HB3	1.96	0.46
4:Y:145:LYS:HB3	4:Y:197:THR:OG1	2.15	0.46
4:L:190:LYS:HA	4:L:211:ARG:HG2	1.98	0.46
3:X:146:THR:CG2	3:X:147:SER:N	2.73	0.46
1:C:183:HIS:HB2	1:C:252:ILE:HD11	1.98	0.46
4:Y:1:ASP:OD2	6:Y:301:HOH:O	2.21	0.46
3:G:73:ASP:OD1	3:G:75:SER:OG	2.28	0.46
1:0:97:CYS:O	1:O:224:ARG:NH1	2.48	0.46
1:Q:15:LEU:HD13	2:R:119:PHE:CA	2.46	0.46

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
4:K:11:LEU:HB3	4:K:104:LEU:HD12	1.98	0.46
4:K:113:PRO:HB3	4:K:139:PHE:HB3	1.97	0.46
3:G:178:VAL:O	3:G:179:HIS:ND1	2.49	0.45
3:G:193:LEU:HD23	3:G:194:SER:N	2.32	0.45
4:L:29:ILE:HG21	4:L:90:GLN:HG3	1.98	0.45
1:M:325:GLU:O	6:M:501:HOH:O	2.21	0.45
3:U:74:THR:O	3:U:76:THR:HA	2.17	0.45
4:Y:193:ALA:HB2	4:Y:208:SER:HB3	1.97	0.45
1:A:50:LYS:HG2	1:A:273:PRO:HG2	1.98	0.45
3:G:36:TRP:CE2	3:G:81:MET:HB2	2.51	0.45
3:H:224:LYS:HD2	3:H:224:LYS:HA	1.70	0.45
4:T:146:VAL:HG13	4:T:194:CYS:SG	2.57	0.45
1:A:16:GLY:HA2	2:B:9:PHE:HB3	1.99	0.45
4:V:193:ALA:HB2	4:V:208:SER:HB3	1.97	0.45
3:X:142:SER:N	3:X:146:THR:HG1	2.14	0.45
1:C:156:LYS:HE3	1:C:193:SER:O	2.17	0.45
1:M:15:LEU:HD22	2:N:119:PHE:HA	1.99	0.45
4:V:12:SER:HA	4:V:105:GLU:O	2.17	0.45
1:A:15:LEU:HD22	2:B:119:PHE:HA	1.98	0.45
3:G:212:ASN:OD1	3:G:212:ASN:N	2.49	0.45
4:L:158:ASN:OD1	4:L:158:ASN:N	2.46	0.45
1:O:97:CYS:SG	1:O:98:TYR:N	2.87	0.45
1:O:102:VAL:HG22	1:O:232:ILE:HB	1.99	0.45
1:Q:62:ILE:HG22	1:Q:63:ASP:H	1.81	0.45
3:U:161:PHE:HB2	3:U:190:LEU:HD23	1.98	0.45
3:X:112:PHE:HA	3:X:114:TRP:CE2	2.51	0.45
3:G:208:THR:HG23	3:G:225:LYS:HE3	1.98	0.45
1:M:218:GLU:OE1	1:Q:201:ARG:CZ	2.61	0.45
4:T:33:LEU:HD22	4:T:71:PHE:CG	2.52	0.45
3:H:98:ARG:HD2	3:H:116:ALA:O	2.17	0.45
3:J:158:LYS:HE2	3:J:158:LYS:HB2	1.78	0.45
3:H:112:PHE:HA	3:H:114:TRP:CE2	2.52	0.44
4:V:36:TYR:HE2	4:V:89:GLN:HB3	1.83	0.44
2:F:117:LYS:NZ	6:F:302:HOH:O	2.50	0.44
3:H:148:GLY:N	3:H:149:GLY:CA	2.72	0.44
4:Y:47:LEU:HD21	4:Y:62:PHE:CD2	2.52	0.44
1:C:175:ASP:OD1	1:C:239:PRO:HD3	2.17	0.44
1:E:195:TYR:C	1:E:196:VAL:CG1	2.85	0.44
4:I:50:TYR:O	4:I:51:ALA:HB3	2.16	0.44
2:B:56:ILE:HD11	3:H:108:PRO:HG2	1.99	0.44
1:E:33:GLN:HG2	4:I:93:ASN:ND2	2.33	0.44

		Interatomic	Clash
Atom-1	Atom-2	distance (Å)	overlap (Å)
3:U:112:PHE:HA	3:U:114:TRP:CE2	2.53	0.44
2:D:3:PHE:CD2	2:D:3:PHE:O	2.70	0.44
1:E:97:CYS:SG	1:E:98:TYR:N	2.88	0.44
1:0:32:ASP:HB3	4:T:93:ASN:HD21	1.83	0.44
1:A:18:HIS:CD2	2:B:21:TRP:HA	2.38	0.44
3:G:215:HIS:HD2	3:G:218:SER:H	1.66	0.44
4:L:78:LEU:HD12	4:L:78:LEU:HA	1.87	0.44
2:N:124:ARG:HD2	2:P:134:GLY:HA2	2.00	0.44
2:B:51:LYS:HG3	1:C:30:THR:HG22	1.99	0.44
1:C:210:GLN:NE2	1:E:220:ARG:HE	2.16	0.44
4:I:33:LEU:HD22	4:I:71:PHE:CG	2.53	0.44
1:M:18:HIS:CD2	2:N:21:TRP:HA	2.34	0.44
3:S:75:SER:HA	3:S:76:THR:HA	1.68	0.44
2:D:58:LYS:HD2	2:D:58:LYS:HA	1.66	0.43
4:Y:183:LYS:HE2	4:Y:187:GLU:OE2	2.18	0.43
1:M:220:ARG:HD2	1:Q:210:GLN:OE1	2.18	0.43
1:O:15:LEU:HD22	2:P:119:PHE:HA	1.98	0.43
1:O:18:HIS:CD2	2:P:21:TRP:HA	2.34	0.43
1:A:288:ILE:CD1	1:A:295:GLN:HG3	2.48	0.43
3:G:2:VAL:HG12	3:G:117:PRO:HG3	2.01	0.43
3:H:50:TRP:CH2	3:H:52:SER:HB2	2.53	0.43
3:S:12:LYS:O	3:S:126:VAL:HA	2.18	0.43
3:S:112:PHE:HA	3:S:114:TRP:CE2	2.53	0.43
4:T:125:LEU:HD22	4:T:183:LYS:HG3	2.00	0.43
4:K:151:ASP:OD1	4:K:191:VAL:HG13	2.19	0.43
1:O:29:ILE:HD11	2:P:102:LEU:HD23	2.01	0.43
3:S:50:TRP:CH2	3:S:52:SER:HB2	2.54	0.43
3:S:146:THR:HG22	3:S:147:SER:H	1.83	0.43
4:V:147:GLN:OE1	4:V:154:LEU:CD1	2.65	0.43
3:X:87:ARG:HE	3:X:87:ARG:HB2	1.67	0.43
3:J:138:PRO:HD3	3:J:224:LYS:HZ1	1.84	0.43
4:V:50:TYR:O	4:V:51:ALA:HB3	2.19	0.43
1:E:175:ASP:OD1	1:E:239:PRO:HD3	2.19	0.43
1:Q:27:LYS:HG3	1:Q:32:ASP:O	2.18	0.43
3:U:146:THR:HG22	4:V:116:PHE:HD1	1.84	0.43
3:U:224:LYS:HD2	3:U:224:LYS:HA	1.83	0.43
2:N:8:GLY:N	2:N:137:CYS:SG	2.92	0.43
2:B:115:MET:HB2	2:B:115:MET:HE2	1.90	0.42
1:C:244:VAL:HG21	1:E:221:PRO:HD3	2.01	0.42
4:I:21:ILE:HD11	4:I:73:LEU:HD23	2.00	0.42
1:Q:175:ASP:OD1	1:Q:239:PRO:HD3	2.19	0.42

	h a c	Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:L:36:TYR:OH	4:L:89:GLN:NE2	2.52	0.42
1:A:18:HIS:CE1	1:A:37:THR:HG21	2.55	0.42
1:A:295:GLN:HB2	1:A:306:PRO:HB2	2.01	0.42
3:U:64:PHE:HB3	3:U:68:VAL:HG23	2.02	0.42
3:X:148:GLY:C	3:X:201:SER:HG	2.19	0.42
3:X:230:SER:O	3:X:231:CYS:CB	2.67	0.42
4:L:150:VAL:HG12	4:L:192:TYR:CD2	2.54	0.42
3:H:67:ARG:HD2	3:H:84:ARG:O	2.19	0.42
3:U:146:THR:HG21	3:U:152:ALA:N	2.22	0.42
1:C:195:TYR:O	1:C:197:GLN:N	2.47	0.42
1:E:180:TRP:HB3	1:E:254:PRO:HD3	2.01	0.42
4:L:210:ASN:HB3	4:L:213:GLU:HB3	2.01	0.42
1:O:301:THR:HB	1:0:305:CYS:SG	2.60	0.42
4:I:113:PRO:HB3	4:I:139:PHE:HB3	2.01	0.42
4:L:47:LEU:HD21	4:L:62:PHE:CD1	2.55	0.42
2:N:26:HIS:CG	2:N:149:ILE:HD13	2.55	0.42
2:R:150:GLU:OE1	6:R:301:HOH:O	2.21	0.42
3:S:145:SER:C	3:S:147:SER:N	2.73	0.42
3:X:146:THR:HG21	3:X:152:ALA:H	1.84	0.42
1:E:264:LYS:HB3	2:F:63:PHE:CD1	2.55	0.42
1:M:15:LEU:HD23	2:N:118:LEU:HG	2.01	0.42
3:U:62:GLN:HA	3:U:65:GLN:HG2	2.01	0.42
3:G:112:PHE:HA	3:G:114:TRP:CE2	2.55	0.42
3:G:145:SER:O	3:G:147:SER:N	2.43	0.42
3:J:229:LYS:HA	3:J:229:LYS:HD3	1.60	0.42
2:R:38:LEU:HD22	3:X:54:TYR:CZ	2.55	0.42
3:S:91:THR:HG23	3:S:125:THR:HA	2.02	0.42
4:T:78:LEU:HD12	4:T:78:LEU:HA	1.91	0.42
1:C:97:CYS:SG	1:C:98:TYR:N	2.89	0.41
4:L:150:VAL:O	4:L:150:VAL:HG23	2.20	0.41
3:X:227:GLU:HA	3:X:228:PRO:HD3	1.90	0.41
2:F:19:ASP:OD1	2:F:19:ASP:N	2.48	0.41
3:H:36:TRP:CE2	3:H:81:MET:HB2	2.55	0.41
4:K:146:VAL:HG13	4:K:196:VAL:HG22	2.02	0.41
3:U:142:SER:OG	3:U:143:SER:O	2.36	0.41
3:G:86:LEU:HB3	3:G:126:VAL:HG11	2.01	0.41
2:N:54:ARG:O	2:N:57:GLU:HG2	2.21	0.41
3:G:138:PRO:HD3	3:G:224:LYS:HZ3	1.84	0.41
3:H:62:GLN:HA	3:H:65:GLN:HG3	2.03	0.41
4:I:145:LYS:HB3	4:I:197:THR:OG1	2.21	0.41
3:U:51:ILE:HB	3:U:70:MET:HE2	2.01	0.41

		Interatomic	Clash
Atom-1	Atom-2	distance (\AA)	overlap (Å)
4:V:10:SER:O	6:V:301:HOH:O	2.22	0.41
3:X:208:THR:HG23	3:X:225:LYS:HE3	2.02	0.41
1:Q:28:THR:HG23	1:Q:29:ILE:N	2.36	0.41
1:E:324:PRO:O	2:F:12:ASN:HB2	2.21	0.41
3:H:73:ASP:OD1	6:H:302:HOH:O	2.22	0.41
4:L:90:GLN:HE21	4:L:90:GLN:HB3	1.76	0.41
1:M:97:CYS:SG	1:M:98:TYR:N	2.92	0.41
3:X:214:ASN:OD1	3:X:221:LYS:HE3	2.21	0.41
4:Y:54:LEU:HD21	4:Y:59:PRO:O	2.21	0.41
2:B:22:TYR:HD1	2:B:115:MET:HE1	1.85	0.41
1:M:102:VAL:HG22	1:M:232:ILE:HB	2.01	0.41
4:V:90:GLN:HE21	4:V:90:GLN:HB3	1.67	0.41
3:X:138:PRO:HD3	3:X:224:LYS:HE2	2.03	0.41
3:G:31:ARG:HA	3:G:31:ARG:HD2	1.70	0.41
3:S:161:PHE:HA	3:S:162:PRO:HA	1.80	0.41
3:U:142:SER:HB3	3:U:146:THR:HA	2.03	0.41
3:G:174:LEU:HD12	3:G:174:LEU:HA	1.86	0.41
3:H:161:PHE:HA	3:H:162:PRO:HA	1.82	0.41
1:M:42:LEU:HD12	2:N:100:VAL:HG12	2.03	0.41
2:P:51:LYS:HB3	2:P:51:LYS:HE2	1.87	0.41
4:T:132:VAL:HG13	4:T:179:LEU:HB3	2.02	0.41
1:E:184:HIS:HB3	1:E:220:ARG:NH1	2.35	0.41
3:G:136:VAL:HA	3:G:156:LEU:O	2.21	0.41
3:G:146:THR:HG22	3:G:147:SER:HG	1.81	0.41
3:G:146:THR:CG2	4:I:116:PHE:CE2	3.00	0.41
3:H:101:LYS:HG3	3:H:102:GLN:N	2.35	0.41
2:B:25:ARG:NH1	6:B:306:HOH:O	2.44	0.40
1:O:196:VAL:O	1:O:196:VAL:HG23	2.20	0.40
1:Q:221:PRO:O	1:Q:229:ARG:NH2	2.48	0.40
2:R:153:ARG:NE	6:R:301:HOH:O	2.39	0.40
2:R:56:ILE:HD12	2:R:56:ILE:HA	1.98	0.40
3:H:174:LEU:HD21	3:H:197:VAL:HG21	2.03	0.40
1:M:22:ASN:OD1	5:M:401:NAG:N2	2.55	0.40
3:S:134:PRO:HB2	3:S:157:VAL:HG23	2.04	0.40
3:S:177:GLY:O	3:S:197:VAL:HA	2.21	0.40
3:X:161:PHE:HA	3:X:162:PRO:HA	1.84	0.40
3:H:141:PRO:O	3:H:142:SER:CB	2.70	0.40
1:Q:192:THR:O	1:Q:195:TYR:O	2.39	0.40
3:S:145:SER:C	3:S:147:SER:H	2.24	0.40
4:T:8:PRO:O	4:T:9:VAL:CB	2.69	0.40

All (2) symmetry-related close contacts are listed below. The label for Atom-2 includes the sym-

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
4:K:156:SER:OG	3:X:231:CYS:SG[1_455]	1.94	0.26
3:H:1:GLN:N	3:X:26:GLY:O[1_455]	2.15	0.05

metry operator and encoded unit-cell translations to be applied.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
1	А	318/320~(99%)	306 (96%)	11 (4%)	1 (0%)	37 56
1	С	317/320~(99%)	308~(97%)	8 (2%)	1 (0%)	37 56
1	Е	316/320~(99%)	306~(97%)	9~(3%)	1 (0%)	37 56
1	М	316/320~(99%)	306 (97%)	9(3%)	1 (0%)	37 56
1	Ο	316/320~(99%)	308 (98%)	6 (2%)	2(1%)	22 39
1	Q	316/320~(99%)	307~(97%)	8 (2%)	1 (0%)	37 56
2	В	166/170~(98%)	160 (96%)	6 (4%)	0	100 100
2	D	167/170~(98%)	159~(95%)	8 (5%)	0	100 100
2	F	166/170~(98%)	160 (96%)	6 (4%)	0	100 100
2	Ν	167/170~(98%)	160 (96%)	7 (4%)	0	100 100
2	Р	161/170~(95%)	155~(96%)	6 (4%)	0	100 100
2	R	165/170~(97%)	158 (96%)	7 (4%)	0	100 100
3	G	229/231~(99%)	218 (95%)	11 (5%)	0	100 100
3	Н	224/231~(97%)	217 (97%)	6 (3%)	1 (0%)	30 49
3	J	229/231~(99%)	222 (97%)	7 (3%)	0	100 100
3	S	229/231~(99%)	218 (95%)	10 (4%)	1 (0%)	30 49
3	U	229/231~(99%)	219 (96%)	10 (4%)	0	100 100
3	X	229/231~(99%)	219 (96%)	10 (4%)	0	100 100
4	Ι	212/214~(99%)	206 (97%)	6 (3%)	0	100 100

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
4	Κ	212/214~(99%)	207~(98%)	5(2%)	0	100 100
4	L	212/214~(99%)	208~(98%)	3~(1%)	1 (0%)	25 44
4	Т	212/214~(99%)	204~(96%)	7 (3%)	1 (0%)	25 44
4	V	212/214~(99%)	207~(98%)	5(2%)	0	100 100
4	Υ	212/214~(99%)	208~(98%)	4(2%)	0	100 100
All	All	5532/5610~(99%)	5346 (97%)	175 (3%)	11 (0%)	44 64

All (11) Ramachandran outliers are listed below:

Mol	Chain	Res	Type
4	Т	9	VAL
1	0	196	VAL
1	А	62	ILE
1	С	62	ILE
1	Е	62	ILE
4	L	68	GLU
1	М	62	ILE
1	0	62	ILE
1	Q	62	ILE
3	S	100	LYS
3	Н	141	PRO

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all X-ray entries followed by that with respect to entries of similar resolution.

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Rotameric	Outliers	Percentiles
1	А	281/282~(100%)	275~(98%)	6 (2%)	48 74
1	С	282/282~(100%)	275~(98%)	7 (2%)	42 69
1	Е	281/282~(100%)	275~(98%)	6 (2%)	48 74
1	М	281/282~(100%)	280 (100%)	1 (0%)	89 96
1	Ο	281/282~(100%)	269~(96%)	12 (4%)	25 48
1	Q	281/282~(100%)	273 (97%)	8 (3%)	38 65

Mol	Chain	Analysed	Rotameric	Outliers	Perce	entiles
2	В	144/146~(99%)	143~(99%)	1 (1%)	81	93
2	D	145/146~(99%)	145~(100%)	0	100	100
2	F	145/146~(99%)	144 (99%)	1 (1%)	81	93
2	Ν	144/146~(99%)	142~(99%)	2(1%)	62	83
2	Р	143/146~(98%)	141 (99%)	2(1%)	62	83
2	R	144/146~(99%)	141 (98%)	3~(2%)	48	74
3	G	194/194~(100%)	172 (89%)	22 (11%)	4	9
3	Н	191/194~(98%)	175~(92%)	16 (8%)	9	19
3	J	194/194~(100%)	175 (90%)	19 (10%)	6	13
3	\mathbf{S}	194/194~(100%)	183 (94%)	11 (6%)	17	35
3	U	194/194~(100%)	188~(97%)	6 (3%)	35	62
3	Х	194/194~(100%)	187~(96%)	7~(4%)	30	56
4	Ι	189/189~(100%)	174 (92%)	15 (8%)	10	21
4	Κ	189/189~(100%)	169~(89%)	20 (11%)	5	11
4	L	189/189~(100%)	169~(89%)	20 (11%)	5	11
4	Т	189/189~(100%)	179~(95%)	10~(5%)	19	38
4	V	189/189~(100%)	181 (96%)	8 (4%)	25	49
4	Y	189/189 (100%)	180 (95%)	9~(5%)	21	43
All	All	$484\overline{7}/4866~(100\%)$	4635 (96%)	212 (4%)	24	47

All (212) residues with a non-rotameric side chain are listed below:

Mol	Chain	Res	Type
1	А	196	VAL
1	А	210	GLN
1	А	212	THR
1	А	242	VAL
1	А	261	ARG
1	А	295	GLN
2	В	57	GLU
1	С	18	HIS
1	С	101	ASP
1	С	102	VAL
1	С	182	VAL
1	С	189	GLN
1	С	218	GLU

Mol	Chain	Res	Type
1	С	297	VAL
1	Е	32	ASP
1	Е	196	VAL
1	Е	197	GLN
1	Е	217	ILE
1	Е	219	SER
1	Е	295	GLN
2	F	164	ASP
3	G	13	LYS
3	G	28	SER
3	G	31	ARG
3	G	62	GLN
3	G	69	THR
3	G	74	THR
3	G	75	SER
3	G	76	THR
3	G	105	VAL
3	G	126	VAL
3	G	130	SER
3	G	131	THR
3	G	132	LYS
3	G	147	SER
3	G	156	LEU
3	G	166	THR
3	G	175	THR
3	G	176	SER
3	G	187	SER
3	G	194	SER
3	G	199	VAL
3	G	212	ASN
3	Н	4	LEU
3	Н	11	VAL
3	Н	22	CYS
3	Н	35	SER
3	Н	68	VAL
3	Н	74	THR
3	Н	88	SER
3	Н	101	LYS
3	Н	132	LYS
3	Н	147	SER
3	Н	150	THR
3	Н	175	THR

Mol	Chain	Res	Type
3	Н	201	SER
3	Н	206	THR
3	Н	208	THR
3	Н	214	ASN
4	Ι	7	SER
4	Ι	9	VAL
4	Ι	10	SER
4	Ι	14	SER
4	Ι	56	THR
4	Ι	60	SER
4	Ι	76	SER
4	Ι	78	LEU
4	Ι	94	VAL
4	Ι	100	GLN
4	Ι	121	SER
4	Ι	124	GLN
4	Ι	201	LEU
4	Ι	202	SER
4	Ι	214	CYS
3	J	1	GLN
3	J	4	LEU
3	J	22	CYS
3	J	35	SER
3	J	48	LEU
3	J	71	THR
3	J	74	THR
3	J	76	THR
3	J	87	ARG
3	J	88	SER
3	J	131	THR
3	J	132	LYS
3	J	139	LEU
3	J	147	SER
3	J	153	LEU
3	J	157	VAL
3	J	158	LYS
3	J	187	SER
3	J	230	SER
4	K	7	SER
4	K	8	PRO
4	K	9	VAL
4	К	27	GLN

4 K 42 ARG 4 K 45 LYS 4 K 60 SER 4 K 68 GLU 4 K 70 GLU
4 K 45 LYS 4 K 60 SER 4 K 68 GLU 4 K 70 GLU
4 K 60 SER 4 K 68 GLU 4 K 70 GLU
4 K 68 GLU 4 K 70 GLU
4 K 70 GLU
4 K 90 GLN
4 K 91 SER
4 K 107 LYS
4 K 108 ARG
4 K 114 SER
4 K 142 ARG
4 K 146 VAL
4 K 163 VAL
4 K 191 VAL
4 K 197 THR
4 K 214 CYS
4 L 42 ARG
4 L 56 THR
4 L 69 THR
4 L 70 GLU
4 L 89 GLN
4 L 90 GLN
4 L 91 SER
4 L 106 ILE
4 L 107 LYS
4 L 129 THR
4 L 132 VAL
4 L 147 GLN
4 L 162 SER
4 L 163 VAL
4 L 168 SER
4 L 169 LYS
4 L 183 LYS
4 L 206 THR
4 L 211 ARG
4 L 214 CYS
1 M 101 ASP
2 N 58 LYS
2 N 72 GLU
1 O 9 SER
1 O 32 ASP
1 O 101 ASP

Mol	Chain	Res	Type
1	0	189	GLN
1	0	191	GLN
1	0	193	SER
1	0	196	VAL
1	0	197	GLN
1	0	199	SER
1	0	210	GLN
1	0	218	GLU
1	0	242	VAL
2	Р	123	ARG
2	Р	164	ASP
1	Q	27	LYS
1	Q	28	THR
1	Q	195	TYR
1	Q	196	VAL
1	Q	248	ASN
1	Q	295	GLN
1	Q	321	ARG
1	Q	326	LYS
2	R	72	GLU
2	R	156	THR
2	R	164	ASP
3	S	2	VAL
3	S	4	LEU
3	S	6	GLN
3	S	18	VAL
3	S	30	SER
3	S	67	ARG
3	S	104	GLU
3	S	132	LYS
3	S	146	THR
3	S	147	SER
3	S	206	THR
4	Т	7	SER
4	Т	10	SER
4	Т	33	LEU
4	Т	68	GLU
4	Т	78	LEU
4	Т	79	GLN
4	Т	94	VAL
4	Т	95	PRO
4	Т	107	LYS

Mol	Chain	Res	Type
4	Т	214	CYS
3	U	37	VAL
3	U	87	ARG
3	U	126	VAL
3	U	130	SER
3	U	144	LYS
3	U	146	THR
4	V	7	SER
4	V	8	PRO
4	V	33	LEU
4	V	90	GLN
4	V	105	GLU
4	V	108	ARG
4	V	142	ARG
4	V	214	CYS
3	Х	65	GLN
3	Х	75	SER
3	Х	87	ARG
3	Х	142	SER
3	Х	143	SER
3	Х	229	LYS
3	Х	230	SER
4	Y	7	SER
4	Y	10	SER
4	Y	33	LEU
4	Y	42	ARG
4	Y	90	GLN
4	Y	95	PRO
4	Y	107	LYS
4	Y	108	ARG
4	Y	147	GLN

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (23) such sidechains are listed below:

Mol	Chain	Res	Type
1	А	18	HIS
1	А	210	GLN
2	В	12	ASN
1	С	189	GLN
1	С	210	GLN
1	Е	18	HIS
1	Е	33	GLN

Mol	Chain	Res	Type
1	Е	216	ASN
3	G	215	HIS
4	Ι	92	ASN
4	Ι	93	ASN
4	L	89	GLN
1	М	18	HIS
1	М	197	GLN
1	0	18	HIS
1	0	210	GLN
2	Р	12	ASN
2	Р	65	GLN
1	Q	18	HIS
4	Т	79	GLN
4	V	90	GLN
3	Х	65	GLN
4	Y	53	ASN

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

36 ligands are modelled in this entry.

In the following table, the Counts columns list the number of bonds (or angles) for which Mogul statistics could be retrieved, the number of bonds (or angles) that are observed in the model and the number of bonds (or angles) that are defined in the Chemical Component Dictionary. The Link column lists molecule types, if any, to which the group is linked. The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 2 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Turne	Chain	Dec	Tiple	Bo	ond leng	\mathbf{ths}	Bond angles		
IVIOI	туре	Unam	nes		Counts	RMSZ	# Z >2	Counts	RMSZ	# Z >2
5	NAG	В	201	2	14,14,15	0.28	0	17,19,21	0.38	0
5	NAG	D	201	2	14,14,15	0.19	0	17,19,21	0.41	0
5	NAG	0	404	1	14,14,15	0.27	0	$17,\!19,\!21$	0.36	0
5	NAG	М	402	1	14,14,15	0.45	0	17,19,21	0.52	0
5	NAG	Q	402	1	14,14,15	0.36	0	17,19,21	0.49	0
5	NAG	С	405	1	14,14,15	0.22	0	17,19,21	0.37	0
5	NAG	R	201	2	14,14,15	0.17	0	17,19,21	0.53	0
5	NAG	E	404	1	14,14,15	0.35	0	17,19,21	0.37	0
5	NAG	А	402	1	14,14,15	0.35	0	17,19,21	0.41	0
5	NAG	Q	404	1	14,14,15	0.30	0	17,19,21	0.41	0
5	NAG	0	402	1	14,14,15	0.41	0	17,19,21	0.46	0
5	NAG	С	401	1	14,14,15	0.43	0	17,19,21	0.52	0
5	NAG	0	405	1	14,14,15	0.29	0	17,19,21	0.39	0
5	NAG	М	401	1	14,14,15	0.51	0	17,19,21	0.53	0
5	NAG	Q	403	1	14,14,15	0.17	0	17,19,21	0.42	0
5	NAG	F	201	2	14,14,15	0.20	0	17,19,21	0.49	0
5	NAG	E	402	1	14,14,15	0.32	0	17,19,21	0.37	0
5	NAG	Q	405	1	14,14,15	0.21	0	17,19,21	0.41	0
5	NAG	Q	401	1	14,14,15	0.34	0	17,19,21	0.36	0
5	NAG	0	403	1	14,14,15	0.21	0	17,19,21	0.54	0
5	NAG	А	404	1	14,14,15	0.49	0	17,19,21	0.69	1 (5%)
5	NAG	М	405	1	14,14,15	0.24	0	$17,\!19,\!21$	0.45	0
5	NAG	С	402	1	14,14,15	0.43	0	17,19,21	0.51	0
5	NAG	А	403	1	14,14,15	0.24	0	$17,\!19,\!21$	0.46	0
5	NAG	А	405	1	14,14,15	0.23	0	17,19,21	0.35	0
5	NAG	С	404	1	14,14,15	0.27	0	17,19,21	0.39	0
5	NAG	0	401	1	14,14,15	0.27	0	17,19,21	0.44	0
5	NAG	А	401	1	14,14,15	0.19	0	$17,\!19,\!21$	0.71	1(5%)
5	NAG	М	404	1	14,14,15	0.29	0	17,19,21	0.37	0
5	NAG	N	201	2	14,14,15	0.20	0	17,19,21	0.43	0
5	NAG	С	403	1	14,14,15	1.28	1 (7%)	$17,\!19,\!21$	1.16	3 (17%)
5	NAG	Е	403	1	14,14,15	0.18	0	17,19,21	0.43	0
5	NAG	E	401	1	14,14,15	0.40	0	$17,\!19,\!21$	0.60	1 (5%)
5	NAG	Р	201	2	14,14,15	0.24	0	17,19,21	0.47	0
5	NAG	М	403	1	$14,\!14,\!15$	0.95	1 (7%)	$17,\!19,\!21$	1.26	1 (5%)
5	NAG	E	405	1	14,14,15	0.24	0	17,19,21	0.47	0

In the following table, the Chirals column lists the number of chiral outliers, the number of chiral centers analysed, the number of these observed in the model and the number defined in the Chemical Component Dictionary. Similar counts are reported in the Torsion and Rings columns. '-' means no outliers of that kind were identified.

5K9O	
0 0 U	

Mol	Type	Chain	Res	Link	Chirals	Torsions	Rings
5	NAG	В	201	2	-	0/6/23/26	0/1/1/1
5	NAG	D	201	2	-	0/6/23/26	0/1/1/1
5	NAG	0	404	1	-	0/6/23/26	0/1/1/1
5	NAG	М	402	1	-	2/6/23/26	0/1/1/1
5	NAG	Q	402	1	-	2/6/23/26	0/1/1/1
5	NAG	С	405	1	_	0/6/23/26	0/1/1/1
5	NAG	R	201	2	-	0/6/23/26	0/1/1/1
5	NAG	E	404	1	-	0/6/23/26	0/1/1/1
5	NAG	А	402	1	-	2/6/23/26	0/1/1/1
5	NAG	Q	404	1	-	0/6/23/26	0/1/1/1
5	NAG	0	402	1	-	2/6/23/26	0/1/1/1
5	NAG	С	401	1	-	2/6/23/26	0/1/1/1
5	NAG	0	405	1	-	0/6/23/26	0/1/1/1
5	NAG	М	401	1	-	0/6/23/26	0/1/1/1
5	NAG	Q	403	1	-	0/6/23/26	0/1/1/1
5	NAG	F	201	2	-	0/6/23/26	0/1/1/1
5	NAG	Ε	402	1	-	2/6/23/26	0/1/1/1
5	NAG	Q	405	1	-	0/6/23/26	0/1/1/1
5	NAG	Q	401	1	-	2/6/23/26	0/1/1/1
5	NAG	0	403	1	-	0/6/23/26	0/1/1/1
5	NAG	А	404	1	-	2/6/23/26	0/1/1/1
5	NAG	М	405	1	-	0/6/23/26	0/1/1/1
5	NAG	С	402	1	-	2/6/23/26	0/1/1/1
5	NAG	А	403	1	-	1/6/23/26	0/1/1/1
5	NAG	А	405	1	-	0/6/23/26	0/1/1/1
5	NAG	С	404	1	-	1/6/23/26	0/1/1/1
5	NAG	О	401	1	-	2/6/23/26	0/1/1/1
5	NAG	А	401	1	-	0/6/23/26	0/1/1/1
5	NAG	М	404	1	-	2/6/23/26	0/1/1/1
5	NAG	N	201	2	-	0/6/23/26	0/1/1/1
5	NAG	С	403	1	-	2/6/23/26	0/1/1/1
5	NAG	Е	403	1	-	2/6/23/26	0/1/1/1
5	NAG	E	401	1	-	1/6/23/26	0/1/1/1
5	NAG	Р	201	2	-	0/6/23/26	0/1/1/1
5	NAG	M	403	1	-	1/6/23/26	0/1/1/1
5	NAG	E	405	1	-	0/6/23/26	0/1/1/1

All (2) bond length outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	Observed(Å)	$\operatorname{Ideal}(\operatorname{\AA})$
5	С	403	NAG	C1-C2	4.30	1.58	1.52
5	М	403	NAG	O5-C1	3.28	1.49	1.43

All (7) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms		$Observed(^{o})$	$Ideal(^{o})$
5	М	403	NAG	C1-O5-C5	4.91	118.77	112.19
5	С	403	NAG	C1-O5-C5	2.87	116.03	112.19
5	А	404	NAG	C1-O5-C5	2.25	115.20	112.19
5	С	403	NAG	O5-C5-C4	-2.22	105.44	110.83
5	А	401	NAG	C1-O5-C5	2.19	115.12	112.19
5	С	403	NAG	C4-C3-C2	2.17	114.20	111.02
5	Е	401	NAG	C1-O5-C5	2.01	114.88	112.19

There are no chirality outliers.

All (30) torsion outliers are listed below:

Mol	Chain	Res	Type	Atoms
5	Q	402	NAG	O5-C5-C6-O6
5	М	402	NAG	O5-C5-C6-O6
5	0	402	NAG	O5-C5-C6-O6
5	А	402	NAG	O5-C5-C6-O6
5	Q	401	NAG	O5-C5-C6-O6
5	Е	402	NAG	O5-C5-C6-O6
5	Q	402	NAG	C4-C5-C6-O6
5	С	403	NAG	O5-C5-C6-O6
5	С	402	NAG	O5-C5-C6-O6
5	0	402	NAG	C4-C5-C6-O6
5	М	402	NAG	C4-C5-C6-O6
5	А	402	NAG	C4-C5-C6-O6
5	Q	401	NAG	C4-C5-C6-O6
5	С	402	NAG	C4-C5-C6-O6
5	Е	402	NAG	C4-C5-C6-O6
5	С	403	NAG	C4-C5-C6-O6
5	А	404	NAG	O5-C5-C6-O6
5	А	404	NAG	C4-C5-C6-O6
5	Е	403	NAG	O5-C5-C6-O6
5	0	401	NAG	C4-C5-C6-O6
5	0	401	NAG	O5-C5-C6-O6
5	С	401	NAG	O5-C5-C6-O6
5	С	401	NAG	C4-C5-C6-O6
5	М	404	NAG	C4-C5-C6-O6

Mol	Chain	Res	Type	Atoms
5	С	404	NAG	C4-C5-C6-O6
5	Е	403	NAG	C4-C5-C6-O6
5	М	404	NAG	O5-C5-C6-O6
5	А	403	NAG	O5-C5-C6-O6
5	М	403	NAG	O5-C5-C6-O6
5	Е	401	NAG	C4-C5-C6-O6

There are no ring outliers.

3 monomers are involved in 3 short contacts:

Mol	Chain	Res	Type	Clashes	Symm-Clashes
5	С	405	NAG	1	0
5	М	401	NAG	1	0
5	С	403	NAG	1	0

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

6 Fit of model and data (i)

6.1 Protein, DNA and RNA chains (i)

In the following table, the column labelled '#RSRZ> 2' contains the number (and percentage) of RSRZ outliers, followed by percent RSRZ outliers for the chain as percentile scores relative to all X-ray entries and entries of similar resolution. The OWAB column contains the minimum, median, 95^{th} percentile and maximum values of the occupancy-weighted average B-factor per residue. The column labelled 'Q< 0.9' lists the number of (and percentage) of residues with an average occupancy less than 0.9.

Mol	Chain	Analysed	$\langle RSRZ \rangle$	> #RSRZ>2 OWAB(Å ²)		$Q{<}0.9$
1	А	320/320~(100%)	-0.45	4 (1%) 74 71	27, 38, 64, 116	0
1	С	319/320~(99%)	-0.36	4 (1%) 74 71	27, 43, 67, 109	1 (0%)
1	Е	318/320~(99%)	-0.19	5 (1%) 70 67	33, 50, 79, 106	0
1	М	318/320~(99%)	-0.36	4 (1%) 74 71	30, 42, 72, 124	2(0%)
1	Ο	318/320~(99%)	-0.12	6 (1%) 66 63	36, 53, 87, 134	1 (0%)
1	Q	318/320~(99%)	-0.36	2 (0%) 85 83	31, 44, 66, 102	2(0%)
2	В	168/170~(98%)	-0.35	0 100 100	28, 45, 66, 161	2(1%)
2	D	169/170~(99%)	-0.30	2 (1%) 76 73	28, 46, 71, 167	0
2	F	168/170~(98%)	-0.32	1 (0%) 85 83	31, 46, 65, 131	2 (1%)
2	N	169/170~(99%)	0.07	3 (1%) 67 64	32, 68, 105, 139	2(1%)
2	Р	163/170~(95%)	0.01	4 (2%) 58 55	31, 64, 101, 144	2(1%)
2	R	167/170~(98%)	-0.06	5 (2%) 52 49	30, 55, 98, 114	0
3	G	231/231~(100%)	0.53	27 (11%) 10 10	34, 78, 164, 266	0
3	Н	228/231~(98%)	-0.16	5 (2%) 62 59	28, 52, 86, 142	0
3	J	231/231~(100%)	0.44	22 (9%) 15 14	35, 77, 164, 268	1 (0%)
3	S	231/231~(100%)	0.77	16 (6%) 24 22	51, 94, 161, 280	0
3	U	231/231~(100%)	0.06	9 (3%) 44 40	32, 54, 88, 174	0
3	Х	231/231~(100%)	-0.09	9 (3%) 44 40	35, 57, 98, 201	0
4	Ι	214/214~(100%)	0.43	10 (4%) 37 34	34, 74, 161, 216	1 (0%)
4	K	214/214~(100%)	0.28	3 (1%) 73 70	33, 79, 114, 174	0
4	L	$2\overline{14/214}~(100\%)$	-0.01	5 (2%) 61 58	25, 51, 105, 158	0
4	Т	214/214~(100%)	0.76	24 (11%) 11 11	24, 83, 169, 219	2 (0%)
4	V	$2\overline{14/214}~(100\%)$	-0.08	3 (1%) 73 70	24, 50, 79, 152	0
4	Y	214/214~(100%)	0.01	7 (3%) 49 46	24, 56, 91, 118	1 (0%)

Mol	Chain	Analysed	<RSRZ $>$	#RSRZ	>2	$OWAB(Å^2)$	Q<0.9
All	All	5582/5610~(99%)	-0.02	180 (3%) 50	47	24, 52, 125, 280	19 (0%)

All (180) RSRZ outliers are listed below:

Mol	Chain	Res	Type	RSRZ
3	U	146	THR	6.2
2	R	5	ALA	6.1
1	0	218	GLU	5.4
3	Х	146	THR	5.3
3	Н	146	THR	5.3
4	L	214	CYS	5.0
4	K	214	CYS	4.9
3	J	146	THR	4.8
1	С	218	GLU	4.7
3	U	147	SER	4.7
1	Е	218	GLU	4.6
1	Q	218	GLU	4.6
3	Н	142	SER	4.2
2	Р	171	PHE	4.1
3	U	143	SER	4.1
3	S	229	LYS	4.0
3	Х	148	GLY	4.0
1	А	305	CYS	3.9
1	С	326	LYS	3.9
3	G	166	THR	3.8
1	М	218	GLU	3.7
3	G	135	SER	3.7
3	Н	231	CYS	3.6
3	Х	143	SER	3.6
4	Ι	193	ALA	3.6
4	Т	108	ARG	3.5
4	V	214	CYS	3.5
4	Т	184	ALA	3.5
4	Y	126	LYS	3.5
1	0	32	ASP	3.5
1	A	327	ALA	3.5
3	J	231	CYS	3.3
3	Х	144	LYS	3.3
1	A	8	ASN	3.3
3	U	229	LYS	3.3
2	D	3	PHE	3.3
1	Е	219	SER	3.3

Mol	Chain	Res	Type	RSRZ
2	Р	123	ARG	3.2
3	S	146	THR	3.2
4	Y	127	SER	3.1
3	S	226	VAL	3.1
4	Т	94	VAL	3.1
3	Х	142	SER	3.1
3	Х	231	CYS	3.1
3	S	76	THR	3.1
4	Ι	149	LYS	3.1
3	Х	145	SER	3.1
3	G	148	GLY	3.0
4	Т	202	SER	3.0
4	Y	7	SER	3.0
3	J	145	SER	3.0
3	S	142	SER	3.0
3	Н	148	GLY	3.0
3	G	200	PRO	3.0
3	S	222	VAL	3.0
3	J	205	GLY	2.9
3	Х	147	SER	2.9
3	G	222	VAL	2.9
2	R	6	ILE	2.9
2	Р	11	GLU	2.9
4	Y	94	VAL	2.9
1	С	9	SER	2.8
4	Т	120	PRO	2.8
3	G	214	ASN	2.8
2	R	171	PHE	2.8
3	G	165	VAL	2.8
4	Ι	197	THR	2.8
3	U	148	GLY	2.8
3	J	229	LYS	2.7
2	N	172	GLN	2.7
3	J	208	THR	2.7
1	С	8	ASN	2.7
2	R	123	ARG	2.7
4	L	154	LEU	2.7
3	J	202	SER	2.7
3	S	143	SER	2.7
4	Т	110	VAL	2.6
3	G	151	ALA	2.6
4	Т	207	LYS	2.6

Mol	Chain	Res	Type	RSRZ
3	S	228	PRO	2.6
2	Ν	29	SER	2.6
3	G	226	VAL	2.6
2	F	10	ILE	2.6
1	А	218	GLU	2.6
4	Т	7	SER	2.6
3	G	146	THR	2.6
1	0	325	GLU	2.6
3	J	1	GLN	2.6
4	Т	119	PRO	2.6
4	Y	214	CYS	2.6
4	Ι	132	VAL	2.5
1	0	219	SER	2.5
3	J	173	ALA	2.5
3	J	165	VAL	2.5
4	Т	42	ARG	2.5
3	J	143	SER	2.5
4	V	3	GLN	2.5
2	N	144	CYS	2.5
4	Т	149	LYS	2.5
3	S	139	LEU	2.4
4	V	154	LEU	2.4
3	G	136	VAL	2.4
4	Т	193	ALA	2.4
1	0	277	CYS	2.4
3	G	157	VAL	2.4
3	S	210	ILE	2.4
4	Т	117	ILE	2.4
3	U	128	SER	2.4
3	S	200	PRO	2.4
4	K	126	LYS	2.4
3	G	204	LEU	2.4
4	L	191	VAL	2.4
3	Х	230	SER	2.4
4	Т	127	SER	2.4
4	Ι	154	LEU	2.3
3	G	144	LYS	2.3
3	G	213	VAL	2.3
4	Т	148	TRP	2.3
2	R	7	ALA	2.3
3	J	147	SER	2.3
3	G	137	PHE	2.3

5K9Q

Mol	Chain	Res	Type	RSRZ
4	Ι	207	LYS	2.3
2	Р	144	CYS	2.3
3	U	145	SER	2.3
4	Ι	212	GLY	2.3
3	J	200	PRO	2.3
4	Ι	205	VAL	2.3
3	J	56	GLY	2.2
1	М	321	ARG	2.2
4	Т	115	VAL	2.2
3	G	139	LEU	2.2
3	G	153	LEU	2.2
3	J	150	THR	2.2
4	L	209	PHE	2.2
1	М	8	ASN	2.2
3	G	217	PRO	2.2
3	J	226	VAL	2.2
3	G	152	ALA	2.2
3	G	209	TYR	2.2
3	G	206	THR	2.2
3	S	144	LYS	2.2
4	Т	126	LYS	2.2
3	S	58	THR	2.2
4	Т	134	CYS	2.2
3	G	174	LEU	2.1
3	J	204	LEU	2.1
4	Ι	122	ASP	2.1
3	G	229	LYS	2.1
3	U	144	LYS	2.1
1	Е	222	TRP	2.1
3	G	131	THR	2.1
1	Ο	9	SER	2.1
3	U	231	CYS	2.1
3	S	152	ALA	2.1
1	М	220	ARG	2.1
3	S	208	THR	2.1
4	K	7	SER	2.1
1	Е	32	ASP	2.1
3	J	174	LEU	2.1
3	J	169	TRP	2.1
4	Т	111	ALA	2.1
1	Е	158	GLY	2.1
3	J	206	THR	2.1

Mol	Chain	Res	Type	RSRZ
4	Т	118	PHE	2.1
4	Y	129	THR	2.1
3	J	144	LYS	2.1
4	L	213	GLU	2.1
4	Т	188	LYS	2.1
4	Y	108	ARG	2.0
3	G	164	PRO	2.0
3	Н	141	PRO	2.0
2	D	171	PHE	2.0
3	J	220	THR	2.0
3	S	220	THR	2.0
4	Ι	129	THR	2.0
4	Т	209	PHE	2.0
1	Q	305	CYS	2.0
3	G	175	THR	2.0
4	Т	129	THR	2.0
4	Т	177	SER	2.0

6.2 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.3 Carbohydrates (i)

There are no monosaccharides in this entry.

6.4 Ligands (i)

In the following table, the Atoms column lists the number of modelled atoms in the group and the number defined in the chemical component dictionary. The B-factors column lists the minimum, median, 95^{th} percentile and maximum values of B factors of atoms in the group. The column labelled 'Q< 0.9' lists the number of atoms with occupancy less than 0.9.

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
5	NAG	М	401	14/15	0.27	0.21	142,162,166,166	0
5	NAG	Е	401	14/15	0.35	0.18	$144,\!157,\!161,\!163$	0
5	NAG	А	401	14/15	0.36	0.22	143,153,161,163	0
5	NAG	0	401	14/15	0.39	0.16	149,162,172,172	0
5	NAG	С	401	14/15	0.48	0.20	144,160,163,163	0
5	NAG	Q	401	14/15	0.57	0.20	138,157,160,161	0

5	K	9	Ω
\mathbf{O}	тл	υ	×

Mol	Type	Chain	Res	Atoms	RSCC	RSR	$B-factors(A^2)$	Q<0.9
5	NAG	0	404	14/15	0.69	0.18	93,109,116,121	0
5	NAG	М	403	14/15	0.72	0.18	95,104,111,111	0
5	NAG	Q	404	14/15	0.72	0.19	102,123,131,135	0
5	NAG	С	403	14/15	0.74	0.20	105,118,126,127	0
5	NAG	А	404	14/15	0.75	0.21	93,112,127,130	0
5	NAG	R	201	14/15	0.75	0.15	87,101,112,118	0
5	NAG	М	404	14/15	0.78	0.17	93,104,108,110	0
5	NAG	Е	404	14/15	0.78	0.14	89,105,123,129	0
5	NAG	М	402	14/15	0.79	0.16	77,88,91,92	0
5	NAG	0	402	14/15	0.80	0.18	80,99,106,109	0
5	NAG	Р	201	14/15	0.81	0.14	79,93,96,100	0
5	NAG	С	404	14/15	0.81	0.17	104,126,132,137	0
5	NAG	Е	402	14/15	0.82	0.17	72,82,91,92	0
5	NAG	Q	402	14/15	0.82	0.18	81,93,105,110	0
5	NAG	Q	405	14/15	0.83	0.12	62,76,87,97	0
5	NAG	Q	403	14/15	0.83	0.17	86,95,107,113	0
5	NAG	А	402	14/15	0.84	0.16	76,87,92,97	0
5	NAG	N	201	14/15	0.84	0.12	83,94,99,105	0
5	NAG	А	403	14/15	0.84	0.15	78,94,104,106	0
5	NAG	С	402	14/15	0.85	0.14	65,77,83,93	0
5	NAG	А	405	14/15	0.86	0.11	$56,\!67,\!76,\!83$	0
5	NAG	В	201	14/15	0.87	0.12	52,62,73,85	0
5	NAG	М	405	14/15	0.88	0.11	59,72,86,86	0
5	NAG	С	405	14/15	0.88	0.12	64,69,85,86	0
5	NAG	D	201	14/15	0.89	0.10	$52,\!67,\!75,\!78$	0
5	NAG	Е	405	14/15	0.90	0.10	49,62,70,76	0
5	NAG	0	405	14/15	0.92	0.10	59,75,87,88	0
5	NAG	F	201	14/15	0.92	0.08	48,66,72,75	0
5	NAG	0	403	14/15	0.92	0.09	53,62,70,72	0
5	NAG	Е	403	14/15	0.92	0.10	57,72,79,82	0

6.5 Other polymers (i)

There are no such residues in this entry.

