

wwPDB NMR Structure Validation Summary Report (i)

Jun 18, 2022 – 08:02 AM EDT

PDB ID : 7LQR

Title : Structure of conotoxin CIC Authors : Evans, E.R.J.; Daly, N.L.

Deposited on : 2021-02-15

This is a wwPDB NMR Structure Validation Summary Report for a publicly released PDB entry.

We welcome your comments at validation@mail.wwpdb.org
A user guide is available at
https://www.wwpdb.org/validation/2017/NMRValidationReportHelp
with specific help available everywhere you see the (i) symbol.

The types of validation reports are described at http://www.wwpdb.org/validation/2017/FAQs#types.

The following versions of software and data (see references (1)) were used in the production of this report:

MolProbity: 4.02b-467

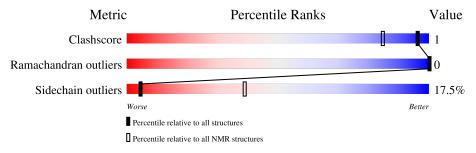
Percentile statistics : 20191225.v01 (using entries in the PDB archive December 25th 2019)

RCI : v 1n 11 5 13 A (Berjanski et al., 2005)

PANAV : Wang et al. (2010)

ShiftChecker : 2.29 BMRB Restraints Analysis : v1.2

Ideal geometry (proteins) : Engh & Huber (2001) Ideal geometry (DNA, RNA) : Parkinson et al. (1996)


Validation Pipeline (wwPDB-VP) : 2.29

1 Overall quality at a glance (i)

The following experimental techniques were used to determine the structure: $SOLUTION\ NMR$

The overall completeness of chemical shifts assignment is 80%.

Percentile scores (ranging between 0-100) for global validation metrics of the entry are shown in the following graphic. The table shows the number of entries on which the scores are based.

Metric	Whole archive $(\# \mathrm{Entries})$	$egin{array}{c} { m NMR \ archive} \ (\#{ m Entries}) \end{array}$	
Clashscore	158937	12864	
Ramachandran outliers	154571	11451	
Sidechain outliers	154315	11428	

The table below summarises the geometric issues observed across the polymeric chains and their fit to the experimental data. The red, orange, yellow and green segments indicate the fraction of residues that contain outliers for >=3, 2, 1 and 0 types of geometric quality criteria. A cyan segment indicates the fraction of residues that are not part of the well-defined cores, and a grey segment represents the fraction of residues that are not modelled. The numeric value for each fraction is indicated below the corresponding segment, with a dot representing fractions <=5%

Mol	Chain	Length	Quality of chain				
1	A	21	62%	10%	29%		

2 Ensemble composition and analysis (i)

This entry contains 20 models. Model 13 is the overall representative, medoid model (most similar to other models). The authors have identified model 1 as representative, based on the following criterion: *lowest energy*.

The following residues are included in the computation of the global validation metrics.

Well-defined (core) protein residues						
Well-defined core	Well-defined core Residue range (total) Backbone RMSD (Å) Medoid model					
1	A:7-A:21 (15)	0.13	13			

Ill-defined regions of proteins are excluded from the global statistics.

Ligands and non-protein polymers are included in the analysis.

The models can be grouped into 4 clusters and 2 single-model clusters were found.

Cluster number	Models
1	8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19
2	2, 3, 4
3	18, 20
4	5, 6
Single-model clusters	1; 7

3 Entry composition (i)

There is only 1 type of molecule in this entry. The entry contains 262 atoms, of which 120 are hydrogens and 0 are deuteriums.

• Molecule 1 is a protein called Alpha-conotoxin CIC.

Mol	Chain	Residues	Atoms				Trace		
1	Λ	01	Total	С	Н	N	О	S	0
1	A	<u> </u>	262	80	120	26	32	4	U

4 Residue-property plots (i)

4.1 Average score per residue in the NMR ensemble

These plots are provided for all protein, RNA, DNA and oligosaccharide chains in the entry. The first graphic is the same as shown in the summary in section 1 of this report. The second graphic shows the sequence where residues are colour-coded according to the number of geometric quality criteria for which they contain at least one outlier: green = 0, yellow = 1, orange = 2 and red = 3 or more. Stretches of 2 or more consecutive residues without any outliers are shown as green connectors. Residues which are classified as ill-defined in the NMR ensemble, are shown in cyan with an underline colour-coded according to the previous scheme. Residues which were present in the experimental sample, but not modelled in the final structure are shown in grey.

• Molecule 1: Alpha-conotoxin CIC

4.2 Residue scores for the representative (medoid) model from the NMR ensemble

The representative model is number 13. Colouring as in section 4.1 above.

• Molecule 1: Alpha-conotoxin CIC

Refinement protocol and experimental data overview (i) 5

The models were refined using the following method: torsion angle dynamics.

Of the 100 calculated structures, 20 were deposited, based on the following criterion: target function.

The following table shows the software used for structure solution, optimisation and refinement.

Software name	Classification	Version
CYANA	refinement	
CYANA	structure calculation	

The following table shows chemical shift validation statistics as aggregates over all chemical shift files. Detailed validation can be found in section 7 of this report.

Chemical shift file(s)	working_cs.cif
Number of chemical shift lists	1
Total number of shifts	176
Number of shifts mapped to atoms	176
Number of unparsed shifts	0
Number of shifts with mapping errors	0
Number of shifts with mapping warnings	0
Assignment completeness (well-defined parts)	80%

6 Model quality (i)

6.1 Standard geometry (i)

There are no covalent bond-length or bond-angle outliers.

There are no bond-length outliers.

There are no bond-angle outliers.

There are no chirality outliers.

There are no planarity outliers.

6.2 Too-close contacts (i)

In the following table, the Non-H and H(model) columns list the number of non-hydrogen atoms and hydrogen atoms in each chain respectively. The H(added) column lists the number of hydrogen atoms added and optimized by MolProbity. The Clashes column lists the number of clashes averaged over the ensemble.

Mol	Chain	Non-H	H(model)	H(added)	Clashes
1	A	107	91	91	0±0
All	All	2140	1820	1820	3

The all-atom clashscore is defined as the number of clashes found per 1000 atoms (including hydrogen atoms). The all-atom clashscore for this structure is 1.

All unique clashes are listed below, sorted by their clash magnitude.

Atom-1	Atom 2	Clash(Å)	$\operatorname{Distance}(\mathring{\mathbf{A}})$	Models	
Atom-1	Atom-2	Clash(A)	Distance(A)	Worst	Total
1:A:17:HIS:ND1	1:A:20:LEU:HD12	0.43	2.29	6	3

6.3 Torsion angles (i)

6.3.1 Protein backbone (i)

In the following table, the Percentiles column shows the percent Ramachandran outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the backbone conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles	
1	A	14/21 (67%)	12±0 (85±2%)	2±0 (15±2%)	0±0 (0±0%)	100 100	

Continued on next page...

Continued from previous page...

Mol	Chain	Analysed	Favoured	Allowed	Outliers	Percentiles
All	All	280/420 (67%)	239 (85%)	41 (15%)	0 (0%)	100 100

There are no Ramachandran outliers.

6.3.2 Protein sidechains (i)

In the following table, the Percentiles column shows the percent sidechain outliers of the chain as a percentile score with respect to all PDB entries followed by that with respect to all NMR entries. The Analysed column shows the number of residues for which the sidechain conformation was analysed and the total number of residues.

Mol	Chain	Analysed	Rotameric	neric Outliers		centiles
1	A	14/17 (82%)	12±1 (82±9%)	2±1 (18±9%)	4	39
All	All	280/340 (82%)	231 (82%)	49 (18%)	4	39

5 of 8 unique residues with a non-rotameric sidechain are listed below. They are sorted by the frequency of occurrence in the ensemble.

Mol	Chain	Res	Type	Models (Total)
1	A	13	CYS	15
1	A	8	CYS	12
1	A	7	CYS	10
1	A	10	ASN	4
1	A	21	CYS	3

6.3.3 RNA (i)

There are no RNA molecules in this entry.

6.4 Non-standard residues in protein, DNA, RNA chains (i)

There are no non-standard protein/DNA/RNA residues in this entry.

6.5 Carbohydrates (i)

There are no monosaccharides in this entry.

6.6 Ligand geometry (i)

There are no ligands in this entry.

6.7 Other polymers (i)

There are no such molecules in this entry.

6.8 Polymer linkage issues (i)

There are no chain breaks in this entry.

7 Chemical shift validation (i)

The completeness of assignment taking into account all chemical shift lists is 80% for the well-defined parts and 77% for the entire structure.

7.1 Chemical shift list 1

File name: working cs.cif

Chemical shift list name: nef_chemical_shift_list_cic.prot

7.1.1 Bookkeeping (i)

The following table shows the results of parsing the chemical shift list and reports the number of nuclei with statistically unusual chemical shifts.

Total number of shifts	176
Number of shifts mapped to atoms	176
Number of unparsed shifts	0
Number of shifts with mapping errors	0
Number of shifts with mapping warnings	0
Number of shift outliers (ShiftChecker)	0

7.1.2 Chemical shift referencing (i)

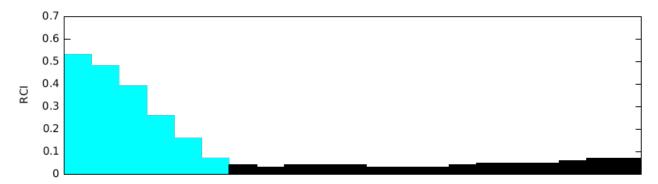
No chemical shift referencing corrections were calculated (not enough data).

7.1.3 Completeness of resonance assignments (i)

The following table shows the completeness of the chemical shift assignments for the well-defined regions of the structure. The overall completeness is 80%, i.e. 126 atoms were assigned a chemical shift out of a possible 158. 2 out of 2 assigned methyl groups (LEU and VAL) were assigned stereospecifically.

	Total	$^{1}\mathbf{H}$	$^{13}\mathbf{C}$	$^{15}{ m N}$
Backbone	55/73~(75%)	29/29 (100%)	12/30 (40%)	14/14 (100%)
Sidechain	67/78~(86%)	41/47 (87%)	24/28 (86%)	2/3~(67%)
Aromatic	4/7 (57%)	2/4 (50%)	2/2 (100%)	0/1 (0%)
Overall	$126/158 \ (80\%)$	72/80 (90%)	38/60 (63%)	16/18 (89%)

7.1.4 Statistically unusual chemical shifts (i)


There are no statistically unusual chemical shifts.

7.1.5 Random Coil Index (RCI) plots (i)

The image below reports random coil index values for the protein chains in the structure. The height of each bar gives a probability of a given residue to be disordered, as predicted from the available chemical shifts and the amino acid sequence. A value above 0.2 is an indication of significant predicted disorder. The colour of the bar shows whether the residue is in the well-defined core (black) or in the ill-defined residue ranges (cyan), as described in section 2 on ensemble composition.

Random coil index (RCI) for chain A:

8 NMR restraints analysis (i)

8.1 Conformationally restricting restraints (i)

The following table provides the summary of experimentally observed NMR restraints in different categories. Restraints are classified into different categories based on the sequence separation of the atoms involved.

Description	Value
Total distance restraints	230
Intra-residue (i-j =0)	64
Sequential (i-j =1)	75
Medium range ($ i-j >1$ and $ i-j <5$)	79
Long range (i-j ≥5)	12
Inter-chain	0
Hydrogen bond restraints	0
Disulfide bond restraints	0
Total dihedral-angle restraints	0
Number of unmapped restraints	0
Number of restraints per residue	11.0
Number of long range restraints per residue ¹	0.6

¹Long range hydrogen bonds and disulfide bonds are counted as long range restraints while calculating the number of long range restraints per residue

8.2 Residual restraint violations (i)

This section provides the overview of the restraint violations analysis. The violations are binned as small, medium and large violations based on its absolute value. Average number of violations per model is calculated by dividing the total number of violations in each bin by the size of the ensemble.

8.2.1 Average number of distance violations per model (i)

Distance violations less than 0.1 Å are not included in the calculation.

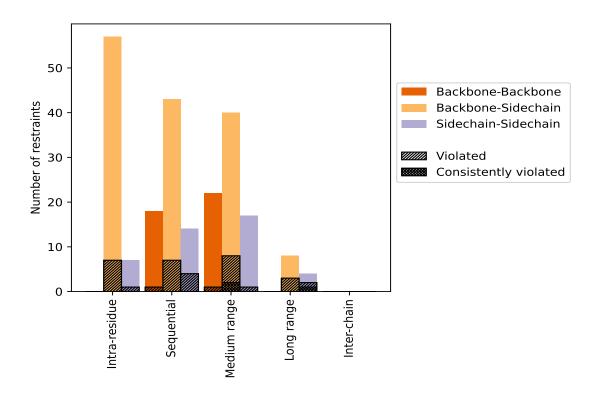
Bins (Å)	Average number of violations per model	Max (Å)
0.1-0.2 (Small)	3.1	0.2
0.2-0.5 (Medium)	7.8	0.5
>0.5 (Large)	5.1	1.82

8.2.2 Average number of dihedral-angle violations per model (i)

Dihedral-angle violations less than 1° are not included in the calculation. There are no dihedral-angle violations

9 Distance violation analysis (i)

9.1 Summary of distance violations (i)


The following table shows the summary of distance violations in different restraint categories based on the sequence separation of the atoms involved. Each category is further sub-divided into three sub-categories based on the atoms involved. Violations less than 0.1 Å are not included in the statistics.

Donatus into topo o	Count	% ¹	${f Violated^3}$			Consis	tently	$\mathbf{Violated}^4$
Restraints type	Count	70	Count	$\%^2$	$\%^{1}$	Count	$\%^2$	$\%^1$
Intra-residue (i-j =0)	64	27.8	8	12.5	3.5	0	0.0	0.0
Backbone-Backbone	0	0.0	0	0.0	0.0	0	0.0	0.0
Backbone-Sidechain	57	24.8	7	12.3	3.0	0	0.0	0.0
Sidechain-Sidechain	7	3.0	1	14.3	0.4	0	0.0	0.0
Sequential (i-j =1)	75	32.6	12	16.0	5.2	0	0.0	0.0
Backbone-Backbone	18	7.8	1	5.6	0.4	0	0.0	0.0
Backbone-Sidechain	43	18.7	7	16.3	3.0	0	0.0	0.0
Sidechain-Sidechain	14	6.1	4	28.6	1.7	0	0.0	0.0
Medium range ($ i-j >1 \& i-j <5$)	79	34.3	10	12.7	4.3	2	2.5	0.9
Backbone-Backbone	22	9.6	1	4.5	0.4	0	0.0	0.0
Backbone-Sidechain	40	17.4	8	20.0	3.5	2	5.0	0.9
Sidechain-Sidechain	17	7.4	1	5.9	0.4	0	0.0	0.0
Long range ($ i-j \ge 5$)	12	5.2	5	41.7	2.2	1	8.3	0.4
Backbone-Backbone	0	0.0	0	0.0	0.0	0	0.0	0.0
Backbone-Sidechain	8	3.5	3	37.5	1.3	0	0.0	0.0
Sidechain-Sidechain	4	1.7	2	50.0	0.9	1	25.0	0.4
Inter-chain	0	0.0	0	0.0	0.0	0	0.0	0.0
Backbone-Backbone	0	0.0	0	0.0	0.0	0	0.0	0.0
Backbone-Sidechain	0	0.0	0	0.0	0.0	0	0.0	0.0
Sidechain-Sidechain	0	0.0	0	0.0	0.0	0	0.0	0.0
Hydrogen bond	0	0.0	0	0.0	0.0	0	0.0	0.0
Disulfide bond	0	0.0	0	0.0	0.0	0	0.0	0.0
Total	230	100.0	35	15.2	15.2	3	1.3	1.3
Backbone-Backbone	40	17.4	2	5.0	0.9	0	0.0	0.0
Backbone-Sidechain	148	64.3	25	16.9	10.9	2	1.4	0.9
Sidechain-Sidechain	42	18.3	8	19.0	3.5	1	2.4	0.4

 $^{^1}$ percentage calculated with respect to the total number of distance restraints, 2 percentage calculated with respect to the number of restraints in a particular restraint category, 3 violated in at least one model, 4 violated in all the models

9.1.1 Bar chart: Distribution of distance restraints and violations (i)

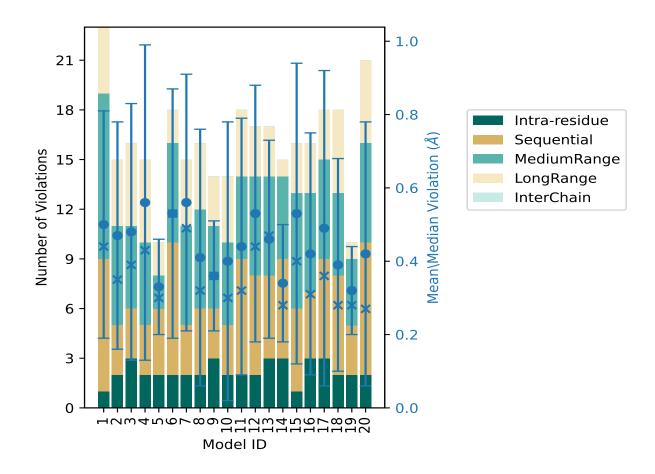
Violated and consistently violated restraints are shown using different hatch patterns in their respective categories. The hydrogen bonds and disulfied bonds are counted in their appropriate category on the x-axis

9.2 Distance violation statistics for each model (i)

The following table provides the distance violation statistics for each model in the ensemble. Violations less than 0.1 Å are not included in the statistics.

MadalID		Nun	nber o	f viola	ations	5	M (Å)	M (Å)	SD^6 (Å)	Madian (Å)
Model ID	IR^1	SQ^2	MR^3	LR^4	IC^5	Total	Mean (Å)	Max (Å)	\mathbf{SD}^6 (Å)	Median (Å)
1	1	8	10	4	0	23	0.5	1.38	0.31	0.44
2	2	3	6	4	0	15	0.47	1.23	0.31	0.35
3	3	3	5	5	0	16	0.48	1.46	0.35	0.39
4	2	3	5	5	0	15	0.56	1.82	0.43	0.43
5	2	4	2	2	0	10	0.33	0.55	0.13	0.3
6	2	8	6	2	0	18	0.53	1.6	0.34	0.53
7	2	3	6	4	0	15	0.56	1.48	0.35	0.49
8	2	4	6	4	0	16	0.41	1.62	0.35	0.32
9	3	3	5	3	0	14	0.36	0.59	0.15	0.36
10	2	3	5	4	0	14	0.4	1.73	0.38	0.3
11	2	7	5	4	0	18	0.44	1.53	0.35	0.32

Continued on next page...



Continued from previous page...

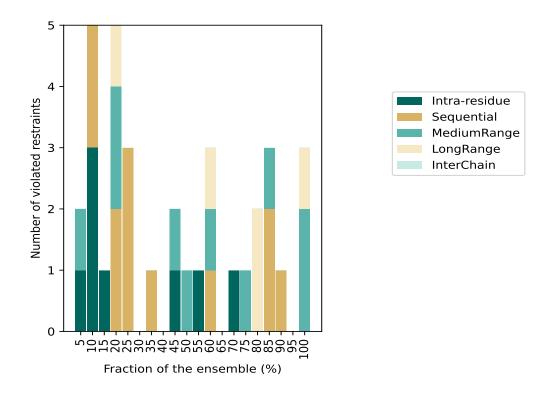
Model ID		Nun	nber o	f viola	ations	3	$\mathbf{M}_{\mathrm{Dotal}} = \mathbf{M}_{\mathrm{Dotal}} = \mathbf{M}_{Do$				
Model 1D	IR^1	SQ^2	MR^3	LR^4	IC^5	Total	Mean (A)	Max (A)	$SD^*(A)$	Median (Å)	
12	2	6	6	3	0	17	0.53	1.42	0.35	0.44	
13	3	5	6	3	0	17	0.46	1.12	0.27	0.47	
14	3	6	5	1	0	15	0.34	0.68	0.16	0.28	
15	1	5	7	3	0	16	0.53	1.61	0.41	0.4	
16	3	4	6	3	0	16	0.42	1.39	0.33	0.31	
17	3	6	6	3	0	18	0.49	1.8	0.43	0.36	
18	2	6	5	5	0	18	0.39	1.17	0.29	0.28	
19	2	3	4	1	0	10	0.32	0.63	0.12	0.28	
20	2	8	6	5	0	21	0.42	1.62	0.36	0.27	

 $^{^1}$ Intra-residue restraints, 2 Sequential restraints, 3 Medium range restraints, 4 Long range restraints, 5 Inter-chain restraints, 6 Standard deviation

9.2.1 Bar graph: Distance Violation statistics for each model (i)

The mean(dot),median(x) and the standard deviation are shown in blue with respect to the y axis on the right

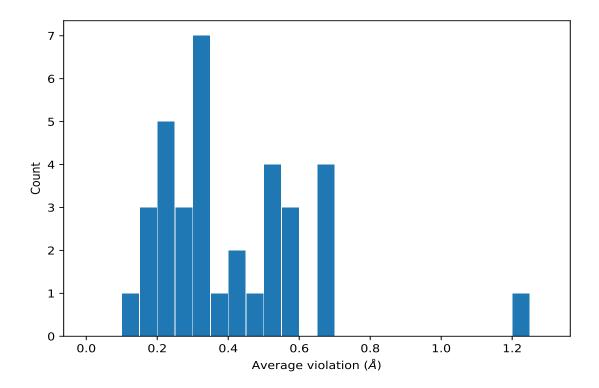
9.3 Distance violation statistics for the ensemble (i)


Violation analysis may find that some restraints are violated in few models and some are violated in most of models. The following table provides this information as number of violated restraints for a given fraction of the ensemble. In total, 195(IR:56, SQ:63, MR:69, LR:7, IC:0) restraints are not violated in the ensemble.

Nu	$\overline{\mathbf{mber}}$	of vio	lated	restra	aints	Fraction	n of the ensemble
IR^1	SQ^2	MR^3	LR^4	IC^5	Total	Count ⁶	%
1	0	1	0	0	2	1	5.0
3	2	0	0	0	5	2	10.0
1	0	0	0	0	1	3	15.0
0	2	2	1	0	5	4	20.0
0	3	0	0	0	3	5	25.0
0	0	0	0	0	0	6	30.0
0	1	0	0	0	1	7	35.0
0	0	0	0	0	0	8	40.0
1	0	1	0	0	2	9	45.0
0	0	1	0	0	1	10	50.0
1	0	0	0	0	1	11	55.0
0	1	1	1	0	3	12	60.0
0	0	0	0	0	0	13	65.0
1	0	0	0	0	1	14	70.0
0	0	1	0	0	1	15	75.0
0	0	0	2	0	2	16	80.0
0	2	1	0	0	3	17	85.0
0	1	0	0	0	1	18	90.0
0	0	0	0	0	0	19	95.0
0	0	2	1	0	3	20	100.0

 $^{^1}$ Intra-residue restraints, 2 Sequential restraints, 3 Medium range restraints, 4 Long range restraints, 5 Inter-chain restraints, 6 Number of models with violations

9.3.1 Bar graph: Distance violation statistics for the ensemble (i)



9.4 Most violated distance restraints in the ensemble (i)

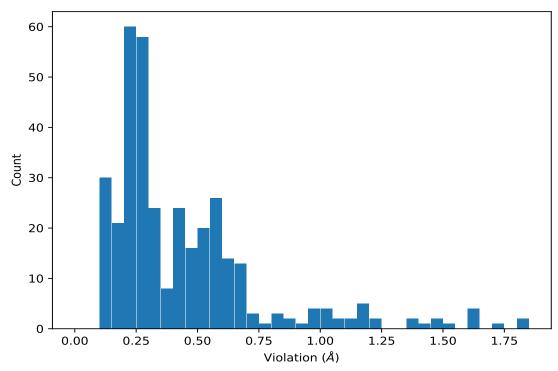
9.4.1 Histogram: Distribution of mean distance violations (i)

The following histogram shows the distribution of the average value of the violation. The average is calculated for each restraint that is violated in more than one model over all the violated models in the ensemble

9.4.2 Table: Most violated distance restraints (i)

The following table provides the mean and the standard deviation of the violations for the 10 worst performing restraints, sorted by number of violated models and the mean violation value. The Key (restraint list ID, restraint ID) is the unique identifier for a given restraint. Rows with same key represent combinatorial or ambiguous restraints and are counted as a single restraint.

Key	Atom-1	Atom-2	$Models^1$	Mean (Å)	SD^1 (Å)	Median (Å)
(1,183)	1:A:16:GLN:HB2	1:A:18:SER:H	20	0.68	0.21	0.58
(1,203)	1:A:7:CYS:HB2	1:A:13:CYS:HB2	20	0.35	0.12	0.33
(1,110)	1:A:12:ALA:HA	1:A:14:GLN:HB2	20	0.2	0.01	0.2
(1,133)	1:A:18:SER:HB2	1:A:19:ASP:HB2	18	1.22	0.55	1.44
(1,229)	1:A:18:SER:HA	1:A:21:CYS:HB2	17	0.7	0.34	0.57
(1,132)	1:A:19:ASP:HB2	1:A:20:LEU:HA	17	0.65	0.45	0.35
(1,138)	1:A:3:GLY:HA2	1:A:4:ALA:HB1	17	0.32	0.18	0.24
(1,138)	1:A:3:GLY:HA2	1:A:4:ALA:HB2	17	0.32	0.18	0.24
(1,138)	1:A:3:GLY:HA2	1:A:4:ALA:HB3	17	0.32	0.18	0.24
(1,226)	1:A:14:GLN:HG2	1:A:21:CYS:HB2	16	0.56	0.2	0.56
(1,225)	1:A:14:GLN:HA	1:A:21:CYS:HB2	16	0.31	0.11	0.29
(1,187)	1:A:2:SER:HB2	1:A:4:ALA:H	15	0.5	0.27	0.5


¹Number of violated models, ²Standard deviation

9.5 All violated distance restraints (i)

9.5.1 Histogram: Distribution of distance violations (i)

The following histogram shows the distribution of the absolute value of the violation for all violated restraints in the ensemble.

9.5.2 Table : All distance violations (i)

The following table provides the 10 worst performing restraints, sorted by the violation value. The Key (restraint list ID, restraint ID) is the unique identifier for a given restraint. Rows with same key represent combinatorial or ambiguous restraints and are counted as a single restraint.

Key	Atom-1	Atom-2	Model ID	Violation (Å)
(1,133)	1:A:18:SER:HB2	1:A:19:ASP:HB2	4	1.82
(1,133)	1:A:18:SER:HB2	1:A:19:ASP:HB2	17	1.8
(1,133)	1:A:18:SER:HB2	1:A:19:ASP:HB2	10	1.73
(1,133)	1:A:18:SER:HB2	1:A:19:ASP:HB2	8	1.62
(1,133)	1:A:18:SER:HB2	1:A:19:ASP:HB2	20	1.62
(1,133)	1:A:18:SER:HB2	1:A:19:ASP:HB2	15	1.61
(1,133)	1:A:18:SER:HB2	1:A:19:ASP:HB2	6	1.6
(1,133)	1:A:18:SER:HB2	1:A:19:ASP:HB2	11	1.53
(1,229)	1:A:18:SER:HA	1:A:21:CYS:HB2	7	1.48
(1,133)	1:A:18:SER:HB2	1:A:19:ASP:HB2	3	1.46

10 Dihedral-angle violation analysis (i)

No dihedral-angle restraints found

