

wwPDB EM Validation Summary Report (i)

Nov 13, 2024 – 10:14 AM JST

:	8KFZ
:	EMD-37209
:	Gi bound CCR8 in ligand free state
:	Jiang, S.; Lin, X.; Wu, L.J.; Xu, F.
:	2023-08-16
:	3.30 Å(reported)
	::

This is a wwPDB EM Validation Summary Report for a publicly released PDB entry.

We welcome your comments at *validation@mail.wwpdb.org* A user guide is available at https://www.wwpdb.org/validation/2017/EMValidationReportHelp with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

EMDB validation analysis	:	FAILED
MolProbity	:	4.02b-467
Percentile statistics	:	20231227.v01 (using entries in the PDB archive December 27th 2023)
MapQ	:	FAILED
Ideal geometry (proteins)	:	Engh & Huber (2001)
Ideal geometry (DNA, RNA)	:	Parkinson et al. (1996)
Validation Pipeline (wwPDB-VP)	:	2.39

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $ELECTRON\ MICROSCOPY$

The reported resolution of this entry is 3.30 Å.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

The table below summarises the geometric issues observed across the polymeric chains and their fit to the map. The red, orange, yellow and green segments of the bar indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria respectively. A grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain						
1	R	575	30% 19% ·	50%					
2	А	354	42% 2	20% · 36%					
3	В	366	59%	31% • 8%					
4	С	71	63%	15% 21%					
5	S	297	58%	19% • 22%					

2 Entry composition (i)

There are 5 unique types of molecules in this entry. The entry contains 8966 atoms, of which 0 are hydrogens and 0 are deuteriums.

In the tables below, the AltConf column contains the number of residues with at least one atom in alternate conformation and the Trace column contains the number of residues modelled with at most 2 atoms.

• Molecule 1 is a protein called C-C chemokine receptor type 8,LgBiT fusion protein,Recombinant Human Rhinovirus.

Mol	Chain	Residues	Atoms					AltConf	Trace
1	R	288	Total 2342	C 1578	N 364	O 382	S 18	0	0

Chain	Residue	Modelled	Actual	Comment	Reference
R	-26	MET	-	initiating methionine	UNP P51685
R	-25	LYS	-	expression tag	UNP P51685
R	-24	THR	-	expression tag	UNP P51685
R	-23	ILE	-	expression tag	UNP P51685
R	-22	ILE	-	expression tag	UNP P51685
R	-21	ALA	-	expression tag	UNP P51685
R	-20	LEU	-	expression tag	UNP P51685
R	-19	SER	-	expression tag	UNP P51685
R	-18	TYR	-	expression tag	UNP P51685
R	-17	ILE	-	expression tag	UNP P51685
R	-16	PHE	-	expression tag	UNP P51685
R	-15	CYS	-	expression tag	UNP P51685
R	-14	LEU	-	expression tag	UNP P51685
R	-13	VAL	-	expression tag	UNP P51685
R	-12	PHE	-	expression tag	UNP P51685
R	-11	ALA	-	expression tag	UNP P51685
R	-10	ASP	-	expression tag	UNP P51685
R	-9	TYR	-	expression tag	UNP P51685
R	-8	LYS	-	expression tag	UNP P51685
R	-7	ASP	-	expression tag	UNP P51685
R	-6	ASP	-	expression tag	UNP P51685
R	-5	ASP	-	expression tag	UNP P51685
R	-4	ASP	-	expression tag	UNP P51685
R	-3	ALA	-	expression tag	UNP P51685
R	-2	GLY	-	expression tag	UNP P51685
R	-1	ARG	-	expression tag	UNP P51685
R	0	ALA	-	expression tag	UNP P51685

There are 27 discrepancies between the modelled and reference sequences:

• Molecule 2 is a protein called Guanine nucleotide-binding protein G(i) subunit alpha-1.

Mol	Chain	Residues	Atoms					AltConf	Trace
2	А	225	Total 1812	C 1151	N 301	0 346	S 14	0	0

There are 3 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
А	47	ASN	SER	conflict	UNP P63096
А	203	ALA	GLY	conflict	UNP P63096
А	326	SER	ALA	conflict	UNP P63096

- Molecule 3 is a protein called Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1.

Mol	Chain	Residues	Atoms					AltConf	Trace
3	В	338	Total 2600	C 1604	N 467	O 508	S 21	0	0

There are 26 discrepancies between the modelled and reference sequences:

Chain	Residue	Modelled	Actual	Comment	Reference
В	341	GLY	-	expression tag	UNP P62873
В	342	SER	-	expression tag	UNP P62873
В	343	SER	-	expression tag	UNP P62873
В	344	GLY	-	expression tag	UNP P62873
В	345	GLY	-	expression tag	UNP P62873
В	346	GLY	-	expression tag	UNP P62873
В	347	GLY	-	expression tag	UNP P62873
В	348	SER	-	expression tag	UNP P62873
В	349	GLY	-	expression tag	UNP P62873
В	350	GLY	-	expression tag	UNP P62873
В	351	GLY	-	expression tag	UNP P62873
В	352	GLY	-	expression tag	UNP P62873
В	353	SER	-	expression tag	UNP P62873
В	354	SER	-	expression tag	UNP P62873
В	355	GLY	-	expression tag	UNP P62873
В	356	VAL	-	expression tag	UNP P62873
В	357	SER	-	expression tag	UNP P62873
В	358	GLY	-	expression tag	UNP P62873
В	359	TRP	-	expression tag	UNP P62873
В	360	ARG	-	expression tag	UNP P62873
В	361	LEU	-	expression tag	UNP P62873

Continued on next page...

	J 1	1 5			
Chain	Residue	Modelled	Actual	Comment	Reference
В	362	PHE	-	expression tag	UNP P62873
В	363	LYS	-	expression tag	UNP P62873
В	364	LYS	-	expression tag	UNP P62873
В	365	ILE	-	expression tag	UNP P62873
В	366	SER	-	expression tag	UNP P62873

Continued from previous page...

• Molecule 4 is a protein called Guanine nucleotide-binding protein G(I)/G(S)/G(O) subunit gamma-2.

Mol	Chain	Residues	Atoms					AltConf	Trace
4	С	56	Total 429	C 269	N 76	0 81	${ m S} { m 3}$	0	0

• Molecule 5 is a protein called scFv16.

Mol	Chain	Residues	Atoms					AltConf	Trace
5	S	232	Total 1783	C 1131	N 295	0 347	S 10	0	0

3 Residue-property plots (i)

These plots are drawn for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic for a chain summarises the proportions of the various outlier classes displayed in the second graphic. The second graphic shows the sequence view annotated by issues in geometry. Residues are color-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outlier are shown as a green connector. Residues present in the sample, but not in the model, are shown in grey.

• Molecule 1: C-C chemokine receptor type 8,LgBiT fusion protein,Recombinant Human Rhinovirus

N331 E238 V335 V336 V335 V336 V336 N241 V339 N241 V334 N242 V336 N242 V336 N242 V336 N242 V341 N245 V342 N245 V344 N245 V344 N245 V342 N245 V342 N245 V342 N245 L348 N245 L348 N246 L348 N247 L348 N256 N256 N275 L348 N276 L349 N277 N277</t

• Molecule 3: Guanine nucleotide-binding protein $\rm G(I)/\rm G(S)/\rm G(T)$ subunit beta-1

Chain B:	59%	31%	• 8%
MET SER E3 E3 E3 E3 E3 M16 M16 M16 M16 M16 M16 M16 M16 M16 M16	N35 M45 R46 R46 R49 R67 Y59 Y59 Y59 S74 S74 S74 D76	L79 181 181 181 186 186 186 186 186 188 188	V90 H91 L95 S98 W99 M104 Y105
A113 C114 C114 T120 T128 S136 S136 C148 C148 C148 C148 C148 C148 C148 C148	2160 2161 2162 2165 7165 7166 7166 7166 7171 7173 7173 7177 7177	D186 V187 L190 R197 F198 V200 V200	G202 A203 L210 W211 D212 C216 R219 R219
q220 4226 H255 H226 2228 2228 1229 7234 1230 7233 7234 7241 7241 7241 7241 7241 7241 7241 724	R251 1252 1254 1255 1255 1256 1264 1263 1263 1263 1263 1263 1263 1263 1263	L286 Y289 C294 N295 V296 D298	K301 A302 D303 D303 A306 A306 H311 H311
L318 G319 7331 7321 7321 7323 7323 7323 7323 7323	SER SER GLY GLY GLY GLY CLY CLY CLY CLY CLY CLY CLY CLY CLY C	LVS LVS TLE SER	
• Molecule 4: Guanine nue	cleotide-binding protein $G(I)$	$/\mathrm{G(S)}/\mathrm{G(O)}$	subunit gamma-2
Chain C:	63%	15% 21	%
Chain C:	E 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15% 21	%
Chain C: 토로등록 토 <mark>도 한 토 토</mark> <mark>통 않았</mark> • Molecule 5: scFv16	L36 L36 M38 M38 M46 L42 L42 L42 L42 L42 L42 L42 L42 L42 L42	15% 21	%
Chain C: 탈호턴호호턴 알린 알린 걸 ^입 않았 • Molecule 5: scFv16 Chain S:	63%	15% 21	% 2%
Chain C:	63%	15% 21	% <u>M47</u> 191 191 191 191 191 191 191 19
Chain C: W Y H W Y H Y Y Y Y Y Y Y Y Y Y Y Y Y Y	¹¹¹¹ ¹¹¹⁶ ¹¹¹⁶ ¹¹¹⁶ ¹¹¹⁶ ¹¹¹⁸	15% 21 110 110 110 114 114 114 114 114 114 11	% 150 1153 1150 1155 1155 1155 1155 1155

4 Experimental information (i)

Property	Value	Source
EM reconstruction method	SINGLE PARTICLE	Depositor
Imposed symmetry	POINT, Not provided	
Number of particles used	27420	Depositor
Resolution determination method	FSC 0.143 CUT-OFF	Depositor
CTF correction method	NONE	Depositor
Microscope	FEI TITAN KRIOS	Depositor
Voltage (kV)	300	Depositor
Electron dose $(e^-/\text{\AA}^2)$	60	Depositor
Minimum defocus (nm)	700	Depositor
Maximum defocus (nm)	2200	Depositor
Magnification	Not provided	
Image detector	GATAN K3 BIOQUANTUM (6k x 4k)	Depositor

5 Model quality (i)

5.1 Standard geometry (i)

The Z score for a bond length (or angle) is the number of standard deviations the observed value is removed from the expected value. A bond length (or angle) with |Z| > 5 is considered an outlier worth inspection. RMSZ is the root-mean-square of all Z scores of the bond lengths (or angles).

Mal	Chain	Bond	Bond lengths		ond angles
	Unam	RMSZ	# Z > 5	RMSZ	# Z > 5
1	R	0.27	0/2403	0.48	1/3265~(0.0%)
2	А	0.28	0/1842	0.52	0/2472
3	В	0.29	0/2647	0.56	0/3589
4	С	0.26	0/435	0.49	0/587
5	S	0.31	0/1827	0.53	0/2477
All	All	0.28	0/9154	0.52	1/12390~(0.0%)

There are no bond length outliers.

All (1) bond angle outliers are listed below:

Mol	Chain	Res	Type	Atoms	Z	$Observed(^{o})$	$Ideal(^{o})$
1	R	159	LEU	CA-CB-CG	5.79	128.61	115.30

There are no chirality outliers.

There are no planarity outliers.

5.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in the chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes within the asymmetric unit, whereas Symm-Clashes lists symmetry-related clashes.

Mol	Chain	Non-H	H(model)	H(added)	Clashes	Symm-Clashes
1	R	2342	0	2443	92	0
2	А	1812	0	1798	60	0
3	В	2600	0	2505	84	0
4	С	429	0	441	10	0
5	S	1783	0	1717	48	0
All	All	8966	0	8904	281	0

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 16.

The worst 5 of 281 close contacts within the same asymmetric unit are listed below, sorted by their clash magnitude.

Atom-1	Atom-2	Interatomic distance (Å)	Clash overlap (Å)
1:R:247:SER:O	1:R:251:TRP:HB2	1.52	1.08
5:S:18:ARG:O	5:S:83:MET:HB2	1.69	0.91
5:S:142:SER:HA	5:S:204:ILE:O	1.71	0.89
2:A:227:LEU:HB3	2:A:274:PHE:HD2	1.43	0.83
2:A:227:LEU:HD22	2:A:303:ILE:HD12	1.61	0.80

There are no symmetry-related clashes.

5.3 Torsion angles (i)

5.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

The Analysed column shows the number of residues for which the backbone conformation was analysed, and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Perce	\mathbf{ntiles}
1	R	286/575~(50%)	277~(97%)	9~(3%)	0	100	100
2	А	221/354~(62%)	215 (97%)	6 (3%)	0	100	100
3	В	336/366~(92%)	321 (96%)	15~(4%)	0	100	100
4	С	54/71~(76%)	53~(98%)	1 (2%)	0	100	100
5	S	228/297~(77%)	217~(95%)	11 (5%)	0	100	100
All	All	1125/1663~(68%)	1083 (96%)	42 (4%)	0	100	100

There are no Ramachandran outliers to report.

5.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent side chain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all EM entries.

Mol	Chain	Analysed	Rotameric	Outliers	Percen	ntiles
1	R	265/514~(52%)	255~(96%)	10 (4%)	28	56
2	А	200/306~(65%)	190~(95%)	10 (5%)	20	48
3	В	281/298~(94%)	264 (94%)	17 (6%)	16	42
4	С	45/58~(78%)	43 (96%)	2(4%)	24	52
5	S	197/239~(82%)	189 (96%)	8 (4%)	26	54
All	All	988/1415 (70%)	941 (95%)	47 (5%)	24	50

The Analysed column shows the number of residues for which the sidechain conformation was analysed, and the total number of residues.

5 of 47 residues with a non-rotameric sidechain are listed below:

Mol	Chain	\mathbf{Res}	Type
3	В	175	GLN
3	В	265	SER
3	В	197	ARG
3	В	237	ASN
4	С	21	MET

Sometimes sidechains can be flipped to improve hydrogen bonding and reduce clashes. All (4) such sidechains are listed below:

Mol	Chain	Res	Type
1	R	232	ASN
3	В	175	GLN
3	В	239	ASN
5	S	155	HIS

5.3.3 RNA (i)

There are no RNA molecules in this entry.

5.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

5.5 Carbohydrates (i)

There are no oligosaccharides in this entry.

5.6 Ligand geometry (i)

There are no ligands in this entry.

5.7 Other polymers (i)

There are no such residues in this entry.

5.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

